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Preface

These are the proceedings of the School and Conference “Algebraic Methods in Geometry:
Commutative and Homological Algebra in Foliations and Singularities”, held at the Centro
de Investigación en Matemáticas (CIMAT), in Guanajuato, México, during August 22nd to
September 2nd of 2011. This meeting was in celebration of the 60th Birthday Anniversary
of Xavier Gómez-Mont, and it was mainly devoted to the research topics covered by Gómez-
Mont.

Xavier Gómez-Mont is a Mexican mathematician who finished his Ph.D. at Princeton
University in 1978 sponsored by the Universidad Nacional Autónoma de México (UNAM).
At Princeton, he worked with R. C. Gunning and he also profited from conversations with
Bill Thurston, conversations that left a deep track in the –those days– young Gómez-Mont.
After finishing his Ph.D., he joined the Institute of Mathematics at the UNAM, and then,
in 1987, he moved to CIMAT, where he has been working since that time. During all these
years he has been a world leading mathematician and a pillar of mathematics in México and
Latin America.

The early works of Xavier Gómez-Mont were on holomorphic foliations, making significant
contributions to laying down the foundations of the theory. Among other contributions to
the subject, he was one of the first to study holomorphic foliations using tools and methods
from Algebraic Geometry. He also proved striking theorems for codimension one holomorphic
foliations in the spirit of Ahlfors’ finiteness theorem and Sullivan’s non-wandering domains
theorem. In the 1990s, Gómez-Mont started working on indices of vector fields, and his
research led to a remarkable index for holomorphic vector fields on singular varieties, called
the homological index. This relies heavily on homological algebra and a certain Koszul
complex. Part of that line of research is the “Gobelin”: A certain double complex which is
so fine and sophisticated that makes you think of a master piece of tapestry, hence the name
“Gobelin”. In Gómez-Mont’s research one always finds algebra and geometry intertwined
with dynamics, and this beautifully leads also to his work on the “foliated geodesic flow” and
statistical methods to studying holomorphic foliations.

Each of the articles contained in this volume is an interesting piece of work on its own,
and together they give a glimpse of important areas of mathematics where Gómez-Mont has
made significant contributions.

Pedro Luis del Angel
Laura Ortiz-Bobadilla
Jos Seade
Alberto Verjovsky

i
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THE HOMOLOGICAL INDEX AND THE DE RHAM COMPLEX

ON SINGULAR VARIETIES

A.G. ALEKSANDROV

Dedicated to Xavier Gómez-Mont on the occasion of his 60th birthday

Abstract. We discuss several methods of computation of the homological index originated in

a paper by X. Gómez-Mont for vector fields given on singular complex varieties. Our approach
takes into account basic properties of holomorphic and regular meromorphic differential forms

and is applicable in different settings depending on concrete types of varieties. Among other

things, we describe how to compute the index in the case of Cohen-Macaulay curves, graded
normal surfaces and complete intersections by elementary calculations. For quasihomogeneous

complete intersections with isolated singularities, an explicit formula for the index is obtained;

it is a direct consequence of earlier results of the author. Indeed, in this case the computation
of the homological index is reduced to the use of Newton’s binomial formula only.

Introduction

The classical concept of topological index for vector fields with isolated singularities given
on 2-dimensional manifolds goes back to H. Poincaré (1887). This notion was generalized to
higher-dimensional case by H. Hopf who proved that the total index of a vector field on a closed
smooth orientable manifold does not depend on the field and it is equal to the Euler-Poincaré
characteristic of the manifold. Since then, many authors studied the index as a topological
invariant in different contexts and various settings. However, being purely topological, the
original definition of index essentially depends on concrete presentations of vector fields, on the
topological and analytical structure of a manifold, on the existence of suitable metrics, etc. That
is why when studying varieties with singularities the classical approach does not work perfectly
for evident reasons.

A new algebraic concept of the homological index for vector fields on reduced pure-dimensional
complex analytic spaces appeared in a work by X. Gómez-Mont [16]; it is easy and well adapted
for use in the theory of singular varieties. His main idea is to consider an important algebraic and
analytic invariant, the alternating sum of dimensions of the homology groups of the truncated De
Rham complex of holomorphic differential forms whose differential is defined by the contraction
ιV of differential forms along a vector field V given on a singular complex space. In other terms,
this invariant is the Euler-Poincaré characteristic of the contracted De Rham complex. Then it
is proved that under certain finiteness assumptions the homological index is equal to the classical
local topological index of V up to a constant depending on the germ of singular space but not
on the vector field. In its turn, the problem of computation of Euler-Poincaré characteristic
is reduced to the analysis of the homology or hypercohomology of the contracted De Rham
complex.

2010 Mathematics Subject Classification. 32S25, 14F10, 14F40, 58K45, 58K70.
Key words and phrases. holomorphic differential forms; contracted De Rham complex; regular meromorphic

forms; torsion and cotorsion; generating functions; graded complete intersections; Lebelt resolutions.
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Originally the homological index was computed explicitly for vector fields with isolated sin-
gularities tangent to a hypersurface embedded in a complex manifold with the use of standard
resolvents and properties of spectral sequences [15]. In a paper by the author [6] another method
for the calculation of the homological index is described; the main idea of his approach is to com-
pute the homological index with the use of meromorphic differential forms defined on the ambient
manifold and having logarithmic poles along the given hypersurface. Above all an auxiliary in-
variant, called the logarithmic index, is introduced and studied.

The next example, the case of complete intersections with isolated singularities was considered
in [23], [10] with the help of quite a difficult technique and constructions of complicated resolvent
or resolutions with detail analysis of spectral sequences, the use of computer algebra systems,
and so on.

In the present paper we discuss several methods of computation of the homological index
for some types of singular varieties. The key point of our approach lies in the fact that the
homology of the contracted De Rham complex can be computed with the use of meromorphic
differential forms. Among other things we show that in quite a general context the homological
index can be naturally described in terms of the contracted complex of meromorphic differential
forms or some subcomplexes. For example, in the case of hypersurfaces the complex (ω•X , ιV) of
regular meromorphic differential forms is closely related via the residue map with the contracted
complex of logarithmic differential forms. In its turn, the latter complex is simply linked to the
contracted De Rham complex (Ω•X , ιV). Moreover, the Euler-Poincaré characteristics of these
three complexes differ by constants which depend on singularities of the space and the vector
field (see [6]). More generally, in the case of normal singularities it is useful to analyze the
complex (ω•X , ιV); in the case of non-normal singularities one can consider also the complex
(∆•X , ιV) of extendable (to the normalization) meromorphic differential forms, and so on.

The paper is organized as follows. In the first sections we discuss some basic notions and
definitions. Almost all of them are well-known in a more general setting; they are often exploited
in many areas of singularity theory, analytic geometry, residue theory, etc. Our aim here is
only to unify them and to consider related applications in some special situations. Then some
simple methods of computation of the homological index are discussed; they are applied in
different situations depending on concrete types of singular varieties. Thus, we show subsequently
how to compute the index for Cohen-Macaulay curves, graded normal surfaces and complete
intersections of arbitrary dimension. As a curious example, in the case of quasihomogeneous
complete intersections with isolated singularities an explicit formula for the homological index is
obtained; it is a direct consequence of earlier results by the author [1], [2]. In fact, in such a case
the computation of the homological index is readily reduced to the use of Newton’s binomial
formula only.

I would like to thank all the organizers of Xavierfest at CIMAT Guanajuato for providing
me with the opportunity of participating in this exciting meeting. I am also very indebted to
Xavier Gómez-Mont for many stimulating conversations, discussions and suggestions concerning
the subject of the paper.

1. The contracted De Rham complex

Let X be a complex (or real analytic) space or algebraic variety. Then the sheaves ΩpX , p ≥ 0,
of holomorphic (or analytic) differential p-forms on X are defined as follows.

Let x ∈ X be a closed point. Choose one representative of the germ (X,x) embedded in an
open neighborhood U of the origin in Cm. Let OU be the sheaf of analytic functions on U, and I
a coherent sheaf of ideals with the zero-set X. Then (X,OX) is a closed analytic subspace of U
so that OX = OU/I|X . Assume that the ideal I is locally generated by a sequence of functions
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f1, . . . , fk in OU , and set

ΩpX,x = ΩpU/(

k∑
j=1

fj · ΩpU + dfj ∧ Ωp−1U )
∣∣
X
.

By analogy with non-singular case elements of ΩpX,x are usually called germs of (regular)

holomorphic forms of degree p on X. The differential d, acting on ΩpU , induces the differential
on ΩpX,x; it is denoted by the same symbol. As a result, the family of sheaves ΩpX , endowed with

the differential d, forms an increasing complex (Ω•X , d).
Remark. In the introduction to his famous article [19] A. Grothendieck wrote: “... we can

consider the complex of sheaves Ω•X/k of regular differentials on X, the differential operator being

of course the exterior differentiation.” Although this complex was firstly considered and studied
already by Poincaré, he called it the De Rham complex, and its hypercohomology – the De Rham
cohomology of X.

However, along with the structure of a complex, given by the De Rham differentiation, one
can endow the family of sheaves of regular differential forms with a structure of a complex in
other ways. For example, similarly to the classical theory of differentiation and integration one
can associate with the exterior differentiation an important class of inverse operators as follows.

Let Der(X) = HomOX (Ω1
X ,OX) be the sheaf of germs of holomorphic vector fields onX.Given

an element V ∈ Der(X) ∼= HomOX (Ω1
X ,OX), a canonical action of the interior multiplication

(contraction) ιV along V on Ω•X is well-defined. Since ι2V = 0, one obtains a decreasing complex
(Ω•X , ιV).

Remark. Apparently, J. Carrell and D. Liberman [13] investigated the complex (Ω•X , ιV)
for the first time; they proved in the cited work, that the Hodge numbers hpq(X) of a compact
Kähler manifold X vanish as soon as the absolute value of the difference |p− q| is greater than
the dimension of the zero set of V.

More generally, if X is a complex manifold, the sheaves of regular holomorphic forms ΩpX
are locally free. In such a case, the complex (Ω•X , ιV) is locally isomorphic to the classical
Koszul complex. However, if X is a singular complex variety then the corresponding theory
is considerably more difficult; the above complex belong to the class of the generalized Koszul
complexes.

Following [6], in order to avoid an ambiguous terminology we call the complex (Ω•X , ιV) the
contracted De Rham complex of X.

2. Meromorphic differential forms

Let Z ⊂ X be a closed subset, j : X \Z ↪→ X be the natural inclusion, and let F be a coherent
OX -module. Then there exists a standard exact sequence of OX -modules

0 −→ H0
Z(F) −→ F −→ j∗j

∗F −→ H1
Z(F) −→ 0, (1)

where H∗Z(•) is the local cohomology functor with supports in the closed subset Z ⊂ X, while
j∗ and j∗ are functors of direct and inverse image, respectively, so that j∗j

∗F ∼= R0j∗(F|X\Z).

One says that F has support in Z, that is, Supp (F) ⊆ Z, if H0
Z(F) −→ F is an isomorphism; F

is said to have no Z-torsion, if H0
Z(F) = 0. Usually, the latter local cohomology group is called

Z-torsion of F ; it is denoted by Tors (F). Similarly H1
Z(F) is called Z-cotorsion. For example,

j∗j
∗F itself has no Z-torsion. More generally, if J ⊂ OX is a coherent sheaf of ideals with the

zero-locus Z ⊂ X, then for all i ≥ 0 one has

HiZ(F) = lim
−→
ν

ExtiOX (OX/J ν ,F).



4 A.G. ALEKSANDROV

Given a morphism of quasi-coherent sheaves % : F → G, a family of natural morphisms

HiZ(%) : HiZ(F)→ HiZ(G),

i ≥ 0, is well-defined. Suppose also that there is an extension j∗(%) of %|X\Z to X such that the
diagram

0 −→ H0
Z(F) −→ F −→ j∗j

∗F −→ H1
Z(F) −→ 0

↓H0
Z(%) ↓ % ↓ j∗(%) ↓H1

Z(%)

0 −→ H0
Z(G) −→ G −→ j∗j

∗G −→ H1
Z(G) −→ 0.

is commutative. Then for any complex L• = (L•, ∂) of sheaves on X such that

j∗(∂)2 = j∗(∂
2) = 0

the above diagram induces an exact sequence of complexes of OX -modules:

0 −→ H0
Z(L•) −→ L• −→ j∗j

∗L• −→ H1
Z(L•) −→ 0, (2)

since H0
Z(∂2) = H0

Z(∂)2 = 0, H1
Z(∂2) = H1

Z(∂)2 = 0.
Let us now take F = ΩpX , p ≥ 0, and Z = SingX. Then j∗j

∗ΩpX = j∗Ω
p
X

∣∣
X\Z consists of

germs of meromorphic differential p-forms on X with singularities on Z.

Proposition 1. With the same notations let V be an element of Der(X). Suppose that the
restriction j∗V = V|X\Z can be extended (in general, not necessarily uniquely) on X and denote
the corresponding contraction, acting on j∗j

∗Ω•X , by j∗(ιV) = ιj∗V . Then there exists an exact
sequence of decreasing complexes

0 −→ H0
Z(Ω•X) −→ Ω•X −→ j∗j

∗Ω•X −→ H1
Z(Ω•X) −→ 0 (3)

with differentials ιV and ιj∗V .

For example, if X is a normal variety, then the desirable extension of V exists. Moreover,
there exists also a similar exact sequence of increasing complexes with differentials induced by
the usual De Rham differentiation d acting on Ω•X .

Remark. It should be underlined that, in general, for a coherent sheaf F the associated
quasi-coherent sheaf j∗j

∗F is non-coherent. However, there always exists a coherent subsheaf
GX ⊂ j∗j∗FX (as a rule, even not unique) such that FU ∼= GX |U .

The following useful assertion is an easy modification of the well-known statement due to
M. Schlessinger (see [30]).

Lemma 1. Let X be the germ of a complex space, F a coherent OX-module, and

F∨ = HomOX (F ,OX)

its dual. Suppose that Z ⊂ X is a closed subspace, and depth ZX ≥ 2. Then depth ZF∨ ≥ 2,
so that H0

Z(F∨) = H1
Z(F∨) = 0. Similarly, the condition depth ZX ≥ 1 implies depth ZF∨ ≥ 1,

that is, H0
Z(F∨) = 0.

Proof. Taking the presentation 0 → R → L → F → 0, where L is a free OX -module, one
gets the dual exact sequence

0→ F∨ → L∨ → Q→ 0

with Q ⊆ R∨. Since L is free and depth ZOX ≥ 2, then H0
Z(L∨) = H1

Z(L∨) = 0. Hence,
H0
Z(F∨) = 0. Analogously, H0

Z(R∨) = 0; this implies H0
Z(Q) = 0. Finally, applying the functor

of local cohomology H∗Z(•) to the dual exact sequence, one deduces H1
Z(F∨) = 0. The remaining

case depth ZX ≥ 1 is analyzed in the same manner. QED.



HOMOLOGICAL INDEX AND DE RHAM COMPLEX 5

Corollary 1. Let X be a reduced complex space, Z = SingX. Then the OX-module Der(X) of
vector fields on X has no Z-torsion.

Proof. By definition, Der(X) ∼= HomOX (Ω1
X ,OX). SinceX is reduced, then codim(Z,X) ≥ 1

and, hence, depth ZX ≥ 1. QED.

3. Regular meromorphic forms

Let M be a complex manifold, dimM = m, and let X ⊂ M be an analytical subset in a
neighborhood of x ∈ U ⊂ M defined by a sequence of functions f1, . . . , fk ∈ OU as before.
Throughout this section we assume that X is a Cohen-Macaulay space and dimX = n. Then

ωnX = Extm−nOM (OX ,ΩmM )

is called the Grothendieck dualizing module of X. It is well-known that the dualizing module
has no torsion, TorsωnX = 0.

Definition. The coherent sheaf of OX -modules ωpX , p ≥ 0, is locally defined as the set
of germs of meromorphic differential forms ω of degree p on X such that ω ∧ η ∈ ωnX for any

η ∈ Ωn−pX . In other terms (see [8], [24], [22]),

ωpX
∼= HomOX (Ωn−pX , ωnX) ∼= Extm−nOM (Ωn−pX ,ΩmM ). (4)

Elements of ωpX are called regular meromorphic differential forms of degree p on X. Some
equivalent definitions of these sheaves in terms of Noether normalization and trace (see [24], [8]),
in terms of residual currents (see [7]) and others are well-known.

Evidently, ωpX = 0 for p > n since Ωn−pX = 0. Further, ωpX = 0 for p < 0 because ΩpX
∼= Tors ΩpX

for p > n and ωnX has no torsion. It is easy also to see that the De Rham differentiation d as well as
the contraction ιV acting on Ω•X are naturally extended to the family of modules ωpX , 0 ≤ p ≤ n;
they endow this family with structures of increasing complex (ω•X , d) or decreasing complex

(ω•X , ι
∗
V), respectively. In particular, the contraction ι∗V : ωpX → ωp−1X is naturally defined as a

dual morphism to the action ιV on the complex Ω•X in view of presentation (4).

Lemma 2 (see [8]). Let Z = SingX, j : X \ Z −→ X. Then there exist natural inclusions
ωpX ⊆ j∗j

∗ΩpX for all p ≥ 0. Moreover, if codim(Z,X) ≥ 1, then ωpX has no Z-torsion; if
codim(Z,X) ≥ 2, then ωpX has no cotorsion for all p ≥ 0.

Proposition 2. If X is a normal space, that is, c = codim(SingX,X) ≥ 2, then ωpX
∼= j∗j

∗ΩpX
for p ≥ 0. Thus, a meromorphic form is regular meromorphic on X if and only if it is holomorphic
outside the singular subset Z of X. In particular, for p ≥ 0 the sheaves j∗j

∗ΩpX are coherent and
exact sequence (3) of complexes transforms in the following way:

0 −→ H0
Z(Ω•X) −→ Ω•X −→ ω•X −→ H1

Z(Ω•X) −→ 0.

Moreover, ωpX and the bidual sheaves ΩpX
∨∨

= HomOX (HomOX (ΩpX ,OX),OX) of Zariski
differential p-forms are isomorphic for all 0 ≤ p < c, respectively.

Remark. The sheaf ω0
X contains all the germs of weakly holomorphic functions on X, or

locally bounded meromorphic functions on X (see [8]); in other terms, it contains meromorphic
germs whose preimages are holomorphic on the normalization of X [29]. Furthermore, the
sheaves ωn−1X and Der(X) are naturally isomorphic.

Evidently, if X ⊂M, then for any vector field V ∈ Der(X) there exists a holomorphic vector
field V given on the ambient manifold M such that V |X = V. For brevity, we often say that V
has isolated singularities when its representative V does. In particular, this implies that such V
has isolated singularities on X.
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Proposition 3. Let V ∈ Der(X) be a vector field with isolated singularities. Then the ιV -
homology groups of the complex ω•X are finite-dimensional vector spaces.

Proof. Following [16], let us assume that M = Cm and the distinguished point

x0 = 0 ∈ X ⊂M

is an isolated singularity of the field V, so that V(x0) = 0. Then V(x) 6= 0 at any point x in
a small enough punctured neighborhood of the point x0. In a suitable neighborhood of x there
exists a coordinate system (t, z′1, . . . , z

′
m−1) such that V = ∂/∂t. Since V(I) ⊆ (I)OM,0, then

X ∼= T ×X0, where a small disc in t is denoted by T and X0 ⊆M0 = Cm−1. Hence, for sheaves
of holomorphic forms of degree p ≥ 0 on X there are isomorphisms

ΩpX,0
∼=
(
ΩpX0,0

⊕ Ωp−1X0,0
∧ dt

)
⊗C OC,0;

they are readily obtained from consideration of canonical projections T × X0 on the first and
second cofactors and from definition of ΩpX,0. A similar presentation exists for j∗j

∗ΩpX,0 as well

as for ωpX,0. Finally, on the p-th component of the complex (ω•X,0, ι
∗
V) one has

Ker(ι∗∂/∂t)
∼= Im (ι∗∂/∂t)

∼=
(
ωpX0,0

⊕ (0)
)
⊗C OC,0

in virtue of duality. Thus, the corresponding homology groups vanish for all p. If x0 ∈M\X, then
one can easily get the same conclusion. This implies that ι∗V -homology groups of the complex
ω•X may be non-trivial only at singular points of the field. The coherence of sheaves of regular
meromorphic forms and their cohomology implies the statement. QED.

4. The homological index

Let (L•X , ∂) be a (lower and upper) bounded decreasing complex of OX -modules with the
differential of degree −1. Assume that all its homology groups Hi(L•X , ∂) are modules of finite
length, that is, `(Hi(L•X , ∂)) < ∞ for all i ∈ Z. Then the Euler-Poincaré characteristic of the
complex (L•X , ∂) is defined as follows:

χ(L•X , ∂) =
∑
i∈Z

(−1)i`(Hi(L•X , ∂)).

Remark. If all the homology groups of L• are finite-dimensional vector spaces over the
ground field k = C, then

χ(L•X , ∂) =
∑
i∈Z

(−1)i dimkHi(L•X , ∂).

Similarly, the Euler-Poincaré characteristic of the stalk of complex L•X,x at any point x ∈ X is
well-defined.

Claim 1. Under the finiteness assumption there exists the following relation:

χ(Ω•X , ιV) = χ(j∗j
∗Ω•X , j∗ιV) + χ(Tors Ω•X , ιV)− χ(H1

Z(Ω•X), ιV),

Moreover, if X is normal then

χ(Ω•X , ιV) = χ(ω•X , ι
∗
V) + χ(Tors Ω•X , ιV)− χ(H1

Z(Ω•X), ιV).

Proof. The exact sequence (3) yields two short exact sequences of complexes with differen-
tials induced by the contractions along the vector field and its extension:

0 −→ Tors Ω•X −→ Ω•X −→ Ω̃•X −→ 0; 0 −→ Ω̃•X −→ j∗j
∗Ω•X −→ H1

Z(Ω•X) −→ 0,
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where Ω̃•X = Ω•X/Tors Ω•X is the quotient complex. Combining the associated long exact se-
quences of homologies, one obtains the first relation. Next, Proposition 2 implies

χ(j∗j
∗Ω•X) = χ(ω•X);

it gives the second relation. QED.

Definition (see [16]). Let V be a holomorphic vector field given on the germ (X,x) of
n-dimensional complex space and let (σ≤n(Ω•X,x), ιV) be the truncated contracted De Rham

complex of (X,x) :

0 −→ ΩnX,x
ιV−→ Ωn−1X,x

ιV−→ Ωn−2X,x → · · · → Ω1
X,x

ιV−→ Ω0
X,x
∼= OX,x −→ 0.

The Euler-Poincaré characteristic of this complex is called the homological index of the vector
field at x; it is denoted by Indhom,x(V). Thus,

Ind hom,x(V) = χ(σ≤n(Ω•X,x), ιV).

Remark. In the standard terminology of homological algebra such kind of truncation is
usually called the “stupid” or “näıve” truncation of level n.

Remark. The homological index was originally defined for vector fields on a reduced pure-
dimensional complex analytic space with finite-dimensional homology groups Hi(Ω

•
X,x, ιV); if

such X and a vector field V both have isolated singularities at x then the homological index
coincides with the local topological (Poincaré-Hopf) index up to a constant depending on the
germ of singular space but not on the vector field (see [16]).

Definition. Let V be a holomorphic vector field on X and ιV the contraction along V.
If (L•X , ∂) is equal to one of the described above complexes (Ω•X , ιV), (j∗j

∗Ω•X , j∗ιV), (ω•X , ι
∗
V),

H0
Z(Ω•X , ιV),H1

Z(Ω•X , ιV), then we shall often call the corresponding Euler-Poincaré characteristic
by holomorphic, meromorphic, regular meromorphic, torsion and cotorsion indices of the vector
field V at x ∈ X, respectively.

It should be noted that the present paper is devoted in the main to the study of the homological
index for varieties whose cotorsion index is equal to zero, that is, χ(H1

Z(Ω•X)) = 0.

Proposition 4. Assume that (X,x) is the germ of a complex space such that ΩpX,x are torsion

modules for all p > n, that is, ΩpX,x = Tors ΩpX,x. Then

Indhom,x(V ) = χ(Ω•X,x, ιV)− χ(Tors (σ>n(Ω•X,x)), ιV).

Proof.It is enough to compare the Euler-Poincaré characteristics of the contracted ιV -
complexes in the exact sequence

0 −→ σ≤n(Ω
•
X) −→ (Ω•X) −→ σ>n(Ω

•
X) −→ 0,

and then to use an evident isomorphism σ>n(Ω
•
X) ∼= Tors (σ>n(Ω

•
X)). QED.

Remark. It is well-known that reduced complete intersections with non-isolated singularities
satisfy the conditions of Proposition 4 (see [17, Proposition 1.11]).

Corollary 2 (cf. [16], (1.4)). Under the same assumptions suppose additionally that (X,x) is
an n-dimensional isolated singularity of embedding dimension m. Then

Indhom,x(V) = χ(σ≤n(Ω•X,x), ιV) = χ(Ω•X,x, ιV)−
m∑

p=n+1

(−1)p dimk Tors ΩpX,x.
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Proof. Since (X,x) is an isolated singularity, then torsion modules Tors ΩpX,x are finite-
dimensional vector spaces for all p > n. QED.

Corollary 3. For an isolated complete intersection singularity of dimension n ≥ 1 one has

Indhom,x(V) = χ(ω•X,x, ι
∗
V) + (−1)n dimk Tors ΩnX,x.

Proof. In fact, the cotorsion index is equal to zero, that is, χ(H1
{x}(Ω

•
X), ιV) = 0, because in

our case there are only two non-trivial cotorsion modules of equal lengths (see [11]). It remains
to use Claim 1 and Corollary 2. QED.

Claim 2. Assume that (X,x) is a quasihomogeneous isolated complete intersection singularity
of dimension n ≥ 1. Then

dimk Tors ΩnX,x =

m∑
p=n+1

(−1)p−n−1 dimk ΩpX,x,

where m is the embedding dimension of the singularity.

Proof. Let V be the Euler vector field. First observe that if n = 1, then ιV(Tors Ω1
X,x) = 0

in OX,x. Indeed, if θ ∈ Tors Ω1
X,x then there exists a non-zero divisor u ∈ OX,x such that

uθ ∈
∑
OCm,o ∧ dfj + (f1, . . . , fm−1)OCm,o. Then ιV(uθ) = uιV(θ) ∈ (f)OCm,o, that is, one has

uιV(θ) = 0 in OX,x and, consequently, ιV(θ) = 0 as was required. If n ≥ 2 then depth xOX ≥ 2
and the germ X \x is connected (see [18, Corollary 3.9]). In particular, the germ X is irreducible
and its analytical algebra OX,x has no zero-divisors, i.e. it is an integral domain. Further,
Tors ΩpX = 0 for all 0 < p < n, Tors ΩpX are finite-dimensional for p ≥ n and ΩpX

∼= Tors ΩpX
for p > n (see [17, Proposition 1.11]). Analogously to the above considerations for n = 1 one
gets ιV(Tors ΩnX,x) = 0. Since (X,x) is a contractible singularity with respect to the Euler vector

field then χ(σ≥n(Tors Ω•X), ιV) = 0. It remains to note that the Euler-Poincaré characteristic of
a complex, whose terms are finite-dimensional vector spaces, is equal to the alternating sum of
dimensions of all its terms (cf. [17, Lemma 5.6]). QED.

Remark. There exist also other cases when a slightly modified version of the Claim 2 is true
(see, for example, [28, Satz 3]).

From the above observations it follows that the complex (ω•X,x, ι
∗
V) may have non-trivial

homology groups Hi only for i = 0, 1, . . . , n, where n is the dimension of X. That is, in a certain
sense the regular meromorphic index is defined in a more intrinsic manner than the homological
one, since in the general case the former does not depend on the embedding dimension of the
germ X, on the operation of truncation, etc.

5. Cohen-Macaulay curves

Let us consider in detail the case when (X, o) is the germ of a Cohen-Macaulay curve at the
distinguished point o ∈ X (for brevity, a singularity) and suppose that Z = SingX = {o}. Then
ω1
X 6∼= j∗j

∗Ω1
X and, moreover, the cotorsion of Ω1

X , the right termH1
{o}(Ω

1
X) of exact sequence (1),

is infinite-dimensional over C. Let A = (A,m) be the analytical algebra corresponding to the
germ (X, o). Then A is a Cohen-Macaulay 1-dimensional local ring, k ∼= A/m, k = C is the
ground field and there exists an exact sequence

0 −→ Tors Ω1
A −→ Ω1

A
cA−→ ω1

A −→ #ω1
A −→ 0, (5)

where the left and right terms are concentrated at the singularity so that they are finite-
dimensional vector spaces.
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In this case the dualizing (or, equivalently, canonical) module ω1
A is contained properly in

Ω1
A ⊗A F/A, where F is the total ring of fractions of A, cA is the canonical A-homomorphism

of the fundamental class induced by the natural map Ω1
A → Ω1

A ⊗ F/A (see [20], [25]). By
definition, Ker(cA) = Tors Ω1

A
∼= H0

m(Ω1
A) is the torsion submodule of Ω1

A, and Coker(cA) = #ω1
A

is contained in H1
m(Ω1

A), it is called the ωA-cotorsion of Ω1
A.

Proposition 5. Let A be a reduced 1-dimensional analytical algebra and V ∈ Derk(A) a k-
differentiation of A. Then there exists the following commutative diagram with exact rows

0 −→ Tors Ω1
A −→ Ω1

A
cA−→ ω1

A −→ #ω1
A −→ 0

↓ιV ↓ι∗V ↓
0 −→ Ω0

A
∼= A −→ ω0

A −→ #ω0
A −→ 0,

(6)

where ω0
A = HomA(Ω1

A, ω
1
A), A ↪→ ω0

A is the canonical inclusion, #ω0
A
∼= Ext1A(#ω1

A, ω
1
A), the

middle left vertical arrow of diagram is the contraction ιV , acting on Ω1
A, while the middle term

from right is induced by this contraction on ω•A in a dual way.

Proof. Since A is, in fact, a Cohen-Macaulay local ring of Krull dimension 1, then

HomA(k, ω1
A) = 0,

and, consequently, HomA(M,ω1
A) = 0 for any A-module M of finite type with SuppM ⊆ {m}.

Applying the functor HomA(•, ω1
A) to the following exact sequences subsequently

0→ Tors Ω1
A → Ω1

A → Ω̃1
A → 0, 0→ Ω̃1

A
cA−→ ω1

A → #ω1
A → 0, (7)

one gets a natural isomorphism HomA(Ω̃1
A, ω

1
A) ∼= HomA(Ω1

A, ω
1
A), and the first four terms of

the long exact sequence

0→ HomA(ω1
A, ω

1
A) −→ HomA(Ω1

A, ω
1
A) −→ Ext1A(#ω1

A, ω
1
A) −→ Ext1A(ω1

A, ω
1
A)

since supports of Tors Ω1
A and #ω1

A are contained in the singular point {m}. At last, from [20,

6.1 d)], it follows that Ext1A(ω1
A, ω

1
A) = 0, HomA(ω1

A, ω
1
A) ∼= A, and there exists a canonical exact

sequence

0 −→ A −→ HomA(Ω1
A, ω

1
A) −→ Ext1A(#ω1

A, ω
1
A) −→ 0, (8)

where the inclusion A −→ HomA(Ω1
A, ω

1
A) is given by the correspondence 1A 7→ cA (see details

in [25, § 3]). In conclusion, the contraction ιV : Ω1
A → Ω0

A
∼= A induces the natural dual mapping

ι∗V : ω1
A → ω0

A in view of the definition of ω•A. It is not difficult to verify, that cA is compatible
with the contraction ιV and its extension ι∗V , so that diagram (6), a combination of the latter
exact sequence and (5), is, in fact, commutative. QED.

Corollary 4 ([22], (4.4)). Under the same assumptions the lengths of ω-cotorsion modules are
equal, that is, `(#ω1

A) = `(#ω0
A), and the index of cotorsion complex is zero, χ(#ω•A) = 0.

Remark. In a similar manner one can verify (see [22]) that #ω1
A
∼= Ext1A(#ω0

A, ω
1
A). Really,

applying HomA(•, ω1
A) to the bottom row of the diagram (6), one gets

0→ HomA(ω0
A, ω

1
A) −→ ω1

A −→ Ext1A(#ω0
A, ω

1
A)→ 0.

By definition, the left module of this sequence is isomorphic to HomA(HomA(Ω1
A, ω

1
A), ω1

A), while

the latter is isomorphic to HomA(HomA(Ω̃1
A, ω

1
A), ω1

A) ∼= Ω̃1
A. As a result, we obtain the second

exact sequence (7).

Claim 3. Let Ã be the normalization of a 1-dimensional singularity A in its total ring of fractions

F, and let C be the conductor of Ã in A. Then ω1
Ã
∼= Ω1

Ã
, ω1

Ã
∼= C · ω1

A, and m · ω0
Ã
⊆ C · ω0

A.
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Proof. The existence of both isomorphisms is well-known (see [25, (3.2)]), the inclusion is
evident. QED.

Proposition 6. Let (A,m) be a reduced 1-dimensional singularity, and let V ∈ Derk(A) be a
vector field. Then H1(ω•A, ι

∗
V) = 0.

Proof. Any vector field V on the curve singularity A can be extended to its normalization

Ã (see [14, Lemma 2.33]); this extension is denoted by Ṽ ∈ Derk(Ã). Since Ṽ(C) ⊆ C, then

Ṽ(m) ⊆ m (see [14]), and, consequently, Ker(ιṼ) = 0. On the other hand, it is well-known that

ω1
Ã
∼= ω1

A and, making use of basic properties of Noether normalization and the definition of ω1
A,

we deduce that ιṼ(ω1
Ã

) = ιṼ(C · ω1
A) = C · ι∗V(ω1

A). Next, by definition, the conductor C is the

maximal element of the set of ideals of A which are also ideals of the principal ideal ring Ã. It

is not difficult to verify, that C = (θ)Ã, where θ ∈ mA is a non-zero divisor (see [25, 3.1. b)]).
Hence, Ker(ιÃ) = Ker(ι∗V); this completes the proof. QED.

Claim 4. Under the assumptions of Proposition 6 suppose additionally that V has an isolated
singularity on the germ (X, o). Then

dimkH0(ω•A, ι
∗
V) = dimkH0(Ω•A, ιV) = dimk A/JoV,

where JoV is the ideal of A, generated by the coefficients of the vector field V in a suitable
coordinate representation. In particular, we have

χ(ω•A, ι
∗
V) = dimk A/JoV.

Proof. The diagram (6) yields the following exact sequence

0→ Ker(#ω1
A → #ω0

A) −→ Coker(ιV) −→ Coker(ι∗V)→ Coker(#ω1
A → #ω0

A)→ 0.

The difference of lengths of the left and right modules of this sequence does not depend on the
vector field V; it is equal to the difference of lengths of #ω1

A and #ω0
A, which is zero (see [22,

(4.4)]). Consequently, the lengths of the two middle modules are equal. Since both modules are
concentrated at the singular point, they are vector spaces of the same dimension. It remains to
note that Coker(ι∗V) ∼= H0(ω•A, ι

∗
V), while Coker(ιV) ∼= H0(Ω•A, ιV) ∼= A/JoV. This completes the

proof. QED.

Corollary 5. Under the same assumptions, one has
χ(Ω•A) = χ(ω•A) = dimk A/JoV, χ(σ≤1(Ω•A)) = dimk A/JoV − dimk(Tors Ω1

A).

Proof. Since H1(ω•A, ι
∗
V) = 0, the diagram (6) implies Ker(ιV : Ω̃1

A → A) = 0. Consequently,
χ(σ≤1(Ω•A)) = χ(ω•A) − dimk(Tors Ω1

A) = χ(Ω•A) − dimk(Tors Ω1
A). It remains to use Claim 4.

QED.
Thus, the computation of homological index for reduced curves is reduced to the computation

of the length of torsion module and dimension of the quotient algebra A/JoV.

Proposition 7. Let A be the dual analytical algebra of the germ of a reduced Gorenstein 1-
dimensional singularity and let V ∈ Derk(A) be a vector field with an isolated singularity. Then

Indhom,o(V) = dimk A/JoV − τ(A),

where τ(A) is the Tjurina number of the singularity A.

Proof. The local duality [18] implies an equality

dimk(Tors Ω1
A) = dimk Ext1A(Ω1

A, A).
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Since A is reduced then the latter dimension is equal to dimk T
1(A), the Tjurina number of the

singularity A. QED.

Remark. In the general case the dimension of the torsion module can be computed in
terms of Noether and Dedekind differentes with the use of a formula from [9]; many papers are
devoted to the computation of this invariant for various types of curves and higher-dimensional
singularities.

Remark. In fact, A ⊆ ω0
A, but, in general, A 6= ω0

A. To be more precise, let π : X̃ → X be
the normalization. Then the sheaf ω0

X contains the direct image π∗(OX̃), that is, all the germs
of the weakly holomorphic functions on X, or, equivalently, the locally bounded meromorphic
functions on X (see [8]). In other terms, it contains those meromorphic germs whose preimages
are holomorphic on the normalization (cf. [29]).

6. Quasihomogeneous curves

First recall that if A is a 1-dimensional Gorenstein analytical k-algebra, then ω1
A
∼= A(η),

where η ∈ ω1
A is a free generator of the dualizing module. Hence, the exact sequence (8) yields

the following inclusion

A −→ HomA(Ω1
A, ω

1
A) ∼= Derk(A).

The image of A does not depend on the generator η; it is denoted by DA and its elements are
called trivial derivations (or, equivalently, trivial differentiations) of A over k. Obviously, DA is
a free A-module of rank 1.

In the compete intersection case the module of trivial differentiations DA has a canonical
generator, the so-called Hamiltonian vector field. In this case the defining ideal I of the sin-
gularity is generated by a regular sequence of functions f1, . . . , fm−1 ∈ OU (in the notations of
Section 1). Next, let ∆ be the determinant of the m ×m-matrix arising from adjoining to the
Jacobian matrix ‖∂fj/∂zi‖ the extra row (∂/∂z1, . . . , ∂/∂zm), that is,

∆ = det


∂/∂z1 . . . ∂/∂zm

∂f1/∂z1 . . . ∂f1/∂zm
...

...
...

∂fm−1/∂z1 . . . ∂fm−1/∂zm

 .

Then the Hamiltonian vector field H is the cofactor expansion of the determinant ∆ along the
first row, so that H(fj) = 0 for all j = 1, . . . ,m− 1.

By definition, a commutative ring A is called Z-graded if it decomposes into a direct sum
A = ⊕ν∈ZAν of abelian groups Aν such that AνAλ ⊆ Aν+λ for all ν, λ ∈ Z. The elements of
the group Aν are said to be homogeneous of degree ν. In a similar way one can define graded
modules, algebras, etc.

Now assume that for every j = 1, . . . ,m − 1 the defining function fj of the singularity is
quasihomogeneous of degree dj with respect to the weights wi, i = 1, . . . ,m. In other terms,
the type of homogeneity of the 1-dimensional complete intersection singularity is equal to
(d1, . . . , dm−1;w1, . . . , wm) ∈ Zm−1 × Zm (see [2]). Then the local analytical algebra A, as
well as A-modules Derk(A), ΩpA, ω

p
A, p ≥ 0, and homology groups of the corresponding con-

tracted complexes are endowed with a natural grading. Thus, the Poincaré series or polynomials
of graded modules are well-defined. Moreover, in this case Derk(A)/DA is a cyclic module; it is
generated by the Euler vector field (see [2, (6.1)], [25, Satz 2]).

It is clear that the weight of the differential form η = dz1 ∧ . . . ∧ dzm/df1 ∧ . . . ∧ dfm−1 is
equal to −c, where c =

∑
dj −

∑
wi. Hence, there exist natural isomorphisms ω1

A
∼= A[−c],
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ω0
A
∼= HomA(Ω1

A, ω
1
A) ∼= Derk(A)[−c], and the following identities for Poincaré series:

P (ω1
A;x) = x−cP (A;x), P (ω0

A;x) = x−cP (Derk(A);x).

Let us take V ∈ Derk(A)v of weight v ∈ Z. Then the middle column of the diagram (6) gives us
an exact sequence:

0 −→ ι∗V(ω1
A) −→ ω0

A −→ H0(ω•A) −→ 0.

By Proposition 6 one has H1(ω•A, ι
∗
V) = 0, that is, Ker(ω1

A

ι∗V−→ ω0
A) = 0, and, consequently,

P (H0(ω•A, ι
∗
V);x) = P (ω0

A;x)− xvP (ω1
A;x) = x−cP (Derk(A);x)− xv−cP (A;x).

On the other hand, by [2, Proposition 6.1, Theorem 3.2], one has

P (Derk(A);x) = xc + P (A;x), P (A;x) =
∏

(1− xdj )/
∏

(1− xwi),

P (Tors (Ω1
A);x) = P (H0

m(Ω1
A);x) =

= 1 + P (A;x) rest=0t
−2(1 + t)−1

∏
(1 + txwi)/

∏
(1 + txdj ) = 1 + P (A;x)(

∑
xwi −

∑
xdj − 1).

Hence,
P (H0(ω•A, ι

∗
V);x) = 1 + x−cP (A;x)− xv−cP (A;x),

χ(ω•A) = P (H0(ω•A, ι
∗
V); 1),

Indhom,o(V) = χ(σ≤1(Ω•A)) = χ(ω•A)− P (Tors (Ω1
A); 1).

Example 6.1. Let S5 be the germ of a space curve, defined as the intersection of two quadrics
in 3-dimensional space. The type of homogeneity is equal to (2, 2; 1, 1, 1), c = 1. Hence,

P (A;x) = (1− x2)2/(1− x)3 = (1 + x)2/(1− x),

P (Derk(A);x) = x+ P (A;x) = (1 + 3x)/(1− x),

P (H0(ω•A, ι
∗
V);x) = 1 + (x− xv+1)(1 + x)2/(1− x) = 1 + x(1 + x)2(1 + . . .+ xv−1), v ≥ 1,

P (Tors (Ω1
A);x) = 1 + (3x− 2x2 − 1)(1 + x)2/(1− x) = (2x− 1)(1 + x)2 = 3x2 + 2x3.

As a result we get

χ(ω•A, ι
∗
V) = 4v + 1, Indhom,o(V) = χ(σ≤1(Ω•A), ιV) = 4(v − 1), v ≥ 1.

If v = 0, that is, V is the Euler vector field, then χ(ω•A, ι
∗
V) = χ(Ω•A, ιV) = 1, and

Indhom,o(V) = χ(σ≤1(Ω•A)) = −4.

Next, if v = 1, that is, V is a combination of the Euler and Hamiltonian vector fields, then
χ(ω•A, ι

∗
V) = χ(Ω•A, ιV) = 5, and Indhom,o(V) = χ(σ≤1(Ω•A)) = 0, and so on.

Remark. This example was considered in a different style in [23, (4.4)], where the author
recommends to use a computer algebra system for explicit computations.

Example 6.2. Quasihomogeneous and monomial curves. Evidently, every irreducible com-
ponent of a quasihomogeneous curve has a monomial parametrization. For simplicity, let us
consider the case of an irreducible curve, that is, X is a monomial curve. Let H be its value
semigroup so that the local analytical algebra A of the germ X is generated by monomials
th, h ∈ H, that is, A ∼= k〈tH〉 in standard notations. Then one can compute explicitly dimen-
sions of all graded components of the first cotangent cohomology T 1(A) ∼= Ext1A(Ω1

A, A) in terms
of the semigroup (see, for example, [12]).

In the Gorenstein case the local duality implies that dimk Tors Ω1
A = dimk T

1(A) = τ(A).
Thus, one obtains also the dimension of the torsion module and, consequently, an explicit ex-
pression for the index in view of Proposition 7. It should be noted that for quasihomogeneous
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Gorenstein curves one has dimk(#ω1
A) = µ(A), that is, the dimension of the first ω-cotorsion

module is equal to the Milnor number of the singularity (see [25, Satz 1]).

7. Normal two-dimensional singularities

Let us now discuss a simple generalization of Proposition 6 and Claim 4 to the higher dimen-
sional case.

Proposition 8. Let (A,m) be the local analytical algebra of a reduced isolated singularity of
dimension n ≥ 1 and let V ∈ Derk(A) be a vector field with an isolated singularity. Then
Hn(ω•A, ι

∗
V) = 0.

Proof. Set Kn
A = Ker(ι∗V : ωnA → ωn−1A ). The module Kn

A is coherent; it is concentrated at
the singular point of a reduced singularity A. Hence Kn

A is a finite-dimensional vector space over
k. In other words, it is a torsion module, Kn

A
∼= H0

m(Kn
A) ⊆ H0

m(ωnA) = TorsωnA. However, in
view of basic properties of the dualizing module, ωnA has no torsion, that is, Kn

A = 0. QED.

Proposition 9. Suppose that A is a normal Cohen-Macaulay singularity of dimension n ≥ 2,
and V ∈ Derk(A) is a vector field with an isolated singularity. Then there exists a natural

isomorphism H0(Ω̃•A, ιV) ∼= H0(ω•A, ι
∗
V).

Proof. Since A is normal, then Ω̃0
A
∼= Ω0

A
∼= ω0

A
∼= A. Similarly to (6), there exists the

following commutative diagram with exact rows

0 −→ Ω̃2
A

cA−→ ω2
A −→ #ω2

A −→ 0

↓ιV ↓ι∗V ↓

0 −→ Ω̃1
A

cA−→ ω1
A −→ #ω1

A −→ 0

↓ιV ↓ι∗V ↓
0 −→ Ω0

A
∼= A −→ ω0

A
∼= A −→ 0.

(9)

The standard Ker-Coker exact sequence associated with the two lower rows looks like this

0→ Ker(Ω̃1
A → A)→ Ker(ω1

A → A)→ #ω1
A → H0(Ω̃•A, ιV)→ H0(ω•A, ι

∗
V)→ 0. (10)

Thus, it is enough to show that two right modules in (10) have the same dimension. To prove
this, it is convenient to use an equivalent description of regular meromorphic forms in terms
of Noether normalization and the trace map. To be more precise (see [22, (2.1)]), for an n-
dimensional singularity A a meromorphic differential p-form ω ∈ ΩpA ⊗A F (A) is regular if and

only if for any Noether normalization Q = k〈T1, . . . , Tn〉 → A one has TrAQ(ω ∧ η) ∈ ΩnQ for all

holomorphic (n− p)-form η ∈ Ωn−pA .

Now let Q = k〈T1, . . . , Tn〉 → A be a Noether normalization of A, and let V be an extension of
the vector field V to Ω•Q. In fact, such (non-trivial) extension always exists because A is Cohen-

Macaulay and one can choose suitable regular parameters (T1, . . . , Tn) from the jacobian ideal
JoV ⊆ m, generated by m ≥ n+2 regular elements by assumption (if A is quasihomogeneous then
one can take homogeneous parameters). Thus, the two lower rows of the diagram (9) transform
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in the following commutative diagram

Ω1
Q −→ Ω1

A
cA−→ ω1

A
Tr−→ Ω1

Q

↓ιV ↓ιV ↓ι∗V ↓ιV
Ω0
Q
∼= Q −→ Ω0

A
∼= A

cA
−−→ ω0

A
Tr−→ Ω0

Q
∼= Q

↓ ↓ ↓ ↓
Q/JoV −→ Coker(ιV) −→ Coker(ι∗V) −→ Q/JoV.

(11)

The left and right terms of the bottom row are finite-dimensional vector spaces. On the other
hand, it is well-known that the composition of maps of this row is equal to the multiplication by
rankQ(A) (see [24], [22]). This completes the proof. QED.

Remark. For normal complete intersections of dimension n ≥ 3 the proof of Proposition 9 is
trivial, since ΩpA

∼= ΩpA
∨∨

for all 0 ≤ p < n− 1. In particular, Ω1
A (as well as Ω0

A) has no torsion
and cotorsion, and the exact sequence (10) splits in two isomorphisms.

Claim 5. Let A be a quasihomogeneous normal 2-dimensional singularity and let V ∈ Derk(A)
be a vector field with an isolated singularity. Then

Indhom,o(V) = χ(ω•A, ι
∗
V)− dimk(Tors Ω1

A) + dimk(Tors Ω2
A).

Proof. First observe that normal 2-dimensional singularities satisfy Serre’s conditions R1

and S2. In particular, they are isolated and Cohen-Macaulay. Hence, ωpA, p ≥ 0, are well-defined.
Further, such singularities may have two non-trivial cotorsion modules only in dimension 1 and
2. Moreover, if A is graded then the cotorsion modules are isomorphic: #ω2

A
∼= #ω1

A (see [22,
(4.8), Bem. (1)]). Making use of diagram (9), it remains to combine Claim 1 and Proposition 4.
QED.

We are able to analyze the 2-dimensional case of an isolated complete intersection singularity
similarly to Section 6. Let (d1, . . . , dm−2;w1, . . . , wm) be the type of homogeneity of the singular-
ity A, c =

∑
dj−

∑
wi. Then the weight of the differential form η = dz1∧. . .∧dzm/df1∧. . .∧dfm−2

is equal to −c, and there are natural isomorphisms

ω2
A
∼= A(η) ∼= A[−c], ω1

A
∼= HomA(Ω1

A, ω
2
A) ∼= Derk(A)[−c].

Since A is normal, then ω1
A
∼= Ω1

A
∨∨

and ω0
A
∼= Ω0

A
∨∨

by Proposition 2. In particular, ω0
A
∼= A,

and one has the following identities for Poincaré series:

P (ω2
A;x) = x−cP (A;x), P (ω1

A;x) = x−cP (Derk(A);x), P (ω0
A;x) = P (A;x).

Again, by [2, Proposition 6.1], one has P (Derk(A);x) = P (A;x) + xcP (A;x) − xc, and, conse-
quently,

P (ω1
A;x) = x−cP (A;x) + P (A;x)− 1.

Further, since K2
A = 0, one has ω2

A
∼= ι∗V(ω2

A). Hence,

P (ι∗V(ω2
A);x) = xνP (ω2

A;x) = xν−cP (A;x).

The next step of computations is to consider the following exact sequence

0→ K1
A −→ ω1

A

ι∗V−→ A −→ A/ι∗V(ω1
A)→ 0,

which implies the relations

P (K1
A;x) = P (ω1

A;x)− x−νP (A;x) + x−νP (A/ι∗V(ω1
A);x),

P (K1
A;x) = x−cP (A;x) + P (A;x)− 1− x−νP (A;x) + x−νP (A/ι∗V(ω1

A);x),

P (K1
A/ι
∗
V(ω2

A);x) = x−cP (A;x)+P (A;x)−1−x−νP (A;x)+x−νP (A/ι∗V(ω1
A);x)−xν−cP (A;x),
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P (H1(ω•A, ι
∗
V);x) = −1 + (1 + x−c − x−ν − xν−c)P (A;x) + x−νP (A/ι∗V(ω1

A);x).

The last polynomial is equal to x−νP (A/JoV;x) by Proposition 9, while

P (A/JoV;x) = P (H0(Ω•A, ιV);x).

Example 7.1. The germ Q7 of the intersection of two quadrics in 4-dimensional space. The
type of homogeneity is equal to (2, 2; 1, 1, 1, 1), c = 0. Hence, by [2, Proposition 6.1, Theorem 3.2],

P (A;x) = (1− x2)2/(1− x)4 = (1 + x)2/(1− x)2,

P (Derk(A);x) = 2P (A;x)− 1 = (1 + 6x+ x2)/(1− x)2,

P (H1(ω•A, ι
∗
V);x) = −1 + (2− x−ν − xν)P (A;x) + x−νP (A/JoV;x),

P (Tors (Ω2
A);x) = P (H0

m(Ω2
A);x) = −1 + P (A;x) rest=0t

−3(1 + t)−1(1 + tx)4)/(1 + tx2) =

−1 + (1 + x)2(1− 2x+ 3x2) = 4x3 + 3x4,

so that dimk Tors (Ω2
A) = 7.

If v = 0, then P (A/JoV; 1) = P (H0(ω•A, ι
∗
V); 1) = 1. Consequently, we obtain

P (H1(ω•A, ι
∗
V);x) = −1 + P (A/JoV;x) = 0, χ(ω•A, ι

∗
V) = 1, Indhom,o(V) = χ(σ≤2(Ω•A, ιV)) = 8.

Next, if v = 1, then P (A/JoV;x) = 1+4x+4x2. Indeed, there are 10 monomials of degree two
in 4 variables and 6 generic relations between them which are given by 4 polynomial coefficients
of the vector field and 2 defining equations. In addition, there are 4 variables of degree 1 and
the field of constants. Thus,

P (H1(ω•A, ι
∗
V);x) = −1 + (2− x−1 − x)(1 + x)2/(1− x)2 + x−1P (A/JoV;x)

= −1− x−1(1 + x)2 + x−1 + 4 + 4x = −(x−1 + 3 + x) + x−1 + 4 + 4x = 1 + 3x.

As a result,

χ(ω•A, ι
∗
V) = 9−4 = 5, Indhom,o(V) = χ(σ≤2(Ω•A, ιV)) = χ(ω•A, ι

∗
V)+dimk Tors Ω2

A = 5+7 = 12.

Remark. This example was investigated in a different manner in [10, Ex.(4.3)], partially
with the use of a computer algebra system of symbolic computations.

8. Holomorphic forms on complete intersections

Making use of explicit formulas for modules of holomorphic differential forms (see [2]), in
this section the homological index is computed directly for quasihomogeneous isolated complete
intersection singularities by another method. In addition, we verify the computational results
for curves and surface singularities described above in a slightly different manner.

In the notations of Section 1 suppose that X = (X, o) is the germ of a reduced complete
intersection in a complex manifold M of dimension m ≥ 2. Thus, the defining ideal I of X ⊂ U
is generated by a regular sequence of functions f1, . . . , fk in OU , so that OX = OU/I|X , and
dimCX = m− k = n ≥ 1.

Lemma 3 ([2], Lemma 3.2). Let (A,m) be the dual analytical algebra of an isolated complete
intersection singularity (X, o) of dimension n ≥ 1, n = m− k ≥ 1, with the type of homogeneity
(d1, . . . , dk;w1, . . . , wm). Then for all 0 ≤ p ≤ n

P (ΩpA;x) = P (A;x)·rest=0t
−p−1

∏
(1 + txwi)/

∏
(1 + txdj ).
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Proof. Let X ′ be an (n + 1)-dimensional isolated complete intersection singularity and
X = f−1(0), where f : X ′ → C, f(o) = 0, is a flat holomorphic map such that f |X′−{o} is
regular. In other terms, the singularity X is the hypersurface section of X ′ defined by f (see
[27]). Then the sequence of OX -modules

0→ ΩpX
∧df−→ Ωp+1

X′ /fΩp+1
X′ −→ Ωp+1

X → 0

is exact for all 0 ≤ p ≤ n − 1 (see [17, Lemma 1.6]). In the quasihomogeneous case we obtain
the following relations for Poincaré polynomials:

P (Ωp+1
X ;x) = (1− xd)P (Ωp+1

X′ ;x)− xdP (ΩpX ;x),

where d = deg f = deg(∧df).
First consider the case where the singularity X = Xk can be defined by a regular sequence

fi, i = 1, . . . , k, such that for all j = 1, 2, . . . , k every germ Xj determined by f1, . . . , fj is the
hypersurface section of Xj−1 defined by fj . For convenience of notations set X0 = (Cm, 0). In
this case we can apply a double induction on k and p similarly to [1]. The general case is reduced
to the case of hypersurface sections by arguments in [27, 2.3]. QED.

Remark. In fact, for complete intersections with non-isolated singularities the identity of
Lemma 3 is valid for all 0 ≤ p ≤ c, where c = codim(SingX,X).

Proposition 10. Let A be the local analytical algebra of a reduced n-dimensional isolated sin-
gularity, n ≥ 1, and let V ∈ Derk(A) be a vector field with an isolated singularity. Then

Hn(Ω̃•A, ιV) = 0.

Proof. Since Ω̃nA has no torsion, all the arguments of Proposition 8, applied for dualizing

module ωnA, remain valid. Then we conclude that ιV : Ω̃nA → Ω̃n−1A is injective and the n-th
homology group vanishes as required. QED.

Corollary 6. Under the same assumptions one has

Indhom,o(V) = χ(σ≤n(Ω•A), ιV) = χ(Ω̃•A, ιV) + (−1)n dimk Tors ΩnA.

Example 8.1. Let us consider again the germ of space curve S5 from Section 6 (see Example
6.1). By Lemma 3

P (Ω1
A;x) = (

∑
xwi −

∑
xdj )P (A;x) = (3x− 2x2)P (A;x).

Then by [2, Theorem (3.2)] we have

P (Tors (Ω1
A);x) = 1 + P (A;x)(

∑
xwi −

∑
xdj − 1) = 3x2 + 2x3.

Hence,

P (Ω̃1
A;x) = P (A;x)− 1, P (ιV(Ω̃1

A);x) = xv(P (A;x)− 1),

P (H0(Ω̃•A, ιV);x) = P (A;x)− xvP (A;x) + xv =

= (1− xv)P (A;x) + xv = xv + (1 + x)2(1 + x+ . . . xv−1), v ≥ 1.

As a result one gets

χ(Ω•A, ιV) = 4v + 1, Indhom,o(V) = χ(σ≤1(Ω•A), ιV) = 4(v − 1), v ≥ 1.

If v = 0, then χ(Ω•A, ιV) = 1, and Indhom,o(V) = −4, because dimk Tors Ω1
A = 5. Further, if

v = 1, then χ(Ω•A, ιV) = 5, and Indhom,o(V) = 0.

Remark. Combining observations of two approaches, in this example it is possible to compute
the homogeneous structure of two modules of the ωA-cotorson complex #ω•A explicitly. As was
shown before this complex has two non-trivial terms of the same dimension. In fact, they are
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cyclic A-modules and the module #ω0
A is naturally isomorphic to the quotient of Derk(A) by the

submodule generated by the hamiltonian vector field. The bottom and top rows of diagram (6)
imply the following two relations

P (#ω0
A;x) = P (ω0

A;x)− P (A;x),

P (#ω1
A;x) = P (ω1

A;x)− P (Ω1
A;x) + P (Tors (Ω1

A);x)) = P (ω1
A;x)− P (Ω̃1

A;x),

respectively. Hence,

P (#ω0
A;x) = 1 + (x−1 − 1)P (A;x) = 1 + x−1(1 + x)2 = x−1 + 3 + x,

P (#ω1
A;x) = x−1(1+x)2/(1−x)−(3x+x2)/(1−x) = x−1(1+2x−2x2−x3)/(1−x) = x−1+3+x.

To simplify notations, in the sequel we will denote the contraction maps on the families Ω•A,
ω•A and #ω•A by the same symbol ιV .

Now we are able to describe the action of ιV on the cotorsion complex #ω•A and to compute
the homology groups. Obviously, if v = 0 then this action is an isomorphism. If v = 1, then

P (Ker(ιV : #ω1
A → #ω0

A);x) = 2 + x; P (Coker(ιV : #ω1
A → #ω0

A);x) = x−1 + 2,

dimkH1(#ω•A) = dimkH0(#ω•A) = 3. If v = 2, then

P (Ker(ιV : #ω1
A → #ω0

A);x) = 3 + x; P (Coker(ιV : #ω1
A → #ω0

A);x) = x−1 + 3,

dimkH1(#ω•A) = dimkH0(#ω•A) = 4. For all v ≥ 3 one has dimkH1(#ω•A) = dimkH0(#ω•A) = 5,
that is, ιV is the zero map.

Example 8.2. In a similar manner for the surface singularity Q7 from Section 7 one gets

P (Ω2
A;x) = (6x2 − 8x3 + 3x4)P (A;x), P (Ω1

A;x) = (4x− 2x2)P (A;x),

P (Ω̃2
A;x) = P (Ω2

A;x)− P (Tors (Ω2
A);x).

Further, there are two short exact sequences

0→ Ω̃2
A

ιV−→ Ω1
A −→ Ω1

A/ιV(Ω2
A)→ 0, 0→ Ker1A −→ Ω1

A
ιV−→ A/ιV(Ω1

A)→ 0,

where Ker1A = Ker (ιV : Ω1
A → A). They imply two relations

P (ιV(Ω2
A);x) = xvP (Ω̃2

A;x), P (Ker1A;x) = P (Ω1
A;x)− x−vP (A;x) + x−vP (A/ιV(Ω1

A);x),

respectively. As a result,

P (H1(Ω̃•A, ιV);x) = P (Ker1A;x)− xvP (ιV(Ω̃2
A);x) =

= P (Ω1
A;x)− x−vP (A;x) + x−vP (A/ιV(Ω1

A);x)− xvP (Ω2
A;x) + xvP (Tors (Ω2

A);x) =

= {(4x− 2x2)− x−v − xv(6x2 − 8x3 + 3x4)}P (A;x) + x−vP (A/JoV;x) + xv(4x3 + 3x4).

If v = 0, then

P (H1(Ω̃•A, ιV);x) = {(4x− 2x2)− 1− (6x2 − 8x3 + 3x4)}P (A;x) + 1 + (4x3 + 3x4).

The expression in curly brackets is equal to {−2(1− x)2 + (1− x)3(1 + 3x)}. Hence,

P (H1(Ω̃•A, ιV);x) = {−2 + (1− x)(1 + 3x)}(1 + x)2 + 1 + (4x3 + 3x4) = 0,

that is,

χ(Ω̃•A, ιV) = 1, Indhom,o(V) = χ(σ≤2(Ω•A, ιV)) = 8.

Further, if v = 1, then

P (H1(Ω̃•A, ιV);x) = {(4x−2x2)−x−1−x(6x2−8x3+3x4)}P (A;x)+x−1P (A/JoV;x)+x(4x3+3x4).

The expression in curly brackets transforms in the following way:

x−1{−2(1−x)(1+x−x2)+(1−x)(1+x+x2+x3−5x4+3x5)} = −x−1(1−x)2(1+2x−x2−2x3+3x4).
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Hence,

P (H1(Ω̃•A, ιV);x) = −x−1(1 + x)2(1 + 2x− x2 − 2x3 + 3x4) + x−1P (A/JoV;x) + x(4x3 + 3x4)

= x−1(−1− 4x− 4x2 + 2x3 + 2x4 − 4x5 − 3x6) + x(4x3 + 3x4) + x−1P (A/JoV;x)

= −x−1(1 + 4x+ 4x2) + 2x2 + 2x3 + x−1(1 + 4x+ 4x2) = 2x2 + 2x3.

That is, dimkH1(Ω̃•A, ιV) = P (H1(Ω̃•A, ιV); 1) = 4. As a result,

χ(Ω̃•A, ιV) = 9− 4 = 5, Indhom,o(V) = χ(σ≤2(Ω•A, ιV)) = 9− 4 + 7 = 12.

In addition, since dimk Ω4
A = 1 and dimk Ω3

A = 8, one concludes χ(Ω•A, ιV) = 5.
For completeness, let us also analyze the homology of the ωA-cotorson complex #ω•A. Two

non-trivial terms of this complex has the same dimension, they are cyclic A-modules and the
module #ω1

A is naturally isomorphic to the quotient of Derk(A) by the submodule generated
by 4 hamiltonian vector fields. In fact, for 2-dimensional quasihomogeneous isolated complete
intersection singularities these two cotorsion modules are isomorphic in view of the canonical
isomorphisms #ω1

A
∼= H1

m(Ω1
A) and #ω2

A
∼= H1

m(Ω2
A) ∼= H1

m(Ω1
A). One can apply the general

formulas for Poincaré polynomials of the local cohomology groups from [1] or [2, (3.2)]. However,
it is also possible to compute the polynomials directly. To be more precise, similarly to the above
example there exist two relations

P (#ω1
A;x) = P (ω1

A;x)− P (Ω1
A;x),

P (#ω2
A;x) = P (ω2

A;x)− P (Ω2
A;x) + P (Tors (Ω2

A);x)).

Hence,

P (#ω1
A;x) = 2P (A;x)− 1− P (Ω1

A;x) = P (A;x)(2− 4x+ 2x2)− 1 = 1 + 4x+ 2x2,

P (#ω2
A;x) = P (A;x){1− (6x2 − 8x3 + 3x4)}+ (4x3 + 3x4)

= (1 + x)2(1− x)(1 + 3x) + (4x3 + 3x4) = 1 + 4x+ 2x2.

Again, if v = 0 then the homology groups of the cotorsion complex #ω•A obviously vanish. If
v = 1, then

P (Ker(ιV : #ω2
A → #ω1

A);x) = 2x+ 2x2; P (Coker(ιV : #ω1
A → #ω0

A);x) = 1 + 3x,

and dimkH2(#ω•A) = dimkH1(#ω•A) = 4. If v = 2, then

P (Ker(ιV : #ω1
A → #ω0

A);x) = 4x+ 2x2; P (Coker(ιV : #ω1
A → #ω0

A);x) = 1 + 4x+ x2

and dimkH2(#ω•A) = dimkH1(#ω•A) = 6.
For v ≥ 3 one has dimkH2(#ω•A) = dimkH1(#ω•A) = 7, that is, the map ιV is identically zero.

9. The generating function and homology

Now we will study in some detail the case of quasihomogeneous complete intersections with
isolated singularities of arbitrary dimension. The key idea of our approach is based on the
fact that the Euler characteristic of a complex of finite-dimensional vector spaces is equal to
the alternating sum of their dimensions. In the quasihomogeneous case the graded components
of the modules of holomorphic differential forms play the role of such spaces. Our method of
computation is based on a simplified procedure of “dévissage” applied in [2, (3.3)].

Definition. The generating function of the complex (Ω•A, ιV) is defined as follows:

GP ((Ω•A, ιV);x, y) =
∑
i≥0

(−1)iP (Hi(Ω
•
A, ιV);x) yi, (12)
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where P (Hi(Ω
•
A, ιV);x) are Poincaré polynomials of the corresponding homology groups which

are graded vector spaces. Evidently, if all homology groups are finite-dimensional, then

χ(Ω•A, ιV) = GP ((Ω•A, ιV); 1, 1).

Remark. Of course, similar generating functions are well-defined for all other complexes
considered above; such functions can be considered as variants of χy-characteristic of Hirzebruch
associated with the “twisted” De Rham cohomology (cf. [2, Introduction]).

Theorem 1. In the notations of the previous section let (A,m) be the local algebra of an
n-dimensional isolated complete intersection singularity (X, o) with the type of homogeneity
(d1, . . . , dk;w1, . . . , wm), n = m− k ≥ 1. Suppose that the weight of V is equal to v. Then

GP ((σ≤n(Ω•A), ιV);x, xv) =

(−1)nxnvP (A;x) rest=0t
−n−1(1 + tx−v)−1

∏
(1 + txwi)/

∏
(1 + txdj ).

In particular, Indhom,o(V) = GP ((σ≤n(Ω•A), ιV); 1, 1).

Proof. Let us consider the truncated contracted De Rham complex of A :

(σ≤n(Ω•A), ιV) : 0 −→ ΩnA
ιV−→ Ωn−1A

ιV−→ Ωn−2A → · · · → Ω1
A

ιV−→ Ω0
A
∼= A −→ 0.

According to Proposition 10, the kernel of the left contraction mapping is the torsion submodule,
that is, Hn(σ≤n(Ω•A), ιV) ∼= Tors ΩnA. Set KeriA = Ker(ιV : ΩiA → Ωi−1A ). Then for all 1 ≤ i < n
there exist exact sequences

0 −→ KeriA −→ ΩiA
ιV−→ ιV(ΩiA) −→ 0

and the following relations for Poincaré series:

P (KeriA;x) = P (ΩiA;x)− x−vP (ιV(ΩiA);x),

P (Hi(Ω
•
A, ιV);x) = P (ΩiA;x)− x−vP (ιV(ΩiA);x)− P (ιV(Ωi+1

A );x).

In addition, it is clear that

P (Hn(σ≤n(Ω•A, ιV));x) = P (Tors (ΩnA);x), P (ιV(ΩnA);x) = xvP (ΩnA;x)− xvP (Tors (ΩnA);x),

P (H0(Ω•A, ιV);x) = P (A;x)− P (ιV(Ω1
A);x).

As a result, the n first terms for i = 0, . . . , n− 1 of the generating function (12) with y = xv

give us the following relations

∑n−1
i=0 (−1)ixivP (Hi(Ω

•
A, ιV);x) =

(
P (A;x)− P (ιV(Ω1

A);x)
)

−
(
xvP (Ω1

A;x)− P (ιV(Ω1
A);x)− xvP (ιV(Ω2

A);x)
)

+
(
x2vP (Ω2

A;x)− xvP (ιV(Ω2
A);x)− x2vP (ιV(Ω3

A);x)
)

+ . . .

=
∑n−1
i=0 (−1)ixivP (ΩiA;x) + (−1)nx(n−1)vP (ιV(ΩnA);x)

=
∑n
i=0(−1)ixivP (ΩiA;x) + (−1)n+1xnvP (Tors (ΩnA);x).

Adding then the term of dimension n, one gets

GP (σ≤n(Ω•A, ιV);x, xv) =

n∑
i=0

(−1)ixivP (Hi(σ≤n(Ω•A), ιV);x) =

n∑
i=0

(−1)ixivP (ΩiA;x).

Finally, making use of Lemma 3 and elementary transformations, we obtain the following identity

GP ((σ≤n(Ω•A), ιV);x, xv) = P (A;x)

n∑
p=0

(−1)pxpv rest=0t
−p−1

∏
(1 + txwi)/

∏
(1 + txdj )
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which implies the desired formula. QED.
It is possible to represent the obtained expression for the generating function GP in an explicit

form (cf. [2, (3.2)]). Let Wλ be the elementary symmetric polynomials in y1, . . . , ym of weight
λ ≥ 0,

m∏
i=1

(1 + yiζ) =

m∑
λ=0

Wλ(y1, . . . , ym)ζλ,

and let Dλ be the symmetric polynomials in y1, . . . , yk of degree λ ≥ 0,

k∏
j=1

(1 + yiζ)−1 =

k∑
λ=0

(−1)λDλ(y1, . . . , yk)ζλ.

Corollary 7. Under the assumptions of Theorem 1 we have

GP (σ≤n(Ω•A, ιV);x, xv) =

=
∑

λ1+λ2+λ3=n

(−1)λ2x(n−λ1)vWλ2
(xw1 , . . . , xwm)Dλ3

(xd1 , . . . , xdk)P (A;x).

Making use of the expressions from the theorem and corollary above, for the surface germ Q7

from Example 7.1 one gets immediately

GP ((σ≤2(Ω•A), ιV);x, xv) =
(
1− xv(4x− 2x2) + x2v(6x2 − 8x3 + 3x4)

)
P (A;x).

If v = 1, then

GP ((σ≤2(Ω•A), ιV);x, x) = 1 + 4x+ 4x2 − 2x3 − 2x4 + 4x5 + 3x6,

that is, Indhom,o(V) = χ(σ≤2(Ω•A, ιV)) = 9− 4 + 7 = 12, as was required.

Comments. 1) The latter formula shows that the homological index is determined completely
by the weights of variables, the defining equations and the weight of the vector field; it does not
contain the Poincaré polynomials of the module of derivations, the torsion modules, the dualizing
module and others except the polynomials of modules of holomorphic differential forms described
in Lemma 3.

2) This formula is working correctly without the assumption that the vector field has an
isolated singularity on the ambient manifold. Indeed, homology groups are finite-dimensional if
the grade or depth of the ideal of A, generated by the coefficients of the vector field, is not less
than the dimension of the singularity A. In this case the vector field V has isolated singularities
on the singularity itself.

3) It should be also underlined that in contrast with the formulas for curves and surfaces
obtained in Section 6 and Section 7, the homogeneous components of the generating function
contain expressions for Poincaré series with shifted non-canonical grading since this function is
a result of a weighted convolution of Poincaré series transcribed in the natural grading.

10. The Lebelt resolutions

Let us now discuss a direct method of computing the homological index in the case of normal
complete intersections. This approach is partially based on the construction of a certain sub-
complex of the generalized Koszul complex that gives a free resolution for exterior powers of a
module whose homological dimension does not exceed 1 (see [26]).

Let A be the local analytical algebra of the germ of a reduced singularity of dimension n ≥ 1
given by an ideal I = (f1, . . . , fk) ⊂ P = k〈z1, . . . , zm〉, so that A = P/I. Then there is a standard
exact sequence representing the module of Kähler differentials of k-algebra A as follows

0 −→
∫
I/I2 −→ I/I2

Df−→ Ω1
P ⊗P A −→ Ω1

A −→ 0. (13)
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where
∫
I is the primitive ideal of I, and Df = Jac(f) is the jacobian matrix associated with the

sequence (f1, . . . , fk). By definition, the ideal
∫
I ⊂ P consists of all g ∈ I, such that ∂(g) ∈ I

for all ∂ ∈ Derk(P ) (see [31]).
It is well-known that for complete intersection germs one has n = m − k and I/I2 is a free

A-module of rank k. Moreover, in the case of reduced complete intersections we have
∫
I/I2 = 0

(see [31, §4, ex.(1)]). Hence, the homological dimension of the A-module Ω1
A is not greater than

one. Suppose additionally that A is an isolated singularity. According to [26, Folgerung 1(a)],
for all A-modules ΩpA = ∧pΩ1

A, p = 0, 1, . . . , n− 1, there are free resolutions

Lkp : 0 −→ Lkp,p −→ . . . −→ Lkp,r −→ . . . −→ Lkp,1 −→ Lkp,0
ε−→ ΩpA −→ 0, (14)

where

Lkp,r = SrL0 ⊗ ∧p−rL1, r = 0, . . . , p, L0 = I/I2, L1 = Ω1
P ⊗P A,

and ε = εkp,0 is the quotient map of Lkp,0 to Coker (Lkp,1 → Lkp,0) ∼= ΩpA for all p = 0, . . . , n. It is
not difficult to see that

Lkp,r ∼=
(
∧p−r Am

)ν(k,r)
, for all 0 ≤ r ≤ p,

where ν(k, r) =
(
k−1+r
r

)
is the number of homogeneous monomials of degree r in k variables.

Example 10.1. As an illustration let us apply this construction to the case of a quasihomoge-
neous isolated complete intersection singularity with type of homogeneity (d1, . . . , dk;w1, . . . , wm).
Then two free A-modules L0

∼=
∏
A(−dj) and L1

∼=
∏
A(−wi) of rank k and m, respectively,

are endowed with the natural grading. In this grading the resolution Lkp is an exact sequence
of graded modules connecting by maps whose weights are equal to zero (cf. [2, (3.3)]). This
property follows from the explicit expressions for differentials Dkp,r of the Lebelt resolution (see
[26]). Next, making use of sequence (14) and elementary transformations, one can deduce the
formula of Lemma 3 (and vice versa).

Proposition 11. Let A be the local analytical algebra of the germ of a normal isolated complete
intersection singularity, V ∈ Derk(A) and ιV : Lkp,r → Lkp−1,r a family of contraction maps for all

admissible p and r. Then a bicomplex Lk•• is well-defined and there exist natural isomorphisms
of the homology groups

Hi(Ω
•
A, ιV) ∼= Hi(Tot(Lk••)), i = 0, 1, . . . , n− 1,

where Tot(Lk••) is the total complex associated with the bicomplex.

Proof. It is not difficult to verify that all the differentials of the Lebelt resolutions commute
with the contraction map. Hence, Lk•• is a bicomplex of A-modules. All horizontal homologies
of this bicomplex are trivial since its rows are given by the Lebelt resolutions of A-modules
ΩpA, p = 0, 1, . . . , n − 1. The desired statement is a direct consequence of basic properties and
standard relations between homology and hyperhomology functors. QED.

Claim 6. If the vector field V has an isolated singularity then

dimkHn(σ≤n(Ω•A), ιV) = dimk Tors ΩnA = dimk
#ωnA = dimk ExtnA(ΩnA, A) = dimk A/F0(Df),

where F0(Df) is the zeroth Fitting ideal generated by the maximal minors of the jacobian matrix
Df.

Proof. The homology group Hn(σ≤n(Ω•A), ιV) and Tors ΩnA are naturally isomorphic in view
of Proposition 10. Further, for isolated complete intersection singularities the dimensions of
torsion and cotorsion modules are equal (see [11]). On the other hand, the dimension of Tors ΩnA
is equal to dimk ExtnA(ΩnA, A) (the latter is computed explicitly in the quasihomogeneous case
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in [2, (3.2)]), while the dimension of the cotorsion module #ωnA
∼= H1

m(ΩnA) is nothing but the
dimension of A/F0(Df). QED.

Remark. From Claim 6 it follows that for an isolated singularity the dimensions of the highest
homology groups of the complex (σ≤n(Ω•A), ιV) and the torsion module Tors ΩnA are equal; in the
quasihomogeneous case this dimension coincides with the Milnor number. It is known at least n
(generally speaking, different) expressions for Poincaré polynomials of the torsion module and,
consequently, for the Milnor number of the singularity (see [1], [2]).

Example 10.2. Let us show how one can compute directly homology groups with the use of
the bicomplex Lk•• in the 2-dimensional case. This bicomplex looks like this:

0 −→ A(k+1
2 ) Dk2,1−→ (Am)k

Dk2,1−→ ∧2Am
εk2,0−→ Ω2

A −→ 0
↓ιV ↓ιV ↓ιV

0 −→ Ak
Dk1,1−→ Am

εk1,0−→ Ω1
A −→ 0

↓ιV ↓ιV
0 −→ A

εk0,0−→ Ω0
A
∼= A −→ 0.

(15)

By the definition above, εkp,0 are natural quotient maps Lkp,0 −→ Coker (Dkp,1) ∼= ΩpA for all
p = 0, 1, 2. Next, the middle row is, in fact, equivalent to the truncated exact sequence (13) so
that the differential Dk1,1 is given by the jacobian (k × m)-matrix of the defining ideal, while

Dk2,1(y1, . . . , yk) = jac(f1) ∧ y1 + . . .+ jac(fk) ∧ yk, and so on (see [26, (2.12), (2.15)]).
In view of Proposition 11 the homology groups of the complex Ω•A of dimensions i = 0, 1 can

be computed as the corresponding homology groups of the total complex Tot(Lk••). As a result
one has

H0(Ω•A) ∼= A/ιV(Am), H1(Ω•A) ∼= Ker(ιV : Am → A)/
(
ιV(∧2Am) +Dk1,1(Ak)

)
.

Remark. In this case all homology groups are finite-dimensional, and a simple script for
calculations of the index can be readily implemented in any computer system of algebraic cal-
culations similarly to [10], (4.4). It should be underlined that by contrast with the algorithm
of [10] one needs expressions for the defining ideal of the singularity and for the coefficients
of a vector field only. Explicit (highly non-trivial) expressions for the entries of the structure
matrix C =‖ cij ‖ realizing the tangency relation V(f) = C(f) are no longer required since all
calculations are carried out modulo the defining ideal in the local analytical algebra A.

Example 10.3. In the case n ≥ 2 the construction of the Lebelt resolutions implies that all
the terms under the polygonal step-line of the lower left corner of the diagram (15) are zeros.
Hence, one can described the homology groups of the next dimensions (until n − 1 inclusively)
analogously to the case considered in the Example 10.2, that is,

H2(Ω•A) ∼= Ker(ιV : ∧2 Am → Am)/
(
ιV(∧3Am) +Dk2,1((Am)k)

)
.

The numerator in the presentation of H3(Ω•A) can be written down as follows

Ker(ιV : ∧3 Am → ∧2Am) + Ker(ιV : (Am)k → Ak),

while the corresponding denominator is equal to

ιV(∧4Am) + ιV((∧2Am)k) +Dk3,1((∧2Am)k),

and so on. As a result, for an odd integer 1 ≤ ` < n the numerator in the presentation of H`(Ω
•
A)

is written down in the following way

Ker(ιV : ∧` Am → Am) + Ker(ιV : ∧`−2 (Am)k → (Am)k) + . . . ,
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while the corresponding denominator is equal to

ιV(∧`+1Am) + ιV(∧`−1(Am)k) + . . .+Dk`,1((∧`−1Am)k).

Similar presentations also exist for all even 0 ≤ ` < n.

Remark. The above example can also be investigated with the use of considerations in the
context of the theory of the generalized Koszul complex because the length of its homology
groups of dimension 0 ≤ i ≤ n − 2 can be computed explicitly (see a detail review in [21]). To
be more precise, these groups are expressed in terms of the symmetric polynomial algebra over
the quotient A/JoV similarly to [10]. The non-trivial homology groups of dimension i = n − 1
are computed analogously to Example 10.2

Remark. This method shows also that a necessary condition under which the homology
groups for i = 0, 1, . . . , n − 1 are finite-dimensional is the following: the depth of the ideal,
generated by the coefficients of the vector field and defining equations, is not less than the
dimension of the ambient manifold. In particular, for a Cohen-Macaulay singularity this means
that the grade of the ideal JoV is equal to the dimension of the singularity (cf. Comment 2 in
Section 9).

11. Holomorphic and meromorphic indices

In conclusion we discuss some useful properties and relations between the indexes of complexes
of holomorphic and regular meromorphic differential forms. Recall that for isolated complete

intersection singularities there is an equality χ(Ω̃•A, ιV) = χ(ω•A, ιV) (see Section 4).

Theorem 2. For a normal isolated complete intersection singularity of dimension n ≥ 2 there
exist natural isomorphisms

Hi(Ω
•
A, ιV) ∼= Hi(ω

•
A, ιV), 0 ≤ i ≤ n− 2,

and the following exact sequence

0→ Hn(#ω•A)→ Hn−1(Ω•A, ιV)→ Hn−1(ω•A, ιV)→ Hn−1(#ω•A)→ 0

which induces an equality dimkHn−1(Ω•A, ιV) = dimkHn−1(ω•A, ιV).

Proof. By Proposition 2 one has ωpA
∼= ΩpA

∨∨ ∼= ΩpA for 0 ≤ p < n. This gives us the required
isomorphisms for all 0 ≤ i < n− 2.

On the other hand, in view of Proposition 8 one has Hn(Ω̃•A, ιV) = Hn(ω•A, ιV) = 0. Hence
the exact sequence of complexes

0 −→ Ω̃•A −→ ω•A −→ #ω•A −→ 0

induces the long exact sequence of higher-dimensional homology groups

0→ Hn(#ω•A)→ Hn−1(Ω•A, ιV)→ Hn−1(ω•A, ιV)→
→ Hn−1(#ω•A)→ Hn−2(Ω•A, ιV)→ Hn−2(ω•A, ιV)→ 0.

(16)

Since the dimensions of the two non-trivial cotorsion modules are equal, this implies an equality

dimHn−2(Ω•A, ιV)− dimHn−1(Ω•A, ιV) = dimHn−2(ω•A, ιV)− dimHn−1(ω•A, ιV). (17)

In addition, we get an inequality dimkHn−2(Ω•A, ιV) ≥ dimkHn−2(ω•A, ιV) for evident reasons.
Similarly, the long Ker-Coker sequence, associated with the commutative diagram

0 −→ Ω̃nA
cA−→ ωnA −→ #ωnA −→ 0

↓ιV ↓ιV ↓
0 −→ Ker(Ωn−1A → Ωn−2) −→ Ker(ωn−1A → ωn−2) −→ #ωn−1A ,
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gives us an exact sequence of finite-dimensional vector spaces

0 −→ Hn(#ω•A) −→ Hn−1(Ω•A, ιV) −→ Hn−1(ω•A, ιV) −→ Hn−1(#ω•A).

Again, since the dimensions of both cotorsion modules are equal, one obtains the inequality
dimkHn−1(Ω•A, ιV) ≥ dimkHn−1(ω•A, ιV).

At last, combining the above two inequalities with relation (17), one gets

dimkHn−2(Ω•A, ιV) = dimkHn−2(ω•A, ιV), dimkHn−1(Ω•A, ιV) = dimkHn−1(ω•A, ιV).

In view of (16) the first equality implies an isomorphism Hn−2(Ω•A, ιV) ∼= Hn−2(ω•A, ιV), and the
exact sequence of the Theorem. QED.

Remark. For isolated complete intersection singularities we have already proved earlier that

Hn(Ω•A, ιV) ∼= Tors Ω•A, and Hn(Ω̃•A, ιV) = Hn(ω•A, ιV) = 0. Further, for a vector field V of
weight 1 on a surface Q7-singularity computations in the above examples give us two Poincaré
polynomials for first homology groups:

P (H1(Ω•A, ιV);x) = 2x2 + 2x3, P (H1(ω•A, ιV);x) = 1 + 3x.

Hence, H1(Ω•A, ιV) 6∼= H1(ω•A, ιV), although the dimensions of both homology groups are equal.

Remark. For a normal reduced complete intersection with non-isolated singularities the
Lebelt resolutions exist for all ΩpA, 0 ≤ p ≤ c − 1, where c is the codimension of the singular
subspace. Moreover, there are natural isomorphisms:

Hi(Ω
•
A, ιV) ∼= Hi(ω

•
A, ιV), 0 ≤ i < c− 1.

Claim 7. Let D be the germ of a reduced normal hypersurface and V a vector field with isolated
singularities. Then one has

χ(Ω•D, ιV) = χ(ω•D, ιV).

Proof. If D is the germ of a hypersurface with an isolated singularity of dimension n ≥ 1,
then

Hn−1
{o} (Ω1

D) ∼= H0
{o}(Ω

n
D) ∼= Tors ΩnD, Ωn+1

D
∼= Tors Ωn+1

D
∼= H1

{o}(Ω
n
D)

(see [27, Pt. I]) and these modules are, in fact, τ -dimensional vector spaces, where τ is the
Tjurina number of D. In the case of hypersurfaces with non-isolated singularities the statement
follows from considerations in [6], where the logarithmic index is introduced and some relations
between this index and the index of the contracted complex of regular meromorphic differential
forms via the residue map are discussed. QED.

Remark. In fact, the logarithmic index is computed in the ambient space of a singularity in
contrast with the regular meromorphic index and the residue map connects both realizations.
In a more general context this idea leads to the study of multi-logarithmic differential forms [7],
their residues and properties of the multi-logarithmic index.
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DOI: 10.1007/BF02684807

[20] J.Herzog and E.Kunz, Der kanonische Module eines Cohen–Macaulay Rings, Lecture Notes in Math.

238, Springer–Verlag, 1971. DOI: 10.1007/BFb0059377

[21] B.Ichim, U.Vetter, Length formula for the homology of generalized Koszul complexes, Rev. Roum. Math.

Pures Appl. 52 (2007), no. 2, 177–199.
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[25] E.Kunz, R.Waldi, Über den Derivationmodul und das Jacobi–Ideal von Kurvensingularitäten. Math.
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Abstract. Let (F2, . . . , Fn) : Cn → Cn−1 be a non-singular polynomial map. We introduce
a non-singular polynomial vector field X tangent to the foliation F having as leaves the fibers

of the map (F2, . . . , Fn). Suppose that the fibers of the map are irreducible in codimension

≥ 2, that the one forms of time associated to the vector field X are exact along the leaves, and
that there is a finite set at the hyperplane at infinity containing all the points necessary to

compactify the affine curves appearing as fibers of the map. Then, there is a polynomial F1 (a

Jacobian mate) such that the completed map (F1, F2, . . . , Fn) is a local biholomorphism. Our
proof extends the integration method beyond the known case of planar curves (introduced by

Ilyashenko [Ily69]).

1. Introduction and Statement of Results

The topological or analytical classification of non-singular polynomial foliations in Cn is a
very hard problem, even in the lowest dimensional case n = 2. See [ACL98], [BT06], [Fer05],
[NN02], [Tib07] and references therein.

We study the (holomorphic) polynomial foliations by curves F in Cn which can be obtained
from the fibers of complex polynomials F2, . . . , Fn ∈ C[z1, . . . , zn], chosen in such a way that

(1)

 (F2, . . . , Fn) : Cn −→ Cn−1 and

dF2 ∧ · · · ∧ dFn does not vanish at any z ∈ Cn.

The fibers of the map in (1) are nonsingular, but possibly reducible, affine curves that we denote
by {Ac}. The leaves of F are the connected components (a unique one generically) of those
affine curves. We say that F is a non-singular polynomial foliation having n− 1 first integrals.

As a first step toward a general classification a natural problem is to study topologically or
analytically this family of foliations.

An interesting subfamily is as follows. The map (F2, . . . , Fn) has a Jacobian mate when there
exists a polynomial F1 ∈ C[z1, . . . , zn] such that

(2)

 F = (F1, F2, . . . , Fn) : Cn −→ Cn and

dF1 ∧ dF2 ∧ · · · ∧ dFn = dz1 ∧ · · · ∧ dzn.
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Recall that the Jacobian Conjecture in Cn asserts the existence of the inverse map F−1 (which
has to be also polynomial).

Given F , where are the obstructions to the existence of F1?
Note that the singularities of the extended foliation to projective space, still denoted by F , are

in the hyperplane at infinity of Cn. In the classification problem one can study the singularities
at infinity. Instead, our approach focus on the affine behavior and possible “jumps” in the
geometry of the fibres {Ac}. By a classical result of S. A. Broughton, see [Bro83], there exists
an open Zariski set U ⊂ Cn−1 such that the affine foliation F is a locally trivial fibration in
(F2, . . . , Fn)−1(U).

Hence we must consider a priori the existence of atypical fibers (i.e. fibers outside U) of (1)
and try to describe the behavior of F . In particular, we point out that an example of (1) having
atypical fibers and admitting a F1, will provide a counterexample for the Jacobian Conjecture.

Another related problems with the existence of a Jacobian mate are the following. First, in
the holomorphic category, on Stein manifolds the problem of the existence of F1 is posed in
[For03a] p. 146 and [For03b] p. 96, and it remains open (we thank Filippo Bracci for pointing
this out to us). Second, the symmetric problem, i.e. given F1 how to recognize the existence of
(F2, . . . , Fn) such that (2) is currently under study for n ≥ 3, see [FR05] p. 3 or [Kal02].

The main tool that we introduce is a polynomial vector field X depending in an essential way
of F . Consider the Jacobian matrix of the map (1)(

∂Fj
∂zi

)
2≤j≤n, 1≤i≤n

,

and let Ai(z1, . . . , zn) be the determinant of the submatrix obtained after removing the i–th
column, then

(3) X :=

n∑
i=1

(−1)i+1Ai(z1, . . . , zn)
∂

∂zi
,

obviously X is nowhere zero. If there exists a Jacobian mate F1, then

(4) (F1, . . . , Fn)∗
∂

∂w1
= X.

X restricted to any fiber Ac, c ∈ Cn−1, of the map (1), gives a tangent vector field on Ac,
that we will denote by Xc. It determines a unique holomorphic one form ωc on Ac, when we
require ωc(Xc) = 1. Thus, each map (F2, . . . , Fn) produces a collection of pairs

(5) {(Ac, Xc) | c ∈ Cn−1}, equivalently {(Ac, ωc)}.

In Section 2, we briefly develop this ideas to make the argument more transparent.

Remark 1. 1. The vector field X defines a singular holomorphic foliation F by curves in CPn,
such that its singular locus is contained in the hyperplane at infinity CPn−1

∞ .
2. The polynomial vector field X has n − 1 polynomial first integrals on Cn, and the leaves of
the foliation defined by X in Cn are given by the curves {Ac | c ∈ Cn−1}.
3. The hyperplane CPn−1

∞ is saturated by leaves of F .

In addition

Remark 2. Up to multiplication by a non-zero constant, X is the unique non vanishing polyno-
mial vector field giving a trivialization for the tangent line bundle of the non-singular holomorphic
foliation F on Cn.
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Indeed, if a second polynomial vector field Y (providing a trivialization of the tangent line
bundle to the foliation) exists, then X = λY , for λ an entire function on Cn, nowhere zero. But
λ is clearly polynomial, hence it is necessarily a non-zero constant. Moreover, X is independent
on the choice of any polynomial F1 satisfying (2): it only depends on (F2, . . . , Fn). Hence, we
can use X to explore the existence of F1.

The main result about affirmative conditions for the existence of F1, is the following

Theorem 1. Let (F2, . . . , Fn) : Cn −→ Cn−1 be a polynomial map such that dF2 ∧ · · · ∧ dFn
does not vanish at any point of Cn. Consider X as in (3), and suppose furthermore that:
(i) The reducible fibers {Ac} ⊂ Cn determine an algebraic subset of codimension at least 2.
(ii) For every c ∈ Cn−1, the pairs (Ac, ωc) satisfy that∫

γ

ωc = 0, for every [γ] ∈ H1(Ac,Z).

(iii) There is a finite set Y ⊂ CPn∞ such that each affine curve Ac is completed in CPn by adding
points in Y .
Then, there is a polynomial F1 such that

dF1 ∧ dF2 ∧ · · · ∧ dFn = dz1 ∧ · · · ∧ dzn.

Note that the second hypothesis is clearly necessary for ωc to be an exact one form on the
fibers Ac. Concerning the first, it is in fact necessary for the integration method that we use:
Example 1 shows a function with a reducible fiber (of codimension one), with zero periods, and
such that the function constructed by integration as a candidate for Jacobian mate has a pole
on that fiber (see Remark 6).

The third hypothesis, obviously satisfied in the case n = 2, is automatically satisfied in case
that the map F is surjective. In this case, as F has no critical points, all the fibers are one
dimensional, and according to [Ga99] p. 158, they share the same cone at infinity, i.e. all the
affine curves are completed by adding the same points at infinity (a finite set). Note that this
cone at infinity is defined by the vanishing of the polynomials in the ideal generated by the terms
of highest degree of the elements of the ideal generated by the components of the function F .
This cone at infinity is contained in, but not necessary equal to, the singular set of the foliation
F extended to projective space.

After proving our result by integration method (see below), we realized that in case F is
surjective, it is a consequence of a Theorem of Ph. Bonnet (Theorem 1.5 in [Bon03]). Never-
theless, even in that case, as his approach is algebraic, and our proof extends the integration
method beyond the case of planar curves previously known (starting with Ilyashenko [Ily69]),
we consider that it can be of interest for the people working in the field. Moreover, with this
technique as a fundamental tool, together with some considerations on the degree of the map F
and computations of the index of X restricted to the fibers of (F2, . . . , Fn) (see the end of this
Introduction), we have also obtained some new results on negative conditions for the existence of
a jacobian mate. They will be presented in a future work, including the solution in a particular
case (see Example 1) of a problem posed by L. Dũng Tráng and C. Weber in [DW94].

1.1. Method and Structure of the proof. The proof of Theorem 1 is given in several steps
below. Note that, to avoid confusion we use Cnz and Cn−1

w to denote the domain and the target
in map (1).
Step 1. We construct a polynomial one form of time ω for X on Cnz . By integration of ω along

the irreducible fibers of F , see equation (8), we get a candidate function F̃1.
Step 2. We verify that the candidate function is holomorphic on the whole Cnz , see Proposition
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1.
Step 3. We estimate the growth of F̃1. This is the hardest step. We will study the growth

of F̃1 at infinity. We recognize the growth of |F̃1(z)| in a suitable set of complex lines in Cnz .
This requires bounds for: the norm of the end points of the integration paths in (8), see Lemma
1, the norm of the ramification points in the fibers {Ac}, see Lemma 2, and the length of the

integration paths in (8), see Lemma 3. Thus, |F̃1(z)| has polynomial growth in suitable lines,
see Lemma 4.
Step 4. In order to show that F̃1(z) is a polynomial, we make an argument by contradiction,
using a property of the growth of entire non-polynomial functions, see Lemma 5 and Proposition
2. We show explicitly that F1 satisfies dF1 ∧ dF2 ∧ . . . ∧ dFn = dz1 ∧ . . . ∧ dzn.

Concerning the proof of Theorem 1, we point out that the powerful method of integration
of one forms ω along the algebraic leaves of a polynomial foliation {Ac} in C2 to find F1, was
introduced by Yu. Ilyashenko, in his foundational work on the second part of the Hilbert’s
16–th problem [Ily69]; see also Yakovenko’s article [Yak94], that inspired us when searching for
the estimates in Step 3 above. The higher dimensional method of integration of rational one
forms ω along the leaves of singular codimension–one foliations in higher dimensional affine and
projective manifolds appeared in the work [Muc95] of the third author of this article. In our
Theorem 1, the bounds for the integration of one forms along the leaves of an one–dimensional
foliation on Cn is more difficult.

2. Meromorphic maps and vector fields on Riemann surfaces

Let CP1 = Cw ∪ {∞} be the projective line, having affine coordinate w. The vector field
∂/∂w induces a holomorphic vector field in CP1 having double zero at ∞ ∈ CP1. Let L be a
compact Riemann surface.

Remark 3. Let f : L → CP1 be a non-constant meromorphic function. The non-identically
zero meromorphic vector field

∂

∂f
:= f∗

(
∂

∂w

)
is well defined on L. Moreover, f has canonically associated a meromorphic one form ω, such
that the diagram commutes

(6)

{ω}
↗

{f : L → CP1} l
↘
{X = ∂

∂f },

X and ω are non-identically zero.

In fact, given f , we define ω = df . The one to one correspondence between meromorphic
vector fields and meromorphic one forms is given by the equation ω(X) ≡ 1. This ω is called
the one form of time for X, since for p0, p ∈ L we have

f(p)− f(p0) =

∫ p

p0

ω =

{
complex time to travel from
p0 to p under the local flow of ∂

∂f .

The diagram (6) comes from the theory of quadratic differentials, see [Muc02]. The correspon-
dence from ω to f in (6) is elementary.
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Remark 4. A non-identically zero meromorphic one form ω, determines a univalued meromor-
phic function f(p) =

∫ p
ω if and only if the periods and residues of ω vanish, i.e.∫

γ

ω = 0 for each [γ] ∈ H1(L − {poles of ω},Z).

In this case, all the arrows in (6) are bijections.

3. Proof of Theorem 1

Starting from the map (F2, . . . , Fn) satisfying (1), we get the associated vector field X de-
scribed by (3) in the Introduction.

3.1. A candidate function. For the construction of a polynomial one form of time ω, we show
that the one form ωc on Ac such that ωc(Xc) = 1 can be obtained as the restriction to the fiber
Ac of a polynomial one form on Cnz .

Indeed, as X is never vanishing, recall equation (3), by Hilbert’s Nullstellensatz we know that
1 ∈ (A1, . . . , An). Then, there are polynomials a1, . . . , an ∈ C[z1, . . . , zn] such that

1 = a1A1 + · · ·+ anAn.

These ai are the coefficients of such an ω.
Observe that if {a′i | i = 1, · · · , n} are polynomials giving another possible way of defining a

one form ω′ such that ω′|Ac
= ωc, then

(a1 − a′1)A1 + · · ·+ (an − a′n)An = 0.

Hence, for ω on Cnz (as above) and every path γ in Ac we have∫
γ

ωc =

∫
γ

ω.

The third hypothesis in the statement of theorem asserts that there is a finite set

Y = {the points at infinity of the projective curves Pc | c ∈ Cn−1
w } ⊂ CPn−1

∞ ,

so that we can choose a hyperplane H in CPn such that H ∩ Y = ∅. We can also assume that
it is not contained in the union of the projective varieties given by the closures of the affine
hypersurfaces defined by Ai = 0, i = 1, . . . , n.

We consider the open set

Rc = Cnz − {Ac | reducible }.
Every point z ∈ Rc is in exactly one affine curve of the family {Ac} which we denote as Ac(z),
where c(z) := (c2(z), . . . , cn(z)) := (F2, . . . , Fn)(z) ∈ Cn−1

w . The degree of the projective curve
Pc(z) (the projectivization of Ac(z)) is

d ≤ d2 · · · dn, where dj = (degree Fj).

We have in addition that H ∩ Pc(z) consists of d points in Cnz , counted with multiplicities, for

every c(z) ∈ Cn−1
w . Therefore, we have

H ∩ Ac(z) = {p1(z), . . . , pd(z)}.
By hypothesis Ac(z) is irreducible, having fixed some point z ∈ Cnz , we join z to the above

points p`(z) ∈ H, by using smooth paths γ`(z), ` = 1, . . . , d . inside the affine curve Ac(z). We
observe that

(7)
fc : Ac(z) −→ C

z 7→
∑d
`=1

∫
γ`(z)

ω
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is a well–defined holomorphic function, independently of the choices of paths, using the second
hypothesis in Theorem 1. Moreover, fc extends as a meromorphic function on the projective
curve Pc(z) and there is a well–defined function

(8)
F̃1 : Rc ⊂ Cnz −→ C

z 7→
∑d
`=1

∫
γ`(z)

ω.

3.2. Holomorphicity of the candidate function.

Proposition 1. F̃1(z) is holomorphic on the whole Cnz .

Proof. Clearly F̃1(z) is holomorphic along the irreducible curves Ac(z) ⊂ Rc. Now, we

prove the holomorphicity of F̃1 at z0 in the transverse directions to F . We will distinguish two
situations, depending on the number of points in the intersection of the leaf and the transversal
H.

Case 1. Assume Ac(z0) ∩ H consists exactly of d different points. Thus, the leaf Ac(z0) is
transverse to H.

We may consider without loss of generality, that Σn−1 is a tranversal to F at z0, i.e. biholo-
morphic to some (n− 1)–dimensional polydisk ∆n−1(z0, ε), centered at z0, embedded in Cnz and
transversal to F . Now, let z be a point in the transverse directions j = 2, . . . , n, i.e. z is inside
the polydisk Σn−1.

Fixed z0, we consider the leaf Ac(z0) and the smooth integration paths γ`(z0), ` ∈ {1, . . . , d},
inside the leaf Ac(z0).

Since the foliation F is non-singular on Ac(z0), a small variation of z in Σn−1, a transversal at
z0, induces a small (smooth) variation in the paths of integration in (8). In fact, the holonomy
of the foliation F produces germs of biholomorphisms

hol(γ`(z0), · ) : (Σn−1, z0)→ (Σn−1
` , p`(z0)) , ` ∈ {1, . . . , d},

where each Σn−1
` ⊂ H is a local transversal to the foliation F , given by a small (n − 1)–

dimensional polydisk in the hyperplane H centered at p`(z0), the end point of the path γ`(z0).
If z moves holomorphically in Σn−1 around z0, the respective end points of the paths γ`(z)

move holomorphically in Σn−1
` ⊂ H, since the end points are given as the values of the biholo-

morphism hol(γ`(z0), z) ∈ Σn−1
` .

Summing up, the end points of the integration paths in (8) and the one form ω vary holomor-

phically with z. Thus, F̃1 is holomorphic in all directions around z0, when Ac(z0) is transverse
to H.

Case 2. Assume Ac(z0) ∩ H consists of less than d different points. Thus, the leaf Ac(z0) is
tangent to H at some points.

The set T = {z ∈ Cnz | Ac(z) is tangent to H} is a complex algebraic variety in Cnz of codi-
mension least one (T can be empty).

Recall that in (8) the intersection points Ac(z0) ∩H are taken with multiplicities. It follows

that F̃1(z) extends continuously to T and is locally bounded at T . By the Riemann extension

Theorem (see [FG02], p. 38), F̃1(z) extends holomorphically to T , hence on Rc.
Finally, the reducible fibers {Ac} ⊂ Cnz determine an algebraic subset of codimension at least

2. By the Second Riemann extension Theorem (see [FG02], p. 151), F̃1(z) extends holomorphi-
cally over the points in reducible fibers, hence on the whole Cnz . 2

3.3. The candidate has polynomial growth. We will prove that F̃1(z) is a polynomial

function. For this we study the growth of |F̃1(z)|, when |z| goes to infinity along some lines, this
in our goal in this subsection.
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Let % = [m1 : . . . : mn] ∈ CPn−1
∞ be a non-singular point of the foliation F in the hyperplane

at infinity. We make z go to % in a simple way. Let ({t ∈ C}∪{∞}) be a projective line, consider
the parametrized line

(9) z(t) : (C ∪ {∞})→ CPn,

z(t) =

{
(m1t, . . . ,mnt) for t ∈ C,

% for t =∞.
In all what follows
1) z and |z| will go to infinity as z = z(t),
2) (F2, . . . , Fn)(z(t)) := (c2(t), . . . , cn(t)) := c(t) ∈ Cn−1

w ,
3) Ac(t) := Ac(z(t)) and H ∩ Ac(t) := {p1(t), . . . , pd(t)}.

In order to estimate the growth of

|F̃1(z(t))| =

∣∣∣∣∣
d∑
`=1

∫
γ`(z)

ω

∣∣∣∣∣ ,
we will first construct integration paths

γ`(z(t), s) : [0, 1]→ Ac(t)
inside the family of curves {Ac(t)} and bound their lengths in terms of |t| (see Lemma 3). Note
that we are using the notations

γ`(z) = γ`(z(t)) = γ`(z(t), s)

simultaneously, the dependence on t will be continuous, and smooth on the real variable s. We
will bound the growth of ω along the path, from a bound on |γ`(z(t), s)| for all the points in the
trace of the paths, this is attained in the proof of Lemmas 1, 2.

The construction of the integration paths require formerly, the study of the projections of
Ac(t) onto the coordinate axes.

Consider the natural projections Πi : Cnz → Ci, (z1, . . . , zn) 7→ zi, onto the i–th axis. Obvi-
ously, they induce functions for every fixed t,

Πi : Ac(t) → Ci ,

which are holomorphic branched coverings. Moreover in some special cases for F these functions
can be constant.

Fixing t, and so the fiber Ac(t), and one direction of projection i ∈ {1, . . . , n} as above, we
have two relevant sets of points and their corresponding associated disks in Ci, having radii
r(i, t), R(i, t) > 0 as follows:

The first collection of points and associated disks comes from the i–th projection of z(t) and
of the intersection points of Ac(z) with H

{Πi(z(t)),Πi(p1(t)), . . . ,Πi(pd(t))} ⊂ ∆(0, r(i, t)) ⊂ Ci.

The second collection of points is determined by the ramification points of the function Πi :
Ac(t) → Ci, {ρ1(i, t), . . . , ρβ(i, t)} ⊂ Ac(t), and its projection to the i–th coordinate:

{Πi(ρi(i, t)), . . . ,Πi(ρβ(i, t))} ⊂ ∆(0, R(i, t)) ⊂ Ci.

The number β depends on Ac(t) and Πi, but we omit this dependence in the notation. By (b)
of Corollary 1 below, β will be constant for large enough t.
So, fixed the i–th direction, our problem is “for z(t) going to fixed % ∈ CPn−1

∞ , bound the growth
of the radii r(i, t), R(i, t) for all sufficiently large |t|”.

Now, we work in order to estimate of the radious r(i, t).
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Lemma 1. Fixing i ∈ {1, . . . , n}, there exists ξ ∈ N such that r(i, t) < |t|ξ for large enough
t. Moreover, this estimate holds for z(t) going to infinity in the directions %′ in a small enough
polydisk ∆n−1(%, ε) ⊂ CPn−1

∞ avoiding singularities of F .

Proof. The intersection points in H ∩Ac(t) are described by the system of algebraic equations
in (z1, . . . , zn),

F2 − c2(t) = 0, F3 − c3(t) = 0, . . . , Fn − cn(t) = 0, H(z1, . . . zn) = 0.

For fixed t and i, we want to compute the values of zi where these intersections appear. The
elimination ideal of the above system (see [CLO07] Chapter 3, Section 2, in particular Theorem
3 p. 125), that by definition is

〈F2 − c2(t), . . . , Fn − cn(t), H〉 ∩ C[zi],

determines the required points.
The elimination procedure, described explicitly in [CLO07] p. 116–117, depends on the choice

of a Groebner basis for the ideal of our system of equations (that always exists, see [CLO07] p.
77 Corollary 6). There is a polynomial

Qi(zi, t) = ai,0(t)zdi + ai,1(t)zd−1
i + · · ·+ ai,d−1(t)zi + ai,d(t)

describing the position of {Πi(p1(t)), . . . ,Πi(pd(t))} in Ci; here {ai,α(t)} are polynomials in t,
and d is the degree of the curves Ac(t).

The natural number ξ(i) = maxα{degree(ai,α(t))} depends on the Groebner basis chosen.
We can write

zdi +
ai,1(t)

ai,0(t)
zd−1
i + · · ·+ ai,d(t)

ai,0(t)
= 0.

Recall that ai,α(t)/ai,0(t) are α–th elementary symmetric functions of the roots. The roots of

Qi(zi, t) grow at most as maxα{ai,α(t)/ai,0(t)}, that is at most like |t|ξ(i), when t goes to infinity.

So they are contained in a disk of radius |t|ξ(i).
The computation of the growth is similar for every i ∈ {1, . . . , n}. Let us define

ξ = (max
i
{ξ(i)}) + 1.

In addition, for the original point z(t), the norm of the projection |Πi(z(t))| grows linearly, hence
Πi(z(t)) ∈ ∆(0, |t|ξ), for large enough t. The exponent ξ satisfies the assertion in the Lemma.

Finally, the bound is independent on the choice of %′ varying in a small enough polydisk
∆n−1(%, ε), that is the second assertion in the Lemma. 2

Now, we get the estimates for the radious R(i, t) of the disks containing all the projections of
the ramification points of Πi restricted to Ac(t).

Lemma 2. Fixing i ∈ {1, . . . , n}, there exists κ ∈ N such that R(i, t) < |t|κ for large enough
t. Moreover, this estimate holds for z(t) going to infinity in the directions %′ in a small enough
polydisk ∆n−1(%, ε) ⊂ CPn−1

∞ avoiding singularities of F .

Proof. Observe that the ramification points of Πi : Ac(t) → Ci come from the vanishing of
the i–th coordinate of the vectors in the kernel of the differential of the map (1) at the points in
Ac(t), which give the tangent space to Ac(t).

The condition above is given by the vanishing of the determinant of the matrix obtained by
adding (0, . . . , 1, . . . , 0), where the 1 is placed in the i–th column, as the last row to(

∂Fj
∂zi

)
2≤j≤n, 1≤i≤n

.
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This determinant is exactly Ai(z1, . . . , zn) in the definition of the vector field X, (3). Hence the
tangencies of Ac(t) with the hyperplanes {zi = const.} in Cnz are given by the following system
of algebraic equations in (z1, . . . , zn)

F2 − c2(t) = 0, F3 − c3(t) = 0, . . . , Fn − cn(t) = 0, Ai = 0.

For fixed t, we want to compute the i–th projection of the points where these tangencies appear.
The elimination ideal of the above system

〈F2 − c2(t), . . . , Fn − cn(t), Ai〉 ∩ C[zi],

determines the smallest algebraic variety containing the i–th projection of the ramification points
of {Πi(ρ1(i, t)), . . . ,Πi(ρβ(i, t))}.

Using the elimination procedure and the existence of Groebner basis for the ideal as in the
proof of Lemma 1, we know that there exists a polynomial

Pi(zi, t) = bi,0(t)zβi + · · ·+ bi,β−1(t)zi + bi,β(t)

whose roots give the projection of the ramification points above. The degree β is the number of
ramification points of Πi on Ac(z), and it is generically independent of i and t, for large enough
t.

We can estimate the growth of the roots of Pi(zi, t) when t goes to infinity, as we did in the
previous Lemma, so that we get a natural number κ(i) (depending on the choice of the Grobner
basis) such that they are contained in a disk of radius growing like |t|κ(i). Let us define

κ = (max
i
{κ(i)}) + 1;

this exponent provides the estimate in the Lemma. Finally, the bound is independent on the
choice of %′ varying in a small enough polydisk ∆n−1(%, ε), that is the second assertion in the
Lemma. 2

Summing up Lemmas 1 and 2, for the family of fibers Ac(t), we define the exponent ς :=
max{ξ, κ}. The n–dimensional polydisk ∆n(0, |t|ς) ⊂ Cnz , satisfies the following. The intersection

Ac(t) ∩∆n(0, |t|ς),
for large enough t, contains: the original point z(t); the points p`(t), ` = 1, . . . , d in Ac(t) ∩H;
and the ramification points ρj(i, t), j = 1, . . . , β(i, t) of the functions Πi : Ac(t) → Ci, for all
i ∈ {1, . . . , n}.

Corollary 1. There exists some t0 such that for all |t| > |t0| the following facts hold.
a) The intersection Ac(t) ∩∆n(0, |t|ς) is a path connected Riemann surface.
b) The family of Riemann surfaces

{Ac(t) ∩∆n(0, |t|ς) | |t| > |t0|}
is topologically trivial respect to t.

Proof. For a), note that there is always a direction such that the projection

Πi : (Ac(t) −∆n(0, |t|ς))→ Ci
is a non-constant, unramified holomorphic covering. Without loss of generality, we can suppose
i = 1. We remove from Ac(t) the preimages of the punctured closed disk {|z1| ≥ |t|ς} ⊂ C1.
These preimages are disjoint punctured disks in Ac(t) (i.e. biholomorphic to ∆(0, 1) − {0}).
Then, Ac(t) ∩∆n(0, |t|ς) is path connected.

For b), the atypical fibers of each Fj , j ∈ {2, . . . , n}, determine a finite number of hypersur-
faces, see [Bro83]. The projective closure of each of them intersects the hyperplane at infinity
in a hypersurface. If we choose the point at infinity %, in (9) outside of these hypersurfaces in
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CPn−1
∞ , then the family {Ac(t)} is locally trivial for suitable values of t. The assertion follows.

2

Lemma 3. There exists a point % ∈ CPn−1
∞ , such that for z(t) going to % as in (9), we have a

continuous family of smooth paths{
γ`(z(t), ·) : [0, 1]→ Ac(t) ∩∆n(0, |t|ς) , ` = 1, . . . , d

}
t∈U ,

where U = C−∆(0,M), satisfying that for every `, γ`(z(t), 0) = z(t) and γ`(z(t), 1) = p`(t), as
required for the paths in (8), with

(length of γ`(z(t), s)) < |t|K ,
for certain K ∈ N.

Moreover, the above assertions are valid for z(t) going to infinity in the directions %′ in a
small enough polydisk ∆n−1(%, ε) ⊂ CPn−1

∞ avoiding singularities of F .

Proof. Let us consider the polynomials Ai in the definition of the the vector field X, (3).
Recall that A1, . . . , An do not vanish simultaneously. For a generic choice of % ∈ CPn−1

∞ and for
large enough t, we have

Ai(z(t)) 6= 0, i ∈ {1, . . . , n}.
It follows that the initial points of the paths that we are searching for γ`(z(t), s) are not ramifi-
cation points of Π1, for large enough t. Observe that the projections Πi|Ac(t)

are then ramified
coverings over Ci.

We also observe that for a generic choice of % ∈ CPn−1
∞ the paths γ`(z(t), s) will have no

ramification points of Π1 as end points {p`(t)} for large enough t. To see this, recall that the
affine hyperplane determined by H is not contained in the hypersurface Ai = 0, for any i. Take
a point p ∈ H such that Ai(p) 6= 0, for every i. Clearly, the choice of p can be done in such a
way that all the points in F−1(F (p)) ∩H satisfy the preceding condition.

Take the line through the origin in Cn determined by p, and let % ∈ CPn−1
∞ be the cor-

responding direction. For z(t) going to infinity along this line, we define the algebraic affine
surface

S2 = {Ac(t) | t ∈ C}
given by the union of the fibersAc(t) intersecting the line {z(t) | t ∈ C}. In fact, (F2, . . . , Fn)(z(t)) :

C→ Cn−1
w is a polynomial entire curve C and its closure C is a rational projective curve in CPn−1.

Consider I(C) = 〈g1, . . . , gν〉 the affine ideal in C[w2, . . . , wn] describing C as an algebraic curve.
The ideal (F2, . . . , Fn)∗I(C) = 〈g1◦(F2, . . . , Fn), . . . , gν ◦(F2, . . . , Fn)〉 in C[z1, . . . , zn] determines
S2, showing that it is an algebraic surface.

By the conditions imposed in the choice of the direction % along which z(t) goes to infinity,
we can assure that {A1 = 0} ∩H ∩ S2 is at most a finite number of points. We get

{A1 = 0} ∩H ∩ Ac(t) = ∅
for large enough t. It follows that the end points {p`(t)} = H ∩Ac(t) are not ramification points
for large enough t, as we asserted. Observe that this is still the case for %′ in a small enough
polydisk ∆n−1(%, ε) ⊂ CPn−1

∞ .
We take the polydisk ∆n(0, |t|ς) in such a way that it contains z(t), the points p1(t), . . . , pd(t),

and all the ramification points of the projection Π1 in Ac(t) (see Lemmas 1 and 2). We will focus
on the restricted map

Π1 : Ac(t) ∩∆n(0, |t|ς)→ ∆(0, |t|ς).
Recall that Ac(t) ∩ ∆n(0, |t|ς) is path connected (Corollary 1, a). Choose a path from z(t) to
p`(t), and project it onto ∆(0, |t|ς). Now, choose a smooth path γ0(s) := z1(s), 0 ≤ s ≤ 1, in
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∆(0, |t|ς) joining z1(t) to Π1(p`(t)), homologous to this projected one, and so that it does not
pass through the image of any ramification point of Π1 on Ac(t). Lifting γ0 to Ac(t) we have a
smooth path

γ`(z(t), s) = (z1(s), z2(z1(s)), . . . , zn(z1(s))),

joining z(t) to p`(t) (we omit the dependence on ` and t, in the right term of above notation).
Using the Implicit Function Theorem, we have

Fj(z1, z2(z1), . . . , zn(z1)) = cj(t), j = 2, . . . , n

and taking derivatives we get a system of n− 1 equations

∂Fj
∂z1

+
∂Fj
∂z2

z′2 + · · · ∂Fj
∂zn

z′n = 0, j = 2, . . . n

where we write z′j =
∂zj
∂z1

. From the system above, we conclude that

(10) z′j =
Âj
A1

,

where Âj is the minor obtained after replacing the j–th column in the system by (−∂F2

∂z1
, . . . ,−∂Fn

∂z1
).

So we have that Âj = (−1)jAj , recall (3). If we now derive with respect to s the lifted path
γ`(z(t), s), we get

γ̇`(z(t), s) = (ż1, z
′
2 ż1, . . . , z

′
n ż1)(s)

and

(length of γ`(z(t), s)) =

∫ 1

0

|γ̇`(z(t), s)|ds =

(11) =

∫ 1

0

(
|ż1|
√

1 + |z′2|2 + · · ·+ |z′n|2
)
ds.

As {A1 = 0} and S2 ∩H are algebraic sets, there exists a number K0 ∈ N, such that each lifted
path is chosen such that

|A1(γ`(z(t), s)| ≥
1

|t|K0

going to infinity for all 0 ≤ s ≤ 1 and large enough t. Note that this condition can be assured
for all the directions %′ in a small enough polydisk ∆n−1(%, ε) at infinity.

We have from (10) and (11) that

(length of γ`(z(t), s)) ≤
∫ 1

0

|ż1|

√√√√1 +
|Â2|2 + · · ·+ |Ân|2

1
|t|K0

 ds.

As the determinants |Âj | are products of polynomials of known degrees(
|Â2|2 + · · ·+ |Ân|2

)
≤ |t|K1

for certain K1 ∈ N (for all 0 ≤ s ≤ 1) which gives

(length of γ`(z(t), s)) ≤ (length γ0) · |t|K0+K1 .

We finish by noting that a simple choice of the path γ0 verifying all the conditions required
above can be made inside the disk ∆(0, |t|ς), and in such a way that its length is less than twice
the diameter of the disk. This ends the proof of Lemma 3, choosing K > ς +K0 +K1. 2
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Remark 5. The estimate for the length in Lemma 3 is inspired by Yakovenko, see [Yak94], who
dealt with the case n = 2. We tried to make the construction transparent by lifting smooth paths
not passing through branching points, by means of the Implicit Function Theorem.

Lemma 4. |F̃1(z(t))| grows polynomially if |z(t)| goes linearly to infinity in the directions de-
termined by %′ ∈ ∆n−1(%, ε) ⊂ CPn−1

∞ .

Proof. We fix one parametrized complex line z = z(t) as in (9), going to a point at infinity

in the polydisk determined in Lemma 3, and bound the growth of F̃1(z(t)). Recall that we have

|F̃1(z(t))| =

∣∣∣∣∣
d∑
`=1

∫
γ`(z(t))

ω

∣∣∣∣∣ ≤
n∑
i=1

∣∣∣∣∣
d∑
`=1

∫
γ`(z(t))

ai(γ`(z(t)))dzi

∣∣∣∣∣ ;
where ai(z1, . . . , zn) are polynomials on Cnz defining ω (see the begin of Subsection 3.1), and the
notation γ`(z(t)) omit the dependence on the real parameter s.

We bound the terms in the righthand side for each aidzi and each path γ`(z(t)), where
i ∈ {1, . . . , n} and ` ∈ {1, . . . , d}. Note that∣∣∣∣∣

∫
γ`(z(t))

ai(z1, . . . , zn)dzi

∣∣∣∣∣ =

∣∣∣∣∫ 1

0

ai(γ`(z(t)))dzi(γ`(z(t)))

∣∣∣∣ .
Now we use the following bounds that were previously stated. Since |γ`(z(t))| < |t|ς and

ai(z1, . . . , zn) is a polynomial of degree δ(i) (this degree is not explicit, see Subsection 3.1), the
norm |ai(γ`(z(t)))| is bounded by |t|ς+δ(i). By Lemma 3, the lengths of the paths and their
projections dzi(γ`(z(t))) are bounded by |t|K . Finally, if δ := maxi{δ(i)}, then we can assert
that

|F̃1(z(t))| < nd|z(t)|ς+δ+K ,
for large enough t.

Moreover, all the bounds above remain true under variations of %′ in a small enough (n− 1)–
dimensional polydisk ∆n−1(%, ε) ⊂ CPn−1

∞ , as asserted in Lemmas 1, 2, and 3. 2

3.4. The candidate is polynomial. Now, in order to show that F̃1(z) is polynomial we proceed
by contradiction. The next result seems to be well known, however we could not find it explicitly
in the literature.

Lemma 5. Let Λ(z) be an entire non-polynomial function in Cnz . The locus of points [m1 : . . . :
mn] ∈ CPn−1

∞ such that |Λ(m1t, . . . ,mnt)| grows at most like |t|ρ, for large enough ρ ∈ N, is
contained in an algebraic subvariety of codimension at least 1 in CPn−1

∞ .

Proof. As usual, define the multi-index ν := (ν1, . . . , νn) ∈ (N ∪ {0})n and its associated
degree and monomial as

|ν| := ν1 + . . .+ νn, zν := zν11 · · · zνnn .

The power series expansion of our entire function is

Λ(z) =

∞∑
|ν|=0

cνz
ν .

Consider the directions m := [m1 : . . . : mn] such that |Λ(m1t, . . . ,mnt)| grows less than |t|ρ,
for all sufficiently large |t|, where ρ is fixed. For these directions the higher order terms in the
series must vanish, i.e. ∑

s≥1

 ∑
|ν|=ρ+s

cνm
ν

 tρ+s = 0.
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This equation must be true for sufficiently large |t|, in consequence it can be split in a numerable
set of equations ∑

|ν|=ρ+s

cνm
ν = 0, s ∈ N.

For fixed s, the corresponding equation is homogeneous of degree ρ+s, in the variablesm1, . . . ,mn

of CPn−1
∞ .

Λ is entire but it is not a polynomial, hence it has coefficients cν 6= 0 for arbitrarily large
|ν|. Take such a ν0 with cν0 6= 0. Then, the homogeneous equation of degree |ν0| determines a
non-trivial algebraic subvariety T|ν0| ⊂ CPn−1

∞ .

For each ν with |ν| = ρ + s, we have an algebraic subvariety T|ν| ⊂ CPn−1
∞ . The set of

directions producing growth at most like |t|ρ is the intersection⋂
|ν|≥ρ+1

T|ν| ⊂ T|ν0|,

that is the desired algebraic variety. 2

Proposition 2. F̃1(z) is polynomial.

Proof. By Lemma 4 the restriction F̃1(m1t, . . . ,mnt) grows at most like a polynomial in

|t| for an open set ∆n−1(%, ε) of points in CPn−1
∞ . Assuming that F̃1(z) is a non-polynomial

entire function, we get a contradiction, since it must grow slowly in at most a proper algebraic

subvariety of points in the hyperplane at infinity, by Lemma 5. Thus, F̃1 is a polynomial. 2

Let us check the algebraic independence of F̃1 with respect to F2, . . . , Fn. Considering the
holomorphic n–form

dF̃1 ∧ dF2 ∧ · · · ∧ dFn = φ(z1, . . . , zn)dz1 ∧ · · · ∧ dzn,

φ is a nowhere vanishing polynomial. Indeed, by contradiction, let p ∈ Cnz be a point with

φ(p) = 0. This says that dF̃1|p is linearly dependent with dF2|p, . . . , dFn|p. Then, for dF̃1|p
induces the zero one form on the tangent line TpAc at p. This is a contradiction, since dF̃1 is the
multiple d · ω (here d ≥ 1 is the degree of Ac) and ω is non-zero in every TpAc. Hence φ ∈ C∗.
We define F1 := (1/φ)F̃1. The proof of Theorem 1 is done.

3.5. Some examples. For n = 2, we show polynomials F2 satisfying the condition that dF2

is nowhere zero, having in one case all the periods of ω zero, and with non-zero periods in the
other.

Example 1. A non-singular polynomial with zero periods

F2(z1, z2) = z1 − z2
1z2.

This is the polynomial described by S. A. Broughton, studied in [Bro83], [DW94] and [Dun08],
but without considering the residues as we do here. It has irreducible typical fiber Ac =
{F2(z1, z2) = c}, c 6= 0, biholomorphic to C∗. When Ac is completed with its points at in-
finity, we have the rational curve: z2

0z1 − z2
1z2 − cz3

0 = 0. It meets the infinity line z0 = 0 at
two points, [0 : 1 : 0] and [0 : 0 : 1]. The first is a smooth point of the curve, and the second a
singular one. Note that we can parametrize our projective curve as

Υ[s : ζ] = [ζ2s : ζ3 : ζs2 − cs3] : CP1 → Ac,

the two distinguished points corresponding to s = 0 and to ζ = 0.
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In the affine neighbourhood given by z1 = 1, we have that the curve can be parametrized as
ϕ(s) = (s, s2 − cs3), and so (for s 6= 0), we have (1/s, s − cs2) in the original C2 = {z0 ≡ 1}.
Hence, its derivative (−1/s2, 1− 2cs) (that coincides with the restriction of

X = z2
1

∂

∂z1
+ (1− 2z1z2)

∂

∂z2
,

to the curve), says that we have the vector field ϕ∗X = ∂/∂s in CP1, which is regular at s = 0.
Concerning the point [0 : 0 : 1], we have that the curve has a cusp. If s 6= 0, and for ζ 6= 0,

we note that the image point is [1 : ζ : (ζ − c)/ζ2], that is the point of affine coordinates
φ(ζ) = (ζ, (ζ − c)/ζ2) in the original C2 = {z0 ≡ 1}. The tangent vector to the affine curve so
parametrized is φ′ = (1, (−ζ + 2c)/ζ3). Comparing with the restriction of the vector field X to
it, we have that

X|φ(ζ) = φ∗(ζ
2 ∂

∂ζ
),

and the one form such that ω(X) = 1, is written as dζ/ζ2 on the curve. Its period around the
pole at ζ = 0 vanishes.

Moreover, if we ignore for a moment the fact that the atypical fiberA0 = {z1 = 0}∪{1−z1z2 =

0} has two irreducible components, and we try to construct F̃1 on C2
z − {F2 = 0}, we get the

next result.

Remark 6. For F2(z1, z2) = z1−z2
1z2, the candidate function F̃1 has a pole in the atypical fiber

A0 = {z1z2 = 1} of F2.

Indeed, a global one form of time is

ω = 4z2
2dz1 + (1 + 2z1z2)dz2,

in fact ω(X) ≡ 1. Consider the line H = {z1 − z2 = 0} transversal to the foliation defined by
the fibers of F2. For each point z = (z1, z2), define c = z1 − z2

1z2 and consider the points

H ∩ Ac = {p1(c), p2(c), p3(c)} = {φ(ζ1), φ(ζ2), φ(ζ3)}.
For c 6= 0, they are determined in the domain of φ(ζ) : C∗ → Ac by the three roots of the
polynomial ζ3 − ζ + c = 0. Note that φ(ζ) depends on c, but we omit this fact in our notation.
In particular since c = z1 − z2

1z2 we have that φ(z1) = (z1, z2) holds. Following (8), there is a
holomorphic function

F̃1 : C2
z −A0 −→ C

(z1, z2) 7→
∑3
`=1

∫
γ`(z1,z2)

ω =
∑3
`=1

∫ ζ`
z1

dζ
ζ2 .

We want to study the behavior of F̃1(z1, z2) near the atypical fiber A0 := {1 − z1z2 = 0}. For
example for a 6= 0, we fix z1 = a and compute

lim
(a,z2)→A0

|F̃1(a, z2)| = lim
z2→ 1

a

|F̃1(a, z2)|.

Note that for c = 0,

H ∩ A0 = {(1, 1), (0, 0), (−1,−1)} = {φ(1), φ(0), φ(−1)}.
By using the continuity of the roots of ζ3− ζ + c = 0 as functions of the parameter c = a− a2z2

near 0 (equivalently, for z2 near 1/a), we obtain that the values {ζ1(z2), ζ2(z2), ζ3(z2)} describing
H ∩ Ac remain near {1, 0,−1} respectively. We get

lim
z2→ 1

a

∣∣∣∣∣
3∑
`=1

∫ ζ`(z2)

z1

dζ

ζ2

∣∣∣∣∣ =

∣∣∣∣∫ 1

a

dζ

ζ2
+

∫ 0

a

dζ

ζ2
+

∫ −1

a

dζ

ζ2

∣∣∣∣ =∞.
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In fact, in the righthand side the first and third integrals remain bounded when z goes to 1/a.

Hence, |F̃1(a, z2)| goes to infinity, when z2 goes to 1/a. F̃1(z1, z2) is a rational function having
a pole at the atypical fiber {1− z1z2 = 0}. 2

Example 2. A non-singular polynomial with non zero periods

F2(z1, z2) = z1 − z4
1z

4
2 .

This is also in the classification of polynomials with one critical value and no critical points in
[Bod02]. The fiber over 0 is reducible, with a component which is topologically C, and another
one which is the Riemann sphere minus several points.

The level curve {F2 = c} corresponds to an octic in CP2 of equation:

z7
0z1 − z4

1z
4
2 − cz8

0 = 0.

The curve meets the line at infinity z0 = 0 at the two points [0 : 1 : 0] and [0 : 0 : 1]. It is
singular at the two and if we look at the affine C2 = {z1 ≡ 1} of the first, we have the affine
curve z7

0(1 − cz0) − z4
2 = 0, that is singular (it has a cusp) at (0, 0), with tangent line z2 = 0.

Furthermore, the contact of this tangent with the curve is dimC
OC20

(z2,z70(1−cz0)−z42)
= 8.

On the other hand, if we look at the affine neighbourhood {z2 ≡ 1} of the second point, we
see that the affine curve is given by z7

0z1 − z4
1 − cz8

0 = 0. It is singular at (0, 0) and the tangent

is z1 = 0. The contact of the curve and the tangent is dimC
OC20

(z1,z70z1−z41−cz80=0)
= 7.

Hence, in order to parametrize we can consider the conics that pass through (0 : 1 : 0),
(0 : 0 : 1) and have as tangents at them the lines z2 = 0 and z1 = 0, respectively. The conics
fulfilling the conditions are those written as

sz1z2 + ζz2
0 , [s : ζ] ∈ CP1.

They meet the octic at 16 points, 15 prescribed by the base conditions, and the remaining one
giving the parametrization for the curve. Thus, we have

Υ[s : ζ] = [cs8 + s4ζ4 : (cs4 + ζ4)2 : s7ζ] : CP1 → Ac.
Note that Υ[0 : 1] = [0 : 1 : 0], while we have for points in CP1 (the roots of cs4 + ζ4 = 0) whose
image is [0 : 0 : 1], there are four branches of the projective curve through that point.

Proceeding as before, we study the periods of the form ω such that ω(X) = 1 on the level
curve {F2 = c}. Note that, topologically, this is CP1 with five points removed. As the affine
parametrization is ϕ(ζ) = (ζ4 + c, ζ/(ζ4 + c)), we have that

Xc := X|{F2=c} = ϕ∗

(
(ζ4 + c)

∂

∂ζ

)
, hence ωc(ζ) =

dζ

ζ4 + c
.

It is now easy to see that its periods around the finite poles are not zero.
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1. Introduction

In this note we consider germs of holomorphic vector fields at the origin of (C3, 0)

ξ = a(x, y, z)
∂

∂x
+ b(x, y, z)

∂

∂y
+ c(x, y, z)

∂

∂z

having a formal invariant curve Γ̂ that is totally transcendental, that is Γ̂ is not contained in
any germ of analytic hypersurface of (C3, 0).

It is known (see [4, 6, 7]) that among such vector fields we find the only ones that cannot be
desingularized by birational blow-ups in the sense that it is not possible to obtain elementary
singularities (non nilpotent linear part).

On the other hand, not all germs of vector fields are tangent to a codimension one holomorphic
foliation of (C3, 0).

We present here a result relating the above two properties

Theorem 1. Let ξ be a germ of vector field on (C3, 0) having a totally transcendental formal

invariant curve Γ̂ and let D be a normal crossings divisor of (C3, 0). Denote by L the foliation
by lines induced by ξ. Assume that there is a germ of codimension one holomorphic foliation F
of (C3, 0) such that ξ is tangent to F . Then there is a finite sequence of local blow-ups

(1) (C3, 0) = (M0, p0)
π1← (M1, p1)

π2← · · · πn← (Mn, pn)

with the following properties:

(1) The center Yi−1 of πi is a point or a germ of non-singular analytic curve invariant for
the transformed foliation by lines Li−1 of L. Moreover Yi−1 has normal crossings with
the total transform Di−1 of D.

(2) The points pi belong to the strict transform Γ̂i of Γ̂.
(3) The final transform Ln is generated by an elementary germ of vector field.

As it has been noted by F. Sanz and F. Sancho, (in [3] one find a first reference to this
example) there are examples of germs of vector fields ξ such that it is not possible to find a
sequence as in Equation 1 with the above properties (1),(2) and (3). This is the starting point
of the non-birational strategy of Panazzolo in [6]. The specific example is the following one

ξα,β,λ;x,y,z = x

(
x
∂

∂x
− αy ∂

∂y
− βz ∂

∂z

)
+ xz

∂

∂y
+ (y − λx)

∂

∂z
,

where α, β ∈ R≥0 and λ ∈ R>0. It is an obvious corollary of Theorem 1 that this vector field
is not tangent to any codimension one foliation. Anyway, we start this note by giving a direct
proof of this fact, based on geometrical arguments and on the behaviour of ξα,β,λ;x,y,z under

http://dx.doi.org/10.5427/jsing.2014.9c
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blow-up. The proof of Theorem 1 comes just by remarking that the “bad” behaviour of the
Sanz-Sancho vector fields does not occur when ξ is tangent to a codimension one foliation.

As a direct consequence of Theorem 1 we obtain that any germ of vector field tangent to a
codimension one foliation can be desingularized.

2. The properties of Sanz-Sancho’s example

We recall here the properties of the examples of Sanz-Sancho that allow to assure the non-
existence of a desingularization sequence as in Theorem 1.

First of all, the singular locus of ξα,β,λ;x,y,z is exactly x = y = 0 and the divisor x = 0 is
invariant.

Proposition 1. Let π : M → (C3, 0) be the blow-up with center the origin of C3 and let ξ′ be
the transform of ξα,β,λ;x,y,z by π. Denote by E = π−1(0) the exceptional divisor and by H ′ the
strict transform of x = 0 by π. Then

(1) The exceptional divisor E is invariant by ξ′.
(2) There is exactly one point p′ ∈ Sing(ξ′) ∩ E \H ′ where ξ′ has linear part of rank one.
(3) The point p′ is in the strict transform of the line y − λx = z − λ(α+ 1)x = 0.
(4) If we take local coordinates x′, y′, z′ at p′ given by x′ = x, y′ = y/x − λ and

z′ = z/x− λ(α+ 1), then the germ of ξ′ at p′ coincides with ξα′,β′,λ′;x′,y′,z′ where

α′ = α+ 1, β′ = β + 1, λ′ = λ(α+ 1)(β + 1).

(5) The singular locus Sing(ξ′) \ H ′ outside H ′ corresponds to the projective straight line
L ⊂ E passing through p′ with local coordinates x′ = y′ = 0.

Proof. Consider coordinates x′, y∗, z∗ in the first chart of the blow-up, given by x′ = x, y∗ = y/x
and z∗ = z/x. The transformed vector field ξ′ is given by

ξ′ = x′ {x′∂/∂x′ − (α+ 1)y∗∂/∂y∗ − (β + 1)z∗∂/∂z∗}+ x′z∗∂/∂y∗ + (y∗ − λ)∂/∂z∗.

We already see that Sing(ξ′)\H ′ is given by x′ = 0, y∗−λ = 0. Put y′ = y∗−λ and z′ = z∗−µ,
then

ξ′ = x′ {x′∂/∂x′ − (α+ 1)(y′ + λ)∂/∂y′ − (β + 1)(z′ + µ)∂/∂z′}+

x′(z′ + µ)∂/∂y′ + y′∂/∂z′ =

x′ {x′∂/∂x′ − (α+ 1)y′∂/∂y′ − (β + 1)z′∂/∂z′}+

x′(z′ + µ− λ(α+ 1))∂/∂y′ + (y′ − µ(β + 1)x′)∂/∂z′.

The value µ = λ(α+ 1) gives the only point p′ with linear part of rank one.
All the statements are now directly induced from the precedent computations. �

Now, let us recall a general fact on line foliations

Proposition 2. Let Γ̂ be a formal curve for (C3, 0). Let L be a foliation by lines of (C3, 0)
generated by a germ of vector field ξ. Let us consider the sequence of blow-ups corresponding to

the infinitely near points of Γ̂

(2) SΓ̂ : (C3, 0) = (M0, q0)
σ1← (M1, q1)

σ2← (M2, q2) · · ·

where the center of σi is qi−1 and qi is in the strict transform Γ̂i of Γ̂. Then the following
properties are equivalent

(1) Γ̂ is invariant by L.
(2) There is an index k0 such that for all k ≥ k0 the point qk is singular for the transform
Lk of L.
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Proof. See [1, 2] �

Let us start with ξ0 = ξα,β,λ;x,y,z. We blow-up to obtain the point p1 and coordinates x1, y1, z1

as in Proposition 1 where the transform ξ1 of ξ is given by ξ1 = ξα1,β1,λ1;x1,y1,z1 . We repeat the
procedure indefinitely to obtain p0, p1, p2, . . .. These ones are the infinitely near points of a non

singular formal curve Γ̂ transversal to x = 0. Moreover, by Proposition 2 the curve Γ̂ is invariant

by ξ0. In view of Proposition 1 we have that Γ̂ is parameterized by

y = λx+

∞∑
k=2

λk−1x
k; z = (α+ 1)λx+

∞∑
k=2

(αk−1 + 1)λk−1x
k.

Remark 1. If we start with α = β = 0, λ = 1, we get

y = x+

∞∑
k=2

(k − 1)!(k − 1)!xk; z = x+

∞∑
k=2

k!(k − 1)!xk

that are obviously non convergent formal power series.

Let us give a general proof that Γ̂ is not contained in a germ of analytic surface S ⊂ (C3, 0).
We are going to do it by using elementary technics of blow-ups and transcendency. Let us work

by contradiction by assuming that there is S containing Γ̂. First of all let us remark that Γ̂ is
not a convergent germ of curve, otherwise its plane projection

y = λx+

∞∑
k=2

λk−1x
k

should be convergent. But this is not the case, since

λk = λ(α+ 1)(β + 1)(α+ 2)(β + 2) · · · (α+ k)(β + k).

Next Lemma is a version of the transcendence argument known as “truc de Moussu” (see for
instance [5]).

Lemma 1. Let Γ̂ be a formal non convergent invariant curve of a germ of analytic vector field ξ

of (C3, 0) such that Sing(ξ) has codimension at least two. Assume that Γ̂ is contained in a germ
of irreducible surface (S, 0) ⊂ (C3, 0). Then (S, 0) is invariant by ξ.

Proof. The analytic set of the tangency locus between ξ and S contains Γ̂ but it cannot be equal

to Γ̂. Thus it coincides with S. �

As a consequence of Lemma 1, we deduce that S is invariant by ξ0. In particular the inter-
section S ∩ (x = 0) must be invariant by ξ0|(x=0). Now, noting that

ξ0|(x=0) = y
∂

∂z

we deduce that S ∩ (x = 0) = (x = y = 0).
By next Lemma 2 we reduce our problem to the case that S is non-singular and with normal

crossings with x = 0.

Lemma 2. Let Γ̂ be a non convergent formal curve for (C3, 0) contained in a surface S ⊂ (C3, 0).

Consider the sequence of blow-ups corresponding to the infinitely near points of Γ̂

SΓ̂ : (C3, 0) = (M0, q0)
σ1← (M1, q1)

σ2← (M2, q2) · · ·
as in Equation 2. There is an index k0 such that for all k ≥ k0 the strict transform Sk of the
surface S is non-singular at qk and has normal crossings with the exceptional divisor.
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Proof. The proof is similar to the proof of Proposition 2. We do it for the sake of completeness.

Up to a finite number of blow-ups, we can assume that Γ̂ is non singular and transversal to

x = 0. We can take formal coordinates x, ŷ, ẑ such that Γ̂ = (ŷ = ẑ = 0). Let us express the
blow-ups in that coordinates. The first one is given by

x = x′; ŷ = xŷ′; ẑ = xẑ′.

Now, let f(x, ŷ, ẑ) = 0 be a formal equation of S. We know that f = ŷf ′ + ẑf ′′, moreover, Γ̂ is
not in the singular locus of S since it is not convergent. Then, we have that

f ′(x, 0, 0) = xsû, f ′′(x, 0, 0) = xtv̂

where either û(0, 0, 0) 6= 0 or v̂(0, 0, 0) 6= 0. To fix ideas, assume that û(0, 0, 0) 6= 0 and the
origin is singular or has no normal crossings with x = 0. After one blow-up we get s′ < s and
this cannot be repeated indefinitely. �

Now, up to blow-up, we can assume that S in non singular at p, has normal crossings with
x = 0 and moreover S ∩ (x = 0) = (x = y = 0). This suggests to blow-up the line x = y = 0.
We explain the effect of performing this blow-up in next statement.

Proposition 3. Let π : M → (C3, 0) be the blow-up with center x = y = 0 and let ξ′ be the
transform of ξα,β,λ;x,y,z by π. Denote by E = π−1(x = y = 0) the exceptional divisor and by H ′

the strict transform of x = 0 by π. Then

(1) The exceptional divisor E is invariant by ξ′.
(2) There is exactly one point p′ ∈ Sing(ξ′) ∩ π−1(0) \ H ′ where ξ′ has linear part of rank

one. The point p′ is in the strict transform of the plane y − λx = 0.
(3) The singular locus Sing(ξ′) \H ′ outside H ′ coincides with π−1(0).
(4) If we take local coordinates x′, y′, z′ at p′ given by x′ = x, y′ = z and z′ = y/x− λ, then

the germ of ξ′ at p′ coincides with ξα′,β′,λ′;x′,y′,z′ where

α′ = β, β′ = α+ 1, λ′ = λ(α+ 1).

Proof. Consider coordinates x′, y∗, z∗ in the first chart of the blow-up, given by x′ = x, y∗ = y/x
and z∗ = z. The transformed vector field ξ′ is given in these coordinates by

ξ′ = x′ {x′∂/∂x′ − (α+ 1)y∗∂/∂y∗ − βz∗∂/∂z∗}+ z∗∂/∂y∗ + x′(y∗ − λ)∂/∂z∗.

We already see that Sing(ξ′) \H ′ is given by x′ = z∗ = 0. Put z′ = y∗ − λ and y′ = z∗, then

ξ′ = x′ {x′∂/∂x′ − βy′∂/∂y′ − (α+ 1)z′∂/∂z′}+ x′z′∂/∂y′ + (y′ − λ(α+ 1)x′)∂/∂z′

All the statements are now directly induced from the precedent computations. �

Now Proposition 3 gives a contradiction with the existence of S. In fact, since S has normal
crossings with x = 0 and x = y = 0 is contained in S, the strict transform S′ of S by the blow-up
π with center x = y = 0 does not contain π−1(0). We can do the same argument as for S at the
point p′ to see that S′ ∩E′ = Sing(ξ′), but Sing(ξ′) = π−1(0) (locally at p′). This is the desired
contradiction.

Thus, we have proved that Γ̂ is totally transcendental.
Proposition 1 and Proposition 3 are the initial remarks of F. Sanz and F. Sancho to show that

the vector fields ξα,β,λ;x,y,z cannot be desingularized by blow-ups with centers in the singular
locus, since the only possibilities are the origin and the line x = y = 0, and in both cases we
repeat the situation. Anyway, in order to be complete, we need to show that there is no other
analytic invariant curve that could be used as a center.

Corollary 1. The singular locus x = y = 0 is the only nonsingular germ of analytic curve
invariant by ξα,β,λ;x,y,z and having normal crossings with the divisor x = 0.
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Proof. Assume that γ is a nonsingular invariant curve having normal crossings with x = 0 and
different from x = y = 0. The only invariant curve contained in x = 0 is precisely x = y = 0,
hence γ must be transversal to x = 0. By blowing-up the origin as in Proposition 1, we see that
the strict transform of γ is transversal to the exceptional divisor in a point q′ of the singular
locus of ξ′. If q′ = p′, we repeat the procedure. At one moment q′ 6= p′, since otherwise

γ and Γ̂ would have the same infinitely near points and thus γ = Γ̂ and this is not possible

since Γ̂ is completely transcendental and γ is a germ of analytic curve. Now, assume that
q′ 6= p′. Actually it is enough to show that there is no invariant curve for ξα,β,λ;x,y,z in a point
of coordinates x = 0, y = 0, z = z0 6= 0 that is non singular and transversal to x = 0. This is a
consequence of Proposition 3 since blowing-up x = y = 0, we see that there is no singular points
over (0, 0, z0) outside the strict transform of x = 0. �

3. An example of vector field not tangent to a foliation

In this section we show that ξα,β,λ;x,y,z is not tangent to any codimension one foliation of
(C3, 0).

Lemma 3. Let η be a germ of vector field not collinear with ξα,β,λ;x,y,z and let L be the foliation
by lines induced by η. Then

(1) Γ̂ is not an invariant curve of η.

(2) If we consider the sequence SΓ̂ of the infinitely near points of Γ̂ described in Equation
2, there is an index k0 such that for all k ≥ k0 the transform Lk is generated by a
non-singular vector field and the exceptional divisor is invariant.

Proof. If Γ̂ is invariant for η, then it is contained in the set of collinearity of η and ξα,β,λ;x,y,z,

this is an analytic set that should be the whole space, because of the fact that Γ̂ is totally
transcendental. The second part is a direct consequence of Proposition 2. �

Let us assume now that ξα,β,λ;x,y,z is tangent to a codimension one foliation F . Then there is
another germ of vector field η tangent to F and not collinear with ξα,β,λ;x,y,z. Up to blowing-up
points, and in order to find a contradiction, we can assume without loss of generality that η is
non singular and tangent to x = 0. Thus, the foliation F has dimensional type two, in the sense

that it is trivialized by the flow of η, moreover it is singular, otherwise Γ̂ should be contained
in a germ of hyper-surface. The singular locus Sing(F) is a curve invariant by η and ξα,β,λ;x,y,z.
The only possibility is then that

(3) Sing(F) = (x = y = 0).

Now, we perform the blow-up with center x = y = 0 to obtain transforms F ′, ξα′,β′,λ′;x′,y′,z′ and
η′ that we consider locally at the point p′ described in Proposition 3. We take notations as in
Proposition 3. By the same argument as before, and since η′ is still a non singular vector field
tangent to F ′, we have that

Sing(F ′) = (x′ = y′ = 0).

But on the other hand, F has dimensional type two and thus the singular locus of F ′ must be
etale over Sing(F) under the blow-up σ. This is not the case, since around p′ we have that

σ(Sing(F ′)) = {p}.

This is the desired contradiction.
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4. Vector fields tangent to a foliation

In this section we give a proof of Theorem 1. Take notations and hypothesis as in Theorem 1.
We shall reason by contradiction by showing that if the vector field ξ cannot be desingularized,
then it has the properties of Sanz-Sancho’s examples that are contradictory with the fact of
being tangent to a foliation.

We assume thus that ξ cannot be desingularized and that it is tangent to a foliation F . We

also consider the sequence SΓ̂ of infinitely near points of Γ̂ as in Equation 2

SΓ̂ : (C3, 0) = (M0, q0)
σ1← (M1, q1)

σ2← (M2, q2) · · ·

We know that Γ̂ is desingularized by this sequence and thus there is k0 such that for any k ≥ k0

the strict transform Γ̂k of Γ̂ is nonsingular and transversal to the exceptional divisor (this one
is also non singular at pk). We can assume without loss of generality that k0 = 0 and that the

exceptional divisor is given by x = 0. Now, we can parameterize Γ̂ by

y = φ̂(x); z = ψ̂(x).

Let us see how is transformed ξ under the sequence SΓ̂. For our purposes we can use the formal

coordinates x, ŷ = y− φ̂(x), ẑ = z− ψ̂(x). Then all the blow-ups are given by a equation having
the same shape, that is we have formal coordinates at qk given inductively by

xk = x, ŷk = ŷk−1/x, ẑk = ẑk−1/x,

starting by ŷ0 = ŷ, ẑ0 = ẑ. Let us write the vector field ξ (up to multiplying it by x if it is
necessary to keep a logarithmic expression) as

ξ = â(x, ŷ, ẑ)x
∂

∂x
+ b̂(x, ŷ, ẑ)

∂

∂ŷ
+ ĉ(x, ŷ, ẑ)

∂

∂ẑ
.

Consider the invariant

r0 = min{ν0(â), ν0(b̂)− 1, ν0(ĉ)− 1},
where ν0(f) is the order of f at the origin. Then the transformed line foliation Lk is given at qk
by

ξk = âk

{
x
∂

∂x
− kŷk

∂

∂ŷk
− kẑ ∂

∂ẑk

}
+ b̂k

∂

∂ŷk
+ ĉk

∂

∂ẑk

where

âk+1 = âk/x
rk ; b̂k+1 = b̂k/x

rk+1; ĉk+1 = ĉk/x
rk+1,

and rk = min{νqk(âk), νqk(b̂k)−1, νqk(ĉk)−1}. The starting terms of this induction are evident.
Let us note that rk ≥ 0 for all k since we are in a singular point of Lk.

Now, we know that Γ̂ = (ŷ = ẑ = 0) is invariant and it is not in the singular locus of ξ

(otherwise ξ should be identically zero, since Γ̂ is completely transcendental). In algebraic terms
this is explained by saying that

â(x, 0, 0) 6= 0; b̂ = ŷb̂′ + ẑb̂′′, ĉ = ŷĉ′ + ẑĉ′′.

Write â = xsû + ŷâ′ + ẑâ′′, with û(0, 0, 0) 6= 0. Up to a finite number of steps, we obtain that
xs divides â and we can write

â = xsÛ ; Û(0, 0, 0) 6= 0.

Dividing by Û we may assume that â = xs. Now, we conclude that rk = 0 for k >> 0, otherwise
s strictly decreases each time and once we obtain s = 0 we get an elementary singularity,
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contradiction with our hypothesis. So we assume without loss of generality that s > 0 and
rk = 0 for all k ≥ 0. This implies that

min{ν0(b̂), ν0(ĉ)} = 1.

Thus, up to one blow-up, we can write

b̂ = αŷ + βẑ + ŷxb̃′ + ẑxb̃′′, ĉ = γŷ + δẑ + ŷxc̃′ + ẑxc̃′′,

where α, β, γ, δ are not all zero. Since the linear part must be nilpotent, up to a linear coordinate
change in ŷ, ẑ we may assume that

b̂ = ŷxb̃′ + ẑxb̃′′, ĉ = ŷ + ŷxc̃′ + ẑxc̃′′,

and hence ξ has the expression (we take n ∈ Z≥0)

ξ = xs
{
x
∂

∂x
− nŷ ∂

∂ŷ
− nẑ ∂

∂ẑ

}
+ ŷ

∂

∂ẑ
+ x

{
(ŷb̃′ + ẑb̃′′)

∂

∂ŷ
+ (ŷc̃′ + ẑc̃′′)

∂

∂ẑ

}
.

The singular locus Sing(ξ) is then x = ŷ = 0.
Recall that we assume ξ to be tangent to the codimension one foliation F . By the same

arguments as in the precedent Section 3, up to blow-up some infinitely near points of Γ̂, we may
assume that F is if dimensional type two and x = 0 is invariant by F . In particular it is also
true that the singular locus SingF is x = ŷ = 0. Now, let us blow-up this singular locus and let
us focus on the transform ξ′ of ξ at the origin of the first chart (that corresponds to the strict

transform of Γ̂). The local coordinates are given by x = x, ŷ = xy′, ẑ = z′ and ξ′ is given by

ξ′ = xs
{
x ∂
∂x − (n+ 1)y′ ∂∂y′ − nz

′ ∂
∂z′

}
+ xy′ ∂∂z′ +

+(xy′b̃′ + z′b̃′′) ∂
∂y′ + x(y′xc̃′ + z′c̃′′) ∂

∂z′ .

The new singular locus Sing(ξ′) is x = 0 = z′b̃′′. It contains x = z′ = 0. But this is not possible
since x = ẑ = 0 is not contained in the singular locus of the transform F ′ of F , because F has
dimensional type two, we have done a blow-up centered at the singular locus x = ŷ = 0 of F
and x = ẑ = 0 projects under this blow-up to the origin and not to the whole singular locus of
F . This is the desired contradiction.
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FORMES LOGARITHMIQUES ET FEUILLETAGES NON DICRITIQUES
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À Xavier Gomez Mont
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l’humour inclassable

Abstract. Given an algebraic codimension 1 foliation F on the projective space Pn
C , under

reasonable conditions on the nature of the singular set, one has that the degree of any invariant
variety is at most d + 2, where d is the degree of F (Carnicer [Car94], Cerveau-Lins-Neto
[CLN91]). In this work we study the extreme case where the degree of the foliation attains
its upper bound d+ 2, so completing results by Brunella [Bru97, CLN91].

Résumé. Pour un feuilletage algébrique F de codimension 1 sur l’espace projectif Pn
C , sous

des conditions raisonnables portant sur la nature des singularités, le degré des hypersurfaces
algébriques invariantes est majoré par d+2 où d est le degré de F (Carnicer [Car94], Cerveau-
Lins-Neto [CLN91]). On s’intéresse ici au cas extrémal où le degré d’une telle hypersurface est
précisément d+ 2 complétant en celà des résultats de Brunella [Bru97, CLN91].

1. Introduction

Soit Xune variété complexe ; si ω est une 1-forme différentielle méromorphe sur X on note
D = Polω son diviseur de pôles. On dit que ω est une forme logarithmique si ω et dω sont à
pôles simples le long de D. On sait qu’une 1-forme holomorphe sur une variété projective, et
plus généralement sur une variété kählérienne, est fermée. C’est une conséquence de la formule
de Stokes. Le résultat qui suit généralise ce fait ; il est du à P. Deligne :

Théorème 1.1 ([Del71]). Soient X une variété projective complexe et ω une 1-forme logarith-
mique à pôles le long du diviseur D. Si les singularités de D sont des croisements ordinaires, la
forme ω est fermée.

On peut en fait alléger les hypothèses puisqu’une 1-forme méromorphe sur X est fermée
dès qu’elle l’est en restriction à toute section hyperplane générale de dimension au moins 2.
De sorte qu’il suffit de supposer que les singularités de D sont des croisements ordinaires en
dehors d’un ensemble de codimension 3 de X. En un certain sens le Théorème 1.1 est de nature
2-dimensionnelle.

Comme l’ont remarqué plusieurs auteurs, ce résultat est directement lié au problème de l’esti-
mation du degré des hypersurfaces invariantes des feuilletages de codimension 1 sur les variétés
projectives. Les premiers résultats en ce sens sont dus à Carnicer [Car94] et Cerveau-Lins Neto
[CLN91] dans le cadre des feuilletages algébriques du plan. Le théorème de Carnicer nécessite
des hypothèses sur la nature des points singuliers du feuilletage :
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Théorème 1.2 ([Car94]). Soit F un feuilletage de degré d, de codimension 1 sur l’espace pro-
jectif P2

C. On suppose que F possède une courbe algébrique invariante S de degré m. Si les points
singuliers de F situés sur S sont non dicritiques alors m ≤ d+ 2.

À l’inverse dans ce qui suit les hypothèses portent sur les points singuliers de S et non sur ceux
de F ; rappelons qu’une hypersurface D d’une variété M est dite à croisements ordinaires
ou normaux si en chaque point m elle est localement décrite par l’annulation d’un monome
x1 . . . xp = 0 où (x1, . . . , xn) est un système de coordonnées locales en m et p = p(m) < n.

Théorème 1.3 ([CLN91]). Soit F un feuilletage de degré d du plan P2
C possédant une courbe

algébrique invariante S de degré m. Si les singularités de S sont des croisements ordinaires alors
m ≤ d + 2. Lorsque l’égalité est réalisée, m = d + 2, le feuilletage F est défini par une forme
fermée logarithmique.

C’est la dernière partie de l’énoncé qui est directement reliée à celui de Deligne. Le Théorème
1.3 se généralise stricto sensu aux feuilletages de codimension 1 sur PnC ayant une hypersurface
invariante à croisements ordinaires. Mieux Brunella et Mendès établissent dans [BM00] un ré-
sultat plus général concernant les champs d’hyperplans (à priori non nécessairement intégrables)
ayant encore une hypersurface à croisements normaux et ce sur les variétés projectives ayant Z
comme groupe de Picard.

Dans cet article on précise le Théorème 1.2 dans le cas extrémal où l’inégalité est une éga-
lité : m = d+ 2 ; pour celà on relie les concepts de non dicriticité et de formes logarithmiques
(Propositions 2.1, 2.2, 2.4). Dans [Bru97, Proposition 10] Brunella présente un résultat similaire
en utilisant des arguments d’indice de champs de vecteurs.

Théorème 1.4. Soit F un feuilletage de degré d sur l’espace projectif P2
C possédant une courbe

algébrique invariante S de degré précisément d+ 2. Si les points singuliers de F sur S sont non
dicritiques, alors F est donné par une forme fermée logarithmique à pôles le long de S.

On adapte ensuite cet énoncé aux dimensions supérieures et on donne quelques applications.

2. Formes logarithmiques et résolution des singularités

Soit F un germe de feuilletage singulier à l’origine de C2 ; on note ω = Adx+B dy un germe
de 1-forme à singularité isolée en 0 définissant F . Un tel ω est défini à unité multiplicative près.
Par définition la multiplicité algébrique ou l’ordre de F en 0 est l’entier

ν(F) = ν(ω) = inf(ν(A), ν(B))

où ν(A) et ν(B) désignent les ordres des fonctions holomorphes A et B en 0. Soit S un germe
de courbe d’équation réduite f = 0 à l’origine de C2. On dit que S est une séparatrice ou une
courbe invariante de F si S r {0} est une feuille (au sens ordinaire) du feuilletage régulier
F|C2r{0},0. Ceci se traduit en termes algébriques par : la 2-forme ω ∧ df est divisible par f , i.e.
s’annule identiquement sur S.

Le germe de feuilletage F est dit non dicritique s’il ne possède qu’un nombre fini de sé-
paratrices. Il en possède d’ailleurs au moins une d’après un énoncé célèbre de Camacho et Sad
[CS82]. Lorsque F possède une infinité de séparatrices il est donc dit dicritique. Cette notion
de dicriticité s’interprète en termes de réduction des singularités. Soit π : C̃2 → (C2, 0) la réduc-
tion des singularités de F ; alors F est non dicritique si et seulement si chaque composante du
diviseur exceptionnel π−1(0) est invariante par le feuilletage transformé strict π−1(F) de F par
π. La notion de forme logarithmique se localise sans problème : le germe de 1-forme méromorphe
Ω à l’origine de C2 est logarithmique si Ω et dΩ sont à pôles simples. L’énoncé qui suit est
élémentaire :



52 DOMINIQUE CERVEAU

Proposition 2.1. Soient F un germe de feuilletage à l’origine de C2 défini par la 1-forme
holomorphe ω et S une courbe invariante (pas nécessairement irréductible) de F , d’équation
réduite f = 0. Alors la forme méromorphe Ω = ω/f est logarithmique.

Démonstration. Puisque f est réduite Ω est à pôles simples. Maintenant d
(

Ω
f

)
= dω

f + ω∧df
f2 est

aussi à pôles simples puisque ω ∧ df est divisible par f . �

Le fait pour une 1-forme d’être logarithmique n’est pas "invariant" par éclatement. Par
exemple la 1-forme Ω = x dy−y dx

x4+y4 est logarithmique, mais si on éclate l’origine par la trans-
formation quadratique

σ : (x, t)→ (x, tx)

alors σ∗Ω = dt
x2(1+t4) est à pôle double le long du diviseur exceptionnel x = 0. C’est en fait un

avatar de la dicriticité du feuilletage radial associé à x dy − y dx.
Par contre dans le cas non dicritique on a la :

Proposition 2.2. Soient F un germe de feuilletage non dicritique et S une courbe invariante par
F . Soient f = 0 une équation réduite de S et ω une 1-forme holomorphe définissant F . Si σ est
l’application d’éclatement de l’origine, alors la 1-forme méromorphe σ∗

(
ω
f

)
est logarithmique.

Démonstration. Elle repose sur l’inégalité suivante [CLNS84] établie dans le cas non dicritique
précisément : ν(f) ≤ ν(ω) + 1. La proposition est alors une simple vérification que l’on effectue
par exemple dans la carte (x, t) où σ(x, t) = (x, tx). On a :

σ∗
(ω
f

)
=
xν(ω)ω̃

xν(f)f̃

avec ω̃ et f̃ holomorphes. L’inégalité ν(f) ≤ ν(ω)+1 implique que σ∗(ωf )est au pire à pôle simple

le long de x = 0 ; le comportement de σ∗
(
ω
f

)
le long de f̃ = 0 est bien entendu le même que

celui de ω le long de f = 0. Comme dans le cas non dicritique le diviseur exceptionnel x = 0

est invariant par le feuilletage σ∗F défini par ω̃, la 2-forme d
(
σ∗
(
ω
f

))
est aussi à pôles au pire

simples. �

Remarque 2.3. Il se peut, et c’est le cas si ν(f) ≤ ν(ω), que σ∗(ωf ) n’ait pas de pôle le long
du diviseur x = 0.

Proposition 2.4. Soit Fun germe de feuilletage non dicritique à l’origine de C2 donné par la
1-forme ω. Soit S = (f = 0) une courbe invariante par F , avec f réduite. Soit π : C̃2 → (C2, 0) la
résolution des singularités de F . Alors la 1-forme π∗

(
ω
f

)
méromorphe sur C̃2 est logarithmique.

Démonstration. Comme l’application π est une composition finie d’éclatements et que la notion
de non dicriticité compatible aux éclatements, c’est une application directe de la Proposition
2.2. �

3. Démonstration du théorème 1.4

Le feuilletage F est donné en coordonnées homogènes (z0 : z1 : z2) par une 1-forme

ω = A0dz0 +A1dz1 +A2dz2

où les Ai sont des polynômes homogènes de degré d + 1, pgcd (A0, A1, A2) = 1 satisfaisant
l’identité d’Euler : ∑

ziAi = 0.
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La courbe invariante S est elle donnée par un polynôme homogène réduit f de degré d + 2. La
1-forme méromorphe ω

f est donc invariante par les homothéties z 7→ t.z. En utilisant l’identité
d’Euler on constate qu’elle définit une 1-forme méromorphe Ω sur P2

C à pôles simples le long de
S. Comme S est invariante par F la forme Ω est donc logarithmique à pôles le long de S. On
considère la réduction des singularités

π : P̃2
C → P2

C

du feuilletage F . Comme en chaque point singulier p ∈ S le feuilletage F,p est non dicritique on
peut appliquer la Proposition 2.4 ; ainsi π∗Ω est logarithmique sur P̃2C. Son diviseur de pôles est
contenu dans le transformé total π−1(S) de S par π (c’est l’union des diviseurs exceptionnels et
de la transformée stricte de S). Comme π−1(S) est à croisements ordinaires, les pôles de π∗(Ω)
le sont aussi et le théorème de Deligne affirme que π∗Ω est fermée ; par suite Ω aussi.

�

4. Applications et généralisation

Comme l’aura noté le lecteur on obtient de manière analogue et directe le :

Théorème 4.1. Soient X une surface projective et ω une 1-forme logarithmique sur X. Si les
singularités du feuilletage associé à ω situées sur le diviseur des pôles de ω sont non dicritiques,
alors la forme ω est fermée.

En fait le résultat précédent se généralise en toute dimension :

Théorème 4.2. Soient X ⊂ PnC une variété projective et ω une 1-forme logarithmique sur X.
On suppose que dans une famille générique de sections linéaires de dimension n− dimX + 2 les
hypothèses du Théorème 4.1 sont réalisées. Alors la forme ω est fermée.

Démonstration. Elle résulte du fait qu’une 1-forme méromorphe est fermée si et seulement si elle
l’est dans une famille générique de sections comme ci-dessus. �

Dans l’esprit du Théorème 4.2 nous avons le :

Corollaire 4.3. Soit F un feuilletage de codimension 1 sur l’espace PnC, n ≥ 2. Si dans une
section 2-plane générale i : P2

C → PnC le feuilletage restreint i∗F satisfait les hypothèses du
Théorème 4.1 alors F est défini par une forme fermée logarithmique. En particulier F possède
une hypersurface invariante de degré degF + 2.

Démonstration. Un feuilletage de PnC défini dans une section plane générique par une 1-forme
méromorphe fermée est aussi défini par une telle forme fermée. On trouve ce résultat par exemple
dans [CM82]. �

5. Compléments

Considérons sur P2
C le feuilletage F donné en carte affine (z1, z2) par la 1-forme :

ω = z1dz2 − z2dz1 + z1z2(z2 − z1)

(
α
dz1

z1
+ β

dz2

z2
+ γ

d(z2 − z1)

z2 − z1

)
où les α, β, γ sont des constantes complexes.

C’est un feuilletage de degré 2, ayant une singularité dicritique en l’origine. Il possède les
droites invariantes

z1 = 0, z2 = 0, z1 = z2

et la droite à l’infini (tout du moins lorsque α + β + γ 6= 0) et par conséquent une séparatrice
réduite de degré 4. On démontre facilement par des arguments holonomiques que pour α, β, γ
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génériques F n’est pas donné par une 1-forme fermée. On note aussi que ω
z1z2(z2−z1) définit sur

P2
C une 1-forme logarithmique à pôles le long des 4 droites ci-dessus. Par contre si l’on éclate

l’origine, la forme éclatée n’est pas logarithmique le long du diviseur exceptionnel.
Dans leur étude des feuilletages modulaires de Hilbert [MP05], Mendes et Pereira donnent

l’exemple d’un feuilletage quadratique de P2
C, non défini par une forme fermée, et possédant

une courbe invariante irréductible de degré S = degF + 3. Ce feuilletage est "transversalement
projectif" et "non transversalement affine". Le lecteur intéressé pourra consulter l’article [LN02]
de Lins Neto où l’auteur examine des familles de feuilletages de petit degré sur P2

C ayant des
courbes invariantes de degré grand. Dans l’esprit de cet article on peut se demander si un
feuilletage F de P2

C possèdant une courbe invariante de degré "très grand" relativement à celui
de F est transversalement projectif.

Terminons par les remarques suivantes ; si un feuilletage F de P2
C a une courbe invariante de

S de degré précisément degF + 2 les singularités de F sur S étant non dicritiques alors S a au
moins 3 composantes irréductibles.

Dans le même ordre d’idée soient F un feuilletage de degré d sur PnC et H une hypersurface
invariante de F . Si les singularités de H sont de codimension supérieure où égale à 3 alors degré
H ≤ d + 1. En effet si ω est une 1-forme homogène définissant F et h un polynôme homogène
irréductible tel que H = (h = 0) alors

ω = a dh+ hη

avec a ∈ O(Cn+1) et η ∈ Ω1(Cn+1) homogènes ; c’est une conséquence du lemme de division de

Rham-Saito. L’identité d’Euler iRω = 0, où R désigne le champ radial R =
n

Σ
i=0

zi
∂

∂zi
, implique

alors que :
h
(

(deg h)a+ iRη
)

= 0

en particulier deg a ≥ 1 et degH ≤ d + 1. Dans le cas extrémal où l’inégalité est une égalité,
degH = d + 1, on constate que η = −δ da où δ = deg h, de sorte que h/aδ est une intégrale
première rationnelle de F . Notons que dans la carte affine a = 1 le feuilletage F a une intégrale
première polynomiale. Remarquons que dans ce cas le feuilletage F a des singularités dicritiques
le long de H.

Une pensée pour Marco Brunella qui s’est beaucoup intéressé à ce type de problèmes. Je tiens
à remercier Julie Déserti pour son aide constante et désintéressée.
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VARIETIES OF COMPLEXES AND FOLIATIONS

FERNANDO CUKIERMAN

Dedicated to Xavier Gómez-Mont on his 60th Birthday.

Abstract. Let F(r, d) denote the moduli space of algebraic foliations of codimension one and

degree d in complex projective space of dimension r. We show that F(r, d) may be represented
as a certain linear section of a variety of complexes. From this fact we obtain information on

the irreducible components of F(r, d).

1. Basics on varieties of complexes.

1.1. Let K be a field and let V0, . . . , Vn be vector spaces over K of finite dimensions

di = dimK(Vi).

Consider sequences of linear functions

V0
f1 // V1

f2 // . . .
fn // Vn ,

also written

f = (f1, . . . , fn) ∈ V =

n∏
i=1

HomK(Vi−1, Vi).

The variety of differential complexes is defined as

C = C(V0, . . . , Vn) = {f = (f1, . . . , fn) ∈ V/ fi+1 ◦ fi = 0, i = 1, . . . , n− 1},

It is an affine variety in V , given as an intersection of quadrics. We intend to study the geometry
of this variety (see also e.g., [3], [6]).

1.2. Since the defining equations fi+1 ◦ fi = 0 are bilinear, we may also consider, when it is
convenient, the projective variety of complexes

PC ⊂
n∏
i=1

PHomK(Vi−1, Vi),

as a subvariety of a product of projective spaces.

Denoting V· = ⊕ni=0Vi, each complex f ∈ C may be thought as a degree-one homomorphism
of graded vector spaces f : V· → V· with f2 = 0.
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1.3. For each f ∈ C and i = 0, . . . , n define

Bi = fi(Vi−1) ⊂ Zi = ker (fi+1) ⊂ Vi,

and

Hi = Zi/Bi.

(we understand by convention that B0 = 0)

From the exact sequences

0→ Bi → Zi → Hi → 0,

0→ Zi → Vi → Bi+1 → 0,

we obtain for the dimensions

bi = dimK(Bi), zi = dimK(Zi), hi = dimK(Hi),

the relations

di = bi+1 + zi = bi+1 + bi + hi,

where i = 0, . . . , n and b0 = bn+1 = 0. Therefore,

Proposition 1. a) The hi and the bj determine each other by the formulas:

hi = di − (bi+1 + bi),

bj+1 = χj(d)− χj(h),

where for a sequence e = (e0, . . . , en) and 0 ≤ j ≤ n we denote

χj(e) = (−1)j
j∑
i=0

(−1)iei = ej − ej−1 + ej−2 + · · ·+ (−1)je0,

the j-th Euler characteristic of e.

b) The inequalities bi+1 + bi ≤ di are satisfied for all i.

Proof. We write down the bj in terms of the hi: from

j∑
i=0

(−1)idi =

j∑
i=0

(−1)i(bi+1 + bi + hi),

we obtain

bj+1 = (−1)j(

j∑
i=0

(−1)idi −
j∑
i=0

(−1)ihi),

as claimed.
�

Notice in particular that since bn+1 = 0, we have the usual relation

n∑
i=0

(−1)idi =

n∑
i=0

(−1)ihi.
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1.4. Now we consider the subvarieties of C obtained by imposing rank conditions on the fi.

Definition 2. For each r = (r1, . . . , rn) ∈ Nn define

Cr = {f = (f1, . . . , fn) ∈ C/ rank(fi) = ri, i = 1, . . . , n}.

These are locally closed subvarieties of C.

Proposition 3. a) Cr 6= ∅ if and only if ri+1 + ri ≤ di for 0 ≤ i ≤ n (we use the convention
r0 = rn+1 = 0)

b) In the conditions of a), Cr is smooth and irreducible, of dimension

dim(Cr) =

n∑
i=0

(di − ri)(ri+1 + ri) =

n∑
i=0

(di − ri)(di − hi) =
1

2

n∑
i=0

(d2
i − h2

i ).

Proof. a) One implication follows from Proposition 1. Conversely, in the given conditions, we
want to construct a complex with rank(fi) = ri for all i. Suppose we constructed

V0
f1 // V1

f2 // . . .
fn−1 // Vn−1 .

We need to define fn : Vn−1 → Vn such that fn ◦ fn−1 = 0 and rank(fn) = rn, that is, a map
Vn−1/Bn−1 → Vn of rank rn. Such a map exists since dim(Vn−1/Bn−1) = dn−1 − rn−1 ≥ rn.

b) Consider the projection (forgeting fn)

π : C(V0, . . . , Vn)r → C(V0, . . . , Vn−1)r̄,

where r = (r1, . . . , rn) and r̄ = (r1, . . . , rn−1). Any fiber π−1(f1, . . . , fn−1) is isomorphic to the
subvariety in Hom(Vn−1/Bn−1, Vn) of maps of rank rn; therefore, it is smooth and irreducible
of dimension rn(dn−1 − rn−1 + dn − rn) (see [1]). The assertion follows by induction on n. The
various expressions for dim(Cr) follow by direct calculations.

Another proof of a): Given r such that ri+1 + ri ≤ di, put hi = di − (ri+1 + ri) ≥ 0 and
zi = di − ri+1 = hi + ri. Choose linear subspaces Bi ⊂ Zi ⊂ Vi with dim(Bi) = ri and
dim(Zi) = zi. Since dim(Vi−1/Zi−1) = dim(Bi), choose an isomorphism σi : Vi−1/Zi−1 → Bi
for each i. Composing with the natural projection Vi−1 → Vi−1/Zi−1 we obtain linear maps
Vi−1 → Bi with kernel Zi−1 and rank ri, as wanted.

�

Remark 4. In terms of dimension of homology, the condition in Proposition 3 a) translates
as follows. Given h = (h0, . . . , hn) ∈ Nn+1, there exists a complex with dimension of homology
equal to h if and only if χi(h) ≤ χi(d) for i = 1, . . . , n− 1 and χn(h) = χn(d).

Remark 5. The group G =
∏n
i=0 GL(Vi,K) acts on V =

∏n
i=1 HomK(Vi−1, Vi) via

(g0, g1, . . . , gn) · (f1, f2, . . . , fn) = (g0f1g
−1
1 , g1f2g

−1
2 , . . . , gn−1fng

−1
n ).

This action clearly preserves the variety of complexes. It follows from the proof above that
the action on each Cr is transitive. Hence, the non-empty Cr are the orbits of G acting on
C(V0, . . . , Vn).

Definition 6. For r, s ∈ Nn we write s ≤ r if si ≤ ri for i = 1, . . . , n.
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Corollary 7. If Cr 6= ∅ and s ≤ r then Cs 6= ∅. Also, dim(Cs) > 0 if s 6= 0.

Proof. The first assertion follows from Proposition 3 a), and the second from Proposition 3
b). �

Proposition 8. With the notation above,

Cr =
⋃
s≤r

Cs = {f ∈ C/ rank(fi) ≤ ri, i = 1, . . . , n}.

Proof. Denote Xr =
⋃
s≤r Cs. Since the second equality is clear, Xr is closed. It follows that

Cr ⊂ Xr. To prove the equality, since Cr ⊂ Xr is open, it would be enough to show that Xr is
irreducible. For this, consider L = (L1, . . . , Ln) where Li ∈ Grass (ri, Vi) and denote

XL = {f = (f1, . . . , fn) ∈ C/ im (fi) ⊂ Li ⊂ ker (fi+1), i = 1, . . . , n}.
Consider

X̃r = {(L, f)/ f ∈ XL} ⊂ G× C,
where G =

∏n
i=0 Grass (ri, Vi). The first projection p1 : X̃r → G has fibers

p−1
1 (L) = XL

∼= Hom(V0, L1)×Hom(V1/L1, L2)× · · · ×Hom(Vn−1/Ln−1, Vn),

which are vector spaces of constant dimension
∑n
i=0(di−ri)ri+1. It follows that X̃r is irreducible,

and hence Xr = p2(X̃r) is also irreducible, as wanted.
�

Remark 9. In the proof above we find again the formula

dim(Xr) = dim(XL) + dim(G) =

n∑
i=0

(di − ri)ri +

n∑
i=0

(di − ri)ri+1.

Remark 10. The fact that p1 : X̃r → G is a vector bundle implies that X̃r is smooth. On the
other hand, since p2 : X̃r → Xr is birational (an isomorphism over the open set Cr), it is a
resolution of singularities.

The following two corollaries are immediate consequences of Proposition 8.

Corollary 11. Cs ⊂ Cr if and only if s ≤ r.

Corollary 12. Cr ∩ Cs = Ct where ti = min (ri, si) for all i = 1, . . . , n.

Definition 13. For d = (d0, . . . , dn) ∈ Nn+1 let

R = R(d) = {(r1, . . . , rn) ∈ Nn/ r1 ≤ d0, ri+1 + ri ≤ di (1 ≤ i ≤ n− 1), rn ≤ dn}.

We consider Nn ordered via r ≤ s if ri ≤ si for all i; the finite set R has the induced order. Notice
that R is finite since it is contained in the box {(r1, . . . , rn) ∈ Nn/ 0 ≤ ri ≤ di, i = 1, . . . , n}.

Proposition 14. With the notation above, the irreducible components of the variety of complexes
C = C(V0, . . . , Vn) are the Cr with r ∈ R(d0, . . . , dn) a maximal element.
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Proof. From the previous Propositions, we have the equalities

C =
⋃
r∈R
Cr =

⋃
r∈R
Cr =

⋃
r∈R+

Cr,

where R+ denotes the set of maximal elements of R. The result follows because we know that
each Cr is irreducible and there are no inclusion relations among the Cr for r ∈ R+ (see Corollary
11).

�

1.5. Morphisms of complexes. Tangent space of the variety of complexes. Now we
would like to compute the dimension of the tangent space of a variety of complexes at each point.

With the notation of 1.1 we consider complexes f ∈ C(V0, . . . , Vn) and f ′ ∈ C(V ′0 , . . . , V ′n) (the
vector spaces Vi and V ′i are not necessarily the same, but the lenght n we may assume is the
same). We denote

HomC(f, f
′),

the set of morphisms of complexes from f to f ′, that is, collections of linear maps gi : Vi → V ′i
for i = 0, . . . , n, such that gi ◦ fi = f ′i ◦ gi−1 for i = 1, . . . , n. It is a vector subspace of∏n
i=0 HomK(Vi, V

′
i ), and we would like to calculate its dimension.

For this particular purpose and for its independent interest, we recall the following from [2]
(§2− 5. Complexes scindés):

For f ∈ C(V0, . . . , Vn), denote as in 1.1

Bi(f) = fi(Vi−1) ⊂ Zi(f) = ker (fi+1) ⊂ Vi.
Since we are working with vector spaces, we may choose linear subspaces B̄i and H̄i of Vi such
that

Vi = Zi(f)⊕ B̄i and Zi(f) = Bi(f)⊕ H̄i.

Then Vi = Bi(f)⊕ H̄i ⊕ B̄i and clearly fi+1 takes B̄i isomorphically onto Bi+1(f). Notice also
that

dim(B̄i) = dim(Bi+1(f)) = rank(fi+1) = ri+1(f),

and
dim(H̄i) = dim(Zi(f)/Bi(f)) = hi(f).

Next, define the following complexes:

H̄(i) the complex of lenght zero consisting of the vector space H̄i in degree i, the vector space
zero in degrees 6= i, and all differentials equal to zero.

B̄(i) the complex of lenght one consisting of the vector space B̄i−1 in degree i − 1, the vector
space Bi(f) in degree i, with the map fi : B̄i−1 → Bi(f), and zeroes everywhere else.

Proposition 15. With the notation just introduced, H̄(i) and B̄(i) are subcomplexes of f and
we have a direct sum decomposition of complexes:

f =
⊕

0≤i≤n

H̄(i) ⊕
⊕

0≤i≤n

B̄(i).

Proof. Clear from the discussion above; see also [2], loc. cit. �

Now we are ready for the calculation of dimK HomC(f, f
′).



VARIETIES OF COMPLEXES AND FOLIATIONS 61

Proposition 16. With the previous notation, we have:

dimK HomC(f, f
′) =

∑
i

hih
′
i + hir

′
i + rih

′
i−1 + rir

′
i + rir

′
i−1

=
∑
i

hi(h
′
i + r′i) + rid

′
i−1

Proof. We may decompose f and f ′ as in Proposition 15:

HomC(f, f
′) = HomC(⊕iH̄(i)⊕⊕iB̄(i),⊕iH̄(i)′ ⊕⊕iB̄(i)′)

= ⊕i,jHomC(H̄(i), H̄(j)′) ⊕ ⊕i,jHomC(H̄(i), B̄(j)′)⊕
⊕i,jHomC(B̄(i), H̄(j)′) ⊕ ⊕i,jHomC(B̄(i), B̄(j)′)

It is easy to check the following:

HomC(H̄(i), H̄(j)′) = 0 for i 6= j

HomC(H̄(i), H̄(i)′) = HomK(H̄i, H̄
′
i)

HomC(H̄(i), B̄(j)′) = 0 for i 6= j

HomC(H̄(i), B̄(i)′) = HomK(H̄i, B̄
′
i)

(the case j = i+ 1 requires special attention)

HomC(B̄(i), H̄(j)′) = 0 for i− 1 6= j

HomC(B̄(i), H̄(i− 1)′) = HomK(B̄i−1, H̄
′
i−1) ∼= HomK(B̄i(f), H̄ ′i−1)

(the case j = i requires special attention)

HomC(B̄(i), B̄(i)′) ∼= HomK(Bi(f), B′i(f))

HomC(B̄(i), B̄(i− 1)′) = HomK(B̄i−1, B
′
i−1) ∼= HomK(Bi(f), B′i−1)

HomC(B̄(i), B̄(j)′) = 0 otherwise

Taking dimensions we obtain the stated formula.
�

Now we deduce the dimension of the tangent space to a variety of complexes at any point.

Proposition 17. For f ∈ C = C(V0, . . . , Vn) we have a canonical isomorphism

TC(f) = HomC(f, f(1)),

where TC(f) is the Zariski tangent space to C at the point f , and f(1) denotes de shifted complex
f(1)i = (−1)ifi+1, i = −1, 0, . . . , n.

Proof. Since C is an algebraic subvariety of the vector space V =
∏n
i=1 HomK(Vi−1, Vi), an

element of TC(f) is a g = (g1, . . . , gn) ∈ V such that f + εg satisfies the equations defining C
(i.e., a K[ε]-valued point of C), that is,

(f + εg)i+1 ◦ (f + εg)i = 0, i = 1, . . . , n− 1 (modulo ε2),
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which is equivalent to
fi+1 ◦ gi + gi+1 ◦ fi = 0, i = 1, . . . , n− 1,

and this means precisely that g ∈ HomC(f, f(1)). �

Corollary 18. For f ∈ C = C(V0, . . . , Vn),

dimK TC(f) =
∑
i

hi(hi+1 + ri+1) + ridi

=
∑
i

(di − ri − ri+1)(di+1 − ri+2) + ridi

Proof. From Proposition 17 we know that dimK TC(f) = dimK HomC(f, f(1)). Next we apply
Proposition 16 with f ′ = f(1), that is, replacing d′i = di+1, r′i = ri+1, h′i = hi+1, to obtain the
result.

�

1.6. Varieties of exact complexes. Now we apply the previous results to the case of exact
complexes.

Let us fix (d0, . . . , dn) ∈ Nn so that

χj(d) = (−1)j
j∑
i=0

(−1)idi ≥ 0, j = 1, . . . , n− 1,

χn(d) = (−1)n
n∑
i=0

(−1)idi = 0.

Denoting χ = χ(d) = (χ1(d), . . . , χn(d)) ∈ Nn, let us consider the variety Cχ of complexes of
rank χ as in Definition 2 . Since χi(d) +χi−1(d) = di for all i, it follows from Proposition 3 that
Cχ is non-empty of dimension

1

2

n∑
i=0

d2
i .

It follows from Proposition 1 that any complex f ∈ Cχ is exact. Also, since χ ∈ R is clearly

maximal, Cχ is an irreducible component of C (see Proposition 14). Let us denote

E = E(d0, . . . , dn) = Cχ = {f ∈ C/ rank(fi) ≤ χi, i = 1, . . . , n},
the closure of the variety Cχ of exact complexes. Denote also, for i = 1, . . . , n

χi = χ− ei = (χ1, . . . , χi−1, χi − 1, χi+1, . . . , χn),

and
∆i = Cχi = {f ∈ C/ rank(f) ≤ χ− ei},

the variety of complexes where the i-th matrix drops rank by one.

Proposition 19. The codimension of ∆i in E is equal to one, and

E = Cχ ∪∆1 ∪ · · · ∪∆n.

Proof. This follows from Proposition 8 and the fact that s ∈ Nn satisfies s < χ if and only if
s ≤ χ− ei for some i = 1, . . . , n. �
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2. Moduli space of foliations.

2.1. Let X denote a (smooth, complete) algebraic variety over the complex numbers, let L be
a line bundle on X and let ω denote a global section of Ω1

X ⊗L (a twisted differential 1-form). A
simple local calculation shows that ω ∧ dω is a section of Ω3

X ⊗L⊗2. We say that ω is integrable
if it satisfies the Frobenius condition ω ∧ dω = 0. We denote

F(X,L) ⊂ PH0(X,Ω1
X ⊗ L),

the projective classes of integrable 1-forms. The map

ϕ : H0(X,Ω1
X ⊗ L)→ H0(X,Ω3

X ⊗ L⊗2),

such that ϕ(ω) = ω ∧ dω is a homogeneous quadratic map between vector spaces and hence
ϕ−1(0) = F(X,L) is an algebraic variety defined by homogeneous quadratic equations.

Our purpose is to understand the geometry of F(X,L). In particular, we are interested in the
problem of describing its irreducible components. For a survey on this problem see for example
[7].

2.2. Let r and d be natural numbers. Consider a differential 1-form in Cr+1

ω =

r∑
i=0

aidxi,

where the ai are homogeneous polynomials of degree d− 1 in variables x0, . . . , xr, with complex
coefficients. We say that ω has degree d (in particular the 1-forms dxi have degree one). Denoting
R the radial vector field, let us assume that

< ω,R >=

r∑
i=0

aixi = 0,

so that ω descends to the complex projective space Pr as a global section of the twisted sheaf of
1-forms Ω1

Pr (d). We denote

F(r, d) = F(Pr,O(d)),

parametrizing 1-forms of degree d on Pr that satisfy the Frobenius integrability condition.
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3. Complexes associated to an integrable form.

Let us denote

H0(Pr,ΩkPr (d)) = Ωkr (d),

and

Ωr =
⊕
d∈N

⊕
0≤k≤r

Ωkr (d),

with structure of bi-graded supercommutative associative algebra given by exterior product ∧
of differential forms.

Definition 20. Gelfand, Kapranov and Zelevinsky defined in [5] another product in Ωr, the
second multiplication ∗, as follows:

ω1 ∗ ω2 =
d1

d1 + d2
ω1 ∧ dω2 + (−1)(k1+1)(k2+1) d2

d1 + d2
ω2 ∧ dω1,

=
d1

d1 + d2
ω1 ∧ dω2 + (−1)(k1+1) d2

d1 + d2
dω1 ∧ ω2,

where ωi ∈ Ωkir (di) for i = 1, 2 and d1 + d2 6= 0. In case (d1, d2) = (0, 0) one defines ω1 ∗ω2 = 0.

It follows that ω1 ∗ ω2 = 0 if d1 = 0 or d2 = 0.

Remark 21. For ωi ∈ Ωkir (di) for i = 1, 2 as above,

a) ω1 ∗ ω2 belongs to Ω
(k1+k2+1)
r (d1 + d2).

b) ω1 ∗ ω2 = (−1)(k1+1)(k2+1)ω2 ∗ ω1.

c) It follows from an easy direct calculation that ∗ is associative (see [5]).

d) For any ω ∈ Ω1
r(d) we have ω ∗ ω = ω ∧ dω. In particular, ω is integrable if and only if

ω ∗ ω = 0.

Definition 22. For ω ∈ Ωkr (d) we consider the operator δω

δω : Ωr → Ωr,

such that δω(η) = ω ∗ η for η ∈ Ωr.

Remark 23. From Remark 21 a), if ω ∈ Ωk1r (d1) then

δω(Ωk2r (d2)) ⊂ Ω(k1+k2+1)
r (d1 + d2).

In particular, if ω ∈ Ω1
r(d1),

δω(Ωk2r (d2)) ⊂ Ω(k2+2)
r (d1 + d2).

Definition 24. For ω ∈ Ω1
r(d) and e ∈ Z we define two differential graded vector spaces

C+
ω (e) : Ω0

r(e)→ Ω2
r(e+ d)→ Ω4

r(e+ 2d)→ · · · → Ω2k
r (e+ kd)→ . . . ,

C−ω (e) : Ω1
r(e)→ Ω3

r(e+ d)→ Ω5
r(e+ 2d)→ · · · → Ω2k+1

r (e+ kd)→ . . . ,

where all maps are δω as in Remark 23.
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Proposition 25. Let ω ∈ Ω1
r(d), e ∈ Z and k ∈ N such that k + 2 ≤ r. Then ω ∗ η = 0 for all

η ∈ Ωkr (e) if and only if ω = 0. In other words, the linear map

δ : Ω1
r(d)→ HomK(Ωkr (e),Ωk+2

r (e+ d)),

sending ω 7→ δω, is injective.

Proof. First remark that ω ∧ η = 0 for all η ∈ Ωkr (e) (with k + 1 ≤ r) easily implies ω = 0. Now
suppose ω ∗ η = 0, that is, d ω ∧ dη + e η ∧ dω = 0, for all η ∈ Ωkr (e). Take

η = xe−ki1
dxi1 ∧ · · · ∧ dxik

(here xi denote affine coordinates and 1 < i1 < . . . ik < n). Since dη = 0, we have

dxi1 ∧ · · · ∧ dxik ∧ dω = 0.

Hence dω = 0 by the first remark. Using the hypothesis again, we know ω ∧ dη = 0 for all
η ∈ Ωkr (e). Now take η = xe−kik+1

dxi1 ∧ · · · ∧ dxik (where 1 < i1 < · · · < ik+1 < n). It follows that

dxi1 ∧ · · · ∧ dxik+1
∧ ω = 0 and hence ω = 0. �

Proposition 26. ω ∈ Ω1
r(d) is integrable if and only if δ2

ω = 0

Proof. The associativity stated in Remark 21 c) implies that δω1
◦ δω2

= δω1∗ω2
. In particular,

δ2
ω = δω∗ω and hence the claim follows from Remark 21 d) and Proposition 25. �

Remark 27. It follows from Proposition 26 that C+
ω (e) and C−ω (e) (Definition 24) are differ-

ential complexes (for any e ∈ Z) if and only if ω is integrable.

Remark 28. To fix ideas we shall mostly discuss C−ω (e), but similar considerations apply to
C+
ω (e). If no confusion seems to arise we shall denote C−ω (e) = Cω(e).

Theorem 29. Fix e ∈ Z. Let us consider the graded vector space

Ωr(e) =
⊕

0≤k≤[ r−1
2 ]

Ω2k+1
r (e+ kd),

(direct sum of the spaces appearing in C−ω (e) above). Define the linear map

δ(e) = δ : Ω1
r(d)→

[ r−1
2 ]∏

k=1

HomK(Ω2k−1
r (e+ (k − 1)d),Ω2k+1

r (e+ kd)),

such that δ(ω) = δω for each ω ∈ Ω1
r(d), and its projectivization

Pδ : PΩ1
r(d)→

[ r−1
2 ]∏

k=1

PHomK(Ω2k−1
r (e+ (k − 1)d),Ω2k+1

r (e+ kd)).

Denote C = C(Ω1
r(e),Ω

3
r(e + d),Ω5

r(e + 2d), . . . ,Ω
2[ r−1

2 ]+1
r (e + [ r−1

2 ]d)) the variety of complexes
as in 1.1 and F(r, d) the variety of foliations as in 2.2. Then

F(r, d) = (Pδ)−1(C).
In other terms, Pδ(F(r, d)) = L ∩ C, that is, the variety of foliations F(r, d) corresponds via
the linear injective map Pδ to the intersection of the variety of complexes with the linear space
L = im(Pδ).
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Proof. The statement is a rephrasing of Remark 27. �

Proposition 30. Let us denote

dkr (e) = dim Ωkr (e) =

(
r − k + e

r − k

)(
d− 1

k

)
,

(see [8]) and in particular

dk = d2k+1
r (e+ kd) = dim Ω2k+1

r (e+ kd), 0 ≤ k ≤ [
r − 1

2
].

For this d = (d0, d1, . . . , d[ r−1
2 ]) we consider the finite ordered set R = R(d) as in Proposition 14.

Then each irreducible component of the variety of foliations F(r, d) is an irreducible component
of the linear section (Pδ)−1(Cr) for a unique r ∈ R+.

Proof. From Proposition 14, we have the decomposition into irreducible components

C =
⋃
r∈R+

Cr.

From Theorem 29 we obtain:

F(r, d) = (Pδ)−1(C) =
⋃
r∈R+

(Pδ)−1(Cr).

This implies that each irreducible component X of F(r, d) is an irreducible component of
(Pδ)−1(Cr) for some r ∈ R+. This element r is the sequence of ranks of δω for a general
ω ∈ X, hence it is unique. �
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Études Sci. Publ. Math. No. 55, (1982), 5–35.

[5] I. Gelfand, M. Kapranov and A. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants.

Birkhauser, 1994. DOI: 10.1007/978-0-8176-4771-1

[6] G. Kempf, Images of homogeneous vector bundles and varieties of complexes. Bulletin of the AMS 81,

(1975).

[7] A. Lins Neto, Componentes irredutiveis dos espaos de folheacoes. Rio de Janeiro, 2007.

[8] C. Okonek, M. Schneider and H. Spindler, Vector Bundles on Complex Projective Spaces. Birkhauser, 1980.

Universidad de Buenos Aires / CONICET
Departamento de Matemática, FCEN
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REPRESENTATIONS OF SOME LATTICES INTO THE GROUP OF
ANALYTIC DIFFEOMORPHISMS OF THE SPHERE S2

JULIE DÉSERTI

Abstract. In [11] it is proved that any morphism from a subgroup of finite index of SL(n,Z)
to the group of analytic diffeomorphisms of S2 has a finite image as soon as n ≥ 5. The case
n = 4 is also claimed to follow along the same arguments; in fact this is not straightforward
and that case indeed needs a modification of the argument. In this paper we recall the strategy
for n ≥ 5 and then focus on the case n = 4.

1. Introduction

After the works of Margulis ([15, 20]) on the linear representations of lattices of simple, real
Lie groups with R-rank larger than 1, some authors, like Zimmer, suggest to study the actions
of lattices on compact manifolds ([22, 23, 24, 25]). One of the main conjectures of this program
is the following: let us consider a connected, simple, real Lie group G, and let Γ be a lattice of
G of R-rank larger than 1. If there exists a morphism of infinite image from Γ to the group of
diffeomorphisms of a compact manifold M , then the R-rank of G is bounded by the dimension
of M . There are a lot of contributions in that direction ([3, 4, 5, 8, 9, 10, 11, 12, 17, 18]). In this
article we will focus on the embeddings of subgroups of finite index of SL(n,Z) into the group
Diffω(S2) of real analytic diffeomorphisms of S2 (see [11]).

The article is organized as follows. First of all we will recall the strategy of [11]: the study of
the nilpotent subgroups of Diffω(S2) implies that such subgroups are metabelian. But subgroups
of finite index of SL(n,Z), for n ≥ 5, contain nilpotent subgroups of length n− 1 of finite index
which are not metabelian; as a consequence Ghys gets the following statement.

Theorem A ([11]). Let Γ be a subgroup of finite index of SL(n,Z). As soon as n ≥ 5 there is
no embedding of Γ into Diffω(S2).

To study nilpotent subgroups of Diffω(S2) one has to study nilpotent subgroups of Diffω
+(S1)

(see §2), and then nilpotent subgroups of the group of formal diffeomorphisms of C2 (see §3).
The last section is devoted to establish the following result.

Theorem B. Let Γ be a subgroup of finite index of SL(n,Z). As soon as n ≥ 4 there is no
embedding of Γ into Diffω(S2).

The proof relies on the characterization, up to isomorphism, of nilpotent subalgebras of length
3 of the algebra of formal vector fields of C2 that vanish at the origin.
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2. Nilpotent subgroups of the group of analytic diffeomorphisms of S1

Let G be a group; let us set G(0) = G and G(i) = [G,G(i−1)] ∀ i ≥ 1. The group G is
nilpotent if there exists an integer n such that G(n) = {id}; the length of nilpotence of G is the
smallest integer k such that G(k) = {id}.

Set G(0) = G and G(i) = [G(i−1),G(i−1)] ∀ i ≥ 1. The group G is solvable if G(n) = {id} for
some integer n; the length of solvability of G is the smallest integer k such that G(k) = {id}.

We say that the group G (resp. algebra g) is metabelian if [G,G] (resp. [g, g]) is abelian.

Proposition 2.1 ([11]). Any nilpotent subgroup of Diffω
+(S1) is abelian.

Proof. Let G be a nilpotent subgroup of Diffω
+(S1). Assume that G is not abelian; it thus

contains a Heisenberg group

〈f, g, h | [f, g] = h, [f, h] = [g, h] = id〉.

The application “rotation number“

Diffω
+(S1)→ R/Z, ψ 7→ lim

n→+∞

ψn(x)− x
n

is not a morphism but its restriction to a solvable subgroup is a morphism ([1]). Hence the
rotation number of h is zero, and the set Fix(h) of fixed points of h is non-empty, and finite.
Considering some iterates of f and g instead of f and g one can assume that f and g fix any
point of Fix(h). The set of fixed points of a non-trivial element of 〈f, g〉 is finite and invariant
by h so the action of 〈f, g〉 is free 1 on each component of S1 \ Fix(h). But the action of a free
group on R is abelian: contradiction. �

3. Nilpotent subgroups of the group of formal diffeomorphisms of C2

Let us denote D̂iff(C2, 0) the group of formal diffeomorphisms of C2, i.e., the formal com-
pletion of the group of germs of holomorphic diffeomorphisms at 0. Let Diffi be the quotient
of D̂iff(C2, 0) by the normal subgroups of formal diffeomorphisms tangent to the identity with
multiplicity i; it can be viewed as the set of jets of diffeomorphisms at order i with the law of
composition with truncation at order i. Note that Diffi is a complex linear algebraic group. One
can see D̂iff(C2, 0) as the projective limit of the Diffi’s: D̂iff(C2, 0) = lim

←
Diffi. Let us denote

by χ̂(C2, 0) the algebra of formal vector fields in C2 vanishing at 0. One can define the set χi of
the i-th jets of vector fields; one has lim

←
χi = χ̂(C2, 0).

Let Ô(C2) be the ring of formal series in two variables, and let K̂(C2) be its fraction field; Oi

is the set of elements of Ô(C2) truncated at order i.
The family

(
expi : χi → Diffi

)
i
is filtered, i.e., compatible with the truncation. We then

define the exponential application as follows: exp = lim
←

expi : χ̂(C2, 0)→ D̂iff(C2, 0).

As in the classical case, if X belongs to χ̂(C2, 0), then exp(X) can be seen as the “flow at
time t = 1” of X. Indeed an element Xi of χi can be seen as a derivation of Oi; so it can be
written Si+Ni where Si and Ni are two semi-simple (resp. nilpotent) derivations that commute.
Passing to the limit, one gets X = S + N where S is a semi-simple vector field, N a nilpotent
one, and [S,N ] = id (see [16]). A semi-simple vector field is a formal vector field conjugate to a
diagonal linear vector field that is complete. A vector field is nilpotent if and only if its linear

1. The stabilizer of every point is trivial, i.e., the action of a non-trivial element of 〈f, g〉 has no fixed point.
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part is; let us remark that the usual flow ϕt of a nilpotent vector field is polynomial in t

ϕt(x) =
∑
I

PI(t)xI , PI ∈ (C[t])2

so ϕ1(x) is well-defined. As a consequence exp(tX) = exp(tS) exp(tN) is well-defined for t = 1.
Note that the Jordan decomposition is purely formal: if X is holomorphic, then S and N are
not necessary holomorphic.

Proposition 3.1 ([11]). Any nilpotent subalgebra of χ̂(C2, 0) is metabelian.

Proof. Let l be a nilpotent subalgebra of χ̂(C2, 0), and let Z(l) be its center. Since

χ̂(C2, 0)⊗ K̂(C2)

is a vector space of dimension 2 over K̂(C2), one has the following alternatives:
• the dimension of the subspace generated by Z(l) in χ̂(C2, 0)⊗ K̂(C2) is 1;
• the dimension of the subspace generated by Z(l) in χ̂(C2, 0)⊗ K̂(C2) is 2.

Let us study these different cases.
Under the first assumption there exists an element X of Z(l) having the following property:

any vector field of Z(l) can be written uX with u in K̂(C2). Let us consider the subalgebra g of
l given by

g =
{
X̃ ∈ l | ∃u ∈ K̂(C2), X̃ = uX

}
.

Since X belongs to Z(l), the algebra g is abelian; it is also an ideal of l. Let us assume that l
is not abelian: let Y be an element of l whose projection on l/g is non-trivial, and central. Any
vector field of l can be written as uX + vY with u, v in K̂(C2). As X belongs to Z(l), and Y is
central modulo g one has

X(u) = X(v) = Y (v) = 0.

The vector fields ∂
∂x and ∂

∂y being some linear combinations of X and Y with coefficients in
K̂(C2, 0), the partial derivatives of v are zero so v is a constant. Therefore [l, l] ⊂ g; but g is
abelian thus l is metabelian.

In the second case Z(l) contains two elements X and Y which are linearly independent on
K̂(C2). Any vector field of l can be written as uX + vY with u and v in K̂(C2). Since X and
Y belong to Z(l) one has

X(u) = X(v) = Y (u) = Y (v) = 0.

As a consequence u and v are constant, i.e., l ⊂ {uX + vY |u, v ∈ C}; in particular l is
abelian. �

Proposition 3.2 ([11]). Any nilpotent subgroup of D̂iff(C2, 0) is metabelian.

Proof. Let G be a nilpotent subgroup of D̂iff(C2, 0) of length k. Let us denote by Gi the
projection of G on Diffi. The Zariski closure Gi of Gi in Diffi is an algebraic nilpotent subgroup
of length k. It is sufficient to prove that Gi is metabelian.

Since Gi is a complex algebraic subgroup it is the direct product of the subgroup Gi,u of its
unipotent elements and the subgroup Gi,s of its semi-simple elements (see for example [2]).

An element of Diffi is unipotent if and only if its linear part, which belongs to GL(2,C), is;
so Gi,s projects injectively onto a nilpotent subgroup of GL(2,C). Therefore Gi,s is abelian.

The group Gi,u coincides with exp li where li is a nilpotent Lie algebra of χi of length k.
Passing to the limit one thus obtains the existence of a nilpotent subalgebra l of χ̂(C2, 0) of length
k such that exp(l) projects onto Gi,u for any i. According to Proposition 3.1 the subalgebra l,
and thus Gi,u are metabelian. �
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4. Nilpotent subgroups of the group of analytic diffeomorphisms of S2

Proposition 4.1 ([11]). Any nilpotent subgroup of Diffω(S2) has a finite orbit.

Proof. Let G be a nilpotent subgroup of Diffω(S2); up to finite index one can assume that the
elements of G preserve the orientation. Let φ be a non-trivial element of G that commutes with
G. Let Fix(φ) be the set of fixed points of φ; it is a non-empty analytic subspace of S2 invariant
by G. If p is an isolated fixed point of φ, then the orbit of p under the action of G is finite. So it
is sufficient to study the case where Fix(φ) only contains curves; there are thus two possibilities:

• Fix(φ) is a singular analytic curve whose set of singular points is a finite orbit for G;
• Fix(φ) is a smooth analytic curve, not necessary connected. One of the connected com-
ponent of S2 \ Fix(φ) is a disk denoted by D. Any subgroup Γ of finite index of G which
contains φ fixes D. Let us consider an element γ of Γ, and a fixed pointm of γ that belongs
to D. By construction φ has no fixed point in D so according to the Brouwer Theorem
(φk(m))k has a limit point on the boundary ∂D of D. Therefore γ has at least one fixed
point on ∂D. The group Γ thus acts on ∂D, and any of its elements has a fixed point on
D. Then Γ has a fixed point on ∂D (Proposition 2.1).

�

Theorem 4.2 ([11]). Any nilpotent subgroup of Diffω(S2) is metabelian.

Proof. Let G be a nilpotent subgroup of Diffω(S2), and let Γ be a subgroup of finite index of G
having a fixed point m (such a subgroup exists according to Proposition 4.1). One can embed Γ

into D̂iff(R2, 0), and so into D̂iff(C2, 0), by considering the jets of infinite order of elements of Γ
in m. According to Proposition 3.2 the group Γ is metabelian.

One can suppose that G is a finitely generated group.
Let us first assume that G has no element of finite order. Then G is a cocompact lattice of

the nilpotent, simply-connected Lie group G ⊗ R (see [19]). The group G is metabelian if and
only if G⊗ R is; but Γ is metabelian so G⊗ R also.

Finally let us consider the case where G contains at least one element of finite order. The set
of such elements is a normal subgroup of G that thus intersects non-trivially the center Z(G)
of G. Let us consider a non-trivial element φ of Z(G) which has finite order. Let us recall that
a finite group of diffeomorphisms of the sphere is conjugate to a group of isometries. Denote
by G+ the subgroup of elements of G which preserve the orientation. It is thus sufficient to
prove that G+ is metabelian; indeed if φ does not preserve the orientation, then φ has order 2,
and G = Z/2Z × G+. So let us assume that φ preserves the orientation; φ is conjugate to a
direct isometry of S2, and has exactly two fixed points on the sphere. The group G has thus an
invariant set of two elements. By considering germs in the neighborhood of these two points,
one gets that G can be embedded into 2 ·Diff(R2, 0) 2 and thus into 2 ·Diff(C2, 0):

1 −→ Diff(C2, 0) −→ 2 ·Diff(C2, 0) −→ Z/2Z −→ 0.

Remark that 2 · Diff(C2, 0) is the projective limit of the algebraic groups 2 · Diffi. One can
conclude as in the proof of Proposition 3.2 except that the subgroup of the semi-simple elements
of 2 ·Diffi embeds now in 2 ·GL(2,C); it is metabelian because it contains an abelian subgroup
of index 2. �

Let Γ be a subgroup of finite index of SL(n,Z) for n ≥ 5. Since Γ contains nilpotent subgroups
of finite index of length n − 1 (for example the group of upper triangular unipotent matrices)
which are not metabelian one gets the following statement.

2. Let G be a group and let q be a positive integer; q ·G denotes the semi-direct product of Gq by Z/qZ under
the action of the cyclic permutation of the factors.
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Corollary 4.3 ([11]). Let Γ be a subgroup of finite index of SL(n,Z); as soon as n ≥ 5 there is
no embedding of Γ into Diffω(S2).

5. Nilpotent subgroups of length 3 of the group of
analytic diffeomorphisms of S2

Let us precise Proposition 3.1 for nilpotent subalgebras of length 3 of χ̂(C2, 0). Let l be
such an algebra. The dimension of the subspace generated by Z(l) in χ̂(C2, 0) ⊗ K̂(C2) has
dimension at most 1, for else l would be abelian (Proposition 3.1) and this is impossible under
our assumptions. So let us assume that the dimension of the subspace generated by Z(l) in
χ̂(C2, 0) ⊗ K̂(C2) is 1. There exists an element X in Z(l) with the following property: any
element of Z(l) can be written uX with u in K̂(C2). Let g denote the abelian ideal of l defined
by

g =
{
X̃ ∈ l

∣∣∃u ∈ K̂(C2), X̃ = uX
}
.

By hypothesis l is not abelian. Let Y be in l; assume that its projection onto l/g is a non-trivial
element of Z(l/g). Any vector field of l can be written

uX + vY, u, v ∈ K̂(C2).

Since X, resp. Y belongs to Z(l) (resp. Z(l/g)) and since the length of l is 3, one has

(5.1) X(u) = Y 3(u) = X(v) = Y (v) = 0.

If X and Y are non-singular, one can choose formal coordinates x and y such that X = ∂
∂x

and Y = ∂
∂y . The previous conditions can be thus translated as follows: v is a constant and u is

a polynomial in y of degree 2. We will see that we have a similar property without assumption
on X and Y .

Lemma 5.1. Let X and Y be two vector fields of χ̂(C2, 0) that commute and are not colinear.
One can assume that (X,Y ) =

(
∂
∂x̃ ,

∂
∂ỹ

)
where x̃ and ỹ are two independent variables in a

Liouvillian extension of K̂(C2, 0).

Proof. Since X and Y are non-colinear, there exist two 1-forms α, β with coefficients in K̂(C2)
such that α(X) = 1, α(Y ) = 0, β(X) = 0, and β(X) = 1. The vector fields X and Y commute if
and only if α and β are closed (this statement of linear algebra is true for convergent meromorphic
vector fields and is also true in the completion). The 1-form α is closed so according to [7] one
has

α =

r∑
i=1

λi
dφ̂i

φ̂i
+ d
( ψ̂1

ψ̂2

)
= d
( r∑

i=1

λi log φ̂i +
ψ̂1

ψ̂2

)
where ψ̂1, ψ̂2, and the φ̂i denote some formal series and the λi some complex numbers. One
has a similar expression for β. So there exists a Liouvillian extension κ of K̂(C2) having two
elements x̃ and ỹ with α = dx̃ and β = dỹ. One thus has X(x̃) = 1, X(ỹ) = 0, Y (x̃) = 0, and
Y (ỹ) = 1. �

From (5.1) one gets: v is a constant, and u is a polynomial in ỹ of degree 2; so one proves the
following statement.

Proposition 5.2. Let l be a nilpotent subalgebra of χ̂(C2, 0) of length 3. Then l is isomorphic
to a subalgebra of

n =
{
P (ỹ)

∂

∂x̃
+ α

∂

∂ỹ

∣∣∣ α ∈ C, P ∈ C[ỹ], degP = 2
}
.
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Remark 5.3. We use a real version of this statement whose proof is an adaptation of the
previous one: a nilpotent subalgebra l of length 3 of χ̂(R2, 0) is isomorphic to a subalgebra of

n =
{
P (ỹ)

∂

∂x̃
+ α

∂

∂ỹ

∣∣∣α ∈ R, P ∈ R[ỹ], degP = 2
}
.

Theorem 5.4. Let Γ be a subgroup of finite index of SL(n,Z); as soon as n ≥ 4 there is no
embedding of Γ into Diffω(S2).

Proof. Let U(4,Z) (resp. U(4,R)) be the subgroup of unipotent upper triangular matrices of
SL(4,Z) (resp. SL(4,R)); it is a nilpotent subgroup of length 3. Assume that there exists an
embedding from a subgroup Γ of finite index of SL(4,Z) into Diffω(S2). Up to finite index Γ
contains U(4,Z). Let us set H = ρ(U(4,Z)). Up to finite index H has a fixed point (Proposition
4.1). One can thus see H as a subgroup of Diff(R2, 0) ⊂ D̂iff(R2, 0) up to finite index.

Let us denote by j1 the morphism from D̂iff(R2, 0) to Diffi. Up to conjugation, j1(ρ(U(4,Z)))
is a subgroup of {[ λ t

0 λ

] ∣∣∣λ ∈ R∗, t ∈ R
}
.

Up to index 2 one can thus assume that j1 ◦ ρ takes values in the connected, simply-connected
group T defined by

T =
{[ λ t

0 λ

] ∣∣∣λ, t ∈ R, λ > 0
}
.

Let us set
Diffi(T) =

{
f ∈ Diffi | j1(f) ∈ T

}
;

the group Diffi(T) is a connected, simply-connected, nilpotent and algebraic group. The mor-
phism

ρi : U(4,Z)→ Diffi

can be extended to a unique continuous morphism ρ̃i : U(4,R) → Diffi(T) (see [13, 14]) so
to an algebraic morphism 3. Let us note that ρ̃i(U(4,Z)) is an algebraic subgroup of Diffi(T)

that contains ρi(U(4,Z)); in particular Hi = ρi(U(4,Z)) ⊂ ρ̃i(U(4,R)). By construction the
family (Hi)i is filtered; since the extension is unique, the family (ρ̃i)i is also filtered. Therefore
K = lim

←
Hi is well-defined. Since ρ is injective, H is a nilpotent subgroup of length 3; as H ⊂ K

and as any Hi is nilpotent of length at most 3 the group K is nilpotent of length at most 3. For
i sufficiently large ρ̃i(U(4,R)) is nilpotent of length 3; this group is connected so its Lie algebra
is also nilpotent of length 3. Therefore the image of

Dρ̃ := lim
←
Dρ̃i : u(4,R)→ χ̂(R2, 0)

is isomorphic to n (Proposition 5.2). So there exists a surjective map ψ from u(4,R) onto n. The
kernel of ψ is an ideal of u(4,R) of dimension 2; hence kerψ = 〈δ14, aδ13 + bδ24〉 where the δij
denote the Kronecker matrices. One concludes by noting that dimZ(u(4,R)/ kerψ) = 2 whereas
dimZ(n) = 1. �

Corollary 5.5. The image of a morphism from a subgroup of SL(n,Z) of finite index to Diffω(S2)
is finite as soon as n ≥ 4.

3. Let N1 and N2 be two connected, simply-connected, nilpotent and algebraic subgroups of R; any continuous
morphism from N1 to N2 is algebraic.
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RIEMANN-ROCH THEORY ON FINITE SETS

RODNEY JAMES AND RICK MIRANDA

Abstract. In [2] M. Baker and S. Norine developed a theory of divisors and linear systems on
graphs, and proved a Riemann-Roch Theorem for these objects (conceived as integer-valued

functions on the vertices). In [6] and [7] the authors generalized these concepts to real-valued

functions, and proved a corresponding Riemann-Roch Theorem in that setting, showing that
it implied the Baker-Norine result. In this article we prove a Riemann-Roch Theorem in a

more general combinatorial setting that is not necessarily driven by the existence of a graph.

1. Introduction

Baker and Norine showed in [2] that a Riemann-Roch formula holds for an analogue of linear
systems defined on the vertices of finite connected graphs. There, the image of the graph
Laplacian induces an equivalence relation on the group of divisors of the graph, which are
integer-valued functions defined on the set of vertices. This equivalence relation is the analogue
of linear equivalence in the classical algebro-geometric setting. Gathmann and Kerber [5] later
used the Baker-Norine result to prove a Riemann-Roch theorem for tropical curves.

We showed in [6] that the Baker-Norine result implies a generalization of the Riemann-Roch
formula to edge-weighted graphs, where the edge weights can be R-valued, where R is an arbi-
trary subring of the reals; the equivalence relation induced by the image of the edge-weighted
graph Laplacian applies equally well to divisors which are R-valued functions defined on the
set of vertices. We prove in [7] our version of the R-valued Riemann-Roch theorem from first
principles; this gave an independent proof of the Baker-Norine result as well. In [1], Amini and
Caporoso develop a Riemann-Roch theory for vertex-weighted graphs over the integers; related
work on computing the rank of these divisors can be found in [3] and [4].

The notion of linear equivalence above is induced by the appropriate graph Laplacian acting
as a group in the space of divisors, which may be viewed as points in Zn (the Baker-Norine case)
or more generally Rn, where n is the number of vertices of the graph. A crucial role in this theory
is played by a certain set of divisors N , which is a union of orbits of the group action. In this
paper, we propose a generalization of this Riemann-Roch formula where no graph structure need
be present; however an appropriate set N must still be defined, having a specified symmetry
property. The Baker-Norine proof is combinatorial and relies on properties of the finite graph,
where our more general result presented in this paper only assumes this symmetry condition.
In the graph case this symmetry condition holds, and therefore this is a generalization of the
Baker-Norine result. Potentially our result may apply to many other discrete objects, with the
additional generalization that the divisors are R-valued rather than restricted to integer values.

The setup we will use is as follows. Choose a subring R of the reals, and fix a positive integer
n. Let V be the group of points in Rn under component-wise addition. If x ∈ V , we we will use
the functional notation x(i) to denote the the i-th component of x.

For any x ∈ V , define the degree of x as

deg(x) =

n∑
i=1

x(i).

http://dx.doi.org/10.5427/jsing.2014.9g
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For any d ∈ R, define the subset Vd ⊂ V to be

Vd = {x ∈ V | deg(x) = d}.
Note that the subset V0 is a subgroup; for any d, Vd is a coset of V0 in V .

Fix the parameter g ∈ R, which we call the genus, and choose a set N ⊂ Vg−1. For x ∈ V ,
define

x+ = max(x, 0)

x− = min(x, 0)

where max and min are evaluated at each coordinate. It follows that

x = x+ + x− and x+ = −(−x)−.

We then define the dimension of x ∈ V to be

`(x) = min
ν∈N
{deg((x− ν)+)}.

This definition of the dimension agrees with the definition given by Baker and Norine in the
special application to the graph setting, as we observed in [6].

We can now state our main result.

Theorem 1.1. Let V be the additive group of points in Rn for a subring R ⊂ R and fix g ∈ R.
Suppose κ ∈ V2g−2, and N ⊂ Vg−1, satisfying the symmetry condition

ν ∈ N ⇐⇒ κ− ν ∈ N .
Then for every x ∈ V ,

`(x)− `(κ− x) = deg(x)− g + 1

We will give a proof of Theorem 1.1 in §2. In §3, we will give examples of κ and N (coming
from the graph setting) which satisfy the conditions of Theorem 1.1, and show how this Riemann-
Roch formulation is equivalent to that given in [7]. Finally in §4, we gives examples that do not
arise from graphs.

2. Proof of Riemann-Roch Formula

The dimension of x ∈ V
`(x) = min

ν∈N
{deg((x− ν)+)}

can be written as

`(x) = min
ν∈N

{
n∑
i=1

max{x(i)− ν(i), 0}

}
.

If x(i) ≥ ν(i) for each i,
∑n
i=1 max{x(i)−ν(i), 0} is the taxicab distance from x to ν. Thus, `(x)

is the taxicab distance from x to the portion of the set N such that x ≥ N , where the inequality
is evaluated at each component.

We will now proceed with the proof of the Riemann-Roch formula.

Proof. (Theorem 1.1)
Suppose that N ⊂ Vg−1 and κ ∈ V satisfy the symmetry condition. We can then write

`(κ− x) = min
ν∈N
{deg((κ− x− ν)+)}

= min
ν∈N
{deg(((κ− ν)− x)+)}

= min
µ∈N
{deg((µ− x)+)}.
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Using the identities x = x+ + x− and x+ = −(x−), we have

min
µ∈N
{deg((µ− x)+)} = min

µ∈N
{deg((µ− x))− deg((µ− x)−)}

= min
µ∈N
{deg((µ− x)) + deg((x− µ)+)}.

Since µ ∈ N we know that deg(µ) = g − 1, thus deg(µ− x) = g − 1− deg(x) and thus

`(κ− x) = deg((µ− x)) + min
µ∈N
{deg((x− µ)+)}

= g − 1− deg(x) + `(x).

�

Note that κ ∈ V is the analogue to the canonical divisor in the classical Riemann-Roch
formula.

3. Graph Examples

Let Γ be a finite, edge-weighted connected simple graph with n vertices. We will assume that
Γ has no loops. Let wij ∈ R with wij ≥ 0 be the weight of the edge connecting vertices vi and
vj . The no loops assumption is also applied to the edge weights so that wii = 0 for each i. We
showed in [7] that such a graph satisfies an equivalent Riemann-Roch formula as in Theorem 1.1.

In this setting, the genus g = 1 +
∑
i<j wij − n, and the canonical element κ is defined by

κ(j) = deg(vj) − 2. (Here deg(v) for a vertex v is the sum of the weights of the edges incident
to v.) As shown in [7], the set N ⊂ Vg−1 is generated by a set {ν1, . . . , νs} as follows.

Fix a vertex vk and let (j1, . . . , jn) be a permutation of (1, . . . , n) such that j1 = k. There
are then (n− 1)! such permutations; for each permutation, we compute a ν ∈ Vg−1 defined by

ν(jl) =

{
−1 if l = 1

−1 +
∑l−1
i=1 wjijl if l > 1.

Each such ν may not be unique; set s to be the number of unique ν’s and index this set
{ν1, . . . , νs}. We then define the set N as

N = {x ∈ V | x ∼ νi for some i = 1, . . . s}.
Here the equivalence relation ∼ is induced by the subgroup

H =< h1, h2, . . . , hn−1 >⊂ V0
where each hi ∈ Rn is defined as

hi(j) =

{
deg(vi) if i = j
−wij if i 6= j.

Note that H is the edge-weighted Laplacian of Γ.
As an example, consider a two vertex graph Γ with edge weight w12 = p > 0. Then g = p− 1

and H =< (p,−p) >= Z(p,−p). The set N ⊂ Vg−1 is N = {ν | ν ∼ (p − 1,−1)} and
κ = (p − 2, p − 2). Figure 1 shows the divisors x ∈ R2 for this graph in the plane. The shaded
region, which is bounded by the corner points in the set N , represent points x with `(x) = 0.

We can show directly that N and κ for the two-vertex graph example satisfy the necessary
condition for Theorem 1.1 to hold. If κ− x ∈ N , then κ− x = m(p,−p) + (p− 1,−1) for some
m ∈ Z. Solving for x, we have

x = (p− 2, p− 2)−m(p,−p)− (p− 1,−1)

= (−mp− 1,mp+ p− 1)

= (p− 1,−1)− (m+ 1)(p,−p)
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-1

p - 1

2 p - 1

Figure 1. Divisors in R2 for a two-vertex graph with p edges. The shaded
region represents points x ∈ R2 with `(x) = 0; for a general point x ∈ R2, `(x)
is the taxicab distance to the shaded region.

and thus x ∈ N . Similarly, if ν ∈ N , it easily follows that κ− ν ∈ N .
Now consider a three vertex graph with edge weights w12 = p, w13 = q and w23 = r. The

set N can be generated by ν1 = (−1, p− 1, q + r − 1) and ν2 = (−1, p+ r − 1, q − 1); H can be
generated by h1 = (p+ q,−p,−q) and h2 = (−p, p+ r,−r). In Figure 2, the region representing
points x ∈ R3 such that `(x) = 0 is shown for a three vertex graph with edge weights p = 1,
q = 3 and r = 4.

4. Non-graph Examples

The main result of this paper would not be interesting if there were no examples N and κ
that were not derived from graphs.

Theorem 4.1. There exist κ ∈ V and N ⊂ Vg−1 such that Theorem 1.1 holds where N is not
generated from a finite connected graph.

Proof. Let n = 2 and choose N = {ν ∈ G | ν ∼ (2,−2)} where H =< (−4, 4) >, with κ = (0, 0)
and g = 1. If H were generated from a two vertex graph, using the notation from the previous
section we would have p = 4. This would require κ = (2, 2) with N generated by ν1 = (3,−1).

Since there is no integer m such that κ = (0, 0) = (2, 2)+m(−4, 4) (and likewise there is no m
such that ν1 = (2,−2) = (3,−1) +m(−4, 4)), H cannot be generated from a two vertex graph.

Now suppose that ν ∈ N . Then ν = (2,−2) +m(−4, 4) for some integer m, and

κ− ν = (0, 0)− (2,−2)−m(−4, 4)

= (2,−2)− (m− 1)(−4, 4)

thus κ− ν ∈ N .
Similarly, if κ− ν ∈ N , κ− ν = (2,−2) +m(−4, 4) for some integer m, and

ν = κ− (2,−2)−m(−4, 4)

= (4m− 2,−4m+ 2)

= (2,−2)− (m− 1)(−4, 4)
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Figure 2. Divisors in R3 for a three-vertex graph edge weights w12 = 1,
w13 = 3 and w23 = 4. The solid region represents points x ∈ R3 with `(x) = 0;
for a general point x ∈ R3, `(x) is the taxicab distance to the surface.

thus ν ∈ N and H, κ, N satisfies Theorem 1.1. �

We include in Figure 3 a representation of the divisors x ∈ R2 with `(x) = 0 for the example
used in the proof of Theorem 4.1. The plot is identical to that of a two vertex graph with p = 4
but is shifted by −1 in each direction.

It is also possible to produce non-graph examples by using more generators for N . In Figure 4,
the divisors x ∈ R2 with `(x) = 0 are shown where N is generated by two points ν1 = (0, 4) and
ν2 = (1, 3), using H =< (−3, 3) > and κ = (0, 0).

As an application to discrete geometry, consider a set of points in N ⊂ Rn along with κ ∈ Rn
and g ∈ R which satisfy the conditions of Theorem 1.1. For each ν ∈ N , define

Eν = {x ∈ Rn | x ≤ ν}

and let

E =
⋃
ν∈N
Eν .

The set E consists of the points x ∈ Rn such that `(x) = 0; more generally, `(x) is the taxicab
distance from x ∈ Rn to E . Theorem 1.1 then gives a lower bound `(x) ≥ deg(x) − g + 1 as
well as an exact formula for `(x) using the correction term `(κ− x). It would be interesting to
find and classify different discrete geometric structures, in addition to finite graphs, which admit
such N , g, and κ satisifying the symmetry condition of Theorem 1.1.
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-6 -2 2 6

-6

-2

2
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Figure 3. Divisors x ∈ R2 with `(x) = 0 for the non-graph example in the
proof of Theorem 4.1. Note that this example is identical to the two vertex
graph example in Figure 1 with p = 4, but shifted by (−1,−1).

0 1 2 3 4

0

1

2

3

4

Figure 4. Divisors x ∈ R2 with `(x) = 0 for a non-graph example with N
generated by (0, 4) and (1, 3), H =< (−3, 3) > and κ = (0, 0).
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FOLIATIONS WITH A MORSE CENTER

A. LINS NETO

Abstract. We say that a holomorphic foliation F on a complex surface M has a Morse center

at p ∈ M if F has a local first integral with a Morse singularity at p. Given a line bundle L
on M , let Fol(M,L) = { foliations F on M such that T ∗(F) = L} and FolC(M,L) be the

closure of the set {F ∈ Fol(M,L) | F has a Morse center}. In the first result of this paper
we prove that FolC(M,L) is an algebraic subset of Fol(M,L). We apply this result to prove

the persistence of more than one Morse center for some known examples, as for instance the

logarithmic and pull-back foliations. As an application we give a simple proof that R(1, d+1)
is an irreducible component of the space of foliations of degree d with a Morse center on P2,

where R(m,n) denotes the space of foliations with a rational first integral of the form fm/gn

with mdg(f) = ndg(g).

1. Basic definitions and results

Given a complex surface M and a line bundle L on M we will denote by Fol(M,L) the set of
holomorphic foliations on M with cotangent bundle L (cf. [Br]),

Fol(M,L) := {F | T ∗F = L} = PH0(M,TM ⊕ L) .

Of course, we will assume that Fol(M,L) 6= ∅. In this case, if M is compact then Fol(M,L) is a
finite dimensional projective space.

When M = P2 then the degree of a foliation F , dg(F), is the number of tangencies of a F
with a generic straight line of P2. If dg(F) = d ≥ 0, then F ∈ Fol(P2,O(d − 1)) and we will
denote Fol(P2,O(d− 1)) := Fol(d).

Definition 1. We say that p ∈ M is a Morse center of F ∈ Fol(M,L) if p is an isolated
singularity of F and the germ of F at p has a holomorphic first integral with a Morse singularity
at p.

Remark 1.1. Definition 1 can be rephrased as follows: the germ of F at p is represented by
some germ at p of holomorphic vector field X with an isolated singularity at p and there exists
a germ f ∈ Op such that X(f) = 0 and p is a Morse singularity of f . By Morse lemma,
there exists a local holomorphic coordinate system (x, y) ∈ C2 such that f(x, y) = x y. If
X = P (x, y) ∂x +Q(x, y) ∂y in these coordinates, then X(f) = 0 implies

y P (x, y) + xQ(x, y) = 0 =⇒ X = f(x, y) (x ∂x − y ∂y) ,

where f(0, 0) 6= 0. In particular, the Baum-Bott index of F at p is zero and its characteristic
values are both −1.

Recall that if F has a non-degenerate singularity at q ∈ M and is represented by a vector
field Y near q and the eigenvalues of DY (q) are λ1, λ2 6= 0 then the characteristic values are

1991 Mathematics Subject Classification. 37F75, 34M15.
Key words and phrases. holomorphic foliation, Morse center.
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λ1/λ2 and λ2/λ1, whereas the Baum-Bott index is

BB(F , q) =
tr(DY (q))2

det(DY (q))
=
λ2

λ1
+
λ1

λ2
+ 2 .

We will denote by FolC(M,L) the closure in Fol(M,L) of the set

{F ∈ Fol(M,L) | F has a Morse center}.

When M = P2, we will use the notations Fol(d) := Fol(P2,O(d− 1)) and

FolC(d) := FolC(P2,O(d− 1)), d ≥ 0.

A well-known fact is that FolC(d) is an algebraic subset of Fol(d) (cf. [Mo1]). In our first
result we generalize this fact.

Theorem 1. Assume that M is compact and Fol(M,L) 6= ∅. Then FolC(M,L) is an algebraic
subset of Fol(M,L).

A natural problems that arises is the following :

Problem 1. Classify the irreducible components of FolC(M,L).

In the case of P2 three cases are known : FolC(0), FolC(1) and FolC(2). For instance,
FolC(0) = ∅ because any foliation of degree 0 is equivalent the foliation defined by the radial
vector field R = x ∂x + y ∂y, which has no Morse centers (cf. [Br]).

On the other hand, any foliation Fo ∈ Fol(1) can be defined by a holomorphic vector field
on P2. Hence, if F ∈ Fol(1) has a Morse center, then in some affine coordinate system it can
be defined by the linear vector field X = x ∂x − y ∂y. It follows that FolC(1) is the closure of
the orbit of Fo under the natural action of Aut(P2) on Fol(1). In particular, this implies that
FolC(1) is irreducible and dimC(FolC(1)) = 6.

The case of FolC(2) is not so simple, but it is known that it has four irreducible components.
Before describe them, let us consider a class of foliations with a Morse center.

Example 1 (Foliations defined by closed 1-forms). Let ω be a closed meromorphic 1-form on
the complex surface M , ω 6≡ 0. It is known that ω defines a foliation on M , which we will denote
by Fω (cf. [Br]). In an open set V ⊂ M \ |ω|∞, diffeomorphic to a polydisc, F can be defined
by a holomorphic vector field X such that ω(X) = 0. Since V is simply-connected, there exists
f ∈ O(V ) such that ω|V = df . In particular, f is a holomorphic first integral of Fω on V and if
f has a Morse singularity p ∈ V then p is a Morse center of Fω. We will consider the following
two cases :

(a). ω = dF , where F is meromorphic on M . In this case F is a first integral of Fω.
(b). ω is a logarithmic 1-form on M , that is |ω|∞ 6= ∅ and (ω)∞ is reduced.

Let us consider M = P2 and Π: C3 \ {0} → P2 be the canonical projection. If ω is a
meromorphic closed 1-form in P2 then the 1-form Ω = Π∗(ω) is closed and satisfies

iR(Ω) := Ω(R) = 0,

where R = x ∂x + y ∂y + z ∂z is the radial vector field in C3. We can write (Ω)∞ = F `11 ...F `kk ,
where Fj ∈ C[x, y, z] is a homogeneous of degree dj ∈ N and `j ∈ N, 1 ≤ j ≤ k. In this case, it
can be proved that (cf. [Ce-Ma])

Ω =

k∑
j=1

λj
dFj
Fj

+ d

(
G

F `1−1
1 ...F `k−1

k

)
,
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where λj = Res(Ω, Fj = 0) = Res(ω,Π(Fj = 0)), 1 ≤ j ≤ k, dg(G) =
∑k
j=1(`j − 1) dj and∑k

j=1 dj λj = 0. We will say that Ω represents Fω in homogeneous coordinates. Let us observe
the following facts :

• If ω is exact then λ1 = ... = λk = 0 and Ω = d(G/F ), where F = F `1−1
1 ...F `k−1

k .
• If ω is a logarithmic form then `j = 1, λj 6= 0, 1 ≤ j ≤ k, and

(1) Ω =

k∑
j=1

λj
dFj
Fj

.

Denote by (Ω)0 the divisor of zeroes of Ω, that is the codimension one part of

sing(Ω) = {q ∈ C3 |Ω(q) = 0}.

• If ω is logarithmic then k ≥ 2 and

(2) dg(Fω) = d1 + ...+ dk − 2− dg((Ω)0) .

• If ω is logarithmic and F1, ..., Fk are generic polynomials of degrees d1, ..., dk, then
(Ω)0 = ∅ and Fω ∈ Fol(d), where d = d1 + ...+ dk − 2.

We will use the notation

L(d1, ..., dk) = {Fω | Π∗(ω) is like in (1) and dg(Fj) = dj , 1 ≤ j ≤ k} .

Note that L(d1, ..., dk) ⊂ Fol(d).
Observe also that if k = 2 then the relation λ1 d1 + λ2 d2 = 0 implies that we can assume

Ω = −d2
dF1

F1
+ d1

dF2

F2
=
d(F d12 /F d21 )

F d12 /F d21

=⇒ F d12 /F d21

is a first integral of Fω. In this case we use also the notation L(d1, d2) = R(d1, d2).

Denote by P` ⊂ PC[x, y, z] the projectivization of the set of homogeneous polynomials of
degree `. Given D = (d1, ..., dk) then the set

P(D, k) :=

(F1, ..., Fk, λ1, ..., λk) ∈ Pd1 × ...× Pdk × Ck |
k∑
j=1

λj dj = 0


parametrizes L(D) := L(d1, ..., dk) as

(F,Λ) = (F1, ..., Fk, λ1, ..., λk) ∈ P(D, k) 7→ FΩ(F,Λ) ,

where,

Ω(F,Λ) :=

k∑
j=1

λj
dFj
Fj

.

We will denote by F(F,Λ) the foliation of P2 which is represented in homogeneous coordinates
by the form Ω(F,Λ). With the above notations, in the next section we will sketch the proof of
the following result:

Proposition 1. There exists a Zariski open and dense set Z ⊂ P(D, k) such that

(a). If (F,Λ) ∈ Z then all singularities of F(F,Λ) are non-degenerate. In particular,
F(F,Λ) ∈ Fol(d) with d = d1 + ...+ dk − 2 and #(sing(F(F, λ))) = d2 + d+ 1.
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(b). If (F,Λ) ∈ Z then F(F,Λ) has N(d) Morse centers, where

N(d) = d2 + d+ 1−
∑
i<j

di dj .

In particular, if d ≥ 2 then N(d) > 0 and L(d1, ..., dk) ⊂ FolC(d).

Example 2 (The exceptional component of FolC(2)). Let f(x, y, z) = x3 − 3 y x z and

g(x, y, z) = z2 + y z − x2/2.

Then the foliation Fo on P2 with first integral f2/g3 is of degree two. In fact, as the reader can

check, z divides the form Ω = 2 df
f − 3 dg

g and so dg(Fo) = 3 + 2− 2− dg((Ω)0) = 2 by (2). The

foliation Fo has a Morse center at the point [0 : 0 : 1] ∈ P2.
In fact, it can be represented in the affine coordinate system z = 1 by the form

ω = (y − x2 + y2) dx+ x (1− y/2) dy

or by the vector field X = x (1 − y/2)∂x − (y − x2 + y2)∂y and so it has a non-degenerate
singularity at (0, 0) with characteristic values −1. It is a Morse center because Fo has a first
integral.

We denote by E(2) the orbit of Fo under the action of Aut(P2) :

E(2) = {T ∗(Fo) | T ∈ Aut(P2)} .

Now, we can describe FolC(2). The next result is a consequence of Dulac’s classification of
quadratic differential equations in C2 with a Morse center (cf. [Du]) and of a result of [Ce-LN].

Theorem 1.1. FolC(2) has four irreducible components: R(1, 3), L(1, 1, 2), L(1, 1, 1, 1) and

E(2).

Now, let us state some known results about the components of FolC(d), d ≥ 3. Before state
the first result, let us fix some notations. Recall that a foliation F ∈ Fol(d) can be defined in an
affine coordinate system (x, y) ∈ C2 ⊂ P2 by a polynomial vector field X = P ∂x +Q∂y, with

P (x, y) = p(x, y) + x. g(x, y)
Q(x, y) = q(x, y) + y. g(x, y)

,

where max(dg(p), dg(q)) ≤ d and g is homogeneous of degree d. Note that g ≡ 0 if, and only
if, the line at infinity of the affine coordinates, denoted by L∞, is F-invariant. When g 6≡ 0
then the intersection of the directions defined by g(x, y) = 0 and L∞ are the tangent points of
F with this line. In some contexts, like for instance in Ilyashenko’s works, the line at infinity is
invariant by the foliations. Motivated by this, we will use the following notation

Fol(d, L∞) = {F ∈ Fol(d) |L∞ is F − invariant}
and

FolC(d, L∞) = FolC(d) ∩ Fol(d, L∞) .

The first result in the study of FolC(d, L∞) was Dulac’s theorem (cf. [Du]) in the case d = 2.
The second one, due to Ilyashenko [Il], can be stated as follows

Theorem 1.2. R(1, d+ 1) ∩ FolC(d, L∞) is an irreducible component of FolC(d, L∞).

After that, J. Muciño in [Mu] proved the following :

Theorem 1.3. If k ≥ 3 then R(k, k) is an irreducible component of FolC(2 k − 2).

Remark 1.2. We would like to observe that R(1, 1) = Fol(0) and that R(2, 2) is not an
irreducible component of FolC(2) because it is a proper subset of L(1, 1, 2).
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The general case for foliations with a rational first integral was proved by H. Movasati in
[Mo1].

Theorem 1.4. If d1 + d2 ≥ 5 then R(d1, d2) is an irreducible component of FolC(d1 + d2 − 2).

The case of logarithmic foliations, in the context of foliations with L∞ invariant, was consid-
ered also by H. Movasati. Given k ≥ 2 and D = (d1, ..., dk), set

L∞(D) := L(1, d1, ..., dk) ∩ Fol(d, L∞),

where d = d1 + ...+ dk − 1.

Theorem 1.5. Given D = (d1, ..., dk) with k ≥ 2 and d = d1 + ... + dk − 1 ≥ 2, L∞(D) is an
irreducible component of FolC(d, L∞).

In some of the above results, one of the tools of the proof is to prove that when we perturb
the foliation in such a way that some of the centers persits then all others persist after the
perturbation (see for instance [Il]). Motivated by this fact, we consider the following situation:
let L be a line bundle on a compact surface M . Assume that FolC(M,L) 6= ∅ and let V be an
irreducible component of FolC(M,L). Let Fo ∈ V and po be a Morse center of Fo. Since po
is a non-degenerate singularity of Fo, by applying the implicit function theorem, there exists a
holomorphic map F 7→ P (F), defined in some neighborhood U of Fo, such that:

• P (F) ∈ (M,po) is a non-degenerate singularity of F for every F ∈ U .

Definition 2. In the above situation, we say that po is a persistent center in V (briefly p.c. in
V) if P (F) is a Morse center of F for every F ∈ V ∩ U . We set

Npc(Fo,V) = number of persistent centers of Fo in V
and

Npc(V) = max {Npc(F ,V) | F ∈ V} .

We need another definition.

Definition 3. Let Fo ∈ Fol(M,L) and po be a non-degenerate singularity of Fo. Let

G : [0, 1]→ Fol(M,L)

be a continuous curve with G(0) = Fo. We say that po can be continued along G if there exists
a curve γ : [0, 1] → M such that γ(0) = po and γ(t) is a non-degenerate singularity of G(t) for
all t ∈ [0, 1]. We say also that γ is a continuation of po along G.

Now we can state the following result:

Theorem 2. Let V be an irreducible component of FolC(M,L). Fix Fo ∈ V and let po be a p.c.
in V of Fo. Let G : [0, 1]→ V be a continuous curve with G(0) = Fo and assume that po can be
continued along G by a curve γ : [0, 1]→M . Then γ(1) is a p.c. in V of G(1).

A straightforward consequence is the following :

Corollary 1. Let V be an irreducible component of FolC(M,L) and Fo ∈ V be a foliation with
k ≥ 2 Morse centers, say p1, ..., pk, where p1 is a p.c. in V. Assume further that there exist
continuous curves Gj : [0, 1]→ V, j = 2, ..., k, such that

(a). Gj(0) = Gj(1) = Fo, for all j = 1, ..., k.
(b). For all j = 2, ..., k, p1 admits a continuation γj : [0, 1] → M along Gj such that

γj(1) = pj, 2 ≤ j ≤ k.

Then p2, ..., pk are persistent centers of Fo in V and Npc(V) ≥ k.
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As an application of corollary 1 we will prove that all centers of a generic logarithmic foliation
are persistent in the irreducible component. At this point we should say that Movasati’s theorem
1.5 was only proved in the context of foliations with the line at infinity invariant. It is not known
if L(d1, ..., dk) is an irreducible component of FolC(d), d = d1 + ... + dk − 2. However, we have
the following :

Corollary 2. Let k ≥ 2, D = (d1, ..., dk), d = d1 + ...+ dk − 2 ≥ 2 and

N(D) = d2 + d+ 1−
∑
i<j

di dj .

Denote by V(D) the irreducible component of FolC(d) that contains L(D). Then the generic
foliation F ∈ L(D) has N(D) Morse centers. Moreover, all these centers are persistent in V(D)
and Npc(V(D)) = N(D).

As a consequence we will give a simple proof that R(1, d+ 1) is an irreducible component of
FolC(d) for all d ≥ 2.

Corollary 3. R(1, d+ 1) is an irreducible component of FolC(d) for all d ≥ 2.

Another class of foliation with Morse centers are the so called pull-back foliations.

Example 3 (Pull-back foliations). Let M,N be compact surfaces, G ∈ Fol(M,L) and
Ψ: N 99KM be a rational map of topological degree k ≥ 2. We would like to remark that
in some cases F := Ψ∗(G) has Morse centers. In fact, assume that:

(i). Ψ has a fold curve C and D := Ψ(C).
(ii). There are smooth points p ∈ C and q = ψ(q) ∈ D such that q /∈ sing(G), but G has a

non-degenerate tangency with D at q.

In this case, p is a Morse center of F . In fact, (i) and (ii) imply that there exist local coordinate
systems, (U, (x, y)) at the source and (V, (u, v)) at the target, such that:

(iii). C∩U = (y = 0), D∩V = (v = 0), p = (x = y = 0), q = (u = v = 0) and Ψ(x, y) = (x, y2).
(iv). Condition (ii) implies that G has a local holomorphic first integral at q of the form

g(u, v) = v + u2 + h.o.t..

It follows from (iv) that f(x, y) := g(x, y2) = x2 + y2 + h.o.t. is a local first integral of F at p of
Morse type. Therefore, F has Morse centers.

In the case of M = N = P2 the map Ψ can be lifted by the projection Π: C3 \ {0} → P2 to a
polynomial map

Ψ̃ = (F,G,H) : C3 → C3 ,

with Π ◦ Ψ̃ = Ψ ◦ Π, where F , G and H are homogeneous polynomials of the same degree, the
algebraic degree of Ψ, which we denote deg(Ψ).

Remark 1.3. If Ψ and G are generic, with dg(G) = d and deg(Ψ) = k, then

dg(Ψ∗(G)) = (d+ 2) k − 2.

Moreover, all singularities of Ψ∗(G) are non-degenerate and Ψ∗(G) has

N(d, k) := 3(k − 1)(k(d+ 1)− 1)

Morse centers. Let us denote

PB(d, k) = {Ψ∗(G) | deg(Ψ) = k , dg(G) = d} .
Note that if k > 1 and d ≥ 0 then

PB(d, k) ⊂ FolC((d+ 2)k − 2) ,
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because N(d, k) > 0. We would like to remark that PB(0, k) = R(k, k) (because
Fol(0) = R(1, 1)) and PB(1, k) = L(k, k, k) (because Fol(1) = L(1, 1, 1)). Therefore, a natu-
ral question that arises is the following:

Problem 2. Is PB(d, k) an irreducible component of FolC((d+ 2)k − 2) if k ≥ 2 and d ≥ 2 ?

Another consequence of theorem 2 is the following :

Corollary 4. Let d, k ≥ 2 and V(d, k) be the irreducible component of FolC((d+ 2)k− 2) which
contains PB(d, k). Then the generic foliation F ∈ PB(d, k) has N(d, k) = 3(k−1)(k(d+1)−1)
Morse centers. Moreover, all these centers are persistent in V(d, k) and Npc(V(d, k)) = N(d, k).

We finish this section with an example.

Example 4 (An example with FolC(M,L) = Fol(M,L)). Let M be the rational surface ob-
tained by blowing-up a point p ∈ P2. Denote by π : (M,E) → (P2, p) the blow-up map, where
E = π−1(p) is the associated divisor. Given G ∈ Fol(d), where d ≥ 2 and p /∈ sing(G), set
FG := π∗(G). Since p /∈ sing(G) it is known that (cf. [Br]) :

• E is FG invariant.
• FG has an unique singularity p̂ in E, which is a Morse center of FG .
• T ∗FG

= Π∗(T ∗G )⊕OM (E). In particular, FG ∈ Fol(M,L), where

L = Π∗(O(d− 1))⊕OM (E).

• The map π∗ : Fol(d)→ Fol(M,L) is an isomorphism, because π : M → P2 is birational.

This implies that FolC(M,L) = Fol(M,L), because the set {G ∈ Fol(d) | p /∈ sing(G)} is a
Zariski open and dense subset of Fol(d).

2. Proofs

2.1. Proof of Theorem 1. Let M be a compact complex surface and L be a line bundle such
that FolC(M,L) 6= ∅. We will assume also that FolC(M,L) $ Fol(M,L). Let us consider the
analytic subset S(L) of M × Fol(M,L) defined by

S(L) = {(p,F) ∈M × Fol(L), | p is a singularity of F} .
We call S(L) the total space of singularities of Fol(M,L). The set

Sdg(L) = {(p,F) ∈ S(L) | p is a degenerate singularity of F}
will be called the total space of degenerate singularities of Fol(M,L). Observe that Sdg(L) is an
analytic subset of S(L). We leave the proof of this fact to the reader.

The total space of Morse centers of Fol(M,L) is, by definition the set

SC(L) := {(p,F) ∈ S(L) | p is a Morse center of F} .
Note that, by definition SC(L) ⊂ S(L) \ Sdg(L), because a Morse center is a non-degenerate
singularity.

Remark 2.1. Denote by P2 : S(L)→ Fol(M,L) the restriction of the second projection to S(L),

P2(p,F) = Π2(p,F) = F , (p,F) ∈ S(L) .

Note that FolC(M,L) = P2

(
SC(L)

)
, where SC(L) denotes the closure of SC(L). On the other

hand, P2 is finite to one in the subset of S(L) such that the singularities of P2(p,F) = F has
only isolated singularities, because in this case the number of singularities of F , counted with
multiplicities, is given by (cf. [Br])

µ(L) = L2 + L .KM + C2(M) ,
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where KM and C2(M) are the canonical bundle and the second Chern class of M , respectively.

In particular, this implies that P2 is proper. The idea is to prove that SC(L) is an analytic

subset of S(L). This will imply, via the proper map theorem, that P2

(
SC(L)

)
= FolC(M,L) is

an analytic subset of Fol(M,L), and therefore an algebraic subset, by Chow’s theorem.

First of all, we will prove that SC(L) is an analytic subset of S(L) \ Sdg(L). Fix
(po,Fo) ∈ SC(L), so that po is a Morse center of Fo. As we have seen in remark 1.1, po is a
non-degenerate singularity of Fo and there exists a holomorphic chart ψ = (x, y) : U → D2

1 ⊂ C2

with po ∈ U , Dr = {z ∈ C | |z| < r}, ψ(po) = 0 ∈ D2
1 and Fo is represented in these coordinates

by the vector field Xo = x ∂x − y ∂y. Since Fol(M,L) is a finite dimensional projective space,
say with dimC(Fol(M,L)) = N , there exists an affine neighborhood U of Fo in Fol(M,L), holo-
morphic vector fields X1, ..., Xm on the polydisc U , such that any F ∈ U is represented in U by
the vector field

(3) Xα = Xo +

m∑
j=1

αj . Xj ,

where α = (α1, ..., αm) ∈ ∆, ∆ a polydisc of Cm with 0 ∈ ∆. The map α ∈ ∆ 7→ Xα parametrizes
the set of foliations {F|U | F ∈ U}.

Since the characteristic values of Fo at po are both −1, by taking a smaller ∆ if necessary,
we can assume that

• for any α ∈ ∆, Xα has an unique non-degenerate singularity p(α) ∈ U ' D2
1,

where p(0) = po and the map p : ∆ → U is holomorphic. We can assume also that
ψ(p(α)) ∈ D2

1/2 for any α ∈ ∆. This follows from the implicit function theorem.

• the characteristic values of Xα at p(α) are λ(α) and λ(α)−1, where λ : ∆ → C is holo-
morphic.

• λ(α) /∈ R+ for any α ∈ ∆. This condition implies that Xα has exactly two analytic
separatrices through p(α), which are smooth, for any α ∈ ∆ (cf. [Ma-Mo]).

Since (y = 0) ⊂ U is a separatrix of Fo ' Xo, by the theory of invariant manifolds we can
assume also that (cf. [H-P-S])

• for any α ∈ ∆ the foliation defined by Xα has a separatrix S(α) through p(α) which is
a graph of a holomorphic map φα : D1 → D1, S(α) = {(x, φα(x)) |x ∈ D1}. Moreover,
the map φ : D1 ×∆→ D1 defined by φ(x, α) = φα(x) is holomorphic.

Given α ∈ ∆, let us consider the leaf L(α) := S(α) \ {p(α)} ' D∗ of Xα. Set Σ := (x = 1/2).
Note that Σ cuts S(α) transversely at the point Σ∩S(α) = (1/2, yα) = qα, where yα = φ(1/2, α).
Since φ(p(α)) ∈ D2

1/2 we have p(α) /∈ Σ. Moreover, the homotopy group of L(α) is generated

by the closed curve δα(θ) = (eiθ/2, φ(eiθ/2, α)), θ ∈ [0, 2π]. Therefore, the holonomy group of
L(α) can be considered as a sub-group of Diff(Σ, qα) and is generated by the transformation
hα ∈ Diff(L(α), qα) corresponding to δα. Its Taylor series in the coordinate y of Σ can be
written as

hα(y) = yα +

∞∑
j=1

aj(α) (y − yα)j ,

where a1 ∈ O∗(∆) and aj ∈ O(∆) if j ≥ 2. We would like to observe that a1(α) = e2πiλ(α) for
every α ∈ ∆ (cf. [Ma-Mo]).

Now, we use the following result due to Mattei and Moussu (cf. [Ma-Mo]) :

• Xα has a holomorphic first integral in a neighborhood of p(α) if, and only if, hα has
finite order. Moreover, the first integral is of Morse type if, and only if λ(α) = −1 and
hα = id, the identity transformation.
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In particular, p(α) is a Morse center of some Xα if, and only if, λ(α) = −1 and aj(α) = 0 for all
j ≥ 2.

Let I ⊂ O(U ×∆) be the ideal

(4) I = 〈x− x(p(α)), y − y(p(α)), λ(α) + 1, aj(α) | j ≥ 2〉

and Io be its germ at (po, 0) ∈ U × ∆. Since U × ∆ is finite dimensional, Io is finitely gen-
erated. If we identify the neighborhood U of Fo with ∆, then Jo =

√
Io defines the germ of

SC(L) at (po,Fo), by Mattei-Moussu theorem. This proves that SC(L) is an analytic subset of
S(L) \ Sdg(L).

Now, we will see that for any irreducible component X of SC(L) there is an analytic subset Y
of S(L) such that X is an open subset of Y. This will imply that X is an irreducible component
of Y, and so an analytic subset of S(L). Given a point qo = (po,Fo) ∈ SC(L), we have seen that
the ideal (see (4))

I(qo) := 〈x− x(p(α)), y − y(p(α)), λ(α) + 1, aj(α) | j ≥ 2〉

defines the germ of SC(L) at qo. Given m ∈ N set

Im(qo) := 〈x− x(p(α)), y − y(p(α)), λ(α) + 1, a2(α), ..., am(α)〉 , if m ≥ 2
I1(qo) := 〈x− x(p(α)), y − y(p(α)), λ(α) + 1〉 , if m = 1

In particular, if Im is a representative of the ideal Im(qo) and (p,F) ∈ Im, m ≥ 1, then the
F has two local separatrices through p, which are smooth, say Σ1 and Σ2. The holonomy of Σj
is conjugated to some fj ∈ Diff(C, 0) such that jm0 (fj)(z) = z, j = 1, 2, where jm0 denotes the
mth-jet of fj at 0.

Note that I(qo) =
⋃
m≥1 Im(qo) and that Im(qo) ⊂ Im+1(qo) for all m ≥ 0. Since Oqo

is a noetherian ring, there exists N ∈ N ∪ {0} such that I(qo) = IN (qo), which means that
Im(qo) = IN (qo) for all m ≥ N . Since we are assuming that FolC(M,L) 6= Fol(M,L), we must
have N ≥ 1. Define N : SC(L)→ N by

N(qo) = min{N ∈ N | Im(qo) = IN (qo) , ∀ m ≥ N} .

Observe that the function N : SC(L) → N is upper semi-continuous. In fact, given qo ∈ SC(L)
let U be a neighborhood of qo such that the ideal IN(qo)(qo) has a representative in U . It follows
from the definition that N(q) ≤ N(qo) for all q ∈ U . This implies that, if X ⊂ S(L) \ Sdg(L) is
an irreducible component of SC(L) then:

(i). sup{N(q) | q ∈ X} := N(X ) < +∞.
(ii). The subset UN(X ) := N−1(N(X )) is an open and dense subset of X .

Given (p,F) ∈ S(L) \ Sdg(L) and a holomorphic vector field X that represents F in a neigh-
borhood of p, we say that F has trace zero at p if tr(DX(p)) = 0. This condition does not
depends on the vector field X representing F in a neighborhood of p. Define

Y1 := {(p,F) ∈ S(L) \ Sdg(L) | F has trace zero at p} .

Note that if (p,F) ∈ Y1 then

(iii). F has two smooth local separatrices through p.
(iv). The holonomy of both separatrices is tangent to the identity. Moreover, the order of

tangency with the identity is the same for both separatrices.

Given k ≥ 2 define Yk := {(p,F) ∈ Y1 | the holonomy of a separatrix of F through p is
conjugated to f ∈ Diff(C, 0) with jk0 (f)(z) = z}. It follows from the above arguments that:

(v). Yk is an analytic subset of S(L) \ Sdg(L) for all k ≥ 1.
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(vi). The irreducible component X of SC(L) coincides with one of the irreducible components
of YN(X ) (see (ii)).

By (vi) it is sufficient to prove the following:

Lemma 2.1. Yk is an analytic subset of S(L) for all k ≥ 1.

Proof. The proof will be by induction on k ≥ 1.
Y1 is analytic. Given (po,Fo) ∈ Y1, take a parametrization (Xα)α∈∆ of a neighborhood U of

Fo in Fol(M,L) as in (3), where Xα is a holomorphic vector field on a neighborhood U of po.
Then Y1 ∩ (U × U) is defined by the analytic equations Xα(p) = 0 and tr(DXα(p)) = 0.

If k ≥ 1 then Yk analytic =⇒ Yk+1 analytic. Observe first that Yk+1 ⊂ Yk, because
Yk+1 ⊂ Yk. Let (po,Fo) ∈ Yk and X be a holomorphic vector field representing Fo in a neighbor-
hood of po. Fix a holomorphic coordinate system (U, z = (x, y)) with po ∈ U , x(po) = y(po) = 0.
Write the Taylor series of X at po = (0, 0), in this coordinate system, as

X(z) =

∑
|σ|≥1

aσz
σ

 ∂x +

∑
|σ|≥1

bσz
σ

 ∂y

where σ = (m,n), m,n ≥ 0, |σ| = m + n, zσ = xm yn, and aσ, bσ ∈ C. We will identify the
`th-jet of X at 0, j`0(X), with the point (aσ, bσ | |σ| ≤ L) ∈ CL, where

L = L(`) = 2 × #{(m,n) | 1 ≤ m+ n ≤ `}.

Claim 2.1. If (po,Fo) ∈ Yk and X is as above, then there exists a polynomial P of L(2k + 1)

variables such that (po,Fo) ∈ Yk+1 if and only if P (j2k+1
0 (X)) = 0.

Proof. Since (po,Fo) ∈ Y1 the eigenvalues of DX(po) are a,−a 6= 0 and we can assume that
the linear part of X at po = 0 is aX1, where X1 = x ∂x − y ∂y. According to [M], X is formally

equivalent to a formal vector field X̂ = aX1 + Ŷ , where DY (0) = 0 and [X1, Y ] = 0. This

implies that X̂ can be written as below

X̂(u, v) = a u (1 + F̂ (u v))∂u − a v (1 + Ĝ(u v))∂v ,

where F̂ and Ĝ are formal power series in one variable. On the other hand, the formal holonomy
of the separatrix (v = 0) can be obtained by integrating the formal differential equation

(5)
dV

dθ
= −i V

(
1 +H(r eiθ V )

)
with initial condition V (0) = vo, where 1+H(z) is the formal power series of (1+Ĝ(z))/(1+F̂ (z)),

H = (Ĝ− F̂ )/(1 + F̂ ). Equation (5) is obtained by the restriction of the formal foliation given

by X̂ to the cilinder {(u, v) |u = r eiθ , θ ∈ [0, 2π]}. The power series f̂(vo) := V (2π, vo)
corresponds to the holonomy of the foliation in the section (u = r). The formal diffeomorphism

f̂ ∈ D̂iff(C, 0) is formally conjugated to the germ of holonomy f ∈ Diff(C, 0) of one of the
two separatrices of the original vector field X (cf. [M]).

Equation (5) can be solved formally by series by writing the solution as

V (θ, vo) =

∞∑
j=1

cj(θ) v
j
o

and substituting in (5). This gives:

(6)
∑
j≥1

c ′j(θ) v
j
o = −i

∑
j≥1

cj(θ) v
j
o

1 +H

r ei θ ∑
j≥1

cj(θ) v
j
o
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with initial conditions c1(0) = 1 and cj(0) = 0 if j ≥ 2. If H 6≡ 0 and the first non-zero jet of H
is j`0H(z) = h` z

`, h` 6= 0, then (6) implies that

c ′j + i cj = 0 , if 1 ≤ j ≤ ` , and c ′`+1 + i c`+1 = −i h` r` ei`θ c`+1
1 =⇒

c1(θ) = e−iθ , cj(θ) = 0 , if 2 ≤ j ≤ ` , and c`+1(θ) = −i h` r` θ .

In particular, we get

j`0f̂(vo) = vo − 2iπ h` v
`+1
o =⇒ ` = k ,

because (po,Fo) ∈ Yk. This proves also that (po,Fo) ∈ Yk+1 if, and only if, hk = 0.
Now, we use the known fact that there exists a germ of diffeomorphism F ∈ Diff(C2, 0) such

that (cf. [M]):

(I). F (z) = z+G2(z)+...+G2k+1(z), where Gj(z) is homogeneous of degree j, 2 ≤ j ≤ 2k+1,

whoose coefficients are rational functions of the coefficients of j2k+1
0 (X).

(II). j2k+1
0 (F ∗(j2k+1

0 (X))) = j2k+1
0 (F ∗(X)) = j2k+1

0 (X̂) =

= a u (1 + jk0 (F̂ )(u v))∂u − a v (1 + jk0 (Ĝ)(u v))∂v.

Since F ∗(X)(w) = DF (w)−1.X ◦F (w), we get from (I) and (II) that the coefficients of j2k+1
0 (X̂)

are rational functions of the coefficients of j2k+1
0 (X). Therefore, the coefficients of jk0 (F̂ ) and of

jk0 (Ĝ) are rational functions of the coefficients of j2k+1
0 (X). On the other hand, we have

(III). hk z
k = jk0 (H(z)) = jk0 (Ĝ(z)− F̂ (z))/(1 + F̂ (z)) = jk0 (Ĝ(z)− F̂ (z))

and this implies that hk is a rational function of the coefficients of j2k+1
0 (X), so that we can

write hk = P (j2k+1
0 (X))/Q(j2k+1

0 (X)), where P and Q are polynomials. In particular,

(po,Fo) ∈ Yk ⇐⇒ hk = 0 ⇐⇒ P (j2k+1
0 (X)) = 0 ,

which proves the claim. �

Let us finish the proof of lemma 2.1. Fix qo = (po,Fo) ∈ Yk+1. Since Yk+1 ⊂ Yk and Yk is
analytic, fix a neighborhood U × U of qo in M × Fol(M,L) with the following properties:

(1). There exists a holomorphic chart φ = (x, y) : U → C2 such that x(po) = y(po) = 0 and
φ(U) is a polydisk of C2.

(2). There exist holomorphic vector fields X0, X1..., Xm on U such that the family

(Xα := X0 +

m∑
j=1

αj Xj)α∈∆

parametrizes the foliations in U (restricted to U), where ∆ ⊂ Cm is a polydisk. In this
way, we can consider U × U parametrized by (x, y, α).

(3). Yk ∩ (U × U) is defined by analytic equations f1(x, y, α) = ... = fn(x, y, α) = 0. Set
F = (f1, ..., fn).

According to claim 2.1 there exists a polynomial P in CL(2k+1) such that if (x, y, α) ∈ Yk∩(U×U)
then

(x, y, α) ∈ Yk+1 ∩ (U × U) ⇐⇒ P
(
j2k+1
(x,y) Xα

)
= 0 .

Since (x, y, α) 7→ P
(
j2k+1
(x,y) Xα

)
extends analytically to U × U , this finishes the proof of lemma

2.1. �
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2.2. Proof of Theorem 2 and Corollary 1. Let V be an irreducible component of FolC(M,L),
F0 ∈ V and p0 be a p.c. of F0 in V. Let us express this condition in terms of S(L). Since p0 is
a non-degenerate singularity of F0, by the implicit function theorem there exist neighborhoods
U of F0 in Fol(M,L), U of p0 in M and a holomorphic map P : U → U such that

(i) U is biholomorphic to a polydisc and V ∩ U is an analytic subset of U .
(ii) P (F0) = p0 and sing(F) ∩ U = {P (F)}, for all F ∈ U .
(iii) P (F) is a non-degenerate singularity of F , for all F ∈ U .

Lemma 2.2. In the above situation define Φ: U → S(L) by Φ(F) = (P (F),F). Then
Φ(V ∩ U) ⊂ SC(L). In particular, for any F ∈ V ∩ U , P (F) is a p.c. of F in V.

Proof. In fact, since p0 is a p.c. of F0 in V, it follows from the definition of p.c. that there
exists a neighborhood U1 ⊂ U of F0 such that if F ∈ V ∩ U1 then P (F) is a Morse center of F .
In particular, Φ(V ∩ U1) ⊂ SC(L). Since Φ is holomorphic, V ∩ U is an analytic subset of U and
SC(L) is an analytic subset of S(L), we get Φ(V ∩ U) ⊂ SC(L). �

Lemma 2.2 implies the following: let SV be the irreducible component of SC(L) containing
(po,Fo) and P2 = Π2|S(L) : S(L) → Fol(L) be as in the proof of theorem 1. Then P2(SV) = V
and P2|SV : SV → V is a ramified covering.

In fact, since SV is irreducible and P2 is finite to one and proper, the set P2(SV) ⊂ Fol(M,L)
is analytic and irreducible. On the other hand, lemma 2.2 implies that V ∩ P2(SV) contains
V ∩ U , which is an open set of V and of P2(SV). Hence, by irreducibility of V and P2(SV) we
get P2(SV) = V. This implies also that P2|SV : SV → V is a ramified covering.

Now, let G : [0, 1]→ V be a continuous curve with G(0) = Fo and such that po can be continued
along G by a curve γ : [0, 1]→M . We want to prove that γ(1) is a p.c. in V of G(1).

Define β : [0, 1] → S(L) by β(t) = (γ(t),G(t)). Note that β is a lift of G : [0, 1] → V by the
covering P2 : S(L)→ Fol(M,L) : P2 ◦ β = G. Since γ(t) is a non-degenerate singularity of G(t)
for all t ∈ [0, 1], lemma 2.2 implies that this lift is unique. It follows that β[0, 1] ⊂ SV, so that
β(1) ∈ SV. Since P2|SV : SV → V is open the singularity γ(1) must be a p.c. of G(1). �

2.3. Proof of Proposition 1 and Corollary 2. Fix D = (d1, ..., dk) ∈ Nk, k ≥ 2. Let us
sketch the proof that the set

Z1 = {(F,Λ) ∈ P(D, k) | all singularities of F(F,Λ) are non-degenerate}

is a Zariski open and dense subset of P(D, k). Recall that, if F = (F1, ..., Fk) and Λ = (λ1, ..., λk),
where

∑
j dj λj = 0, then F(F,Λ) is represented in homogeneous coordinates by the form

Ω(F,Λ) =

k∑
j=1

λj
dFj
Fj

.

Let C2 ' E0 ⊂ P2 be the affine coordinate system given by E0 = {(x, y, 1) ∈ C3 | (x, y) ∈ C2}.
If we set fj(x, y) := Fj(x, y, 1) then F(F,Λ) is represented in E0 by the polynomial 1-form
f1...fk . ω(F,Λ), where

ω(F,Λ) =

k∑
j=1

λj
dfj
fj

or by the vector field X = X(F,Λ) = P (F,Λ) ∂x +Q(F,Λ) ∂y, where

P (F,Λ) = f1...fk

k∑
j=1

λj
∂yfj
fj

and Q(F,Λ) = −f1...fk

k∑
j=1

λj
∂xfj
fj

.
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The singularities of F(F, λ) are non-degenerate if, and only if, the map Φ: C2 → C2×C2 given by
Φ(x, y) = (x, y, P (x, y), Q(x, y)) is transverse to the zero section Σ = {(x, y, 0, 0) | (x, y) ∈ C2}.
This implies already that the set Z1 is Zariski open. Therefore, it is sufficient to prove that
Z1 6= ∅. Let us sketch the proof of this fact.

Consider the analytic map X : P(D, k)× C2 → C2 × C2 defined by

X(F,Λ, x, y) = (x, y, P (F,Λ)(x, y), Q(F,Λ)(x, y)) .

It is known from transversality theory that if X is transverse to Σ then the set

{(F,Λ) |X(F,Λ)(x, y) := X(F,Λ, x, y) is transverse to Σ}

has full measure. On the other hand, the reader can check that the map X is transverse to Σ.
Therefore, Z1 is Zariski open and dense.

Let us prove that there exists Z ⊂ Z1, Zariski open and dense subset, such that for any
(F,Λ) ∈ Z then F(F,Λ) ∈ Fol(d), d = d1 + ...+ dk − 2, and F(F,Λ) has at least

d2 + d+ 1−
∑
i<j

di dj

Morse centers. Recall that if (F1, ..., Fk, λ1, ..., λk) ∈ P(D, k) then

• Sj := (Fj = 0) is F(F,Λ)-invariant, j ∈ {1, ..., k}. In particular, any singularity of the
curve S :=

⋃
j Sj is a singularity of F(F,Λ).

Let Z2 be the Zariski open and dense subset of P(D, k) defined by (F,Λ) ∈ Z2 if

(1). S1, ..., Sk are smooth.
(2). for all i < j the curves Si and Sj are transverse, so that #(Si ∩ Sj) = di dj .
(3). if i < j < ` then Si ∩ Sj ∩ S` = ∅.
(4). λj 6= 0 for all j = 1, ..., k for all j = 1, ..., k and if i < j then λi 6= λj .

If (F,Λ) ∈ Z2 then :

(i). if p ∈ Sj \
⋃
i 6=j Si then p /∈ sing(F(F,Λ)).

(ii). if i 6= j and p ∈ Si ∩ Sj then p is a non-degenerate singularity of F(F,Λ) with charac-
teristic values −λi/λj and −λj/λi.

Properties (i) and (ii) are well known (cf. [LN-S]). In particular, if (F,Λ) ∈ Z2 then F(F,Λ)
has no Morse center on the curve S because the characteristic values of the singularities on S
are different from −1, by (4). On the other hand, if (F,Λ) ∈ Z1 ∩ Z2 := Z then the divisor of
zeroes of Ω(F,Λ) is empty and so F(F,Λ) has degree d = d1 + ...+ dk − 2. Moreover, it follows
from (1), (2) and (3) that sing(F(F,Λ)) ∩ S =

⋃
i<j Si ∩ Sj , and so

#(sing(F(F,Λ)) ∩ S) =
∑
i<j

di dj =⇒

#(Morse centers of F(F,Λ)) = d2 + d+ 1−
∑
i<j

di dj := N(D) .

It remains to prove that all these Morse centers are persistent in V(D). Set

LZ = {F(F,Λ) ∈ L(D) | (F,Λ) ∈ Z}

and

SCLZ = {(p,F) ∈ S(d) | F ∈ L(D,Z) and p is a Morse center of F} ,
where S(d) = {(p,F) | F ∈ Fol(d) and p is a singularity of F}.
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Remark 2.2. The map PZ := P2|SCLZ
: SCLZ → LZ is a covering map with N(D) sheets.

In fact, since PZ is a covering because Morse centers are non-degenerate singularities. On
the other hand, the number of sheets is N(D) because F(F,Λ) has N(d) Morse centers for all
(F,Λ) ∈ Z.

It follows from corollary 1 that it is enough to prove that SCLZ is connected. In fact,
fix Fo = F(Fo,Λo) ∈ L(D,Z) and let p1, ..., pN(D) be the Morse centers of Fo. Note that

P−1
Z (Fo) = {(pj ,Fo) | j = 1, ..., N(D)}. On the other hand, it is clear that at least one of the

Morse centers of Fo, say p1, is persistent in V(D). If we can prove that SCLZ is connected then
there exist continuous curves βj : [0, 1]→ SCLZ , j = 2, ..., N(D), such that βj(0) = (p1,Fo) and
βj(1) = (pj ,Fo), 2 ≤ j ≤ N(D), and this implies, via corollary 1, that all centers of Fo are
persistent in V(D).

Let us give an idea of the proof that SCLZ is connected. Observe first that LZ is connected.
In particular, it is sufficient to prove that there is a fiber P−1

Z (F1) with the property that it is
possible to connect any two points in this fiber by a curve in SCLZ . With this in mind, we
consider a logarithmic foliation G on P3 defined in homogeneous coordinates by the form

(7) Ω =

k∑
j=1

λj
dGj
Gj

,

where:

1. Gj ∈ C[z0, ..., z3] is homogeneous of degree dj , 1 ≤ j ≤ k. We assume that the algebraic
set Sj of P3 defined by Gj = 0 is smooth, 1 ≤ j ≤ k.

2. if i 6= j then Si and Sj are tranverse.
3. if k ≥ 3 and 1 ≤ i < j < ` ≤ k then dGi(p) ∧ dGj(p) ∧ dG`(p) 6= 0 for any p ∈ C4 \ {0}

with Gi(p) = Gj(p) = G`(p) = 0.
4. if k ≥ 4 and 1 ≤ i < j < ` < m ≤ k then (Gi = Gj = G` = Gm = 0) = {0}.
5. λj 6= 0 for all j = 1, ..., k and λi 6= λj for all 1 ≤ i < j ≤ k.

Given a linearly embedded plane P2 ' Σ ⊂ P3 then we can define a logarithmic foliation on P2

by the restriction Ω|Σ. In fact we will consider a more general situation as below:

Remark 2.3. Let H be a codimension one holomorphic foliation of P3. We say that a 2-plane
P2 ' Σ ⊂ P3 is in general position with respect (notation g.p.w.r.) to H if

• Σ is not H-invariant.
• outside Σ ∩ sing(H) the tangencies of H with Σ are isolated points in Σ.

Note that the set of 2-planes in g.p.w.r. to H is a Zariski open and dense subset of P̆3, the dual
of P3 (cf. [C-LN-S]).

Given a 2-plane P2 ' Σ ⊂ P3 in g.p.w.r. to H then the restriction H|Σ is defined as i∗(H),
where i : Σ→ P3 is a linear embedding. Note that the singular set of H|Σ can be written as

sing(H|Σ) = T (H,Σ) ∪ (Σ ∩ sing(H))

where T (H,Σ) denotes the set of points q ∈ P3 \ sing(H) such that Σ is tangent at q to the leaf
of H through q. Since q /∈ sing(H), H has a holomorphic first integral in a neighborhood of q,
say f : U → C. In particular, g := f |Σ∩U is a holomorphic first integral of HΣ in a neighborhood
of q in Σ. Since Σ is tangent to H at q, q is a singular point of g. We say that the tangency
is non-degenerate at q ∈ T (H,Σ) if q is a Morse singularity of g and so a Morse center of H|Σ.
Otherwise, we say that the tangency is degenerate.

Now, we introduce the Gauss map of H, G : P3 \ sing(H)→ P̆3, defined by

G(q) = 2-plane tangent at q to H .
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Note that G can be considered as a rational map G : P3 99K P̆3. Given q ∈ P3 \ sing(H) such
that G(q) is in g.p.w.r. to H we set H(q) := H|G(q). Note that q is a singular point of H(q). Set

M(H) = {q ∈ P3 \ sing(H) | q is a Morse center of H(q)} ,
S(H) = {Σ | Σ ⊂ P3 is a 2-plane and ∀ q ∈ T (H,Σ) then q is a Morse center of H|Σ}

and
MS(H) := {q ∈ P3 \ sing(H) | G(q) ∈ S(H)} .

The following result was proved in [Ce-LN]:

Theorem 2.1. Let H be a holomorphic codimension one foliation on P3. If M(H) = ∅ then all
leaves of H are ruled surfaces and

(a). either H = Φ∗(G), where Φ: P3 → P2 is a linear map (a linear pull-back),
(b). or H has rational first integral φ that can be written in some homogeneous coordinate

system as

φ(x, y, z, w) =
z P (x, y) +Q(x, y)

wP (x, y) +R(x, y)
,

where P,Q,R are homogeneous polynomials with deg(Q) = deg(R) = deg(P ) + 1.

As a consequence, we get the following:

Corollary 2.1. If H is not as in (a) or (b) of theorem 2.1 then MS(H) is a Zariski open and
dense subset of P3. In particular, MS(H) is connected.

Sketch of the proof. By analycity of H it can be proved that Y := P3 \M(H) is an algebraic
subset of P3. In particular, M(H) is a Zariski open subset of P3. Since H is not as (a) or (b) of
theorem 2.1 we get M(H) 6= ∅ and so Y is proper and the set Z := Y \ sing(H) has dimension

≤ 2. Since the Gauss map G is rational the set W := G(Z) is algebraic of dimension ≤ 2.
In particular, G is dominant and G−1(W ) is a proper algebraic subset of P3. It follows that
U := P3 \G−1(W ) is a Zariski open and dense subset of P3. Now, it follows from the definition
that U = MS(H), which proves the result. �

Let us finish the proof that SCLZ is connected. The reader can check that the logarithmic
foliation G on P3 defined by (7) with the properties 1,...,5, is not like in (a) or (b) of theorem
2.1. As a consequence, MS(G) ⊂ P3 is open dense and connected. Fix p0 ∈ MS(G) and
let Fo := G|G(p0), where G denotes the Gauss map of G. Note that with condition 5 then
the set of Morse centers of Fo coincides with T (G, G(p0)). In particular, po is a Morse center
of Fo and Fo ∈ LZ(D). Fix another Morse center p1 of Fo. Since MS(G) is connected let
γ : [0, 1] → MS(G) be a curve with γ(0) = p0 and γ(1) = p1. Let I : [0, 1] × P2 → P3 be a
continuous map such that for any t ∈ [0, 1] the map It : P2 → P3 is a linear embedding with
It(P2) = G(γ(t)). This defines a continuous curve Γ: [0, 1] → LZ by Γ(t) = I∗(G|G(γ(t))) with

the property that Γ(0) = Γ(1) = I∗0 (Fo) and I−1
0 (po) can be continued along Γ by the curve

δ =: [0, 1] → P2 defined by δ(t) = I−1
t (γ(t)), so that the hypothesis of corollary 1 is verified.

This finishes the proof of corollary 2. �

2.4. Proof of Corollary 3. A foliation Fo ∈ R(1, d+ 1) has a rational first integral written in
homogeneous coordinates as Fo/L

d+1
o , where Fo is homogeneous of degree d+ 1 and Lo is linear.

By corollary 2 if Fo and Lo are generic then Fo has degree d and N(1, d+1) = d2 Morse centers.
Let V(1, d + 1) be the irreducible component of FolC(d) containing R(1, d + 1). By corollary 2
the d2 Morse centers of Fo are persistent in V(1, d+ 1), so that there is a neighborhood U of Fo
in Fol(d) such that any foliation F ∈ V(1, d+ 1)∩U has d2 Morse centers. It is enough to prove
that V(1, d+ 1) ∩ U ⊂ R(1, d+ 1). The proof of this fact is based on the following:



FOLIATIONS WITH A MORSE CENTER 97

Lemma 2.3. Let F ∈ Fol(d) be such that F has d2 non-degenerate singularities with Baum-Bott
index zero. Then F ∈ R(1, d+ 1).

Proof. Let p1, ..., pd2 be the non-degenerate singularities of F with Baum-Bott index zero.
Let us prove first that F has an invariant straight line ` such that pj /∈ `, 1 ≤ j ≤ d2. Fix an
affine coordinate system (x, y) ∈ C2 ⊂ P2 such that the line at infinity is not F-invariant and
p1, ..., pd2 ∈ C2. In this case, F is induced in C2 by a vector field X of the form,

X = (a+ xg)
∂

∂x
+ (b+ yg)

∂

∂y
,

where a, b are polynomials with deg(a),deg(b) ≤ d and g is a non-identically zero degree d
homogeneous polynomial.

Let I be the ideal generated by a+ xg and div(X), where

div(X) =
∂(a+ xg)

∂x
+
∂(b+ yg)

∂y
=
∂a

∂x
+
∂b

∂y
+ (d+ 2)g .

By Bezout’s Theorem we have that V (I) = {p ∈ P2 | f(p) = 0 ,∀f ∈ I} has degree
deg(div(X)) deg(a + xg) = d(d + 1), i.e., V (I) has d2 + d points(counted with multiplicity):
d of these points are at infinity; they correspond to the intersection of the curve {g = 0}(which
is a union of lines) with the line at infinity; the other d2 correspond to the singularities of X in
C2 where div(X) = 0, i.e., with Baum-Bott index zero.

Since b + yg vanishes on all points of V (I) it must belong to I. Keeping in mind that
deg(b+ yg) = deg(a+ xg) = deg(div(X)) + 1 we see that there exists `1, `2 ∈ C[x, y] such that
deg(`1) = deg(`2) = 1 and

X(`1) = `2 · div(X)

Note that the left-hand side of the above equation vanishes at all singularities of X. We can
suppose, without loss of generality, that all the singularities of F are contained in C2. Thus
all the singularities of F with Baum-Bott index distinct from zero are in `2. Comparing the
homogeneous terms of degree d+ 1 of the equation one obtains that

g

(
∂`1
∂x

x+
∂`1
∂y

y

)
= (d+ 2)g

(
∂`2
∂x

x+
∂`2
∂y

y

)
.

Thus `1 − (d+ 2)`2 ∈ C, and consequently

X(`2)

`2
=

1

d+ 2
· div(X),

proving that `2 is invariant.
From now on we will suppose that F has an invariant line and will choose an affine coordinate

system where the line at infinity is invariant and

X = a
∂

∂x
+ b

∂

∂y
,

with deg(a) = deg(b) = d. We claim that div(X) = 0. Suppose not and let I be the ideal
generated by div(X) and a. V (I) in this case has degree d(d− 1) and has to vanish at d2 points
what is clearly impossible unless div(X) = 0.

Now, note that div(X) = 0 is equivalent dω = 0, where ω = bdx− ady, which implies ω = df
for some polynomial f of degree d + 1, i.e., f is a first integral of F|C2 . This implies that
F ∈ R(1, d+ 1). �
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2.5. Proof of Corollary 4. We identify a holomorphic map Φ: P2 → P2, via the projection
Π: C3 \ {0} → P2, with its lifiting Φ̃ = (F0, F1, F2) : C3 → C3, where F0, F1, F2 ∈ C[x0, x1, x2]
are homogeneous polynomials of the same degree such that (F0 = F1 = F2 = 0) = {0}. The
algebraic degree of Φ is the common degree of F0, F1 and F2. We denote the set of holomorphic
maps of algebraic degree k by H(k). Note that H(k) can be identified with a Zariski open and
dende subset of a projective space of polynomials. Given Φ = (F0, F1, F2) ∈ H(k) we define its
Jacobian, J(Φ), by

dF0 ∧ dF1 ∧ dF2 = J(Φ) . dx0 ∧ dx1 ∧ dx2 .

Observe that the singular set of Φ is S(Φ) := Π(J(Φ) = 0) ⊂ P2. If J(Φ) 6≡ 0 then S(Φ) defines
a divisor of degree 3(k − 1) in P2.

Let us consider the 1-forms Ωij on C3, 0 ≤ i < j ≤ 2, defined by

Ωij := Fi dFj − Fj dFi .
It can be proved that the subset of P2 where Φ has rank 0 (that is DΦ(p) = 0) is defined in
homogeneous coordinates by

Z(Φ) := {p ∈ C3 \ {0} | Ωij(p) = 0 , 0 ≤ i < j ≤ 2} .
We observe Z(Φ) ⊂ S(Φ). Moreover, if dFi ∧ dFj 6≡ 0 then the set Zij := Π(Oij = 0) is finite
and contains 4k2 − 6k + 3 points counted with multiplicities.

As the reader can check, this implies that the following subset of H(k) is Zariski open and
dense:

W (k) = {Φ = [F0 : F1 : F2] | J(Φ) is irreducible and Z(Φ) = ∅} .
If Φ ∈W (k) then:

• S(Φ) is a smooth curve of P2.
• rank(DΦ(p)) ≥ 1 for all p ∈ P2 and rank(DΦ(p)) = 1 ⇐⇒ p ∈ S(Φ). In particular,
dim(ker(DΦ(p))) = 1 and dim(Im(DΦ(p)) = 1 for all p ∈ S(Φ).

• C(Φ) := {p ∈ S(Φ) | ker(DΦ(p)) = TpS(Φ)} is a finite subset of S(Φ). Note that
Φ(S(Φ)) is an irreducible singular curve of P2 and if p ∈ C(Φ) then Φ(p) is a singularity
of Φ(S(Φ)) of cuspidal type.

• if p ∈ S(Φ) \ C(Φ) then p is a fold singularity, that is there exists a holomorphic chart
φ = (x, y) : U → C2, p ∈ U , such that φ(p) = 0 and Φ(x, y) = (x, y2).

Now, fix Φ ∈W (k) and assume that G ∈ Fol(d) satisfies the following conditions:

• all singularities of G are non-degenerate and G has no Morse center.
• Φ(S(Φ)) ∩ sing(G) = ∅.
• if p ∈ C(Φ) then Im(DΦ(p)) is transverse to the leaf of G through p.
• the tangencies of G with Φ(S(Φ) \ C(Φ)) are non-degenerate.

It can be proved that the set Z(Φ) of foliations in Fol(d) that satisfy the above conditions is a
Zariski open and dense subset. We leave the proof to the reader.

On the other hand, if Φ = [F0 : F1 : F2] and G are as above then G is represented in
homogeneous coordinates by a polynomial 1-form ω = P dx + Qdy + Rdz, where P , Q and R
are homogeneous polynomials of degree d+ 1 and xP + y Q+ z R ≡ 0. It follows that Φ∗(G) is
represented in homogeneous coordinates by the form

P (F0, F1, F2) dF0 +Q(F0, F1, F2) dF1 +R(F0, F1, F2) dF2

whose coeffitients are homogeneous of degree (d + 1) k + k − 1. This implies that Φ∗(G) has
degree ` := (d + 1) k + k − 2 = (d + 2) k − 2. On the other hand, the map Φ has topological
degree k2 and if we set X = Φ−1(Φ(S(Φ))) then the map

Φ|P2\X : P2 \X → P2 \ Φ(S(Φ))
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is a regular covering with k2 sheets. In particular, for any point p /∈ Φ(S(Φ)) we have
#(Φ−1(p) = k2. Now, G has d2 + d+ 1 non-degenerate singularities and sing(G)∩Φ(S(Φ)) = ∅,
so that Φ−1(sing(G)) contains exactly k2 (d2 + d+ 1) singularities of Φ∗(G) which are not Morse
centers and are non-degenerate , because rank(DΦ(q)) = 2 for all q /∈ X. Since the tangencies
of G with Φ(S(φ) \ C(Φ)) are non-degenerate, the remaining singularities of Φ∗(G) are Morse
centers. Finally, the total number of singularities of Φ∗(G) is `2 + ` + 1, so that the number of
Morse centers is

`2 + `+ 1− k2 (d2 + d+ 1) = 3(k − 1)(k(d+ 1)− 1) = N(d, k) .

It remains to prove that all these centers are persistent in the irreducible component of FolC(`)
that contains PB(d, k). It is sufficient to find an example Φ∗(Fo) ∈ PB(d, k) with N = N(d, k)
centers, say p1, ..., pN , such that for every 1 ≤ i < j ≤ N there exist curves G : [0, 1]→ PB(d, k)
and γ : [0, 1] → P2 with G(0) = G(1) = Φ∗(Fo), γ(0) = pi, γ(1) = pj and such that γ(t) is a
Morse center for G(t) for all t ∈ [0, 1]. The idea is the same of the proof of corollary 2: to extend
a foliation Φ∗(G) on P2 ⊂ P3, with exactly N(d, k) Morse centers, to a foliation H on P3 with
the following properties:

• H = Ψ∗(G) where Ψ: P3 99K P2 is a rational extension of Φ.

• if we denote by G : P3 \ sing(H)→ P̆3 the Gauss map associated to H then the subset

MS(H) :=
{
p ∈ P3 \ sing(H) | H|G(p) has exactly N(d, k) Morse centers

}
is a Zariski open and dense subset of P3. In particular, it is connected.

This is not very difficult to do and we leave the proof of the existence of this extension to the
reader. Finally, we consider a curve γ : [0, 1] → MS(H) such that γ(0) = pi and γ(1) = pj and
set G(t) = H|G(γ(t)), as in the proof of corollary 2. This finish the proof of corollary 4. �
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ON SMOOTH DEFORMATIONS OF FOLIATIONS WITH SINGULARITIES

A. MAFRA, B. SCÁRDUA, AND J. SEADE

Abstract. We study smooth deformations of codimension one foliations with Morse and

Bott-Morse singularities of center-type. We show that in dimensions ≥ 3, every small smooth
deformation by foliations of a Morse function with only center type singularities is a defor-

mation by Morse functions. We also show that this statement is false in dimension 2. In the

same vein we show that if F is a foliation with Bott-Morse singularities on a manifold M , all
of center type, and if we assume there is a component N ⊂ sing(F) of codimension m ≥ 3

such that H1(N,R) = 0, then every small smooth deformation {Ft} of F is compact, stable

and given by a Bott-Morse function ft : M → [0, 1] with only two critical values at 0 and 1.
Furthermore, each such foliation {Ft} is topologically equivalent to F . Hence, Bott-Morse

foliations with only center-type singularities and having a component N ⊂ sing(F) of codi-

mension m ≥ 3 such that H1(N,R) = 0, are structurally stable under smooth deformations.
These statements are false in general if we drop the codimension m ≥ 3 condition.

1. Introduction and results

An important problem in geometry and dynamics is studying the stability of singular foliations
under deformations. This is classical for 1-dimensional foliations defined by (real or complex)
vector fields. For higher dimensional foliations, we need to impose some additional structure on
the foliations and/or on the type of singularities, in order to be able to say something about
them.

For instance, in the interesting article [4], the authors give extensions of Reeb’s Stability
Theorem to singular holomorphic foliations of codimension 1 having a meromorphic first integral
and defined on projective manifolds M with H1(M, C) = 0. In doing so, the authors study
foliations defined by Lefschetz pencils, defined by a general meromorphic function, and prove
a stability theorem for these. A key ingredient in the proof of that theorem is looking at the
behavior of the foliation near a Kupka component of its singular set.

Let us recall that given any integrable polynomial homogeneous 1-form ω on Cn+1 with
singular set of codimension ≥ 2, we define the Kupka singular set of ω as

K(ω) = {p ∈ Cn+1\0 | ω(p) = 0, dω(p) 6= 0}.

The Kupka singular set of the corresponding foliation F = F(ω) in CP (n) is K(F) = π(K(ω))
where π is the projectivization map.

We know from [3, 4, 6, 9] that if n ≥ 3, then the Kupka set is a locally closed codimension 2
smooth submanifold of CP (n) which has a local product structure: Given a connected component
K ⊂ K(F) there exist a holomorphic 1-form η, called the transversal type of K, defined on a
neighborhood of 0 ∈ C2 and vanishing only at 0, a covering {Uα} of a neighborhood of K
in CP (n) and a family of holomorphic submersions ϕα : Uα → C2 satisfying that ϕ−1

α (0) =
K ∩ Uα and ϕ∗αη defines F in Uα. Furthermore, K(F) is persistent under small perturbations
of F , namely, fixed any p ∈ K(F) with defining 1-form ϕ∗η as above, and for any foliation F ′
sufficiently close to F , there is a holomorphic 1-form η′ close to η and a submersion ϕ′ close to
ϕ, such that F ′ is defined by (ϕ′)∗η′ near the point p.

http://dx.doi.org/10.5427/jsing.2014.9i
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In this work we study a different but somehow similar setting. Here we look at the class
of codimension one real foliations in smooth manifolds, such that at each point the foliation is
locally defined by a Bott-Morse function of center type. The singular set consists of a disjoint
union of submanifolds and one has for these, all the properties mentioned above for the Kupka
set. We also prove that just as in the case of the Kupka set, all these properties are preserved
under appropriate deformations of the foliation.

Before describing with more care what we do, let us recall that probably the most important
foundational result in the theory of foliations is the celebrated Local Stability Theorem of Reeb
(see for instance [3, 10]): A compact leaf of a foliation having finite holonomy group is stable,
i.e., it admits a fundamental system of invariant neighborhoods where each leaf is compact with
finite holonomy group. This is followed in importance by Reeb’s Global Stability Theorem: If
F is codimension one foliation, of class Cr, r ≥ 1, on a closed connected manifold M and F
has a compact leaf with finite fundamental group, then all leaves of F are compact with finite
fundamental group. Moreover, if F is transversely orientable then the leaves of F have trivial
holonomy group and they are the fibers of a locally trivial fibration M → S1. In fact, according
to Thurston ([14]), the same conclusion holds if F is transversely orientable and exhibits a
compact leaf L with zero first Betti number H1(L,R) = 0.

Some interesting questions arise when we consider small perturbations of a given foliation.
For instance the classical Tischler’s fibration theorem ([15]) states that a codimension one folia-
tion induced by a nonsingular closed one-form on a compact manifold, can be approximated by
compact foliations induced by closed one-forms, and hence the manifold fibers over the circle.
The basic idea is to perturb the closed one-form into a closed one-form with rational periods. On
the other hand, it is not true that every compact foliation can be approximated by noncompact
foliations, even if the compact foliation is defined by a closed one-form. This was already con-
sidered by Reeb, who proved the following classical result concerning stability for perturbations,
which strengthens his Local Stability Theorem:

Theorem (Reeb), [3]: Let Folrk(M) be the space of codimension k ≥ 1 foliations of class Cr

on M , 2 ≤ r ≤ ω, endowed with the C0-topology. Let F be an element in Folrk(M) with a
compact leaf L having finite fundamental group. Then for each neighborhood W of L in M and
for each point q ∈ L, there exist an open neighborhood V of q in W and a neighborhood V of F
in Folrk(M), such that for each foliation G ∈ V, the saturated of V by G is contained in W and
it is a union of compact leaves of G, each leaf being a finite covering of L.

Using arguments as in Thurston’s version of Reeb’s Global Stability Theorem, Langevin and
Rosenberg gave in [7] a generalization of the preceding result: Equip the space Folrk(M) with
the C1 topology and assume F ∈ Folrk(M) has a compact leaf L such that H1(L,R) = 0
and Hom(π1(L),GL(k,R)) = Id. Then we have the same conclusions as in Reeb’s theorem of
stability for perturbations. Moreover, the compact leaves of G ∈ V close enough to L have
trivial holonomy and they are diffeomorphic to L. In fact when k = 1 it is enough to assume
H1(L,R) = 0.

On the other hand, foliations with singularities play a significant role in several areas of
mathematics. It is thus natural to search for stability theorems for singular foliations in the
spirit of the preceding results, and that was the motivation for this article.

2000 Mathematics Subject Classification: Primary 57R30, 58E05; Secondary 57R70, 57R45.
Key words and phrases: Morse singularity, Foliation, Reeb sphere recognition.
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Our starting point is Reeb’s Sphere Recognition theorem (see [11]): If a compact manifold M
of dimension m ≥ 3 admits a foliation with Morse singularities all of center type, then all leaves
are compact and diffeomorphic to spheres Sm−1, M is homeomorphic to the sphere Sm and the
foliation is given by the level surfaces of a Morse function having only two centers as singular
set. Such a foliation will be called a Morse-Reeb fibration.

Our first result is:

Theorem 1. In dimension m ≥ 3 Morse-Reeb fibrations on spheres are stable under small
smooth deformations. Moreover, every small enough smooth deformation by foliations of a Morse
function with only center type singularities in dimension ≥ 3, is a deformation by Morse func-
tions.

It is well-known that Morse singularities are stable under deformations as functions. The point
here is proving the persistence of center type Morse singularities under smooth deformations as
foliations. We give an example showing that this condition fails in dimension 2.

The next step we envisage in this article is considering a compact connected manifold M
of dimension m ≥ 2 and a codimension one smooth (i.e., of class C∞) foliation F on M with
Bott-Morse singularities in the sense of [12, 13]. This means that its singular set, sing(F), is

a union of a finite number of disjoint compact connected submanifolds, sing(F) =
t⋃

j=1

Nj , each

of codimension ≥ 2, and for each p ∈ Nj ⊂ sing(F) there exists a neighborhood V of p in
M where the foliation is defined by a Bott-Morse function. That is, there is a diffeomorphism
ϕ : V → D × B, where D ⊂ Rnj , nj = dimNj , and B ⊂ Rm−nj are open balls centered at the
origin, such that ϕ takes F|V into the product foliation D×G, where G = G(Nj) is the foliation
on B given by a Morse function with a singularity at the origin.

Given a point p ∈ Nj , we write ϕ(p) = (x(p), y(p)), so that the discs Σp = ϕ−1(x(p)×B) are
transverse to F outside sing(F) and the restriction F|Σp

is an ordinary Morse singularity, whose
Morse index r = r(Nj) does not depend on the point p in the component Nj . The restriction
G(Nj) = F|Σp

is the transverse type of F along Nj ; it is a codimension one foliation in the disc
Σp with an ordinary Morse singularity at {p} = Nj ∩Σp. A component N ⊂ sing(F) is of center
type (or just a center) if the transverse type G(N) = F|Σq of F along N is a center, i.e., its
Morse index is either 0 or r = dim Σq.

Such a foliation F is transversally orientable if there exists a vector field X on M , possibly
with singularities at sing(F), such that X is transverse to F outside sing(F). Throughout this
paper, all foliations are assumed to be transversely oriented.

Recall that in the classical framework of nonsingular foliations, a compact leaf is stable if
it admits a fundamental system of invariant neighborhoods such that on each neighborhood
the leaves are compact. In codimension one, Reeb’s local stability theorem implies that this is
equivalent to finiteness of the holonomy group of the leaf.

One has the similar notion of stability for a center type component N ⊂ sing(F) of the
singular set of a foliation with Bott-Morse singularities: N is stable if it admits a fundamental
system of invariant neighborhoods such that on each neighborhood the leaves are compact. The
foliation is stable if all its leaves are compact and stable and all components of the singular set
are of center type and stable.

In [12] the authors prove a natural version of Reeb’s global stability theorem in this setting:
Let F be a foliation with Bott-Morse singularities on a closed oriented manifold M of dimension
m ≥ 3 having only center type components in sing(F). Assume that F has some compact leaf Lo
with finite fundamental group, or there is a codimension ≥ 3 component N of sing(F) with finite
fundamental group. Then all leaves of F are compact, stable, with finite fundamental group. If,
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moreover, F is transversely orientable, then sing(F) has exactly two components and there is a
differentiable Bott-Morse function f : M → [0, 1] whose critical values are {0, 1} and such that
f
∣∣
M\sing(F)

: M \ sing(F)→ (0, 1) is a fiber bundle with fibers the leaves of F . According to [8]

the same conclusion holds if we assume that we have a compact leaf or a codimension ≥ 3 center
type component N ⊂ sing(F) with first Betti number zero.

In this article we prove the following stability theorem:

Theorem 2. Let M be a compact oriented connected manifold and F a foliation with Bott-Morse
singularities on M all of center type. Assume there is a component N ⊂ sing(F) of codimension
` ≥ 3 and such that H1(N,R) = 0. Given a smooth deformation {Ft}, t ∈ [0, ε) of F there is
0 < ε1 < ε such that if 0 ≤ t ≤ ε1 then Ft is compact, stable and given by a Bott-Morse function
ft : M → [0, 1] with critical values at 0 and 1.

Just as for Theorem 1, Example ?? below shows that Theorem 2 is sharp in the sense that one
cannot drop the codimension ≥ 3 condition. These two theorems are similar, with the additional
condition of the existence of a smooth deformation, to the fact that the class of Morse functions
is an open subset in the C1-topology.

As a corollary of the proof of Theorem 2 we have:

Corollary 1. Let F be a foliation with Bott-Morse singularities on a manifold M . Assume
there is a center type component N ⊂ sing(F) of codimension ` ≥ 3 such that H1(N,R) = 0.
Given a smooth deformation {Ft}, t ∈ [0, ε], of F there is 0 < ε1 < ε such that if 0 ≤ t ≤ ε1
then Ft also exhibits an stable center type component Nt ⊂ sing(Ft) which is close and isotopic
to N , and therefore it is stable.

Also from the proof of Theorem 2 and from Theorems A, B and C in [12] we have the following
weak structural stability:

Corollary 2. In the situation of Theorem 2 the foliations Ft are topologically conjugate to F
for t small enough.

2. An example

Given a foliation F on M with singular set sing(F) ⊂ M , by a C∞ deformation of F we
mean a family {Ft}t∈[0,ε) of foliations Ft on M , with F0 = F and which is smooth in the sense
that for each point p ∈M , there are an open set p ∈ U ⊂M and a smooth family of differential
one-forms Ωt(x) := Ω(x, t) in U × [0, ε) such that for each t the one-form Ωt is integrable and
defines Ft in U .

Before proving Theorems 1 and 2, let us show that these results are sharp in the sense that
the codimension ≥ 3 condition cannot be dropped. Notice that in [8] examples are given showing
that the conditions on the component N ⊂ sing(F) cannot be dropped without destroying the
stability of the foliation F0.

Let Ω = d(x2 + y2) and Ωλ = xdy − λydx in affine coordinates (x, y) ∈ R2, where λ ∈ R is
not zero. Put

Ωt := Ω + tΩλ = (2x− tλy)dx+ (2y + tx)dy.

Then sing(Ωt) = {(0, 0)}. For

Xt := (2y + tx)
∂

∂x
+ (tλy − 2x)

∂

∂y

we have Ωt ·Xt = 0. Thence

DXt(0, 0) =

(
t 2
−2 tλ

)
.
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The eigenvalues of Xt at (0, 0) are the α given by

0 = Det(DXt(0, 0)− αI) = (t− α)(tλ− α) + 4 .

Thus we have

α =
(1 + λ)t±

√
t2(1 + λ)2 − 4(4 + t2λ)

2
.

For t = 0 we have

α = ±2
√
−1 .

For t ≈ 0 but t 6= 0 we have α = a + b
√
−1 ∈ C where b ≈ 2 and 0 6= a ≈ 0 provided that

λ 6= −1. In this case the quotient of eigenvalues of Xt at the origin is of the form

a+ b
√
−1

a− b
√
−1

=
a2 − b2 + 2

√
−1ab

a2 + b2
/∈ R

and therefore Xt has a hyperbolic singularity at the origin. In particular, thanks to the dynamics
of such a singularity, the leaves of Ωt are not closed and the foliation Ωt = 0 exhibits no continuous
first integral in a neighborhood of the origin (0, 0) ∈ R2.

Now, by gluing two copies of the 2-disk D2 we obtain the 2-sphere S2. Endowing each copy of
D2 with a foliation given by Ωt = 0 we obtain a deformation Ft of the foliation F0 by parallels,
F0 is of Morse type with singularities only at the North and South poles, both of center type.
The foliation Ft (obtained indeed as an extension of the foliation in R2 given by Ωt = 0) exhibits
singularities at the North and South poles either, but these are not of Morse type as seen above.
By taking products with a closed manifold N we obtain a foliation F̃0 with singularities of Bott-
Morse type, all of center type, which is deformed into foliations which are not of Bott-Morse
type. We can of course take N such that H1(N,R) = 0, thus showing that the codimension ≥ 3
condition on the singular component N ⊂ sing(F) in Theorem 2 cannot be dropped.

3. Deformations of Morse singularities by foliations

Let us consider a differential one-form Ω =
m∑
j=1

fj dxj in coordinates (x1, ..., xn) ∈ U ⊂ Rm in

an open subset.

Definition 1. The gradient vector field of Ω is defined as grad(Ω) :=
m∑
j=1

fj
∂
∂xj

.

This is a differentiable vector field which, away from the (singular) zero-set, is orthogonal to
the distribution Ker(Ω). Also sing(grad(Ω)) = sing(Ω).

Theorem 3. Let Ft be a smooth deformation of F in an open neighborhood U of the origin
0 ∈ Rm. Assume F has a Morse singularity of center type at the origin and either m ≥ 3, or
else m = 2 and the leaves of Ωt are compact for t small enough. Then there exist ε > 0, a
neighborhood V ⊂ Rm of 0 and a smooth function ξ : [0, ε)→ V such that:

(i) ξ(0) = 0;
(ii) For t < ε we have sing(Ft) ∩ V = {ξ(t)} and the leaves of Ft close enough to ξ(t) are

compact and diffeomorphic to the sphere Sm−1;
(iii) Moreover, for each such t, ξ(t) is a center type Morse singularity of Ft: there is a

smooth map ρt : V → R with ρt(ξ(t)) = 0, which is a first integral for Ft in V and has
a nondegenerate critical point at ξ(t) of center-type.



106 A. MAFRA, B. SCÁRDUA, AND J. SEADE

First part of the proof of Theorem 3. Let {Ωt}t∈[0,ε) be a smooth family of integrable one-forms
in the neighborhood U of the origin such that Ft is defined by the one-form Ωt and F0 = F .
Since F has a center-type singularity at 0, there is a neighborhood W ⊂ U of the origin where
we can choose local coordinates (x1, ..., xm) ∈W such that Ω is of the form:

Ω = gd(

m∑
j=1

x2
j ) =

m∑
j=1

2gxjdxj .

We set Ωt(x1, ..., xm) =
m∑
j=1

aj(t, x)dxj , then each aj is smooth. Define a smooth map

F : [0, ε)×W → Rm

by F (t, x) = (a1(t, x), ..., am(t, x)). Then we have

∂

∂(x1, ..., xm)

∣∣∣
t=0

F (t, x) = D(a1(0, x), ..., am(0, x)).

This last is a diagonal matrix and its determinant is (2g(0))m 6= 0. Since F (0, 0) = 0, by the
Implicit Function theorem, if ε > 0 is small enough, there is a smooth map ξ : [0, ε) → W such
that ξ(0) = 0, F (t, ξ(t)) = 0 and sing(Ωt) ∩ W = {ξ(t)}. Moreover, the partial derivative

∂F
∂(x1,...,xm) (t, ξ(t)) is non-singular, so that Ωt has a nondegenerate singularity at ξ(t). In order to

prove that ξ(t) is an stable singularity (i.e, a singularity surrounded by compact leaves with finite
holonomy) of Ωt, we proceed as follows. The leaves of F in W are spheres of dimension m−1 ≥ 2.
Choose a small neighborhood V ⊂W of the origin, invariant by F . Fix a leaf L0 ∈ F such that
L0 bounds a region (a ball) contained in V . By Reeb’s stability for perturbations theorem if
ε > 0 is small enough then Ft exhibits a compact leaf Lt close to L0, contained in W . Denote by
R(Lt) ⊂ W the region (diffeomorphic to a closed ball), containing the origin and therefore the
singularity ξ(t) ∈ sing(Ft), bounded by the leaf Lt. By Reeb’s complete stability theorem all
leaves of Ft in R(Lt) are compact diffeomorphic to Lt. This proves (i) and (ii) in Theorem 3. �

Now we consider the family of vector fields Xt := − grad(Ωt) in W (cf. Definition 1). Then

Xt is a smooth deformation of the vector field X0 = − grad(Ω0) = −2g ~R where ~R is the radial
vector field. Using what we have seen above we have:

Lemma 1. Assume that the dimension m ≥ 3 is odd. Then for t small enough the vector field
Xt exhibits a smooth separatrix through its unique singularity ξ(t) close to the origin.

Proof. Concerning the existence of separatrices, we may indeed assume that g = 1
2 andX0 = −~R.

Denote by ξ(t) the singular point of Xt close to the origin 0 = ξ(0) in Rm. Then the derivative
DXt(ξ(t)) is a perturbation of the derivative DX0(0) = Id ∈ GL(m,R). This implies that its
characteristic equation Pt(λ) = Det(DXt − λ Id) = 0 is a perturbation of the characteristic
equation P0(λ) = Det(DX0 − λI) = (1 − λ)m = 0. By continuity, for t small enough, the
eigenvalues of DXt at ξ(t) have positive real part, in particular Xt has a hyperbolic singularity
at ξ(t) (see Hartman [5]). Since by hypothesis m is odd, there is at least one real eigenvalue and
therefore (by the classical Hartman-Grobman theorem [5]) we have at least one smooth unstable
separatrix through the singular point ξ(t). �

Using now the fact that Xt is transverse to the leaves of Ft which are compact manifolds
filling up a neighborhood of the singularity ξ(t), we obtain the following fact:

Lemma 2. The vector field Xt exhibits a smooth separatrix Γt through the singularity ξ(t).
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Proof. If m is odd then we apply Lemma 1. Assume now that m ≥ 4 is even. The one-form Ωt

defines a compact foliation Ft with a non-degenerate singularity at ξ(t), with Ω0 = g0 d(
m∑
j=1

x2
j )

and ξ(0) = 0. We may assume that for each leaf Lt of Ft, the vector field Xt points inwards
the region R(Lt), bounded by Lt, that contains the singularity ξ(t). Since the regions R(Lt)
form a fundamental system of neighborhoods of ξ(t) we conclude that the singularity ξ(t) is
asymptotically stable with respect to Xt.

Claim 1. The spectrum Spec(DXt(ξ(t))) ⊂ C of Xt at ξ(t) exhibits some real eigenvalue.

Proof. Write Xt = (at1, b
t
1, ..., a

t
n, b

t
n) where n = m/2. Put Yt := X⊥t = (−bt1, at1, ...,−btn, atn).

Then Yt is orthogonal to Xt and therefore its orbits are tangent to the leaves of Ωt. In partic-
ular, the orbits of Yt are contained in compact manifolds. The nonsingular orbits of Yt do not
accumulate at the singularity ξ(t). Suppose by contradiction that the characteristic polynomial

Pt of DXt(ξ(t)) is of the form Pt(λ) =
m/2∏
j=1

(λ2 + ajλ+ bj) in irreducible polynomials over R[λ].

We have several cases to consider.
If there are no multiple eigenvalues then we can write DXt(ξ(t)) as a diagonal matrix of m/2

blocks Bj of the form

Bj =

(
αj βj
−βj αj

)
where βj 6= 0. Assume for simplicity that DXt(ξ(t) = Bj is one block. We write Xt = (at1, b

t
1)

and Yt = X⊥t = (−bt1, at1). Then the same linear coordinates that give DXt(ξ(t)) = Bj give
DYy(ξ(t)) = B⊥j which is defined as

B⊥j =

(
βj −αj
αj βj

)
The linear system

ẋ = DYt(ξ(t)) · x = B⊥j · x
has its solutions given explicitly in terms of exp(βjt) cos(αjt)xj and exp(βjt) sin(αjt)xj so that,
thanks to the terms in exp(βjt) we conclude that the solutions of ẋ = DYt(ξ(t))x cannot be
contained in a compact manifold surrounding the singularity ξ(t), they must instead accumulate
at the singular point ξ(t). By Hartman-Grobman theorem this same statement holds for the
solutions of Yt. This excludes this ”diagonalizable” case.

Now we consider the case where DXt(ξ(t)) is a matrix with blocks of the form(
Bj O
I2 Bj

)
where

I2 =

(
1 0
0 1

)
.

Therefore we have

DYt(ξ(t)) =

(
B⊥j O
J2 B⊥j

)
,

where

J2 =

(
0 −1
1 0

)
.
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Again we conclude that the linear system

ẋ = Yt(x) = B⊥j · x

has solutions that cannot be contained in a compact manifold surrounding the singularity ξ(t).
They must instead accumulate at the singular point ξ(t). By the classical Hartman-Grobman
linearization theorem this gives a final contradiction and proves the claim in this case. The cases
of even dimension ≥ 6 are similar and can be proved in the same way.

�

Let us now finish the proof of Lemma 2. Because the spectrum of DXt(ξ(t)) contains some
real eigenvalue, it contains some negative eigenvalue and then Xt exhibits some smooth stable
separatrix Γt through the singularity ξ(t) thanks to the Stable manifold theorem. This proves
the lemma in the even dimensional case. �

End of the proof of Theorem 3. The trace of Γt is (diffeomorphic to) an interval [0, 1] with the
origin corresponding to the singularity ξ(t), and transverse to each leaf of Ft in R(Lt). We may
take any smooth function ρt : [0, 1]→ R such that ρt(0) = 0 and extend ρt to R(Lt) as constant
through the leaves of Ft in R(Lt). Now, if we choose ρt

∣∣
Γt

such that it has an order two zero

at the origin then we claim that the extension ρt : R(Lt) → R has a nondegenerate singularity
at ξ(t). Indeed, since ρt is a first integral for Ωt we have Ωt ∧ dρt = 0, and since Ωt has a
nondegenerate singularity at ξ(t) we can write dρt = ht.Ωt for some smooth function ht. In

coordinates we have dρt = ht ·
m∑
j=1

aj(t, x)dxj so that ∂ρt
∂xj

= ht · aj(x, t), ∀j = 1, ...,m. Since

aj(t, ξ(t)) = 0 we conclude that ∂2ρt
∂xi∂xj

= ht(ξ(t)) · ∂aj(t,ξ(t))
∂xi

. If ht(ξ(t)) = 0 then D2ρt(ξ(t)) = 0

what is a contradiction to our original choice of ρt as having an order two zero at the origin.
Therefore, ht(ξ(t)) 6= 0 and the Hessian of ρt at ξ(t) is nonsingular. This implies that ρt has a
nondegenerate Morse type singularity at ξ(t) and, since the leaves of Ft in R(Lt) are compact,
this singularity is a center. �

4. Integrable deformations of non-isolated singularities

As for the non-isolated case we have the following version of the first part of Theorem 3.

Lemma 3. Let F be a foliation on M having a Bott-Morse component N ⊂ sing(F) of center
type and codimN = ` ≥ 3. Let now Ft be a C∞ deformation of F = F0, where t ∈ [0, ε). There
are a neighborhood W of N in M and 0 < ε1 < ε such that if t ≤ ε1 then:

(1) sing(Ft) ∩W = Nt is a compact nondegenerate component, diffeomorphic to N0.
(2) Nt is isotopic to N0.
(3) Nt ⊂ sing(Ft) is a Bott-Morse component of center type.

Proof. The same ideas as in the proof of Theorem 3 apply here. Indeed, let N be a codimension
` component of the singular set of F . Given a point p ∈ N there is a neighborhood U of p in
M diffeomorphic to the product D` ×Dm−` of discs D` ⊂ R` and Dm−` ⊂ Rm−`, such that the
restriction F

∣∣
U

is equivalent to the product foliation Dm−` ×F1, where F1 is a foliation on the

disc D` with an isolated Morse type singularity of center type at the origin 0 ∈ D`. At each
disc Dq := {q}×D`, for any point q ∈ Dm−`, F induces an ordinary Morse singularity of center
type, isomorphic to F1. Given any smooth deformation Ft of F = F0, for small t the foliation
Ft is transverse to the discs Dq and induces by restriction a smooth deformation Ft

∣∣
Dq

of F
∣∣
Dq

.

Since dimDq = ` ≥ 3, by Theorem 3 above there is a smooth function ξq(t) of the parameter t
such that ξq(t) is the only singularity of F

∣∣
Dq

. Moreover, this singularity is of Morse center type.
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Finally, the map ξq depends also smoothly on the point q as it follows from the Implicit function
theorem, where we consider q ∈ Dm−` as a parameter on which the coefficients of the map F
(which is just the map having as coordinate functions the coefficients of the form Ω(t, x) = Ωt(x),
in the proof of Theorem 3) depend smoothly. This shows that there is a neighborhood W of N in
U such that for t small enough sing(Ft)∩W = Nt is center type Bott-Morse component, mapped
as the graph of a smooth map ξ(q, t) taking values on the transverse disc Dq. By uniqueness
these maps glue and this shows that for a suitable neighborhood V of N in M and for small t,
the singular set sing(Ft) ∩ V is a nondegenerate component Nt, diffeomorphic (indeed isotopic)
to N0 = N . This shows (1) and (2) in the lemma. Assume now that ` = codimN is odd. Then
the above arguments show, as in the proof of Theorem 3, that for t small enough we may choose
local defining functions ρt for Ft around the points of Nt such that each ρt has a center type
Bott-Morse singularity at the points in Nt. This proves (3). �

Definition 2. Given an integrable one-form Ω in a manifold M we say that Ω has nondegenerate
singularities if its singular set sing(Ω) is a disjoint union of closed submanifolds N ⊂ M such
that for each point p ∈ N ⊂ sing(Ω) there are local coordinates (x1, ..., x`, x`+1, ..., xm) for M ,

centered at p, such that N : (x`+1 = ... = xm = 0) and writing Ω =
m∑
j=1

aj(x)dxj we have

Det
(
∂ai
∂xj

)m
i,j=`+1

(0) 6= 0.

5. Proof of the results

Let us now prove our main results.

Proof of Theorem 1. Let Ft be a smooth deformation of a Morse-Reeb fibration on a compact
manifold M of dimension m ≥ 3. We claim that for t small enough the foliation Ft is a Morse-
Reeb fibration. Indeed, by Theorem 3 , for t small enough, the foliation Ft is a foliation with
nondegenerate singularities of center type, and the leaves close to the singularities are spheres.
By Reeb’s theorem in [11] Ft is a Morse-Reeb fibration. �

The proof of Theorem 2 relies on the following local stability result, similar to Thurston’s
version of Reeb local stability (Corollary 1 in [14]).

Proposition 1 (Proposition 1 in [8]). Let F be a transversely orientable codimension one fo-
liation with Bott-Morse singularities on a manifold M . Assume that N ⊂ sing(F) is a center
type component with H1(N ;R) = 0. Then N is stable. Indeed, there is a fundamental sys-
tem of saturated neighborhoods W of N in M such that each leaf L ⊂ W is compact with
H1(L;R) = 0. Moreover, the holonomy of the component N is trivial and there is a Bott-Morse
function f : W → R, defined in an invariant neighborhood W of N , which defines F in W .

Proof of Theorem 2. Consider a deformation Ft, t ∈ [0, ε), of the Bott-Morse foliation F having
a component N ⊂ sing(F) with H1(N,R) = 0. By Proposition 1 we may apply Lemma 3
and conclude that if ε > 0 is small enough then the singular set of Ft exhibits a center type
component Nt isotopic to N = N0. In particular, for t < ε small enough the foliation Ft is a
Bott-Morse foliation having all singularities of center type and some component Nt ⊂ sing(Ft)
such that H1(Nt,R) = 0. Then, according to Theorem 1 in [8] there is a Bott-Morse function
ft : M → R that defines Ft. �

Proof of Corollary 2. For t small enough in Theorem 2 the foliation Ft is a Bott-Morse foliation
with only center type singularities. Moreover, there is a Bott-Morse function ft : M → R that
defines Ft. From Theorem A in [12] the singular set sing(Ft) has only two components say



110 A. MAFRA, B. SCÁRDUA, AND J. SEADE

N t
1, N

t
2 and ft

∣∣
M\(Nt

1∪Nt
2)

is a fibre bundle over (0, 1) with fibers the leaves of Ft. Moreover, by

Lemma 3, each component N t
j is isotopic (and therefore homeomorphic) to N0

j = Nj ⊂ sing(F).

Finally, from Reeb stability theorem, all leaves of Ft are diffeomorphic to a (typical) leaf Lt ∈ Ft
and each leaf Lt is homeomorphic to the (typical) leaf L0 ∈ F . Thus the bundles Ft

∣∣
M\(Nt

1∪Nt
2)

and F
∣∣
M\(N1∪N2)

are topologically equivalent. This and the product type of Ft around the

singularities N t
j give the topological equivalence between Ft and F . �
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INDEX OF SINGULARITIES OF REAL VECTOR FIELDS

ON SINGULAR HYPERSURFACES

PAVAO MARDEŠIĆ

...with affection and respect,
for all the pleasure of working with Xavier

Abstract. Gómez-Mont, Seade and Verjovsky introduced an index, now called GSV-index,

generalizing the Poincaré-Hopf index to complex vector fields tangent to singular hypersur-
faces. The GSV-index extends to the real case.

This is a survey paper on the joint research with Gómez-Mont and Giraldo about calcu-

lating the GSV-index IndV±,0(X) of a real vector field X tangent to a singular hypersurface

V = f−1(0). The index IndV±,0
(X) is calculated as a combination of several terms. Each

term is given as a signature of some bilinear form on a local algebra associated to f and X.
Main ingredients in the proof are Gómez-Mont’s formula for calculating the GSV-index on

singular complex hypersurfaces and the formula of Eisenbud, Levine and Khimshiashvili for

calculating the Poincaré-Hopf index of a singularity of a real vector field in Rn+1.

1. Introduction

This paper is a survey of the joint work with Xavier Gómez-Mont and Luis Giraldo spread
over some 15 years. We give a formula for calculating the index of singularities of real vector
fields on singular hypersurfaces. Some partial results are published in [8], [10], [11], [12].

In [13], Gómez-Mont, Seade and Verjovsky studied vector fields tangent to a complex hyper-
surface with isolated singularity. They introduced a notion of index, now called GSV-index at a
common singularity of the vector field and the hypersurface (see also [1]). It is a kind of relative
version of the Poincaré-Hopf index at a singularity. A natural question is how can one calculate
this index. Complex case was studied first. It was solved by Gómez-Mont in his seminal paper
[6]. Gómez-Mont’s formula expresses the GSV index via dimensions of certain local algebras.
The GSV index can be generalized to the real case. More precisely, depending on the side of the
singular hypersurface, there are two GSV indices. Real case, is more difficult than the complex
case since in the real case a simple singularity can carry the index +1 or −1, whereas in the
complex case all simple singularities count as +1.

In the absolute real case Eisenbud, Levine and Khimshiashvili expressed the Poincaré-Hopf
index of a vector field in terms of the signature of a bilinear form.

Our result in the relative real case expresses the GSV-index of a real vector field on a singular
variety as a sum of certain terms. Each term is a signature of a non-degenerate bilinear form on
some local algebra.

Our proof has two essential ingredients: on one hand Gomez-Mónt’s result in the singular
complex case and on the other hand the Eisenbud, Levine, Khimshiashvili’s result in the real
absolute case.

http://dx.doi.org/10.5427/jsing.2014.9j
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1.1. Real absolute case. Let us recall first the definition of the Poincaré-Hopf index of a
singularity of a real vector field in Rn+1. Let

(1) X =

n∑
i=0

Xi ∂

∂xi

be a smooth vector field in Rn+1 having an isolated singularity at the origin X0 = 0. One can
identify the vector field X with a mapping X : (Rn+1, 0) → (Rn+1, 0). Taking a small sphere
Sn around the origin, the vector field X induces a map N = X

||X|| : Sn → Sn, where Sn is the

unitary sphere in Rn+1. The Poincaré-Hopf index Ind0(X) of the vector field X at the origin
is defined as the degree of N . That is, Ind(X, 0) is the number of pre-images of generic points
taken with orientation.

Example 1. Let X be the vector field X(x, y) = x ∂
∂x + y ∂

∂y in R2 having a node at the origin

and let Y be the vector field Y (x, y) = x ∂
∂x − y

∂
∂x having a saddle at the origin.

Then Ind0(X) = 1 and Ind0(Y ) = −1.

1.2. Complex absolute case. Consider the complex n-dimensional space Cn, with complex
coordinates x1, . . . , xn and a complex vector field X of the form X =

∑n
i=0X

i ∂
∂xi

. We can

identify Cn with R2n. With this identification a holomorphic vector field on Cn becomes a
smooth real vector field on R2n and one can apply the previous definition of the Poincaré-Hopf
index Ind0(X) to a singularity of a holomorphic vector field. Note that not every smooth real
vector field on R2n comes from a holomorphic vector field on Cn. By holomorphy, a holomorphic
vector field seen as a map preserves orientation. Hence the index of a singularity of a holomorphic
vector field is necessarily positive.

Example 2. Let n = 1 and let X = x ∂
∂x and Y = x2 ∂

∂x be vector fields in C. Then Ind0(X) = 1
and Ind0(Y ) = 2.

In the complex case, the Poincaré-Hopf index is simply the multiplicity. One counts how
many points are hidden at the singularity at the origin.

2. Definition of the GSV-index in the complex and real case

2.1. Smooth points. Let now f : (Rn+1, p)→ (R, 0) be a germ of an analytic function. Then
V = f−1(0) is a germ of a hypersurface at p. We say that a vector field defined in a neighborhood
of p ∈ V is a vector field tangent to V , if there exists an analytic function h such that

(2) X(f) = fh.

The function h is sometimes called the cofactor of X. Assume first that p ∈ V is a regular point
of f . Then the variety V is smooth in a neighborhood of p. Let x = (x1, . . . , xn) be a chart
of V in a neighborhood of p. We assume moreover that the orientation of ∇f, ∂

∂x1
, . . . , ∂

∂xn
is

positive. The chart x = (x1, . . . , xn) transports the vector field X to Rn. One then applies the
usual definition of the Poincaré-Hopf index. Thus we define the relative Poincaré-Hopf index
IndV,p(X) of a vector field tangent to a hypersurface, relative to the surface. It is easy to verify
that the definition is independent of the choices.

If f : (Cn+1, p) → (C, 0) is a germ of holomorphic function instead, p ∈ Cn+1 is a regular
point of f , V = f−1(f(p)) ⊂ Cn+1 is a complex hypersurface, and X a holomorphic vector
field tangent to V , one transports as previously the vector field to Cn and defines the relative
Poincaré-Hopf index IndV,p(X) in the complex case. Note that in the relative complex case, just
as in the absolute complex case, the relative index is always positive.
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2.2. Singular points, GSV-index in the complex case. Let as previously,

f : (Cn+1, 0)→ (C, 0)

be a germ of a holomorphic function. Assume now that p ∈ Cn+1 is an isolated singularity of f .
Then V = f−1(0) ⊂ Cn+1 is a complex hypersurface with isolated singularity at p. Let X be a
holomorphic vector field defined in a neighborhood of p ∈ Cn+1 tangent to V . That is, relation
(2) holds. In [13], Gómez-Mont, Seade and Verjovsky defined what is now called the GSV-index
of a vector field tangent to a singular variety at the singularity IndV,0(X).

In order to formulate the definition, let us first recall that the holomorphic function
f : (Cn+1, 0)→ (C, 0) having an isolated singularity at the origin defines a Milnor fibration:
f : B \ {0} → C∗, where B ⊂ Cn+1 is a small ball around the origin. Denote Vε = f−1(ε). For
ε 6= 0 small, close enough to zero, all fibers Vε ∩ B are isotopic. Note that the vector field X
is not necessarily tangent to the fibers Vε ∩ B, for ε 6= 0. We modify X slightly, giving a C∞

vector field Xε tangent to a fiber Vε ∩B, for ε 6= 0 close to zero. We assume moreover that the
restriction of the vector field Xε on ∂(Vε ∩B) is isotopic to the restriction of the vector field X
to ∂(V ∩B) see [15] and [1].

The GSV-index can be defined by the formula

(3) IndV,0(X) =
∑

pi(ε)∈Vε∩B

IndVε,pi(ε)(Xε).

It follows from the Poincaré-Hopf theorem that the definition is independent of all choices.
Indeed, the Poincaré-Hopf theorem says that the right-hand side of (3) is the Euler characteristic
χ(Vε ∩B) up to some correction term given by the behavior of any vector field Xε on ∂(Vε ∩B).
Note that by the Milnor fibration theorem all regular fibers Vε ∩B, ε 6= 0, have the same Euler
characteristic. Moreover, the behavior of any vector field in Xε on ∂(Vε ∩B) is the same as the
behavior of X on ∂(V ∩B). Hence the correction term is independent of the choices.

For an equivalent topological definition using residues see Suwa [17].

Proposition 1. [1] Up to a constant K(V ) independent of the vector field X, the GSV-index
IndV,0(X) is characterized by the two following conditions:

(i): At smooth points p ∈ V , the GSV-index coincides with the relative Poincaré-Hopf
index IndV,p(X).

(ii): The GSV-index satisfies the law of conservation of number: For any holomorphic
vector field X ′ tangent to V sufficiently close to X the following law of conservation of
number holds:

(4) IndV,0(X) =
∑
pi∈V

IndV,pi(ε)(X
′).

Here pi are singularities of X ′ belonging to V , which are close to 0.

The constant can be determined by calculating the GSV-index IndV,0(X), for any vector field
tangent to V .

2.3. GSV-index in the real case. Let now f : (Rn+1, 0)→ (R, 0) be a germ of a real analytic
function. In this case, there is no Milnor fibration, or more precisely there are two Milnor
fibrations: one for strictly positive small values of ε and one for small strictly negative values of
ε. The Euler characteristic of all fibers Vε∩B, for ε small of the same sign are the same, but can
be different for ε positive or ε negative. (Think of f : R3 → R given by f(x, y, z) = x2 +y2−z2.)
As in the complex case, in the real case one now defines the GSV-index. More precisely, one
defines two GSV indices IndV ±,0(X), taking Vε, for ε positive or negative respectively.
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3. Calculating the GSV-index on complex hypersurfaces

A formula for calculating the GSV-index in the complex case was given by Gómez-Mont in [6].
Let us first define the principal ingredients. Let OCn+1,0 be the algebra of germs of holomorphic

functions at the origin. Let f ∈ OCn+1,0 be given, with f(0) = 0. Let fi = ∂f
∂zi

, i = 0, . . . , n, be
the partial derivatives of f . Assume that 0 is an isolated singularity of f . This means that the
algebra

(5) AC =
OCn+1,0

(f0, . . . , fn)

is finite dimensional. Here OCn+1,0 is the algebra of germs at 0 of holomorphic functions. The
dimension µ = dim(AC) is the Milnor number of the singularity. Let X be a germ of holomorphic
vector field at 0 ∈ Cn+1 given by (1). Assume that 0 is an isolated singularity of X. This means
that the algebra

(6) BC =
OCn+1,0

(X0, . . . , Xn)

is finite dimensional. Its dimension dim(BC) is the Poincaré-Hopf index Ind0(X) of the vector
field X in the ambient space.

Let V = f−1(0) be the hypersurface defined by f and assume that X is tangent to V . That
is, (2) holds for some holomorphic function h.

Theorem 1. [6] The GSV-index of a holomorphic vector field X tangent to a complex hyper-
surface V at an isolated singularity 0 is given by.

(7) IndV,0(X) =


dim BC

(f) − dim AC

(f) , if (n+1) even,

dimBC − dim BC

(h) + dim AC

(f) , if (n+1) odd.

We give the idea of proof of Theorem 1. As recalled in Proposition 1, the GSV index is defined
up to a constant by condition (i) and (ii) in Proposition 1. In [6] Gómez-Mont considers the
Koszul complex :

(8) 0→ Ωn−1
V,0 →Ωn−1

V,0 → · · · → Ω1
V,0 → OV,0 → 0,

where

(9) Ωi
V,0 =

ΩCn+1,0

fΩCn+1,0 + df ∧ ΩCi−1
n+1,0

.

is the space of relatively exact forms on V and the arrows in (8) are given by contraction of

forms by the vector field X. Gómez-Mont defines the homological index Indhom
V,0 as the Euler

characteristic of the complex (8):

(10) Indhom
V,0 =

n−1∑
i=0

(−1)i dimHi(K)

where Hi(K), i = 0, . . . , n−1, are the i-th homology groups of the Koszul complex (8). It is easy
to see that at smooth points the homological index coincides with the relative Poincaré-Hopf
index. In [7], Giraldo and Gómez-Mont show that the homological index verifies the law of
conservation (ii) of Proposition 1. Hence, the homological index coincides with the GSV-index
up to a constant K(V ). The homological index has the advantage that it can be calculated using
projective resolutions of a double complex. The horizontal complexes in the double complex are
obtained as a mapping cone induced by multiplication by the cofactor h in (2) in the Koszul
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complex in the ambient space. Vertical complexes are obtained as the mapping cone induced by
multiplication by f in the de Rham complex in the ambient space. To show that the homological
index Indhom

V,0 coincides with the GSV-index IndV,0, it is sufficient for each f to calculate both
indices on a vector field X associated to f . If the dimension of the ambient space (n+1) is even,
a natural candidate is the Hamiltonian vector field

(11) Xf =

(n+1)/2∑
i=1

[f2i
∂

∂x2i−1
− f2i−1

∂

∂x2i
].

If (n+ 1) is odd, Gómez-Mont uses the vector field

(12) Yf = f
∂

∂x0
+

(n+1)/2∑
i=1

[f2i
∂

∂x2i−1
− f2i−1

∂

∂x2i
]

in generic coordinates xi.

4. Calculating the Poincaré-Hopf index of vector fields in Rn+1

When studying the Poincaré-Hopf index in the real case, one has to take into account orien-
tation and not just multiplicity. This is done using some bilinear forms. We recall in this section
the results of Eisenbud, Levine [4] and Khimshiashvili [14] who solve this problem for real vector
fields in the ambient space Rn+1. This, in addition to Gómez-Mont’s formula for calculating the
GSV-index on complex hypersurfaces, are the two main ingredients in our study.

Let

(13) B =
ARn+1,0

(X0, . . . , Xn)
,

where ARn+1,0 is the algebra of germs at 0 of analytic functions in Rn+1. Let X, given by
(1), be a germ of analytic vector field with an algebraically isolated singularity. That is, the
singularity when considered over the complex domain remains isolated. Then the algebra B is

finite dimensional. Let J = det(∂Xi

∂xj
) ∈ ARn+1,0 be the Jacobian of the map defined by the

vector field X. It can be shown that the class [J ] ∈ B of J in B is non-zero. In [4] and [14]
Eisenbud, Levine and Khimshiashvili define a nondegenerate bilinear form < , >B,J as follows.

(14) B× B ·−→B L−→R.
Here the first arrow is simply multiplication in the algebra B and L is any linear mapping such
that L([J ]) > 0. Of course, the bilinear form depends on the choice of L. However its signature
sgn(B, J) = sgn(< , >B,J) does not. More precisely Eisenbud, Levine, Khimshiashvili show

Theorem 2. Let X be a germ at 0 of a real analytic vector field on Rn+1 having an algebraically
isolated singularity at the origin. Then the Poincaré-Hopf index IndRn+1,0(X) of the vector filed
X at the origin is given by

(15) IndRn+1,0(X) = sgn(B, J).

In order to prove the theorem, one has to prove that the signature sgn(B, J) coincides with
the Poincaré-Hopf index for simple singularities and verifies the law of conservation of number.
The first claim is easily verified. The key-point of the proof of the law of conservation of number
is the claim that the bilinear form < , >B,J is nondegenerate.

Once one knows that the form is nondegenerate, the law of conservation of number will
follow. Indeed, let X ′ be a small real deformation of the vector field X. As the bilinear form is
nondegenerate, its signature does not change by a small deformation. The local algebra B will
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decompose into a multilocal algebra B(X ′) of the same dimension concentrated in some real point
and complex conjugated pairs of points. One verifies that the contribution to the signature of
the pairs of complex conjugated points is zero. From the preservation of signature, there follows
the law of conservation of number once one knows that the bilinear form is nondegenerate.

The nondegeneracy of the form < , >B,J is a more general feature. It follows from the fact
that J generates the socle of the algebra B. By definition a socle in an algebra is the minimal
nonzero ideal of the algebra.

In general, let B be a real algebra. Assume that the socle of B is one-dimensional generated by
J ∈ B. We can define a bilinear form < , >B,J as above. Following the proof of Eisenbud-Levine
in [4] one verifies that the form < , >B,J is nondegenerate. Its signature does not depend on the
choice of the linear map L such that L(J) > 0.

Example 3. Consider for instance B =
AR2,0

(x2,y3) . Then the socle is one-dimensional generated by

J = xy2. The bilinear form < , >B,J is a nondegenerate form on the six dimensional space B.

If B =
AR2,0

(x2,xy2,y3) , then the socle is generated by xy and y2. It is not one-dimensional and one

cannot define a nondegenerate bilinear form as above.

5. Bilinear Forms on Local Algebras

Let B =
ARn+1,0

(X0,...,Xn) be a finite dimensional complete intersection algebra. This assures that

its socle is one-dimensional generated by the Jacobian J = det(∂Xi

∂xj
).

In [10], we observed that the Eisenbud-Levine, Khimshiashvili signature generalizes. Let
h ∈ B be arbitrary. Denote Ann(h) = {g ∈ B : gh = 0} the annihilator ideal of h. For B as
above, the algebra B

Ann(h) has a one-dimensional socle generated by the element J
h ∈

B
Ann(h) . The

assumption that (J) is minimal guarantees that J can be divided by h. We define the bilinear
form < , >B,h,J on B

Ann(h) by < b, b′ >B,h,J= L(bb′h), where L : B→ R is a linear mapping such

that L(J) > 0. In other words < b, b′ >B,h,J= Lh(bb′), where Lh(J
h ) > 0 is a linear mapping.

Note that in general the element J
h is not well defined in B. However, the ambiguity is lifted in

the quotient space B
Ann(h) .

We put

(16) sgn(B, h, J) = sgn < , >B,h,J= sgn(
B

Ann(h)
,
J

h
).

5.1. Signatures associated to a singular point of a hypersurface. Let now

f : (Rn+1, 0)→ (R, 0)

be a germ of analytic function having an algebraically isolated singularity at the origin. Let

fi = ∂
∂xi

be the partial derivatives of f . Consider the local algebra A =
ARn+1,0

(f0,...,fn) . It is a finite

complete intersection algebra. Its socle is one-dimensional generated by the Hessian

Hess(f) = det(
∂2f

∂xi∂xj
).

Define a flag of ideals in A

(17) Km = AnnA(f) ∩ (fm−1), m ≥ 1.

Note that

(18) 0 ⊂ K`+1 ⊂ · · · ⊂ K1 ⊂ K0 = A.
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Define a family of bilinear forms < , >f,m: Km ×Km → R by

(19) < a, a′ >f,m=<
a

fm−1
, a′ >, m = 0, . . . , `+ 1,

where < , >A,Hess(f) is the bilinear form defined in (14) for some linear map L with

L(Hess(f)) > 0.

In particular < a, a′ >f,0=< fa, a′ >A,Hess(f). The form < , >f,0 degenerates on AnnA(f), but
on K0/K1 defines a nondegenerate form. We have < a, a′ >f,1=< a, a′ >A,Hess(f). This form
degenerates on K2 = AnnA(f) ∩ (f) etc. In [12], we define

(20) σi = sgn < , >f,i, i = 0 . . . , `.

The signatures σi are intrinsically associated to the singularity 0 of f .

6. Main Result

The following theorem resumes our results [10], [11], [8], [12] about the calculation of the
GSV-index of singularities of real vector fields on hypersurfaces:

Theorem 3. Let f : (Rn+1, 0)→ (R, 0) be a germ of analytic function with algebraically isolated
singularity at the origin. Let X be an analytic vector field in Rn+1 having an algebraically isolated
singularity at the origin. Assume that X is tangent to V = f−1(0). That is X(f) = hf , for
some analytic function h. Then

(i): if (n+ 1) is even,

(21) IndV +,0(X) = IndV −,0(X) = sgn(B, h(X), J(X))− sgn(A, h(X),Hess(f)).

(ii): if (n+ 1) is odd,

(22) IndV ±,0(X) = sgn(B, h(X), J(X)) +K±,

where

(23) K+ =
∑
i≥1

σi, K− =
∑
i≥1

(−1)iσi.

7. Proof of the Main theorem

We give here the main ingredients of the proof of Theorem 3. The GSV-index is determined
by three properties:

(i): Value at smooth points
(ii): The law of conservation of number
(iii): Constants K± depending only on the orientation (side) V± of the variety V = f−1(0)

and not on the vector field.

One verifies easily that at smooth points of V , the formula is valid. Indeed, from the tangency
condition there follows (f) ⊂ Ann(h). In smooth points the converse is also true. Hence
Ann(h) = (f). Next, working in a local chart at smooth points one shows that sgn < , >B,h,J
gives the relative Poincaré-Hopf index of the vector field. Then, one has to show that our
formulas (21) and (22) verify the law of conservation of number. Some parts are easier in the
even case and some other are easier in the odd case.
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7.1. (n + 1) odd case. The law of conservation of number is easy for (n + 1) odd. Indeed, in
this case the complex index, up to a constant depending only of f , is

dimBC − dim
BC

(h)
= dim

BC

Ann(h)

(see Theorem 1). On the other hand on B
Ann(h) there is the non-degenerate form < , >B,h,J .

Make a small deformation X ′ of X, tangent to V . The corresponding local algebra B or rather
its complexification decomposes into a multilocal algebra concentrated in several points corre-
sponding to singular points of X ′. The dimension of the multilocal algebra is equal to the sum
of the dimensions at points in which it is concentrated. On the other hand, by Theorem 1 of

Gomez-Mont, the dimension dim BC(X′)
Ann(h) verifies the law of conservation of number. Hence, the

dimension of the multilocal algebra obtained after deformation X ′ of X is equal to the dimension

of the local algebra dim BC

Ann(h) before the deformation. This permits to extend continuously the

bilinear form < , >h,J from the algebra B
Ann(h) to its deformation. By nondegeneracy of the form

< , >h,J , its signature is unchanged by a small deformation. This gives the law of conservation
of number for the signature of < , >h,J when adding the signatures for all (real or complex)
singular points of X ′ appearing after deformation. Note that from the tangency condition (2),
it follows that (f) ⊂ Ann(h), so only points in V = f−1(0) can contribute to the signature
sgn < , >B(X′),h,J after deformation. At the end, let us note that complex zeros of X ′ come in
pairs. One verifies that the contribution to the signature of each pair is equal to zero. Hence
only real singular points of X ′ belonging to V contribute. The law of conservation of number
(in the real case) for the formula sgn(B, h, J) follows.

The final step in proving the formula in the case (n + 1) odd is to adjust the constant
sgn(A,Hess(f)) + K±. This is difficult in the odd case. We will come back to it in subsection
7.4.

7.2. (n + 1) even case. In the (n + 1) even case Theorem 1 says that in the complex case,

up to a constant, the index is given by dim BC

(f) . There is no natural bilinear form on BC

(f) . We

consider a non-degenerate bilinear form on BC

Ann(h) . We stratify the space of bilinear vector fields

by the dimension of the ideal (h) in the algebra A. The signature sgn(h(X), J(X)) verifies the
law of conservation of number in restriction to each stratum. We show that when changing the
stratum the jump in sgn(B, h, J) is equal to the jump in sgn(A, h,Hess(f)). The two jumps hence
compensate in the index formula (21). In order to show the equality of the jumps it is sufficient
to study the place where all strata meet i.e. the stratum of highest codimension. One has the
highest codimension for the Hamiltonian vector field Xf given by (11), when h = 0. Note that
in this case the two algebras A and B coincide and J(X) = Hess(f).

In this case it is very easy to determine the constant (independent of the vector field) adjusting
the signature formula with index. For that purpose, one studies the Hamiltonian vector field
Xf . Note that the Hamiltonian vector field Xf is tangent to all fibers Vε = f−1(ε). Moreover, it
has the same behavior on the boundary Vε ∩B, for ε 6= 0 as on V ∩B. The Hamiltonian vector
field Xf has no zeros on Vε = f−1(ε), for ε 6= 0. Hence IndV±(Xf ) = 0. On the other hand
sgn(B, h(X), J(X))− sgn(A, h,Hess) = 0, as A = B and J = Hess. It follows that no correction
term has to be added to sgn(B, h(X), J(X))− sgn(A, h,Hess) in order to obtain the formula for
IndV±,0(X).

7.3. Why is IndV+,0(X) = IndV−,0(X) in the (n+ 1) even case and not in the odd case?
We explain here why IndV+,0(X) = IndV−,0(X) in the (n + 1) even case and not in the odd
case. Note first that the index of a vector field in the ambient space is an even function if the
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dimension (n + 1) of the ambient space is even and is an odd function if (n + 1) is odd. We
next use Morse theory. Consider the vector field ∇f. By Morse theory, the Euler characteristic
χ verifes:

(24)
χ(V+) = 1 + Ind(∇f)
χ(V−) = 1 + Ind(−∇f).

Here χ(V+) is the Euler characteristic of Vε ∩ B, for ε > 0 small. The value χ(V−) is defined
analogously.

If (n+ 1) is even, then Ind(∇f) = Ind(−∇f), so χ(V+) = χ(V−) and

IndV+,0(X) = − IndV−,0(X).

If (n+ 1) is odd, then Ind(−∇f) = − Ind(∇f), so χ(V +)− 1 = −(χ(V−)− 1) and

IndV−,0(X) = 2− IndV+,0(X).

7.4. Adjusting the constant K in the (n+ 1) odd case. In order to complete the sketch of
proof of the main theorem, we have to explain how do we calculate the constant K± appearing
in the (n+ 1) odd case (22).

As shown previously, the two signature terms in (22) calculate the GSV-index up to a constant
independent of the vector field. In order to determine the constant, for each V = f−1(0), one
has to take a vector field tangent to V , having an algebraically isolated singularity at the origin.
Contrary to the situation in the (n + 1) even case, in the odd case, there is no such natural
vector field. As in [6], we use the family of vector fields

(25) Xt = (f − t) ∂

∂x0
+

(n+1)/2∑
i=1

[f2i
∂

∂x2i−1
− f2i−1

∂

∂x2i
]

in generic coordinates. The local algebra is B = B(X0) =
ARn+1,0

(f,f1,f2,...,fn) . Note that Xt is tangent

to Vt = f−1(t), for any t. More precisely, Xt(f) = f0f , so h = f0 is the cofactor of Xt. Hence,
by definition

(26) IndV+
(X, 0) =

∑
pt∈Vt∩B

IndVt,pt
(Xt).

But, these indices are calculated using the multilocal algebra Bt and the relative Jacobian J(Xt)
f0

.

That is, the index is given by the signature of the bilinear form < , >Bt
, for t 6= 0 small. For the

index IndV+,0(X0), we have to take it positive and for IndV−,0(X0) it is negative. The problem
is that this form degenerates on AnnBt

(f0), for t = 0.
We prove in [12] a general result for algebras A = A(f) and B = B(X) associated to a vector

field X tangent to V = f−1(0) i.e. verifying (2):

Lemma 1. There exists a natural isomorphism between the algebras AnnB(h) and AnnA(f).

Proof. The isomorphism is given by the mapping g 7→ k if gh = fk. �

Lemma 1 permits to transport all higher order signature vanishing in AnnB0 to a natural
algebra A. We apply it to our vector field Xt. When looking at the signature of the form
< , >Bt

, we have one part which does not degenerate. It is the part in B
AnnB(f0) . The bilinear

form < , >Bt
degenerates at different orders on different parts of AnnBt

(f0). By Lemma 1, we
transport the bilinear form < , >Bt

to a bilinear form in the coordinate independent algebra
AnnA(f). Note that in Bt, we have f = t, so degeneration of < , >Bt at different orders of t
corresponds to multiplication by f in the algebra AnnA(f). For more details see [12].
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8. Open problems

8.1. Geometric interpretation of the signatures σi. Filtration of contributions to the
Euler characteristic of the generic fiber. In Theorem 3 appear higher order signatures σi
defined in (20). These signatures are associated to the singularity f alone. We would like to
give a geometric interpretation of these numbers. We believe that they correspond to parts of
the Euler characteristic of the generic fiber, filtered by the speed of arrival at the singular fiber.

Let us be more precise. In [20] Teissier studies polar varieties in the complex case (see also
[18], [19]). He considers a germ of a function f : (C2, 0)→ (C, 0) having an isolated critical point
at the origin. He considers a Morsification fs = f − sx0 of f in generic coordinates (x0, . . . , xn).
Its critical points are given by

(27) f0 − s = f1 = · · · = fn = 0.

Let Γ be the curve given by f1 = · · · = fn = 0. The curve Γ is called polar curve. In general
it has several branches Γ = ∪`q=1Γq. By Morsification, the critical point 0 of f decomposes in
several critical points arriving along the polar curve to the origin. For each value of s 6= 0,
the critical points of fs belong to f−1

0 (s) ∩ Γ. Each critical point corresponds to a vanishing
cycle contributing to Hn(Vt0). In [20], Teissier observed that, after Morsification, critical points
arrive at different speed at the origin. More precisely, each component Γq of the polar curve Γ
is parametrized as

(28)

x0(tq) = t
mq
q + · · ·

. . . . . . . . .

xn(tq) = λnt
kq,n
q + · · ·

where mq ≤ kq,i. In [20], Teissier calculates the exponent mq. One can use x0 (or the correspond-
ing critical value) as a measure for the speed of approach of a critical point in the Morsification.
One can filter the n-th group of homology of the generic fiber Hn(f−1(t)) i.e. the space of
vanishing cycles, by the speed of arrival of the corresponding critical points. We believe that
this filtration is given by the filtration (18) or rather its complex counterpart. The dimensions

(29) 0 = dim
A
K0
≤ dim

A
K1
≤ dim

A
K`+1

≤ dimA

would measure the dimension of the space of vanishing cycles arriving at a certain minimal
speed.

The signatures σi would be the real counterpart. The signature σ0 is a signature of a bilinear
form on A. It measures the Euler characteristic χ(Vt). We believe that the signatures σi that
we introduced measure the filtered part of the Euler characteristic of the generic fiber χ(Vt), the
filtration being done by taking only the part of the topology of the fiber arriving at a certain
minimal speed. We hope to be able to address this problem in a continuation of our research.

8.2. Generalization to higher codimension. In [2] Bothmer, Ebeling and Gómez-Mont gen-
eralized Gómez-Mont’s formula (Theorem 1) to a formula for the index of a vector field on an
isolated complete intersection singularity in the complex case. A natural problem would be to
extend the result to the real case. Here, as in our Theorem 3, one would certainly have to define
some bilinear forms on the spaces studied in [2].
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TOPOLOGY OF SINGULAR HOLOMORPHIC FOLIATIONS ALONG A

COMPACT DIVISOR

DAVID MARÍN AND JEAN-FRANÇOIS MATTEI

Abstract. We consider a singular holomorphic foliation F defined near a compact curve C
of a complex surface. Under some hypothesis on (F , C) we prove that there exists a system

of tubular neighborhoods U of a curve D containing C such that every leaf L of F |(U\D) is

incompressible in U \ D. We also construct a representation of the fundamental group of the
complementary of D into a suitable automorphism group, which allows to state the topological

classification of the germ of (F ,D), under the additional but generic dynamical hypothesis of
transverse rigidity. In particular, we show that every topological conjugation between such

germs of holomorphic foliations can be deformed to extend to the exceptional divisor of their

reductions of singularities.

Dedicated to Xavier Gómez-Mont on the occasion of his 60h birthday

1. Introduction and main results

We consider a smooth complex surface M endowed with a holomorphic foliation F having
isolated singularities and a compact connected holomorphic curve C. To treat in a unified way
the local setting we will also allow the case that C reduces to an isolated singular point. There
are two main results in this paper under some hypothesis concerning the pair (F , C), which we
will precise in the sequel:

(A) The existence of a fundamental system of neighborhoods of C where the leaves of F are
incompressible in the complementary of an “adapted” curve D containing C. Recall that a
subset A of a topological space V is incompressible in V if the natural inclusion A ⊂ V
induces a monomorphism at the fundamental group level for every choice of the base point
in A.

(B) The construction of a representation of the fundamental group of the complementary of D
into a suitable automorphism group, which allows us to state the topological classification of
the germ (F ,D) of F along D. When the curve C is smooth and invariant by F , this object is
directly equivalent to the classical holonomy representation of π1(C) into the automorphisms
of a transverse section.

A particular situation of this context occurs when the pair (M, C) is a resolution of a surface
singularity (S,O), see Example 1.6. In the general setting it is well known that there exists
a composition E : M → M of blow-ups such that the curve C := E−1(C) and the foliation
F := E∗F satisfy the following properties:

• C has normal crossings and all its irreducible components Ci, i ∈ I are smooth,
• two different irreducible components of C are disjoint or intersect in a unique point,
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Economı́a y Competitividad of Spain/FEDER.
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• F is reduced in the sense of [4], i.e. each singular point of F has Camacho-Sad index
in C \ Q>0 and each component Ci is either F-invariant or Ci ∩ Sing(F) = ∅ and F is
totally transverse to Ci.

All the notions that we introduce in the sequel are germified along D or D. By definition the
isolated separatrix set of F is the set S constituted by invariant curves by F , which are not
contained in C and which intersect some F-invariant irreducible component of C. The image of
the components of S by E are called the isolated separatrices of F .

Let GC be the dual graph associated to (M, C) having one vertex si for each irreducible
component Ci of C and one edge when two irreducible components of C intersect. We also
introduce a double weighting (gi, νi) in each vertex si, by giving the genus gi = g(Ci) and minus
the self-intersection νi = −Ci · Ci. It is well known that we can topologically recover a tubular
neighborhood of C in M by a plumbing procedure from the data given by the dual graph with
weights GC , see Section 2.1.

In the sequel we will need to consider a (not necessarily compact) holomorphic curve D ⊂M
containing C. We define the valence with respect to D of an irreducible component D of D
as the number v(D) of singular points of D lying on D. A dead branch of D is a connected
maximal union of irreducible components of C of genus 0 with valence 2 with respect to D except
for one of them whose valence must be 1.

Making an additional iterative blowing down process if necessary, without loss of generality
we can also assume that

• there is no exceptional (i.e. having self-intersection −1) F-invariant rational component
of C of valence ≤ 2 with respect to D.

Notice that an irreducible component D (not necessarily compact) of D may be transverse to
F . In that case we will say that D is a dicritical component of F .

In order to state our first main result we must introduce some new notions. Denote by GD
the dual graph associated to the divisor D.

• A breaking element of GD is every vertex corresponding to a dicritical component of
F and every edge corresponding to a linearizable singularity of F .

• The break graph associated to (F ,D) is the graph obtained from GD by removing all
the breaking elements and the edges whose one of its endpoints is a breaking vertex.

• An initial component of (F ,D) is a F-invariant irreducible component C of C such
that one of the following situations holds:
(a) g(C) = 0, there is a non-linearizable singular point p0 of F on C and every point

p ∈ Sing(D) ∩ C, p 6= p0, belongs to some dead branch;
(b) g(C) > 0 and the holonomy of the boundary of every embedded conformal disk in

C containing Sing(D) ∩ C is not linearizable.

We introduce two hypothesis on the pair (F , C). The first one is of local nature and it concerns
only the singularities of F . The second one is global and it also concerns the topology of C.

(L) The reduced foliation F has no saddle-nodes and each singularity s ∈ Sing(F) having
Camacho-Sad index λs /∈ Q is linearizable.

(G) Each connected component of the break graph associated to (F , C) is a tree, which contains
at most one vertex corresponding to an initial component C of C of genus g(C) > 0.

Notice that Condition (L) is generic in the following sense: let B ⊂ C be the set of Brjuno
numbers, namely those complex numbers λ verifying that the germ of every singular foliation
defined by a 1-form of type (u + · · · )dv − (λv + · · · )du is always linearizable. It is well known
that C \ R ⊂ B and that R− \ B has zero measure.
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If λ ∈ R>0 then the singularity is a node. Because the reducedness of F we have that λ is
necessarily irrational. If such a singular point s belongs to the strict transform of a (necessarily
isolated) separatrix Z of F we say that Z is a nodal separatrix of F and s a nodal singularity.
The topological specificity of such singularity is the existence, in any small neighborhood of s,
of a saturated closed set whose complement is an open disconnected neighborhood of the two
punctured local separatrices of the node. We call nodal separator such a saturated closed set.
A nodal separator of M is the image by E of a nodal separator in M .

If D is a dicritical component of F then for each singular point s ∈ Sing(D) ∩D we consider
a conformal closed disk Ds ⊂ D containing s in its interior such that their pairwise intersections
are empty. A dicritical separator associated to D is a tubular neighborhood of the closure of
D\

⋃
s∈Sing(D)∩D

Ds which is the total space of a holomorphically trivial disk fibration whose fibers

are contained in the leaves of F . A dicritical separator of M is the image by E of a dicritical
separator of M .

On the other hand, Condition (G) is not generic and we do not know if the incompressibility
of the leaves of F in the complementary of some D ⊃ C holds when it is not fulfilled. Even in the
case that Condition (G) holds, the first choice D = C does not work for instance by considering
the case that C is the exceptional divisor of the reduction of singularities of a germ of foliation F
in M = (C2, 0) because M \ C ∼= C2 \ {0} is simply connected. The next natural choice consists
to add to C the isolated separatrices S of F but this is not enough as the following example
shows.

Exemple 1.1. Consider the dicritical foliation F in (C2, 0) defined by the rational first integral

f(x, y) = y2−x3

x2 whose isolated separatrix set is the cusp S = {y2−x3 = 0}. Let M be a Milnor
ball for S. The composition E : M → M of blow-ups considered in the introduction for this
case corresponds to the minimal desingularization of S. The exceptional divisor C = E−1(0) has
three irreducible components D1, D2, D3 which we numerate according to the order that they
appear in the blowing up process. Thus D2

1 = −3, D2
2 = −2 and D2

3 = −1. The strict transform
S of S only meets D3. It turns out that D1 and D2 are two dead branches composed by a
single irreducible component attached to D3. Moreover D1 a dicritical component. In fact, it
is totally transverse to F = E∗F . Thus, C ∪ S do not satisfy Condition (c) in Definition 1.2.
On the other hand, it is well-known that if a, b and c are meridian loops around D1, D2 and
D3 respectively, with common origin, then π1(M \ S, ·) = 〈a, b, c | a3 = b2 = c〉. We shall see
that there exist non-incompressible leaves of F inside M \ (C ∪ S). Indeed, looking at the
situation after the first blowing-up, we immediately see that there are two types of leaves of F :
those that are near to the isolated separatrix set S, which are disks minus two points and the
others which are diffeomorphic to D∗. If L is a leaf of the first kind then π1(L) = 〈α+, α−|−〉
is a free group of rank 2. We claim that we can choose the generators so that the morphism
ı : π1(L)→ π1(M \(C∪S)) induced by the inclusion is given by ı(α+) = a and ı(α−) = b−1ab. It
follows that ı(α3

+α
−3
− ) = a3b−1a−3b = 1 and consequently L is not incompressible in M \ (C ∪S).

In order to prove the claim we consider the coordinate system (t, x) on M \(C∪S) induced by the
first blowing-up, defined by E(t, x) = (x, tx) = (x, y). We have f(x, t) := (E∗f)(x, t) = t2 − x
and the restriction of f to Uε := {|f | = ε}, 0 < ε � 1, is a locally trivial C∞-fibration over
the standard circle S1

ε of radius ε, whose fiber over ε is Fε := C \ {±
√
ε}. Since the pull-back

of Uε
f→ S1

ε by the exponential map exp : [0, 2π] → S1
ε, exp(θ) = εeiθ, is trivial, we obtain a

trivializing map τ : Fε × [0, 2π]→ Uε sending (z, θ) into (t, x) = (zei
θ
2 , (z2− ε)eiθ). We consider

the path β : s 7→ (z, θ) = (0, s + π), s ∈ [0, 2π], projecting by τ into the loop (t, x) = (0,−εeis)
which is a meridian of D2. Hence, we can take the generator b ∈ π1(M \(C∪S)) as the homotopy
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class of β. Let z(s) be a simple loop in Fε based on z = 0 having index +1 around +
√
ε and

index 0 around −
√
ε. We define α−(s) = (z(s), 0) and α+(s) = (z(s), 2π). It is clear that α+ is

homotopic to βα−β
−1 in Fε × [0, 2π]. Hence its respective projections by τ are also homotopic

loops in Uε. Notice that τ(α−(s)) = (z(s), z2(s) − ε) and τ(α+(s)) = (−z(s), z2(s) − ε) are
meridians around D1 so that we can choose the generator a ∈ π1(M \ (C ∪ S)) ∼= π1(Uε) as
the homotopy class of τ(α+). The fundamental group of the leaf L passing through the point
(t, x) = (0,−ε) is π1(L) = 〈α+, α−| −〉 and the images of its generators by ı are given by
ı(α+) = a and ı(α−) = b−1ab.

However, if we define D := S ∪ T ∪ C, where T is the strict transform of {x = 0}, we can
directly see that all the leaves are incompressible in M \ D. Indeed T meets D1 transversely,
then

π1(M \ D, ·) = 〈a, b, c | b2 = c, [c, a] = 1〉 = 〈a, b | [a, b2] = 1〉
and the elements a and b−1ab are without relation in this group. �

Thus, we must make some additional “holes” in M \ (C ∪ S) in order to obtain a bigger
fundamental group which could contain the fundamental group of each leaf. This will be done
by considering a new divisor D ⊃ C ∪ S obtained by adding some small curves transverse to C
satisfying the following technical properties.

Definition 1.2. We say that a (generally not compact) divisor D ⊂M is adapted to (F , C) if
the following conditions hold:

(a) the adherence of D \ C is a finite union of conformal disks transverse to C at regular points
of C and D \ C does not contain any singular point of F ;

(b) the isolated separatrix set S is contained in D;
(c) for every irreducible components C and D of C we have C ∩ D = ∅ provided that C is

contained in a dead branch and D is dicritical;
(d) if D = C, then it contains at least two irreducible components which do not belong to any

dead branch;
(e) each connected component of the break graph associated to (F ,D) contains at most one vertex

corresponding to an initial component of (F ,D)

Adding to C∪S one non-isolated separatrix over each dicritical component of C having valence
1 and one transverse curve over certain initial components of genus zero, we obtain a divisor D
adapted to (F , C) provided it fulfills Condition (G):

Proposition 1.3. If (F , C) satisfies Condition (G) then there always exists a divisor D adapted
to (F , C).

In the case that C is the exceptional divisor of the reduction of a germ F at (C2, 0), in the
statement of Corollary A we will precise the “minimal” divisor adapted to (F , C).

For A ⊂ B ⊂M we denote by SatF (A,B) the union of all the leaves of F|B passing through
some point of A. We fix a plumbing tubular neighborhood W of C in M (see Section 2.1). The
first main result of this paper is the following.

Theorem A. Let D be a divisor adapted to (F , C). Assume that (F ,D) satisfies the assumptions
(L) and (G) stated below. Then there exists a fundamental system (Un)n∈N, Un+1 ⊂ Un, of
open neighborhoods of D := E(D) in M and there exists a smooth holomorphic curve Υ ⊂ M
transverse to F having a finite number of connected components, such that for each n ∈ N the
open sets U∗n := Un \ D and V ∗ := E(W ) \ D satisfy the following properties:

(i) the inclusions U∗n+1 ⊂ U∗n ⊂ V ∗ induce isomorphisms of their fundamental groups,
(ii) every leaf of F |U∗n is incompressible in U∗n,
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(iii) each connected component of Y ∗n := E(Υ) ∩ U∗n is a punctured topological disk which is
incompressible in U∗n and SatF (Y ∗n , Un) is the complementary in U∗n of a finite union of
nodal and dicritical separators,

(iv) there does not exist any path lying on a leaf of F|U∗n with distinct endpoints on Y ∗n which
is homotopic in U∗n to a path lying on Y ∗n ,

(v) the leaf space of the foliation induced by F in the universal covering space of U∗n is a not
necessarily Hausdorff one-dimensional complex manifold.

Remark 1.4. It will follow from the proof that a curve Υ satisfying the properties of Theorem A
can be constructed in the following way. We choose a vertex in each connected component of
the break graph of (F ,D), a regular point in the corresponding irreducible component of D
and we take transversal disks through these points as branches of Υ. Hence, the irreducible
components of this curve are in one-to-one correspondence with the connected components of
the break graph.

The following corollary of Theorem A completes the main result of [10].

Corollary A. Let F be a germ of singular holomorphic foliation in (C2, 0) which is a generalized
curve such that all its singularities after reduction whose Camacho-Sad index is not rational are
linearizable. Then, there exists an open ball B centered at 0, an analytic curve Z closed in B
containing all the isolated separatrices of F , a fundamental system (Un)n∈N of neighborhoods
of Z in B and a curve Υ ⊂ B, transverse to F outside the origin, such that the open sets
U∗n := Un \ Z and V ∗ := B \ Z satisfy Properties (i)-(v) of Theorem A. Moreover, if F is not
dicritical then we can take Z as the set of all the separatrices of F . Otherwise, we can take
Z as the set of all the isolated separatrices of F jointly with one non-isolated separatrix of F
for each dicritical component containing a unique singular point of the exceptional divisor of the
reduction of F .

Remark 1.5. We point out some issues of each requirement of adapted divisor in Definition 1.2:

(a) As we have already pointed out, roughly speaking, W \ D is obtained from W \ C making
some holes in order to that π1(W \ D) is big enough to contain the fundamental group of
each leaf.

(b) As it was stated by R. Thom in the seventies, the separatrix set can be viewed as the
organization center of the topology of the foliation around a singular point. Hence it is
natural to study the topological embedding of the leaves in the complement of it. In the
dicritical case there is an infinite number of separatrices, so the first natural candidate curve
to eliminate from the ambient space is the isolated separatrix set.

(c) If m ⊂ C is an invariant dead branch of D then on a neighborhood of m, the leaves sufficiently
close to m are disks or rational curves. If moreover m attaches to a dicritical component D,
then Condition (c) of Definition 1.2 is not satisfied. Near D the leaves L far away from m
are punctured disks with infinite cyclic fundamental group Zc, but we can deform the loop
c ⊂ L in the ambient space so that it is conjugated to a loop in a simply connected leaf close
to m. Hence, in this case we never have the incompressibility of all the leaves. On the other
hand, there exist counter-examples to the incompressibility of the leaves if we admit some
dicritical component contained in a dead branch, as we have already seen in Example 1.1,
where we have treated in detail the simplest non-trivial dicritical foliation in (C2, 0) showing
this behavior.

(d) The radial vector field is a trivial counter-example for the incompressibility of its leaves if
Condition (d) of Definition 1.2 is not satisfied. On the other hand, if C is an F-invariant
divisor whose dual graph is a tree and (F ,D) do not satisfy Condition (d) of Definition 1.2,
then the intersection matrix (Ci · Cj) can not be negative definite. Indeed, the main result
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of [1] implies the existence of separatrices (which are necessarily isolated because C is F-
invariant) in that case. Hence D ⊃ S∪C ) C. Consequently, such divisors do not come from
foliations on surface singularities. However, it would be interesting to study the topology of
the leaves in this context. The simplest situation occurs when D = C is a chain. Since the
restriction of the leaves to a neighborhood of a component of valence 1 and 2 are disks and
annuli respectively, we deduce that the global leaves in the chain situation are topologically
spheres, hence simply connected.

(e) Condition (e) of Definition 1.2 is of technical nature and it comes from the method of
construction developed in [10] which is used in this work.

Exemple 1.6. Let (S,O) the surface singularity

{z2 = (x2 + y2)(x2 + y7)} ⊂ (C3, 0)

considered in [1]. The desingularization (M, C) of (S,O) is described by a triangular graph whose
vertex represent rational curves having self-intersections −2, −2 and −3, cf. [8]. After [17], the
fundamental group G of S \ {O} ∼= M \ C can be presented as

G = 〈a, b, c | cac−1 = a−3b5, cbc−1 = a−5b8, [a, b] = 1〉
and it is solvable. By the synthesis theorem of [9] there exists a singular holomorphic foliation F
on (S,O) such that after desingularization defines a singular foliation F on M whose singularities
are reduced and correspond to the three intersection points of the precedent rational curves. By
applying the index theorem of [3] we deduce that the Camacho-Sad index of these singularities

belong to the list {− 11
10 ±

√
21

10 ,−
9
10 ±

√
21

10 ,−
3
2 ±

√
21
6 }. From Siegel and Liouville theorems we

deduce that all three singularities are linearizable. By applying Theorem A we obtain that the
fundamental group of each leaf of F is solvable because it is a subgroup of G. Therefore all the
leaves of F are disks or annuli. �

The precedent arguments show a more general result.

Corollary 1.7. Let (S,O) be a surface singularity such that the fundamental group of S \ {O}
is solvable. If F is a singular holomorphic foliation on (S,O) without local separatrices then all
the leaves of F are disks and annuli.

Proof. The classification of configurations with solvable fundamental group given by [17] and
the hypothesis about the non-existence of local separatrices force all the Camacho-Sad indices
to be algebraic numbers, hence of Brjuno type. �

To deal with the second objective of the paper, the topological classification, we fix the
topological type of C as embedded divisor in M , a divisor D adapted to (F , C), a fundamental
system (Un)n∈N of neighborhoods of C fulfilling conditions (i)-(v) of Theorem A and a universal

covering q : Ũ0 → U0 \ D. In the sequel we will use the following notations:

if A ⊂ U0 then A∗ = A \ D and Ã = q−1(A∗).

Thanks to Property (i) in Theorem A, we can take the restriction of q to Ũn as universal covering

of U∗n. The deck transformation groups of all these coverings will be identified to Γ := Autq(Ũ0).

We denote by Qn the leaf space of the foliation induced by F in Ũn. Clearly the holomorphic
natural maps Qn+1 → Qn form an inverse system denoted by QF . As we already pointed out
in [12, §3] in the local setting, each deck transformation factorizes through Qn and allows us to
consider the notion of monodromy. To this end, we denote by A←− the category of inverse systems

of objects in some category A. We refer to [5, 12] for a precise description of the morphisms in
A←−.
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Definition 1.8. The monodromy representation of F along D is the natural morphism of groups

mF : Γ→ AutAn←−
(QF ),

where An←− is the category of pro-objects associated to the category An of analytic spaces.

Consider now another foliation F ′ defined in a neighborhood of a curve C′ embedded in a
surface M ′ and a divisor D′ adapted to (F ′, C′). In order to state our second main result, we
need to adapt to our new context some additional notions that we have already considered in [12]:

• We say that a topological conjugation between the germs (F ,D) and (F ′,D′) is S-transversely
holomorphic if it is transversely holomorphic outside some nodal and dicritical separators.
We have the same notion for conjugations between the germs (F ,D) and (F ′,D′). Notice that
if there are no dicritical components nor nodal singularities then a S-transversely holomorphic
conjugation is just a transversely holomorphic conjugation.

• A S-conjugation between the monodromies mF and mF
′

consists of (ϕ, ϕ̃, h) where

h : QF → QF
′

is an isomorphism in the category Top
←−−

, which is holomorphic outside the subset corresponding

to the leaves of some nodal and dicritical separators (we will say that h is a S-An←− isomor-

phism), ϕ : (U,D) → (U ′,D′) is a germ of homeomorphism defined in some neighborhoods
of D and D′ and ϕ̃ is a lifting of ϕ to the universal coverings of U \ D and U ′ \ D′ such that
the following diagram commutes

Γ
mF−→ AutAn←−

(QF ) ⊂ AutTop
←−−

(QF )

ϕ̃∗ ↓ ↓ h∗

Γ′
mF
′

−→ AutAn←−
(QF ′) ⊂ AutTop

←−−
(QF ′).

In addition, we say that (ϕ, ϕ̃, h) is realized over germs of subsets Σ ⊂ M and Σ′ ⊂ M ′, if
ϕ(Σ) = Σ′ and the following diagram commutes:

Σ̃
ϕ̃|Σ̃−→ Σ̃′

↓ ↓
QF h−→ QF ′ ,

where the vertical arrows are the natural morphisms. These notions also apply to (F ,D) and
(F ′,D′).

• We define the cut divisor Dcut as the disjoint union of the closure of each connected compo-
nent of the complementary in D of nodal singular points and dicritical components of (F ,D).
Notice that the dual graph of Dcut is not the break graph of (F ,D). These notions are inde-
pendent.

• A S-collection of transversals for F and D is a finite collection Σ = {(Σi, pi)}i, where
each (Σi, pi) is the image by E : M → M of the germ of a regular curve transverse to F at
a regular point pi ∈ D \ Sing(D) not belonging to the exceptional divisor E of E, the whole
collection satisfying that for each connected component Dcut

α ⊂ Dcut of the cut divisor there
exists i ∈ {1, . . . ,m} such that pi ∈ Dcut

α . The existence of a such collection follows from the
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below lemma whose proof is just adapted from that of the Strong Camacho-Sad Separatrix
Theorem given in [14].

Lemma 1.9. There is no irreducible component of Dcut contained in the exceptional divisor
E of E.

Proof. By contradiction, let Dcut
α be a component of Dcut contained in E and denote by T

its dual graph. As in [14, Section 3] the vertices si of T are weighted by the self-intersection
of the corresponding component Di multiplied by −1 and to each edge aij (joining si and
sj) is associated the pair (℘ij , ℘ji), where −℘ij is equal to the real part Camacho-Sad index
CS(F , Di, sij) and {sij} := Di ∩Dj . At the singular points s of D lying in the regular part of
Dcut
α the Camacho-Sad index of F are not negative real number. Indeed, it is zero if s is the

attaching point of a dicritical component and it is positive if s is a nodal singularity. Then the
index formulae give the inequalities

∑
j ℘ij ≥ Di ·Di and, using the terminology introduced

in [14], T is a fair quasi-proper tree. We also have the inequalities ℘ij℘ji ≤ 1 and T is well-
balanced. This cannot occur because of Lemma 2.1 of [14], which asserts the no existence of
well balanced fair proper tree, is extended to quasi-proper trees in [14, Section 4]. �

Remark 1.10. The method developed in [14] immediately give a lower bound for the number
of isolated separatrices for dicritical foliations in terms of the number of nodal singularities
and dicritical components.

• We say that a foliation F is S-transversely rigid if every topological conjugation between
F and another foliation F ′ is necessarily S-transversely holomorphic. There are many situ-
ations in which we have this property. For instance, an extended version of the Transverse
Rigidity Theorem of [15] already used in [12] asserts that the following condition implies the
S-transversal rigidity:

(R) Each connected component of the cut divisor contains an irreducible component with non-
solvable holonomy group.

• We call D-extended divisor every curve D+ ⊃ D such that D+ \ D consists in the union of
pairs of non-isolated separatrices, one pair for each dicritical separator of F .

• A germ of homeomorphism ϕ : (M,D) → (M ′,D′) is excellent if it satisfies the following
properties:
(a) outside some neighborhoods of the singular locus of D and D′, ϕ conjugates the smooth

disk fibrations πi and π′i given by Lemma 2.1;
(b) ϕ is holomorphic in a neighborhood of the singular set of D.

Theorem B. Let D (resp. D′) be a divisor adapted to (F , C) (resp. (F ′, C′)). Assume that
(F ,D) and (F ′,D′) satisfy the assumptions (L) and (G). Then the following statements are
equivalent:

(1) (F ,D) and (F ′,D′) are S-transversely holomorphic conjugated;
(2) (F ,D) and (F ′,D′) are S-transversely holomorphic conjugated by an excellent homeomor-

phism;
(3) there exists a S-conjugation (ϕ, ϕ̃, h) between the monodromies representations of F along

D and F ′ along D′, which is realized over S-collections of transversals, such that:
(a) there exist a D-extended divisor D+ such that ϕ(D+) is a D′-extended divisor; in addi-

tion, for each irreducible component D of D we have that D is F-invariant if and only
if ϕ(D) is F ′-invariant;
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(b) for each singular point s of F and each invariant local irreducible component of D at s
we have the equality of Camacho-Sad indices CS(F , D, s) = CS(F ′, ϕ(D), ϕ(s));

(4) there exists a S-conjugation (ϕ, ϕ̃, h) between the monodromies representations of F along
D and F ′ along D′, which is realized over S-collections of transversals, such that:
(a) for each irreducible component D of D we have that D is F-invariant if and only if

ϕ(D) is F ′-invariant;
(b) for each invariant local irreducible component D ⊂ D at a point s ∈ D ∩ Sing(D) we

have CS(F , D, s) = CS(F ′, ϕ(D), ϕ(s));
(c) ϕ is excellent.

Moreover, if F satisfies Condition (R) (more generally if F is S-transversely rigid) then the
precedent properties (1)-(4) are also equivalent to:

(1’) (F ,D) and (F ′,D′) are topologically conjugated;
(2’) (F ,D) and (F ′,D′) are topologically conjugated by an excellent homeomorphism.

Remark 1.11. The proof of Theorem B shows in fact that the conjugations in (1) and (2) (or
(1’) and (2’)) are homotopic in the complementary of the corresponding divisors.

Corollary B. Let F be a germ of singular holomorphic foliation in (C2, 0) which is a generalized
curve such that all its singularities after reduction whose Camacho-Sad index is not rational are
linearizable. Assume that F satisfies Condition (R) below. Let F ′ be another germ of singular
holomorphic foliation in (C2, 0).

Then for every topological conjugation germ ϕ : (B,F)→ (B′,F ′) there exists a new topological
conjugation germ ϕ̂ : (π−1(B), π∗F) → (π′−1(B′), π′∗F ′) defined after the reduction processes π
and π′ of singularities of F and F ′ such that

(1) ϕ̂ is holomorphic at a neighborhood of Sing(π∗F),
(2) there exist germs of invariant curves Z ⊂ B and Z ′ ⊂ B′ satisfying conclusions of

Corollary A such that ϕ(Z) = Z ′, ϕ̂(π−1(Z)) = π′−1(Z ′) and such that the restrictions
ϕ : B \ Z → B′ \ Z ′ and ϕ̂ : π−1(B \ Z)→ π′−1(B′ \ Z ′) are homotopic.

In particular, the analytic type of the singularities of π∗F and its projective holonomy represen-
tations are topological invariants of the germ of F at 0.

Theorem B with D reduced to a point and Corollary B generalize Theorems I and II of
[12] to the case of dicritical foliations. Moreover, the topological conjugations considered in
[12] are assumed to send nodal separatrices into nodal separatrices preserving its corresponding
Camacho-Sad indices. In this paper we have used the following result of R. Rosas [16, Proposition
11] which allows us to eliminate this constraint and to extend our results to general topological
conjugations.

Theorem 1.12. Every topological conjugation Φ between two germs F and F ′ of holomorphic
foliations in (C2, 0) maps nodal separatrices into nodal separatrices preserving its corresponding
Camacho-Sad indices.

The idea of the proof is the following.

(a) Let Z be a nodal separatrix of F . Any tubular neighborhood of Z \ {0} retracts into a
2-torus T whose first homology group is endowed with a natural Z-basis given by monomial
coordinates after reduction of singularities of the foliation, cf. [12, Definition 6.1.2].

(b) Up to a foliated isotopy we can assume that Φ preserves the 2-tori T and T ′ corresponding
to Z and Z ′ := Φ(Z). It is possible to prove that Φ∗ : H1(T,Z)→ H1(T ′,Z) conjugates its
corresponding canonical basis, see [16, Theorem 10] and [12, Theorem 6.2.1].
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(c) We can canonically identify T and T ′ with the standard 2-torus and F|T and F ′|T ′ with

1-dimensional linear irrational foliations. It remains to see that the slopes of two linear
foliations on the torus are equal once we assume that they are topologically conjugated by
a homeomorphism homotopic to the identity.

2. Localisation

2.1. Plumbing. The following result is well known in the literature, cf. for instance [13, 7, 17,
19]:

Lemma 2.1. There exist an open tubular neighborhood W of C in M and a decomposition
W =

⋃
i∈IWi satisfying the following conditions:

(i) each Wi is a tubular neighborhood of an irreducible component Ci of C;
(ii) each Wi admits a smooth disk fibration πi : Wi → Ci over Ci whose Euler number −νi is

the self-intersection of Ci; moreover each nonempty intersection Cj ∩Wi, i 6= j, is a fiber
of πi;

(iii) there exists a differentiable function h : W → R+ which is a submersion on W \ C, such
that h−1(0) = C and {h−1([0, ε))}ε>0 is a fundamental system of neighborhoods of C, which
do not meet the boundary of W in M ;

(iv) there exists a simplicial map π : W → C having connected fibres whose restriction to
Wi \

⋃
j 6=i

Wj coincides with πi, i ∈ I.

Furthermore, we can endow W with a riemannian metric so that the flow of the gradient vector
field of h preserves the level hypersurfaces h = ε. In particular, all the neighborhoods h−1([0, ε))
are homeomorphic. Moreover, we can topologically recoverW by making the plumbing procedure
described in [13, 7] of the fibrations πi : Wi → Ci obtained from the data given by the dual graph
with weights G.

Remark 2.2. We point out some considerations.

(a) If additionally the intersection matrix (Ci · Cj)i,j is definite negative then, after Grauert’s
theorem, there exists a complex structure on the plumbing W such that the quotient W/C
becomes a complex surface with an isolated singularity.

(b) The existence of the simplicial map π : W → C having connected fibres implies the existence
of a epimorphism

π1(∂W )→ π1(C) ∼= π1(G) ∗ π1(C1) ∗ · · · ∗ π1(Cn),

where G is the dual graph associated to (W, C) and C1, . . . , Cn are the irreducible components
of C, cf. [17].

(c) We can assume that the fibrations πi : Wi → Ci are holomorphic in a neighborhood of
Sing(C)∩Ci. Moreover, if Ci is a dicritical component of (F , C) then we can assume that the
fibers of πi are the leaves of the restriction F|Wi

.

2.2. Boundary assembly. Let V be a smooth manifold endowed with a regular foliation F
of class C1 and let A be an arbitrary subset of V . By definition, a leaf of F|A is a connected
component of L ∩ A, where L is a leaf of F . For every A ⊂ V we define the boundary of A

as ∂A := A \
◦
A, where

◦
A is the interior of A. The definitions and results of this section are

borrowed from [10].

Definition 2.3. If A ⊂ B ⊂ V we will say that A is 1-F-connected in B (denoted by A#
F
B) if

for every leaf L of F|B and for all paths a : [0, 1]→ A and b : [0, 1]→ L with the same endpoints
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m0, m1, which are homotopic (with fixed endpoints) in B, there exists a path c : [0, 1]→ A ∩ L
with endpoints m0, m1, which is homotopic to a inside A and to b inside L.

Definition 2.4. Let (Vi)i∈I a finite or numerable collection of submanifolds (with boundary) of
V of the same dimension that V . We will say that Vi is a F-adapted block if it satisfy the
following properties:

(B1) ∂Vi is incompressible in Vi,
(B2) ∂Vi is a transversely orientable submanifold of V transverse to F ,
(B3) ∂Vi is 1-F-connected in Vi,
(B4) every leaf of F|Vi is incompressible in Vi.

We will say that V is a boundary assembly of the blocks Vj if for all i ∈ I Condition (B1)
and the following property hold:

(B5) for all different i, j ∈ I either Vi ∩ Vj = ∅ or Vi ∩ Vj is a connected component or ∂Vi and
a connected component of ∂Vj.

We will say that V is a foliated boundary assembly if each block Vi is F-adapted and if V is
a boundary assembly of Vj.

Theorem 2.5 (Localisation). If V is a foliated boundary assembly of Vi then every leaf of
F is incompressible in V and for every I ′ ⊂ I, the union V ′ =

⋃
i∈I′

Vi is incompressible and

1-F-connected in V .

Remark 2.6. If V =
⋃
i∈I

Vi and each block Vi satisfy Condition (B5) in previous Definition 2.4,

then we define its dual graph GV by putting one vertex for each element of I and one edge
between vertex i and j for each common boundary component of Vi and Vj . We can give an
explicit presentation of the fundamental group of V uniquely from π1(GV ) and the morphisms
π1(Vi ∩ Vj)→ π1(Vi) thanks to the following generalization of the classical Seifert-Van Kampen
theorem (r = 0).

Proposition 2.7. Let A be a connected simplicial complex with connected sub-complex A0 and
A1 such that A = A0∪A1 and A0∩A1 = B0t· · ·tBr, where each Bi is a connected sub-complex
of Aj for each i = 0, . . . , r and j = 0, 1. Let ϕij : π1(Bi)→ π1(Aj) be the morphisms induces by
the natural inclusions Bi ⊂ Aj. Then π1(A) is isomorphic to the quotient

(π1(A0) ∗ π1(A1) ∗ Z(u0) ∗ · · · ∗ Z(ur))/K ,

where K is the normal subgroup generated by the relations u0 = 1 and

ϕi,0(bi) = u−1
i ϕi,1(bi)ui, ∀bi ∈ π1(Bi), i = 0, . . . , r.

Proof. See the proof of Proposition 2.1. of [17] for the case r = 1. The case r > 1 is completely
analogous. �

2.3. Decomposition of D and boundary assembly of Milnor tubes. We consider the
function h : W → R+ given by Lemma 2.1 with h−1(0) = C. If f : W → C is a reduced

holomorphic equation of D \ C then we consider the product H := h · |f | and we define the open
4-Milnor tube of height η > 0 associated to D as Tη := H−1([0, η)). We also denote

T ∗η := Tη \ D = H−1((0, η))

and we remark that if η > 0 is small enough then the closed 3-Milnor tube Mη, defined as

the adherence of H−1(η) in W , is transverse to ∂W . The set of open 4-Milnor tubes associated
to D is a fundamental system of neighborhoods of D ⊂W . In [19] it is shown that there exists a
vector field ξ such that ξ(H) > 0, by gluing suitable local models with a partition of the unity.
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The flow of ξ allows to define homeomorphisms between the open 4-Milnor tubes of different
height, provided they are small enough.

For each irreducible component D of D we also consider the disk fibrations πD : WD → D
given by Lemma 2.1 if D ⊂ C and trivial ones if D ⊂ D \ C. After Point (c) of Remark 2.2 we
can choose the tubular neighborhoods WD and the fibrations πD in such a way that for each
singular point s ∈ Sing(D) the following properties hold:

(a) If {s} = D ∩D′ then Ws := WD ∩WD′ admits holomorphic local coordinates

(xs, ys) : Ws
∼→ D2 × D2

such that the germ of F at s is given by a 1-form of the following type:
• xsdyx − λsysdxs with λs ∈ C, if s is a linearizable singularity;
• xsdys − (λsys + xsys(· · · ))dxs with λs ∈ Q<0, if s is a resonant singularity;
• dxs (resp. dys) if D (resp. D′) is a dicritical component of (F ,D).

(b) D∩Ws = {ys = 0}, D′∩Ws = {xs = 0} and the restrictions of πD and πD′ to Ws∩{|xs| < 3
2}

and Ws ∩ {|ys| < 3
2} coincide with (xs, ys) 7→ xs and (xs, ys) 7→ ys respectively.

For each irreducible component D of D we denote ΣD := Sing(D) ∩D and

(1) Ds := D ∩ {|xs| ≤ 1, |ys| ≤ 1} for s ∈ ΣD .

For each irreducible F-invariant component D of D of genus g(D) > 0 we fix a smooth real
analytic curve ΓD which is the boundary of a closed conformal disk DΓD containing ΣD such
that the holonomy of ΓD is linearizable, provided that D is not an initial component, see the
introduction. Notice that ΣD 6= ∅ because of Condition (e) in Definition 1.2. If D contains a
unique singular point s of D then we shall take ΓD = ∂Ds and DΓD = Ds. Otherwise we can
assume that every two closed disks Ds and Ds′ , s, s

′ ∈ ΣD, are disjoint and contained in the
open disk DΓD \ ∂DΓD when g(D) > 0. We also denote

(2) D∗ := D \
⋃
s∈ΣD

Ds, if g(D) = 0

and

(3) D∗ := DΓD \
⋃
s∈ΣD

Ds, if g(D) > 0.

Consider the union J ⊂ D of all the Jordan curves of the form ΓD with g(D) > 0 and all
the curves ∂Ds with s ∈ D ∩ Sing(D). Let A be the set of elementary blocks of D defined
as the adherence of the connected components of D \ J. There exists an uniformity height
η1 > 0 such that for all η ∈ (0, η1] the set {Tη(A)}A composed by the adherence of the connected
components of

Tη \
⋃
D⊂D

π−1
D (J ∩D)

is in one to one correspondence with A. More precisely, for each A ∈ A there is a unique
connected component of Tη \

⋃
D⊂D

π−1
D (J∩D) containing A ⊂ D and whose adherence we denote

by Tη(A). Notice that for each elementary block A ⊂ D we can construct a vector field ξA
whose flow induces deformation retracts between (T ∗η (A), ∂T ∗η (A)) and (T ∗η1

(A), ∂T ∗η1
(A)) for all

η ∈ (0, η1], see Theorem 5.1.5 and Proposition 9.3.2 of [19]. If B = ∪iAi ⊂ D is an arbitrary
union of elementary blocks of D we also adopt the following convenient notation

(4) Tη(B) :=
⋃
i

Tη(Ai) and T ∗η (B) := Tη(B) \ D .
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Definition 2.8. We will say that an inclusion ı : A ⊂ B between two subspaces of a topological
space is rigid if ı∗ : π1(A, p)

∼→ π1(B, p) is an isomorphism for all p ∈ A. We will say that
ı is ∂-rigid if ∂A ⊂ ∂B and the two inclusions A ⊂ B and ∂A ⊂ ∂B are rigid. Recall that

∂A = A \
◦
A.

Proposition 2.9. Consider a subset B ⊂ T ∗η1
. If for each elementary block A of D the inclusion

B ∩ T ∗η1
(A) ⊂ T ∗η1

(A) is ∂-rigid, then the inclusion B ⊂ T ∗η1
is also rigid. In particular the

inclusion T ∗η ⊂ T ∗η1
is rigid for all η ∈ (0, η1].

Proof. This assertion follow immediately from Remark 2.6 and the following (trivial) result. �

Lemma 2.10. Let A ⊂ B ⊂ C be topological spaces. If two of the three inclusions A ⊂ B,
B ⊂ C and A ⊂ C are (∂-)rigid then the third one is also (∂-)rigid.

Notice that the collection {T ∗η (A)}A∈A does not define a boundary assembly of T ∗η because
Condition (B1) in Definition 2.4 is not always verified. More precisely, if C is an irreducible
component of C having genus 0 and valence 1 then the boundary of T ∗η (C) is not incompressible.
This situation leads us to consider bigger blocks of D as we have already done in [10].

Definition 2.11. The fundamental blocks of D are the unions of elementary blocks of D
described below:

(a) For each F-invariant irreducible component D of D not contained in a dead branch, we
consider the aggregate block defined as

mD ∪D∗ ∪

( ⋃
s∈mD∩D

Ds

)
,

where mD is the union of all the dead branches meeting D, D∗ is defined by Equations (2)
or (3), and Ds is given by (1).

(b) For each singularity s ∈ Sing(D) belonging to different irreducible components D and D′ of
D, we consider the singularity block Ds ∪ D′s provided that s do not belong to any dead
branch.

(c) For each F-invariant irreducible component D ⊂ C of genus g(D) > 0, we consider the

genus block D \DΓD .
(d) For each dicritical irreducible component D of F , we consider the dicritical block

D ∪
⋃

(s,D′)∈KD

D′s,

where KD is the set of pairs (s,D′) constituted by a singular point s of D lying on D and
the irreducible component D′ 6= D of D meeting D at s.

An initial block of D is either an aggregate block containing a single singular point of D which
do not belong to any dead branch, or a genus block associated to an initial component D of D
of genus g(D) > 0 such that the holonomy of ΓD is not linearizable. A breaking block of D is
either a singularity block associated to a linearizable singular point or a dicritical block.

Proposition 2.12. For every η ∈ (0, η1], T ∗η is a boundary assembly of the blocks {T ∗η (B)}B∈B
defined by (4), where B is the set of fundamental blocks of D.

The proof of this proposition will be based on explicit descriptions of the fundamental groups
of T ∗η (B), by generators and relations. But before we must give some preliminary information

about the topology of tubular neighborhoods of dead branches. Let m =
⋃̀
i=1

Di be a F-invariant



TOPOLOGY OF SINGULAR HOLOMORPHIC FOLIATIONS 135

dead branch with v(D1) = 1, v(Di) = 2 for i = 2, . . . , `. For each j = 1, . . . , ` the intersection

matrix of
j⋃
i=1

Di is

Aj =



e1 1 0 · · · 0

1 e2 1
. . .

...

0 1 e3
. . . 0

...
. . .

. . .
. . . 1

0 · · · 0 1 ej


whose determinant is denoted δj = det(Aj). Assume that the attaching component C of m
is also F-invariant according to Condition (c) in Definition 1.2 and that m can not be blow-
down according to the initial assumptions stated in the introduction. Let di ∈ π1(T ∗η (m)) be a
meridian of Di and let c ∈ π1(T ∗η (m)) be a meridian of C.

Lemma 2.13. There exist coprime positive integers p ≥ 2 and q ≥ 1 such that dp` = cq.

Proof of Lemma 2.13. By assumption C∪m is F-invariant and the singularities of F are reduced
and they are not saddle-nodes. Then classically the Camacho-Sad indices

λi = CS(F , Di, si) , i = 1, . . . , `

are rational strictly negative numbers. By Camacho-Sad formula follows that λi = ei − 1
λi−1

.

On the other hand, by developing the determinant of Ai+1 by the last row, we have the equality
δi+1 = ei+1δi − δi−1. We claim that λi = δi

δi−1
, for i = 2, . . . , `. Indeed, this is trivially the case

for i = 2 and the inductive step i⇒ i+ 1:

λi+1 = ei+1 −
1

λi
= ei+1 −

δi−1

δi
=
ei+1δi − δi−1

δi
=
δi+1

δi

completes the proof of the claim. Since λi < 0 for all i = 1, . . . , ` and δ1 = e1 < 0, it follows
that (−1)iδi > 0 and, by Silvester’s criterion, the matrix A` is definite negative. We take
p = (−1)`δ` ≥ 1 and q = (−1)`−1δ`−1 ≥ 1. By Grauert’s criterion, m can be blow-down if and
only if A` is definite negative and δ` = ±1. Hence p ≥ 2 by the assumption on m. Moreover we
have

gcd(p, q) = gcd(δ`, δ`−1) = gcd(δ`−1, δ`−2) = · · · = gcd(δ2, δ1) = gcd(e1,−1).

Hence gcd(p, q) = 1. It only remains to prove that dp` = cq. This equality follows directly

from the fact that (A−1
` )`` = δ`−1

δ`
and from the relation A`v + w = 0 in H1(T ∗η (m),Z), where

v = ([d1], · · · , [d`])t and w = (0, . . . , 0, [c])t. This relation being a matrix reformulation of the
Camacho-sad index formulae along the components of m. �

The following result is well-known in combinatorial group theory.

Lemma 2.14. If pi ≥ 2 and qi ≥ 1 are coprime integers then every element γ of the group Γ
presented by

〈c, d1, . . . , dm | [c, di] = 1, dpii = cqi , i = 1, . . . ,m〉
can be written in a unique way as γ = u1 · · ·urcs with ui = dεiji , 0 ≤ εi < pi and s ∈ Z.

Proof of Proposition (2.12). By construction the family {T ∗η (B)}B∈B satisfy property (B5) in
Definition 2.4. In order to check Condition (B1) for each block T ∗η (B), we will distinguish four
cases according to the type of B ∈ B:
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(a) If B is the aggregated block associated to an F-invariant irreducible component D of
D then, after [17], we obtain a presentation of π1(T ∗η (B)) by considering the generators
a1, . . . , ag, b1, . . . , bg, c, d1, . . . , dv and the relations

(5) [c, ∗] = 1, cν ·
g∏
i=1

[ai, bi] ·
v∏
j=1

dj = 1, dpkk = cqk , k = 1, . . . ,m ≤ v,

where g, v and ν are respectively the genus, the valence and the self-intersection of D, m
is the number of dead branches contained in B and pk, qk are the positive coprime integers
given by Lemma 2.13. Each connected component of the boundary of T ∗η (B) is a torus
whose fundamental group is 〈c, dj |[c, dj ] = 1〉, j = m+ 1, . . . , v. The incompressibility of the
boundary is equivalent to the following implication

(6) (j > m and dαj c
β = 1 in π1(T ∗η (B))) =⇒ α = β = 0,

which is trivially true if m = v. Hence, in the sequel we will assume that m ≤ v− 1. Notice
that π1(T ∗η (B)) = Γ ∗C G where Γ is the group considered in Lemma 2.14, G is defined by

G := 〈a1, . . . , ag, b1, . . . , bg, c, dm+1, . . . , dv−1| [c, ∗] = 1〉 ∼= Z∗2g+v−m−1 ⊕ Z
and C = 〈c| −〉 ∼= Z. Trivially C injects in G. On the other hand, because pi ≥ 2 for
i = 1, . . . ,m, C also injects into Γ. Seifert-Van Kampen Theorem implies that G can also
considered as a subgroup of π1(T ∗η (B)). Thus, for j ≤ v−1 implication (6) can be considered
in the subgroup G, where it is trivially true. It only remains to treat the case of j = v. But

dαv c
β is equal to

(
g∏
i=1

[ai, bi]
v−1∏
j=1

dj

)−α
cβ−να and this expression can not be simplified using

the relations (5), if g > 0 or v −m ≥ 2 provided (α, β) 6= (0, 0). It remains to consider the
situation g = 0 and v −m = 1. In this case G = C and the element of Γ given by

dαv c
β = (d1 · · · dm) · · · (d1 · · · dm)︸ ︷︷ ︸

−α

cβ−να

is written in the unique reduced form stated in Lemma 2.14. Consequently it is trivial if
and only if α = β = 0.

(b) If B is a singularity block then T ∗η (B) ∼= T × [0, 1] and ∂T ∗η (B) ∼= T × {0, 1}, so that each
connected component of its boundary is incompressible.

(c) If B is a genus block (g > 0) then

π1(T ∗η (B)) ∼= 〈a1, . . . , ag, b1, . . . , bg, c | [c, ∗] = 1〉

contains π1(∂T ∗η (B)) = 〈
g∏
i=1

[ai, bi], c | [c, ∗] = 1〉.

(d) If B is the dicritical block associated to some dicritical component D of D of genus g ≥ 0
and valence v ≥ 1 then D is not adjacent to any dead branch of D by Condition (c) in Def-
inition 1.2 and consequently π1(T ∗η (B)) is the group G considered in case (a) taking m = 0.
Each connected component of ∂T ∗η (B) is a torus whose fundamental group 〈dj , c | [c, dj ] = 1〉
injects into G.

�

2.4. Existence of adapted blocks. In order to control the topology of the foliated blocks that
we will construct in Section 3 we must consider the notions of size and roughness of a suspension
type subset introduced in [10]. First of all we recall the notion of suspension type subset. Let P
be a regular point of F lying on an irreducible component D of D, let ∆ be a subset contained
in the fibre π−1

D (P ) and let µ be a path contained in D with origin P .
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Definition 2.15. The suspension of ∆ over µ along the fibration πD is the union

V∆,µ :=
⋃
m∈∆

|µm|,

where µm denotes the path of origin m lying on the leaf of F passing through m which lifts the
path µ via πD, i.e. πD ◦ µm = µ and µm(0) = m.

This notion is well defined provided ∆ is small enough. In [10] we have also introduced the
notion of roughness e(ξ) of an oriented curve ξ ⊂ C∗. Here we will say that Ω ⊂ C is of infinite

roughness if Θ = Ω\
◦
Ω is not a piecewise smooth curve. Otherwise we will define the roughness

of Ω as e(Ω) = inf{(Θ+), (Θ−)}, where Θ+ and Θ− are two curves of opposite orientations
parameterizing Θ. The finiteness of the roughness is equivalent to the starlike property with
respect to the origin.

Since every open Riemann surface is Stein, each fibration πD : WD → D is analytically trivial
over every open set D′ ( D. Fix on W ′ := π−1

D (D′) a trivializing coordinate zD′ : W ′ → C,
i.e. (zD′ , πD) is a biholomorphism from W ′ onto the product of the unit disk of C times D′; we
define the roughness of a subset E of W ′ with respect to zD′ as

ezD′ (E) := sup{e(zD′(E ∩ π−1
D (m))), m ∈ D} ∈ R+ ∪ {∞}.

We also define the size of E with respect to zD′ as

‖E‖zD′ := max{|zD′(m)|, m ∈ E},

and we denote c(·) = max{ezD′ (·), ‖ · ‖zD′} called control function.

Now we present an existence theorem of F-adapted blocks having controlled size and rough-
ness, which we will prove in next section. In Section 4 we shall prove Theorem A by gluing
inductively these F-adapted blocks and using Localization Theorem 2.5. We keep the notation
T ∗η (A) for the blocks of the boundary assembly given in Proposition 2.12.

Theorem 2.16. Fix ε > 0 and η ∈ (0, η1].

(I) Let A be an initial fundamental block of D. Then there exists a holomorphic regular curve
ΥA ⊂ T ∗η1

transverse to F and there exists a subset Bη(A) of T ∗η (A) satisfying the following
conditions:
(1) for η′ > 0 small enough the inclusion T ∗η′(A) ⊂ Bη(A) is ∂-rigid;

(2) Bη(A) is a F-adapted block;
(3) the connected components V1, . . . ,VnA of ∂Bη(A) are of suspension type over the con-

nected components of ∂A;
(4) c(Vj) ≤ ε for each j = 1, . . . , nA;
(5) the intersection ΥA,η := ΥA ∩ Bη(A) is incompressible in Bη(A) and it satisfies

SatF (ΥA,η,Bη(A)) = Bη(A) and ΥA,η#
F
Bη(A).

(II) Let A be a fundamental block of D which is not an initial or breaking block. Then there
exists a holomorphic regular curve ΥA ⊂ T ∗η1

transverse to F , there exist a constant

CA > 0 and a function ρA : R+ → R+ with lim
c→0

ρA(c) = 0, such that for every suspension

type subset V ⊂ T ∗η (A) over a connected component of ∂A satisfying c(V) ≤ CA, there
exists a subset Bη(A) of T ∗η (A) satisfying Properties (1), (2), (3) and (5) of Part (I) as
well as
(3’) V1#

F
V;

(4’) c(Vj) ≤ ρA(c(V)) for each j = 1, . . . , nA.
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(III) Let A be a breaking block of D. Then for every choice of suspension type subsets

V1, . . . ,VnA ⊂ T ∗η (A)

over the connected components of ∂A such that the inclusion
nA⋃
i=1

Vi ⊂ ∂T ∗η (A) be rigid,

there exists a subset Bη(A) of T ∗η (A) satisfying Properties (1) and (2) of Part (I), such
that the connected components V ′1, . . . ,V ′nA of ∂Bη(A) are of suspension type and they
satisfy
(3”) V ′j#F Vj
(4”) c(V ′j) ≤ ε
for each j = 1, . . . , nA.

We will prove this theorem in the following section.

3. Construction of foliated adapted blocks

Theorem 2.16 is proved in [10, Theorem 3.2.1] when the fundamental block A is an aggregated
block or a singularity block. Thus, it suffices to consider the cases of genus blocks and dicritical
blocks which we treat separately in sections 3.1 and 3.2 respectively.

3.1. Genus type foliated adapted block. In the sequel we will assume that the genus of D
is g > 0. In order to simplify the notations in this section we will denote

Γ := ΓD, DΓ := DΓD , and D′ := D \DΓD .

3.1.1. Preliminary constructions. We fix a normal form for D given by

• a closed regular polygon P ⊂ C of 4g sides of length 1 centered at the origin;
• arc-length parameterizations a1, b1, a

′
1, b
′
1, . . . , ag, bg, a

′
g, b
′
g of the adjacent sides of P pos-

itively oriented according to ∂P such that a1(0) ∈ R+;
• a continuous map Ψ : P → D such that the restriction of Ψ to each side |aj | or |bj |

is a smooth immersion and the compositions αj := Ψ ◦ aj , βj := Ψ ◦ bj , j = 1, . . . , g,
are simple loops having a same origin mΛ which only meets each other in that point;
moreover α−1

j = Ψ ◦ a′j and β−1
j = Ψ ◦ b′j for j = 1, . . . , g;

• Ψ has an extension to an open neighborhood of P into C which is a local homeomorphism
and its restriction to P \ ∂P is a homeomorphism onto D \ Λ, where

Λ =

g⋃
j=1

|αj | ∪ |βj |

is a wedge of 2g circles.

We fix an open disk Dε ⊂ P centered at the origin of radius ε < cos
(
π
2g

)
. Up to modifying

slightly Ψ we can assume that Ψ(Dε) = DΓ so that the loop θ : [0, 1] → Γ = ∂D′ given by

θ(s) = Ψ(εe2iπs) is a simple parametrization of Γ. We consider the pull-back π̂ : ŴP′ → P ′ by
the restriction of Ψ to P ′ := P \Dε of the fibration πD : WD′ → D′, where WD′ := π−1

D (D′) \D.

Thus, π̂ is a continuous D∗-fibration which is globally trivial. Let Ψ̂ : ŴP′ →WD′ the continuous
map which make commutative the cartesian diagram

ŴP′
Ψ̂−→ WD′

π̂ ↓ � ↓ πD
P ′ Ψ−→ D′ .
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Clearly Ψ̂ is a local homeomorphism whose restriction to π̂−1(P ′ \ ∂P) is a homeomorphism

onto π−1
D (D′ \Λ) \D. The foliation F|WD′

lifts to a regular foliation F̂ on ŴP′ transverse to the
fibres of π̂.

We fix a conformal pointed disk T ⊂ π−1
D (mΛ) whose size and roughness is bounded by a

constant CD > 0 small enough so that all the constructions we shall done in the sequel lead us

to sets having finite size and roughness. By construction there exists T̂ ⊂ π̂−1(m̂) such that

T = Ψ̂(T̂ ), where m̂ is the vertex of P lying on R+. The image by Ψ̂ of the suspension VT̂ ,µ̂ of

T̂ via π̂ over the loop µ̂ := a1∨b1∨a
′
1∨b
′
1∨ · · · ∨ag∨bg∨a′g∨b′g can be considered as the suspension of

T via πD over the loop

(7) µ := Ψ ◦ µ̂ = α1∨β1∨α
−1
1 ∨β−1

1 ∨ · · · ∨αg∨βg∨α−1
g ∨β−1

g .

The subset B := Ψ̂−1(Ψ̂(VT̂ ,µ̂)) of π̂−1(∂P ′) is not necessarily a multisuspension set in the sense

of [10, Definition 4.2.1] because over each vertex of P this set is the union of 4g pointed disks,
two of them are contained in the adherence of B \ π̂−1(SP), where SP is the vertex set of P, but
the other two could not satisfy this condition. We put

B̂∂P := B \ π̂−1(SP), BΛ := Ψ̂(B̂∂P).

The following diagram is commutative but not necessarily cartesian

B̂∂P
Ψ̂−→ BΛ

π̂ ↓ 	 ↓ πD
∂P Ψ−→ Λ .

Now we will precise the geometry of BΛ. Let us denote by hαj (resp. hβj ) the holonomy
transformations of F along the loops αj (resp. βj), represented over the transverse section

π−1
D (mΛ). If CD > 0 is small enough then the following pointed 4g disks are well defined

T0 := T , T4j+1 = hαj (Tj) , T4j+2 = hβj (T4j+1) ,

T4j+3 = h−1
αj (T4j+2) , T4j+4 = h−1

βj
(T4j+3) ,

j = 1, . . . , g. We have a decomposition

BΛ = B1 ∪ B2 ∪ · · · B2g ,

of BΛ in 2g pieces of suspension type

B2j−1 := VT4j−4, αj ∪ VT4j−2, α
−1
j

= VT4j−4∪T4j−1, αj ,

B2j := VT4j−3, βj ∪ VT4j−1, β
−1
j

= VT4j−3∪T4j , βj ,

j = 1, . . . , g, with finite roughness. Moreover, πD(Bi ∩ Bj) = {mΛ}. From this description
follows:

(∗) If λ : [0, 1] → L is a simple parametrization of a leaf L of F|Bk , k = 1, . . . , 2g, then there

exists a unique path λ̂ : [0, 1] → B̂∂P such that Ψ̂ ◦ λ̂ = λ and the orientations of π̂ ◦ λ̂ and
∂P coincide.

Lemma 3.1. If χ is a path lying on a leaf L of BΛ such that π ◦ χ = µν then there exists a

unique path χ̂ : [0, 1]→ B̂∂P lying on a leaf of F̂ such that Ψ̂ ◦ χ̂ = χ.

Proof. We decompose χ = χ1∨ · · · ∨χn with |χj | ⊂ Bkj . By property (∗) each χj possesses a
unique lift χ̂j with the same orientation as ∂P. We must prove that all these lifts glue in a
unique continuous path χ̂. Fix j ∈ {1, . . . , n} and notice that the point χj(1) possesses exactly

4g pre-images by Ψ̂, one over each vertex of P. To prove that χ̂j(1) = χ̂j+1(0) it suffices to see
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that π̂ ◦ χ̂j(1) = π̂ ◦ χ̂j+1(0). But π̂ ◦ χ̂j is the unique lift of π ◦ χj with the same orientation as
∂P and theses lifts glue because π ◦ χ lifts, by hypothesis. �

Remark 3.2. Since CD > 0 is small enough so that the roughness of Bj is finite, we have that
for every η′ > 0 small enough BΛ retracts onto T ∗η′(Λ), which has the homotopy type of a product

of a circle by the wedge of circles Λ. More precisely, for all m0 ∈
4g⋃
k=1

Tk the map

(8) χ : π1(BΛ,m0)→ π1(Λ,mΛ)⊕ Z , [λ]BΛ 7→
(

[πD ◦ λ]Λ,
1

2iπ

∫
λ

dz

z

)
,

is an isomorphism.

Lemma 3.3. There exist a neighborhood B̂ of P ′ in ŴD′ and two retractions by deformation

r : D′ → Λ and R : BD′ := Ψ̂(B̂)→ BΛ such that

(i) B̂ ∩ π̂−1(∂P) = B̂∂P , BD′ ∩ π−1
D (Λ) = BΛ and the following diagram is commutative:

B̂ Ψ̂−→ BD′
π̂ ↓ 	 ↓ πD
P ′ Ψ−→ D′ .

(ii) R and r commute with the fibration πD, i.e. πD ◦R = r ◦ πD;
(iii) for every leaf L of F|BD′ , the restriction R|L is a retraction by deformation of L onto

L ∩ BΛ;
(iv) every path γ on BD′ with endpoints lying on the fibre π−1

D (mΓ) of a point mΓ ∈ Γ is

homotopic inside BD′ to a path contained in BΓ := BD′ ∩π−1
D (Γ) if and only if the element

[πD ◦ R ◦ γ]Λ of π1(Λ,mΛ) belongs to the subgroup generated by the loop µ defined in
Equation (7);

(v) a path γ lying on a leaf L of FBD′ with endpoints on π−1
D (mΓ) is homotopic inside L to a

path lying on BΓ ∩ L if [πD ◦R ◦ γ]Λ belongs to the subgroup 〈µ〉 of π1(Λ,mΛ).

Proof. Let Φ(t, z) the flow of the radial vector field R = z ∂
∂z on C. If z ∈ P ′ we define

ζ(z) = inf{t ∈ R>0 |Φ(t, z) /∈ P ′}. The map

ĥ : P ′ × [0, 1] −→ P ′ , ĥ(z, t) := Φ (t ς(z), z)

is a homotopy defining a retraction by deformation r̂ := h(·, 1) : P ′ → ∂P. Its restriction
to ∂Dε × [0, 1] is a homeomorphism sending each segment {z} × [0, 1] onto the intersection

of the half line R≥0 · z with P ′. We define r := Ψ̂ ◦ r̂ ◦ (Ψ|Γ)−1. The vector field R lifts

(via π̂) to a unique vector field R̂ tangent to the foliation F̂ . Let Φ̂(t,m) be its flow and

denote ς ′(z) := inf{t ∈ R>0 | Φ(−t, z) ∈ Dε}. The map (m, t) 7→ Φ̂(−tς ′(π̂(m)),m) define

a homeomorphism of B̂∂P′ × [0, 1] onto a neighborhood B̂ of P ′ in ŴD′ . Consider now the
homotopy

Ĥ : B̂ × [0, 1] −→ B̂ , Ĥ(m, t) := Φ̂(tς(π̂(m)),m) , π̂ ◦ Ĥ = ĥ ◦ π̂ ,

which lifts h̃, and the homotopy

Ĥ ′ : B̂ × [0, 1] −→ B̂ , Ĥ ′(m, t) := Φ̂(−tς ′(π̂(m)),m) , π̂ ◦ Ĥ ′ = ĥ′ ◦ π̂ ,

which lifts the homotopy

ĥ′ : ∂Dε × [0, 1] −→ P ′ , ĥ′(z, t) := Φ (−t ς ′(z), z) .
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Clearly the restrictions

Ĥ ′|B̂∂P×[0,1]
: B̂∂P × [0, 1]

∼−→ B̂ and Ĥ|B̂∂Dε×[0,1] : B̂∂Dε × [0, 1]
∼−→ B̂ ,

are homeomorphisms which conjugate the product foliations F̂|B̂∂P × [0, 1] and F̂|B̂∂Dε × [0, 1] to

the foliation F̂ , where B̂∂Dε = Ψ̂−1(BΓ) ⊂ π̂−1(∂Dε). The maps

R̂ := Ĥ(·, 1) : B̂ −→ B̂∂P and R̂′ := Ĥ ′(·, 1) : B̂ −→ B̂∂Dε
are retractions by deformation inducing retractions by deformation on each leaf of F̂ lifting
respectively r̂ and

r̂′ := ĥ′(·, 1) : P ′ −→ ∂Dε .
Since the restriction of Ψ̂ to B̂ \ B̂∂Dε is a homeomorphism onto BD′ \BΛ, the map Ψ̂ ◦ R̂ ◦ Ψ̂−1 :
BD′ \ BΛ → BΛ is well defined and it extends to a map R : BD′ → BΛ by being the identity

on BΛ. Indeed, the restriction of Ψ̂ to each subset B̂k := B̂ ∩ π̂−1
({

2πk
4g < arg(z) < 2π(k+1)

4g

})
and B̂′k := B̂ ∩ π̂−1

D

({
arg(z) = 2πk

4g

})
, k = 0, . . . , 4g − 1, is a homeomorphism onto their image.

Moreover R̂(B̂k) = B̂k ∩ B̂∂P , R̂(B̂′k) = B̂′k ∩ B̂∂P . Therefore the restriction of Ψ̂ ◦ R̂ ◦ Ψ̂−1 to

each subset Ψ̂(B̂k), Ψ̂(B̂′k) is well-defined and continuous. All these restrictions coincide with

the identity map on BΛ because R̂ = Id on Ψ̂−1(BΛ) = B̂∂P . Thus R : BD′ → BΛ is a retraction
by deformation satisfying Properties (ii) and (iii) of the lemma. We shall see now that R also
satisfies Property (iv).

Let γ : [0, 1] → BD′ , γ(0), γ(1) ∈ π−1
D (mΓ), mΓ ∈ Γ, be a path homotopic to another

path γ1 lying on BΓ. It follows from (8) that we can take for πD ◦ γ1 a power Γ̆ν of the

simple parametrization Γ̆(t) := Ψ(εe2iπt), t ∈ [0, 1] of Γ which satisfies r ◦ Γ̆ = µ. Hence
πD ◦R ◦ γ = r ◦ πD ◦ γ = µν .

Conversely, let γ : [0, 1]→ BD′ , γ(0), γ(1) ∈ π−1
D (mΓ), be a path such that πD◦R◦γ = r◦πD◦γ

is homotopic to µν . We consider a path ξ contained in BΓ having the same endpoints as γ and
such that πD ◦ ξ ∼ Γ̆. The loop δ := γ∨ξ−ν satisfy [πD ◦ R ◦ δ]Λ = 0. Consequently R ◦ δ is
homotopic in BΛ to a loop lying on the fibre π−1

D (mΛ). Since R is a retraction by deformation
commuting to the projection πD, we obtain that δ is homotopic inside BD′ to a loop δ1 lying on
π−1
D (mΓ). Hence γ is homotopic inside BD′ to the path δ1∨ξ

−ν which is contained in BΓ.
Now, we shall prove Property (v) from the following assertion:

(?) Let δ be a path lying on a leaf L of F|BΛ
such that πD ◦ δ is homotopic to µν . Then there

exists a path χ homotopic to δ inside L such that πD ◦ χ = µν .

We can apply this property to the path δ := R ◦ γ because πD ◦ R ◦ γ is homotopic to µν

for some ν ∈ Z by hypothesis. Thus we obtain a path χ homotopic to R ◦ γ inside L ∩ BΛ such

that πD ◦ χ = µν . By applying Lemma 3.1 to it we get a continuous Ψ̂-lift χ̂ lying on the leaf

L̂ = Ψ̂−1(L) of F̂ . On the other hand, by using the foliated retraction R we construct two paths
ξ0, ξ1 : [0, 1]→ L such that ξ0(0) = γ(0), ξ0(1) = R ◦ γ(0), ξ1(0) = R ◦ γ(1), ξ1(1) = γ(1) and

γ ∼L ξ0∨(R ◦ γ)∨ξ1 ∼L ξ0∨χ∨ξ1 = Ψ̂ ◦ (ξ̂0∨χ̂∨ξ̂1)

for the unique continuous Ψ̂-lifts ξ̂0, ξ̂1 of ξ0 and ξ1 respectively. Moreover |ξ0| and |ξ1| are

contained in orbits of R̂ and clearly ξ̂0∨χ̂∨ξ̂1 is homotopic in L̂ to R̂′ ◦ χ̂. Then γ is homotopic

in L to Ψ̂ ◦ χ̂ which is contained in BΓ ∩ L.

In order to prove Assertion (?) we consider a path δ : [0, 1] → L satisfying the hypothesis
of this assertion. Without loss of generality we can assume that δ is smooth and transverse to
the fibre π−1

D (mΛ). We get a subdivision t1 = 0 < t2 < · · · < tq′+1 = 1 of the interval [0, 1],
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such that each curve δ([tj , tj+1]) is contained in a single block Bτ(j). The endpoints mj := δ(tj)
and mj+1 := δ(tj+1) of the path δj := δ|[tj ,tj+1] project by πD onto the point mΛ and the image
of δj is the closed segment Lj of the leaf L (of real dimension one) delimited by the points mj

and mj+1. The projection of the path δj by πD is a loop based on mΛ with image |ατ(j)| or
|βτ(j)| depending on the parity of τ(j). Moreover, the equality πD ◦ δj(t) = mΛ only holds for
t = tj and t = tj+1. Thus, if we assume that πD ◦ δj is not null-homotopic then there exists a

homotopy inside |πD ◦δj | between πD ◦δj and one of the loops ατ(j), α
−1
τ(j), βτ(j) or β−1

τ(j). Clearly

this homotopy lifts to a homotopy inside Lj between δj and a new path ρj . Finally, there exists
q ≤ q′ such that δ is homotopic inside L to the path

ρ := ρ1∨ · · · ∨ρq , πD ◦ ρj =: µτ(j) ∈ {ατ(j) , α
−1
τ(j) , βτ(j) , β

−1
τ(j) } .

Let us consider the word

M(δ) := µτ(1) µτ(2) · · ·µτ(q)

composed by the signs of the alphabet

A := {α1, α
−1
1 , . . . , αg, α

−1
g , β1, β

−1
1 , . . . , βg, β

−1
g } .

By a sequence of moves of type

(9) u1 · · ·uk v v−1 uk+1 · · ·uN → u1 · · ·uk uk+1 · · ·uN , uj , v ∈ A ,

u1 · · ·uk v v−1 uk+1 · · ·uN ← u1 · · ·uk uk+1 · · ·uN , uj , v ∈ A ,

we can transform the word M(δ) in a unique word M(δ)red, called the reduced word associated
to M(δ), which do not contain any sub-word of length two of type v v−1, v ∈ A. The uniqueness
of M(δ)red follows from the solution of the word problem in a free group, cf. [6]. More precisely,
every element of the free group

π1(Λ,mΛ)
∼−→〈α̇1, . . . α̇g, β̇1, . . . β̇g | −〉 ,

can be written in a unique way in the form Ṁ := u̇1∨ · · · ∨u̇p, where M := u1 · · ·up, uj ∈ A is a
reduced word. Now we use the hypothesis that πD ◦ δ is homotopic inside Λ to a loop of type
µν . We have equality of reduced words:

M(δ)red = µν , µ := α1β1α
−1
1 β−1

1 · · ·αgβgα−1
g β−1

g .

Notice that we pass from M(δ) to M(δ)red by a sequence of suppression moves of type (9)

M0 = M(δ)→ · · · →Mq = M(δ)red , Mk = uk, 1 · · ·uk, nk , uk, j ∈ A .

To finish the proof it suffices to remark that

- to any suppression move we can associate a homotopy inside Λ between the loops

Mk := uk, 1∨ · · · ∨uk, nk

and Mk+1 := uk+1, 1∨ · · · ∨uk+1, nk+1
,

- if one of the paths ρj composing ρ satisfies µτ(j+1) = µ−1
τ(j+1), then there exists a homotopy

inside L between ρj∨ρj+1∨ρj+2 and a path ρ̃j+2 such that πD ◦ ρ̃j+2 = µτ(j).

�
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3.1.2. Checking the properties of Theorem 2.16. First of all, we will precise the construction of
the foliated block Bη(A) associated to the genus fundamental block A = D′. In the construction

made in the precedent section we take a conformal disk T ⊂ π−1
D (mΛ) of size small enough so

that it is contained in the open 4-Milnor tube Tη. Since BΓ is a subset of type multi-suspension
we can apply to it the rabotage procedure described in [10, Definition 4.3.5] in order to obtain
a subset RΓ of BΓ of suspension type such that the inclusion RΓ ⊂ BΓ is rigid and verifies
RΓ#

F
BΓ. Then we define

Bη(A) := (BD′ \ BΓ) ∪RΓ.

Clearly the inclusion Bη(A) ⊂ BD′ is ∂-rigid.

We begin checking the properties of the part (I) in Theorem 2.16. In order to see the point
(1) we consider the following commutative diagram induced by the natural inclusions:

π1(T ∗η′(Λ)) −→ π1(Tη′(D′))
↓ ↓

π1(BΛ) −→ π1(BD′)
Remark 3.2 implies that the first vertical arrow is an isomorphism. The bottom horizontal arrow
is also an isomorphism because the map R in Lemma 3.3 is a deformation retract. By lifting
conveniently the retraction r to Tη′(D′) we see that the top horizontal arrow is also an isomor-
phism. The fourth arrow is also an isomorphism. Consequently the inclusion Tη′(D′) ⊂ BD′
is rigid. The inclusion Tη′(D′) ⊂ Bη(A) is also rigid. The fact that it is also ∂-rigid follows
immediately from the construction.

In order to show (2) we must prove Properties (B1)-(B4) of Definition 2.4:

(B1) ∂Bη(A) is incompressible in Bη(A) because the inclusion ∂T ∗η′(D′) ⊂ ∂Bη(A) is rigid and

∂T ∗η′(D′) is incompressible in T ∗η′(D′) thanks to Proposition 2.12.

(B2) The boundary ∂Bη(A) is transverse to F because it is of suspension type.
(B3) Since ∂Bη(A) has been obtained by the rabotage procedure from a multi-suspension type

subset BΓ, in order to prove the 1-F-connectedness of ∂Bη(A) inside Bη(A) it suffices to
show that BΓ#

F
BD′ because ∂Bη(A)#

F
BΓ. In order to prove this, we consider a leaf L of

BD′ and two paths a : [0, 1]→ BΓ and b : [0, 1]→ L which are homotopic in BD′ By point
(3) of Lemma 3.3 we deduce that [πD ◦ R ◦ b] ∈ 〈µ〉 ⊂ π1(Λ,mΛ). By applying point (4)
of Lemma 3.3 we obtain a new path c : [0, 1] → L ∩ BΓ which is homotopic to b inside L.
By transitivity, c is homotopic to a in BD′ . Since |a| and |b| are contained in BΓ which is
incompressible in BD′ we conclude that a is homotopic to c in BΓ.

(B4) After point (2) of Lemma 3.3 we know that every leaf L of Bη(A) is a deformation retract

of L∩BΛ, which outside of the fibre π−1
D (mΛ) is a suspension type subset. We deduce that

every leaf L ∩ BΛ of F|BΛ
is incompressible.

Properties (3) and (4) of Part (I) are trivial because in this case nA = 1. To see (5) we define
first ΥD′ as the holonomic transport of π−1

D (mΛ) ∩ T ∗η1
(D′) along the oriented segment join-

ing the point mΛ to mΓ. It is clear that ΥD′ ∩ Bη(A) is incompressible in Bη(A) and that
SatF|Bη(A)

(ΥD′ ,Bη(A)) = Bη(A). On the other hand, ΥD′ ∩ Bη(A)#
F
∂Bη(A)#

F
Bη(A) because

∂Bη(A) is of suspension type.

To prove Part (II) of Theorem 2.16 we recall that if A = D′ is not an initial block then the
holonomy transformation hΓ associated to Γ is linearizable. Therefore, there exists a conformal
disk Σ ⊂ π−1

D (mΓ) such that hΓ(Σ) ⊂ Σ or h−1
Γ (Σ) ⊂ Σ. We define V1 = VΣ,Γ and we begin the

precedent construction with the conformal disk T ⊂ π−1
D (mΛ) obtained by holonomic transport
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of V1 ∩ π−1
D (mΓ) along the segment joining mΓ to mΛ, choosing mΛ as the breaking point of

V1. Indeed, from this choice the precedent construction shows that V1 is of suspension type and
∂Bη(A) = V1#

F
V. Thus, we have proved point (3’). Since nA = 1 we can take ρA(c) = c to

obtain trivially (4’).

Finally, by definition a genus block is not a breaking block, so Part (III) do not apply in this
case.

3.2. Dicritical type foliated adapted block. We fix a fundamental block A ⊂ D associated to
a dicritical irreducible component D of F of genus g and valence nA ≥ 1, given by Definition 2.11.
Condition (c) in Definition 1.2 implies that there are no dead branches adjacent to D.

Each connected component of ∂A is the boundary of a closed diskD
(i)
si contained in an adjacent

component D(i) of D and D ∩ D(i) = {si}, i = 1, . . . , nA. Let Vi be the given suspension sets

over ∂D
(i)
si . Since the holonomy of ∂D

(i)
si is the identity we can choose a saturated subset V ′i ⊂ Vi

having c(V ′i) ≤ ε, i.e. satisfying Condition (4”). The saturation condition of V ′i inside Vi implies
that each V ′i is of suspension type and satisfies Property (3”).

Next we define BV′i as the saturation of V ′i ⊂ Vi by F inside π−1
D(i)(D

(i)
si ), where πD(i) is the

Hopf fibration over the component Di. We put BV′ :=
nA⋃
i=1

BV′i and we finally define

Bη(A) :=
(
π−1
D (D \ BV′) ∩ T ∗η (A)

)
∪ (BV′ \D) .

Recall that we have choose Hopf fibration πD to be constant along the leaves of F|WD
, see Point

(c) of Remark 2.2.
In order to prove Part (III) of Theorem 2.16 it suffices to show Assertions (1) and (2) of Part

(I) because ∂Bη(A) =
nA⋃
i=1

V ′i is automatically satisfied by construction. It is clear that Bη(A)

is a tubular neighborhood of A so that Bη(A) contains T ∗η′(A) for η′ > 0 small enough. This

inclusion is ∂-rigid because the inclusions ∂Bη(A) ⊂ ∂T ∗η (A) and ∂T ∗η′(A) ⊂ ∂T ∗η (A) are rigid

and, on the other hand, we can easily see that Tη′(A) ⊂ Bη(A) is a retract by deformation and
consequently this last inclusion is also rigid.

To prove that Bη(A) is a F-adapted block it suffices to observe the following assertions
concerning properties (B1)-(B4) of Definition 2.4:

(B1) By using Proposition 2.12,

π1(∂Bη(A)) ∼= π1(∂T ∗η (A)) ↪→ π1(T ∗η (A)) ∼= π1(Bη(A))

after the ∂-rigidity of Bη(A) ⊂ T ∗η (A) that we have seen before.

(B2) The boundary ∂Bη(A) =
nA⋃
i=1

V ′i is a suspension type subset over ∂A and consequently it is

transverse to F .
(B3) Each connected component of

⋃
L∈F

(L ∩ ∂Bη(A)) is diffeomorphic to the product D∗ × D∗

endowed with the horizontal foliation. Consequently, we have that ∂Bη(A)#
F
Bη(A).

(B4) Every leaf L of F|Bη(A) is diffeomorphic to D∗ and a generator of π1(L) is sent to the
element c contained in the center of the group π1(Bη(A)) which is isomorphic to the direct
sum of Zc and a free group of rank 2g + nA − 1.
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4. Proofs of the main results

4.1. Proof of Theorem A. Recall that the break graph associated to (F ,D) was obtained
by considering the complement of the breaking elements R inside GD, see Introduction. We
consider the graph Ǧ obtained by eliminating the part of the break graph associated to (F ,D)
corresponding to the dead branches of D. After Condition (e) in Definition 1.2 and Hypothesis
(G) on (F ,D), each connected component Λ of Ǧ is a tree with at most one vertex corresponding
to an initial component C ⊂ C. We apply Part (I) of Theorem 2.16 to the initial block AC
associated to C. If Λ does not contain any initial element then we begin the construction from a
fundamental block A associated to an arbitrary element of Λ by applying Part (II). To do that we
choose some suspension type initial boundary V with c(V) small enough. Since the fundamental
blocks A 6= AC corresponding to elements of Λ are not initial blocks we can apply to them by
adjacency order Part (II) of Theorem 2.16 from the suspension type boundary obtained in the
precedent step. Since Λ is finite this procedure stops. In this way we obtain a F-adapted block
for each fundamental block of D except for the breaking blocks of D. The size and roughness of
the boundary of the F-adapted block obtained at each step of this inductive process is controlled
by those of the block constructed in the precedent step. If we choose the size and roughness
sufficiently small at the beginning then we have finite roughness at each step of the induction, see
[10, §3.2] for more details. We make the boundary assembly of these F-adapted blocks obtaining
a connected subset Bη(Λ) of T ∗η (Λ) for each connected component Λ of Ǧ.

In order to make the boundary assembly of all these sets Bη(Λ) we need also to consider F-
adapted blocks associated to the breaking elements ρ ∈ R adjacent to two connected components
Λ and Λ′ of Ǧ, which we construct from the suspension type boundaries of Bη(Λ) and Bη(Λ′)
by using Part (III) of Theorem 2.16. Notice that the case Λ = Λ′ is not excluded. In fact, this
situation could happen when ∂Bη(Λ) is not connected.

In this way we obtain a foliated boundary assembly

Bη =
⋃

Λ⊂Ǧ

Bη(Λ) ∪
⋃
ρ∈R
Bη(ρ) ⊂ T ∗η .

We take U1 = E(Bη1
) ∪ D. There exists η2 > 0 such that T ∗η2

⊂ Bη1
and we define

U2 = E(Bη2) ∪ D ⊂ U1.

By induction we construct a decreasing a sequence (ηn) tending to zero such that

Un := E(Bηn) ∪ D ⊂ Un−1.

Put Υ := tAΥA, where A varies in the set of fundamental blocks of D which are not breaking
blocks. To finish it suffices to remark the validity of the following assertions:

(i) The inclusion U∗n+1 ⊂ U∗n is rigid by Remark 2.10, Corollary 2.9 and Property (1) of
Theorem 2.16.

(ii) Every leaf L of F |U∗n is incompressible after Property (2) of Theorem 2.16 by using Local-
ization Theorem 2.5.

(iii) Thanks to Property (5) of Theorem 2.16 each irreducible component of Y ∗n is incompress-
ible in the corresponding F-adapted block, which is incompressible in U∗n by Localization
Theorem 2.5. Hence Y ∗n is incompressible in U∗n. Let Ω be the union of all the F-adapted
blocks associated to non-breaking fundamental blocks of D. Thanks to Property (5) in
Theorem 2.16 we have SatF (Υ ∩ Bη,Ω) = Ω. Clearly, the connected components of ∂Ω
are exactly the connected components of the boundary of all F-adapted blocks associated
to breaking fundamental blocks of D. Finally, for each F-adapted block B associated to a
fundamental breaking block A of D we have that B \ SatF (∂B,B) is a nodal or dicritical
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separator according to whether A is a dicritical block or a singularity block (necessarily
associated to a nodal singularity).

(iv) Property (iv) of Theorem A is equivalent to the relation Y ∗n #
F
U∗n. This follows from

tAΥA#
F
Bη because ΥA#

F
Bη(A) by Theorem 2.16, Bη(A)#

F
Bη by Localization Theorem 2.5

and the transitivity of the relation #
F

.

(v) Let Un be one of the open sets that we have constructed. We still denote by F̃Un the the

pull-back by the universal covering qUn : Ũn → U∗n of the foliation F restricted to U∗n and

we denote Q̃Un its leaf space. It is easy to see that the open subset of Q̃Un corresponding to

leaves of F̃Un projecting onto an open fixed separator has a natural structure of Hausdorff

one-dimensional complex manifold. To obtain a complete holomorphic atlas on Q̃Un we
proceed as follows. From the fact that Y ∗n is incompressible and 1-F-connected in U∗n
follows that each connected component Ỹα ∼= D of q−1

Un
(Y ∗n ) intersects every leaf of F̃Un in

at most one point. Consequently, the open canonical maps τα : Ỹα → Q̃Un , sending each

point p ∈ Ỹα to the leaf Lp of F̃Un passing through p, are injective. Hence the inverse maps

τ−1
α are holomorphic charts on Q̃Un . We achieve the proof by noting that Un\SatF (Y ∗n , U

∗
n)

is a disjoint finite union of nodal and dicritical separators and that the transition functions
induce the holonomy pseudo-group of F ; hence they are holomorphic.

4.2. Proof of Corollary A. We must check that the total transform of Z by the minimal reduc-
tion map π of F is an adapted divisor of (π∗F , π−1(0)). Conditions (a) and (b) of Definition 1.2
are obviously fulfilled. Condition (d) can not occur by the existence of local separatrices.

To prove Condition (c) notice that on a neighborhood of a dead branch with branching point
lying on a dicritical component all the leaves are compact. This situation can not happen because
it does not exist compact analytic curves in C2.

To prove Condition (e) we will use the well-known fact that the total divisor of the desingular-
isation of a germ of curve (X, 0) contains at most one irreducible component of the exceptional
divisor adjacent to at least two dead branches. We take for X the union of the isolated separatri-
ces of F and two non-isolated separatrices for each dicritical component of π∗F . We can easily
check that the minimal desingularisation morphism of X coincide with π, see [2, Theorem 2].
Then there exists at most one initial component of (π∗F , π−1(0)).

4.3. Proof of Theorem B. As we have already point out in the introduction, the equivalences
(1)⇔ (1′) and (2)⇔ (2′) follow from the main result of [15] thanks to Condition (R). Since the
implication (2) ⇒ (1) is obvious it only remains to prove implications (1) ⇒ (3) ⇒ (4) ⇒ (2).
To do that we will make a strong use of the notions and statements introduced in [12].

(4)⇒ (2): Conditions (a) and (b) in (4) imply that if D ⊂ D is a dicritical component of
(F ,D) then ϕ(D) is a dicritical component of (F ′,D′) and if s ∈ D is a nodal singularity of
F then ϕ(s) is a nodal singularity of F ′. Consequently ϕ sends connected components of the
cut divisor Dcut defined in the introduction into connected components of D′cut. On the other

hand, by assumption (ψ, ψ̃, h) := (ϕ|Σ, ϕ̃|Σ̃, h) is a realization of the S-conjugation (ϕ, ϕ̃, h)

between the monodromies mF and mF
′

over S-collections of transversals (Σ,Σ′) in the sense of
[12, Definition 3.6.1]. Moreover, by definition it satisfies trivially the additional condition

ψ̃• = ϕ̃• : π0(Σ̃)→ π0(Σ̃′)

required in the Extension Lemma of [12, Lemma 8.3.2], whose proof is also valid for genus blocks.
If Dcut is not a tree we choose singularity blocks Bα such that Dtree := Dcut \

⋃
Bα does not
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contain any cycle of components. Let B′α be the singularity block of D′cut corresponding to Bα
by ϕ and put D′tree := D′cut \

⋃
B′α. By applying iteratively the Extension Lemma beginning

by (ψ, ψ̃, h) we obtain a realization (ψ0, ψ̃0, h) of (ϕ, ϕ̃, h) over a union W of foliated adapted
blocks covering Dtree and D′tree.

Now we fix transversal disks Υ,Θ to the local separatrices associated to the singularity block
Bα contained in the boundary of W . Extension Lemma implies that ψ0 is excellent and that
ψ0 and ϕ coincide over D. Consequently, Υ′ := ψ0(Υ) = ϕ(Υ) and Θ′ := ψ0(Θ) = ϕ(Θ) are

transversal disks to the local separatrices associated to the singularity block B′α. Let (ψ1, ψ̃1, h)

be the restriction of the realization (ψ0, ψ̃0, h) to Υ.

Applying again Extension Lemma to the realization (ψ0
|Θ, ψ̃

0
|Θ̃
, h) for the block Bα we obtain

a new realization whose restriction (ψ2, ψ̃2, h) to Υ satisfies ψ2(Υ) = Υ′,

ψ̃1
• = ϕ̃• = ψ̃2

• : π0(Υ̃)→ π0(Υ̃′),

and the commutativity of the following diagrams

Υ̃α ↪→ QF

ψ̃i ↓ ↓ h
Υ̃′ϕ̃•(α) ↪→ QF ′

for all α ∈ π0(Υ̃) and i = 1, 2. Since the horizontal arrows of these diagrams are monomorphisms

we deduce that (ψ1, ψ̃1, h) = (ψ2, ψ̃2, h). Consequently, we can glue these realizations to obtain

a new realization (Ψ, Ψ̃, h) defined in a union of adapted foliated blocks covering Dcut.
Finally, it only remains to extend Ψ to the dicritical components and the nodal singularities

in order to obtain a global realization of (ϕ, ϕ̃, h) which will be the desired S-transversely holo-
morphic conjugation between (F ,D) and (F ′,D′). In fact, the extension to nodal singularities
has been described in [12, §8.5].

Now we fix dicritical components D ⊂ D and D′ := ϕ(D) ⊂ D′. On neighborhoods of
these components the foliations F and F ′ are disk fibrations. Because D and D′ have the same
self-intersection number, we can identify two tubular neighborhoods of D and D′ endowed with
the restriction of the foliations F and F ′ with a tubular neighborhood of the zero section of
the normal bundle of D in M endowed with the natural fibration. Thus, we can consider the
realization to be extended as a map from a disjoint union K of closed disks contained in D
to Aut0(D, 0). We can extend it to a union K ′ of bigger disks containing K, being a constant
automorphism of the fibres over ∂K ′ and consequently to the whole dicritical component D
using the connectedness of Aut0(D, 0).

(1)⇒ (3): Let g : (U,D)
∼→ (U ′,D′) be a S-transversely holomorphic conjugation between

(F ,D) and (F ′,D′) and g̃ : Ũ → Ũ ′ a lifting to the universal coverings of U \ D and U ′ \ D′.
By [12, Remark 3.6.2] there exists a S-An←− isomorphism h : QF → QF ′ such that (g, g̃, h) is a

S-conjugation between the monodromies mF and mF
′
. Consider Σ a S-collection of transversals

for F and D+ a D-extended divisor. Using [12, Proposition 3.6.4] and by composing g by a
suitable F ′-isotopy Θt, having support on a neighborhood W ′ of g(Σ), we obtain an homeo-
morphism ϕ := Θ1 ◦ g such that Σ′ := ϕ(Σ) is a S-collection of transversals for F ′ and D′.
Now we choose D′+ as ϕ(D+). On the universal covering Ũ we also consider the lifting ϕ̃ of ϕ

which coincides with g̃ on the complementary of W̃ ′. Again by the same proposition, we see that
(ϕ, ϕ̃, h) is a S-conjugation of the monodromies realized over the S-collections of transversals Σ
and Σ′. It remains to check properties (a) and (b) of Point (3). First remark that ϕ maps iso-

lated separatrices of F into isolated separatrices of F ′ because we have the following topological
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characterization:

S is a non-isolated separatrix if and only if there is a family {Sj}j∈N of pairwise disjoint sepa-
ratrices such that every i, j ∈ N we have that Si is topologically conjugated to S and Si ∪ Sj is
topologically conjugated to S ∪ Si.

We deduce that D′+ is a D′-extended divisor. The last assertion of Condition (a) is trivially
satisfied by the topological conjugation ϕ. In (b) equality of Camacho-Sad indices follows from
Theorem 1.12 of R. Rosas if D is a nodal separatrix of F . Otherwise, ϕ is transversely holomor-
phic in a neighborhood of D and the desired equality is proved in [12, §7.2].

(3)⇒ (4): We apply the following result which will be proved later.

Lemma 4.1. Under the hypothesis of Point (3) there exists a germ of homeomorphism

ϕ : (M,D)→ (M ′,D′)
sending the strict transform of D+ into the strict transform of D′+ and a there is a lift ϕ̃ of ϕ to
the universal coverings of the complementaries of D and D′ satisfying the following properties:

(i) at each singular point of D+ the actions of ϕ and ϕ on the set of local irreducible components

of D+ coincide;
(ii) ϕ|Σ = ϕ|Σ and ϕ̃Σ̃ = ϕ̃|Σ̃;

(iii) ϕ̃∗ = ϕ̃∗ : Γ→ Γ′;

(iv) ϕ is excellent.

Properties (ii) et (iii) trivially imply that (ϕ, ϕ̃, h) is a S-conjugation between the monodromies

mF and mF
′

realized over the S-collections of transversals Σ and Σ′. From property (i) easily

follows Condition (a) of Point (4) because the strict transforms of D+ \ D and D′+ \ D allows
to identify the dicritical components of (F ,D) and (F ′,D′). Condition (b) of (4) follows from
Condition (b) of (3) for local separatrices D ⊂ D which are not contained in the exceptional
divisor E of E : M → M . Since the dual graph of E is a disjoint union of trees we can apply
the same argument of [12, §7.3] to the F-invariant part of D in order to obtain the equalities of
all Camacho-Sad indices corresponding by ϕ from those of the local separatrices of F and F ′.
Finally (iv) gives (c) in Point (4).

Proof of Lemma 4.1. Following the notations of Section 2.3, for 0 < η � η′ � ε � 1 we con-
sider an open 4-Milnor tube Tη (resp. T ′η′) associated to the divisor D+ := E−1(D+) (resp.

D′+ := E′−1(D′+)) and we denote by T (resp. T ′) the image by E (resp. E′) of its closure

in the neighborhood W (resp. W
′
) considered in Lemma 2.1. It is worth to notice that the

boundary of T is constituted by the closed 3-Milnor tube M = E(Mη) and a finite union of
solid tori whose boundaries are the connected components of ∂M. The same property holds for
T ′ and M′. In the neighborhood of each singular point s of D+ (resp. D′+) we consider an
euclidian metric given by holomorphic coordinates. The boundaries of the closed balls B(s, r)
centered at s with radius r are transverse to M if 0 < r ≤ 2ε. We define a collar piece of T
or M as the intersection of B(s, 2ε) \B(s, ε) with T or M. The connected components of the
adherence of the complementary of the collar pieces of T or M are called essential pieces of T
or M. A continuous map between M and M′ or T and T ′ will be called piece-adapted if the
image of a piece is contained in a piece and the image of the boundary of a piece is contained in
the boundary of a piece.
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First step. Without loss of generality we can assume that ϕ(T ) ⊂ T ′ and that any essential

piece Ts of T containing a singular point s of D+ is mapped into an essential piece T ′s′ of T
containing also a singular point s′ of D′+. Using the local conical structures of the divisors
at their singular points and the retraction T ∗ := T \ D+ → M defined by the vector field ξ
considered in Section 2.3, we can adapt the constructions of [11, Section 4.1] and a variant of
[11, Lemma 4.6] to obtain a piece-adapted continuous map ψT : T ∗ →M′ ⊂ T ′∗ such that

(a) ψT is homotopic to ϕ|T ∗ as maps from T ∗ into T ′∗ by a homotopy preserving all essential

pieces associated to the singularities;
(b) the restriction of ψT to each connected component of a piece of M is a homeomorphism

onto a connected component of a piece of M′ which respect the circle fibrations considered
in Lemma 2.1.

We define ψ as the restriction of ψT to M.

Second step. For any essential piece Mα of M, the part of the proof of the main result of
[11] corresponding to Sections 4.2 to 4.4 gives us a homotopy, which preserves the boundaries,
between the continuous map ψ|Mα

and a homeomorphism ψα :Mα →M′α = ψ(Mα) such that

(a) ψα extends to a homeomorphism Ψα : Tα → T ′α between the corresponding pieces of T and
T ′ containing Mα and M′α;

(b) Ψα is excellent in the sense of [11, Definition 2.5]; in particular, the restriction of Ψα to ∂Tα
conjugates the disk fibrations considered in Lemma 2.1.

Third step. Using the product structure, it is straightforward to construct homotopies on
the collar pieces of M gluing the previous homotopies defined in the essential pieces of M.
In this way we obtain a piece-adapted continuous map ψ′ : M → M′ whose restriction to
each essential Mα coincides with the homeomorphism ψα but whose restriction to any collar
piece is not necessarily a homeomorphism. However, up to deforming ψ′ by suitable homotopies
with support on the collar pieces provided by [18, Theorem 6.1] we can assume that ψ′ is a
piece-adapted global homeomorphism.

It remains to extend ψ′ to an excellent homeomorphism Ψ between T and T ′ possessing a

lifting Ψ̃ to the universal coverings of T \ D and T ′ \ D′ fulfilling properties of Lemma 4.1.
On each essential piece Tα we define Ψ as Ψα constructed in second step. Since the restriction
of Ψα to the boundary of the essential pieces conjugates the disk fibrations, we can apply the
techniques given in [11, Sections 4.4.2 and 4.4.4] to obtain the desired extension Ψ. In addition,
it is not difficult to modify Ψ by an excellent isotopy in order to have Ψ|Σ = ϕ|Σ : Σ → Σ′.

Classically there exists a lifting Ψ̃ to the universal coverings T̃ and T̃ ′ of T \D and T ′ \D′ such

that Ψ̃∗ = ϕ̃∗ : Γ→ Γ′.
Moreover, since the restriction of ϕ and Ψ to each singular pieceMα are related by a homotopy

localized in Mα it follows that

ϕ̃• = Ψ̃• : π0(T̃α)→ π0(T̃ ′α).

Thanks to this last equality we can apply the procedure described in [12, Section 8.4] in order to

modify (Ψ, Ψ̃) by Dehn twists to obtain a new pair (ϕ, ϕ̃) which satisfy the same properties (iii)
and (iv) and fulfills also the equality

ϕ̃• = ϕ̃• : π0(Σ̃)→ π0(Σ̃′).
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Up to making an additional Dehn twist if necessary we obtain that ϕ̃|Σ = ϕ̃|Σ̃, showing Prop-

erty (ii).
Since Property (i) follows from our construction, the proof of the lemma is achieved. �
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WEBS AND SINGULARITIES

ISAO NAKAI

Dedicated to Xavier Gómez-Mont on his 60th birthday

Abstract. We investigate the singular web structure of first-order PDEs from the viewpoint
of singularity theory. Most of the results given have already appeared in papers by others,

as well as the author [28, 29, 30, 31, 32] in various different terminologies. The new results

are the construction of mini-versal webs from the deformation of isolated singularities, and
their classification. We prove also the existence of the resonance curve for generic 3-webs with

cuspidal singular locus. We introduce also Klein-Halphen webs with polyhedral symmetry
and Fermat webs, and we investigate their properties.

1. Versal web

Let f be a holomorphic function germ with an isolated singularity at o ∈ Cn+1, i.e., f(o) = 0

and V ( ∂f∂x0
, · · · , ∂f∂xn ) = {o}, and let us consider the ideal quotients

A =
OCn+1,o

〈f, ∂f
∂x1

, · · · ∂f
∂xn
〉OCn+1,o

, B =
OCn+1,o

〈 ∂f∂x0
〉OC,o + 〈f, ∂f

∂x1
, · · · ∂f

∂xn
〉OCn+1,o

,

where x0, . . . , xn are Cartesian coordinates of Cn+1 and OC,o denotes the local ring of germs of
holomorphic functions of x0 at 0 ∈ C. Clearly, if A is finite over C, then B is also finite over
C. On the variety V ′ = V (f, ∂f∂x1

, · · · , ∂f∂xn ), the coordinate x0 vanishes identically as f has an

isolated singularity. If B is finite over C, then A is finite over OC,o; hence V ′ is isolated and in
particular A is finite over C. The dimension of A over C is called the G0-codimension of f in
this paper, and differs slightly from the codimension of the G0-equivalence class of f defined in
§4. In this note, a τ -web structure (locally a configuration of τ codimension-one foliations) is
introduced on A, τ = dimCA, and its various properties are investigated.

The quotient A was studied by Teissier [36] from the viewpoint of polar variety, and by Gomez
Mont from the viewpoint of Euler obstruction, and also used to compute the dimension of the
space of logarithmic vector fields of f = 0 (see e.g. [34]). The deformation theory with respect to
B was investigated by Goryunov [15], and reviewed in detail in the book [5]. A link of the theory
of projection of hypersurface singularities with respect to some intermediate quotient and the
classification of first-order ordinary differential equations (ODEs) was investigated by Izumiya,
Takahashi et al. (see e.g., [21]). From the viewpoint of the equivalence problem for ODEs,
the web structure of families of solutions was initiated by Cartan and his followers [11, 14].
This short note is devoted to recollecting various links among these old and new subjects from
the viewpoint of web geometry, and also emphasizing the role of versal web structure in the
classification problem.
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nance, Affine structure.
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Let {g1, . . . , gτ} be a C-basis of A, τ = dimCA. Consider the linear deformation Vt : ft = 0
⊂ Cn+1, ft = f + t1g1 + · · ·+ tτgτ and the divergent diagram

C λ=x0←−−−− V = ∪Vt
t−−−−→ Cτ .

The surface Vt is smooth for a generic t, on which λ has τ critical points of Morse-type. The
above diagram may be regarded as a deformation of the projection of hypersurface singularities
with parameter t ∈ Cτ ,

C λ=x0←−−−− Vt ⊂ Cn+1 .

Let D denote the τ -valued function on Cτ that assigns these critical values to a t. The
mini-versal τ -web W{ft} on Cτ is defined to be the codimension-one “foliation” by the level
hypersurfaces of D. Specifically, W{ft} is locally a configuration of τ foliations, i.e., a τ -web, as
D is τ -valued.

It was shown [28] that the web thus constructed is non-singular at a generic point; in other
words, the τ -tuple of critical values (critical-value-map) D′ = (d1, . . . , dτ ) is a local diffeo-
morphism of Cτ . This is a consequence of the versality in Theorem 4.1 and the existence of a
deformation of ft with an additional parameter t′ ∈ Cτ ′ for which the critical-value-map, defined
on the extended parameter space Cτ+τ ′ , is submersive at the generic point. By the symmetry
quotient, D′ induces a map (classifying map) D̃ : Cτ → Cτ/Sτ = Cτ , branched over the dis-
criminant set in the quotient. Thus, by the argument given by Looijenga [25], if the classifying
map is proper and finite-to-one, the non-singular locus, i.e., the set of those t for which the
critical values are all distinct and D′ is a local diffeomorphism, possesses the K(π, 1)-property
(see also [28]). Interestingly, this property was first proved for simple (G-simple) function germs
in the weak equivalence relation with respect to B in [15]. The above τ -web is defined also for
an arbitrary non-linear deformation of f = 0 in the same manner, though a deformation can be
linearized if it is versal, i.e., ∂ft/∂t generates A.

Another feature of the versal web is that all “leaves” are diffeomorphic to a discriminant of
a Thom-Mather stable map germ [28]. In other words, a versal web is a complex one-parameter
family of discriminant hypersurfaces. A versal deformation with the smallest number (i.e. τ) of
parameters is called a mini-versal deformation (see also §3).

Brunella [9] investigated the various “real” one-parameter subfamilies of complex one-parameter
families of hypersurfaces from the viewpoint of singular Levi-flat surfaces, and called them “tissus
microlocaux”.

2. An example

Let n = 1 and f = x21 + x30 for simplicity. Then the Jacobian quotients A, B are generated
by 1, x0, x

2
0 and by 1, x0 respectively over C. Our mini-versal linear deformation (with respect

to A) with parameter t = (t1, t2, t3) ∈ C3 is

Cx0

x0←−−−− V = {x21 + x30 + t1x
2
0 + t2x0 + t3 = 0} π−−−−→ C3

t
.

The restriction of x0 to a fiber over a generic t ∈ C3
t

x0 : Cx0
← Vt = {ft = x21 + x30 + t1x

2
0 + t2x0 + t3 = 0} ⊂ C5

x0x1t1t2t3

has three Morse-type singularities. The critical values of the restriction are the solutions in
x0 of x30 + t1x

2
0 + t2x0 + t3 = 0. Thus the classifying map D̃ : C3

t → C3
XY Z = C3

xyz/S3 is
the diffeomorphism (X,Y, Z) = (Σ1,Σ2,Σ3) = (−t1, t2,−t3), where Σ1(x, y, z) = x + y + z,
Σ2(x, y, z) = xy + yz + zx, and Σ3(x, y, z) = xyz. The coordinate foliations by x, y, z on C3

xyz

induce the singular 3-web on the quotient C3
XY Z , which induces the mini-versal web W{ft} on

C3
t via D̃.
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The leaves (solutions) satisfy the following implicit first-order PDE{
p3 + (t21 − 2t2)q2 + (t22 − 2t1t3)p− t23 = 0

q3 − t1q2 + t2q − t3 = 0 ,

where p = ∂t3
∂t1

and q = ∂t3
∂t2

. The figure on the left in Figure 2 is the cross-section of W{ft} by

T = C2
t2t3 : t1 = 0. The leaves on T are the solutions of the Clairaut equation

q3 + t2q − t3 = 0,

in the coordinates t2, t3 (c.f. the equation E1 in §7). This construction of the 3-web by quotient
is generalized in §6, 7 and 8. The right figure in Figure 1 is a cross-section of the mini-versal
web by a generic T ′ : t1 = s(t2, t3), where the hexagonal structure is violated so that the closed
hexagon with concurrent 3 diagonal curves (Brianchon hexagon, the figure on the left in Figure
1) can not be embedded in a small shape. By this non-embeddability, the hexagonal web (for
which all hexagons are closed, see §5,) is distinguished from the other apparently similar but
non-hexagonal webs. The s is called the function moduli following the Russian school. Basically,
the same cuspidal web structure was first investigated by Arnold [3, 5], and also independently by
Carneiro [10] and Dufour [13] from the viewpoint of web geometry. By a suitable leaf preserving
diffeomorphism of the mini-versal web on C3

t , the hypersurface T ′ can be transformed so that
s = 0 on the cuspidal singular locus. The diffeo-type of induced web structure on the plane
is then determined by the equivalence class of such an s by the weighted C∗-automorphisms
respecting the cusp, which is formally in one-to-one correspondence with an equivalence class of
a 2-form on the plane by the same C∗-automorphisms via the web curvature 2-form introduced
in §5 [29].

In general, the codimension-one τ -webs with regular first integrals on Cs, s ≤ τ , (see the next
section for the definition) are described by codimension-(τ − s) sections, or pullbacks by maps
from the s-space, of a mini-versal τ -web on Cτ by the versality theorem (Theorem 4.1).

Figure 1. Left: a closed hexagon in a 3-web; Right: a non-hexagonal Clairaut
3-web

3. Legendre construction

Let Sτ ⊂ J1(Cτ−1q ,Ctτ ) = Cτ−1q ×Cτ−1p ×Ctτ , q = (q1, . . . , qτ−1), be a germ of a submanifold
of dimension τ in the first jet space such that the projection π = πq × πtτ to the base space
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(observation space) Cτ−1q ×Ctτ is d-to-one. Assume the canonical contact form θ = dtτ−
∑
pidqi

of the jet space is integrable on S. Then the push-forward π∗θ|S defines a d-web on the base
space, which we denote by WS and call S the skeleton of WS . A first integral of WS is a function
λ on the skeleton S such that dλ ∧ θ vanishes identically. A solution in Cτ−1q × Ctτ is an image
of the projection of a level surface λ = c, which we denote by Sc. The family of these solutions
{Sc} constitutes the web WS . If λ is non-singular, then α dλ = θ with a holomorphic function
α on S, thus

dtτ −
(
αdλ+

∑
pidqi

)
= 0 on S.

This equation describes the canonical contact form on the extended jet space J1(Cx0×Cτ−1q ,Ctτ )
vanishes identically on the image of

(λ, πq, α, πp, πtτ ) : Sτ → (Cx0
× Cτ−1q )× (Cp0 × Cτ−1p )× Ctτ = J1(Cx0

× Cτ−1q ,Ctτ ),

where πp denotes the p-coordinates on S ⊂ J1(Cτ−1q ,Ctτ ). Thus the image is a Legendre sub
manifold.

By a well-known result attributed to Hörmander and Arnold [4], the image of the above
inclusion is represented by a Nash blow-up by the tangent hyperplane of a discriminant

D(F ) ⊂ Cx0 × Cτ−1
t̃
× Ctτ

of an unfolding of a function on a Cnx , F = (t′, ft′) : Cτt′ ×Cnx → Cτt′ ×C by the slopes p1, . . . , pτ
of the critical values of ft′ with respect to the parameter t′ = (x0, t̃) = (x0, t1, . . . , tτ−1) ∈ Cτ .
Thus we may suppose

(λ, πq, α, πp, πtτ ) = (x0, t1, . . . , tτ−1,
∂ft′

∂x0
,
∂ft′

∂t1
, . . . ,

∂ft′

∂tτ−1
, ft′)

identifying S and the critical point set Σ(F ) of F . (The unfolding is possibly nonlinear. The
critical locus Σ(F ) is smooth.) By this identification, the solution Sc is the image of

F̃ = (t1, . . . , tτ−1, ft′) : Σ(F ) ∩ {x0 = c} = Σ(F |x0 = c)→ Cτ−1
t̃
× Ctτ ,

which is the discriminant locus of the restriction of F̃ to x0 = c. Let us consider the diagram

C x0←−−−− Cτ+n F̃=(t1,...,tτ−1,ft′ )−−−−−−−−−−−−→ Cτ−1
t̃
× Ctτ .

Here we have the following Legendre duality

c ∈ D(x0|F̃−1(t1 . . . , tτ ))⇐⇒ (t1 . . . , tτ ) ∈ Sc = D(F̃ |x0 = c) .

Thus the solution web WS on the right space Cτ−1
t̃
× Ctτ = Cτ−1q × Ctτ in the above divergent

diagram is the Legendre transformation of the codimension-1 foliation of the left C by points.
Let

ft = f(∗,t1,...,tτ−1)(∗) − tτ ∈ OCx0×Cnx ,o ,

where t = (t1, . . . , tτ−1, tτ ) ∈ Cτ−1
t̃
× Ctτ . Then WS = W{ft}. The following theorem is stated

in [28] and also found in the paper by Hayakawa, et al [17] in an apparently different form.

Theorem 3.1. Let S ⊂ J1(Cτ−1,C) be a germ of a submanifold at a (o, p, o) such that the
projection to Cτ−1 × C is d-to-1 and the fiber over the origin is (o, p, o). Assume there exists a
regular (nonsingular) first integral on S. Then there exists a family of functions ft ∈ OCn+1,o,
n > 0, with parameter t ∈ Cτ such that WS = W{ft}.
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The deformation {ft} above constructed is unique up to stable equivalence [5], which is called
the generating function of the web with a first integral WS . If {ft} is versal, as will be described

in the next section, the restriction Fc = F̃ : {x0 = c} → Cτ is stable in the sense of Thom-
Mather theory, and the solutions Sc, c ∈ C, are all diffeomorphic—trivial by an ambient isotopy.
The family {Fc} is also stable as a family [28].

4. Versality

Let us consider the group G of triples (φ, ψ, h), where φ and ψ are respectively germs of
diffeomorphisms of Cn+1, o and the x0-line C, o compatible via the projection of Cn+1 onto the
first x0-factor C, and h is a function germ on Cn+1, o with h(o) 6= 0. The product ◦ on G is
defined by

(φ, ψ, h) ◦ (φ′, ψ′, h′) = (φ ◦ φ′, ψ ◦ ψ′, φ′∗h× h′).

Let G0 ⊂ G be the normal subgroup of triples (φ, id, h). These groups act on the local ring
OCn+1,o of function germs defined at o ∈ Cn+1 from the right by f · (φ, ψ, h) = h · φ∗f .

Two function germs f, g at o ∈ Cn+1 are G-equivalent (respectively G0-equivalent) if they
lay on a common G-(resp. G0-)orbit. Note that function germs non-vanishing at o are all G0-
equivalent, and hence G-equivalent. These notions are variants of the contact equivalence stated
in terms of fibered diffeomorphisms of Cn+1 over C and found in various articles (see cf. [15, 35]).
For instance, G-equivalence is called parameterized contact equivalence in some papers. However
the deformation theory was developed mostly involving an intermediate equivalence relation,
for instance, the R+-equivalence, which has resulted in some confusion in terminology. Some
incorrect conclusions were drawn, for instance, the “classification” of webs with two functional
moduli in [35]. This matter will be explained in Example 1.

The present author investigated the theory in the latter equivalence relation and arrived at a
natural versality notion suitable for classifying singular τ -webs with first integrals [28]. It is worth
recalling the theory developed and restating it in a common language in terms of deformation
of singularities. Theorem 4.3 was stated in [28] in an alternative form; its proof is for the first
given in the present paper.
G0-orbits are contained in G-orbits by definition. Because G0 ⊂ G is a normal subgroup, all

G-orbits are foliated by G0-orbits (possibly of codimension 0) in a finite jet level, and a triple
(φ, ψ, h) in G sends a G0-orbit to a G0-orbit, thus it leaves each G-orbit invariant respecting
the foliation by G0-orbits. Here we can build two deformation theories with respect to G0- and
G-equivalence relations. If an f is G0-simple, i.e., there exist only finitely many G0-orbits on a
sufficiently small neighborhood of f , then it is also G-simple and the G0-orbit locally coincides
with its G-orbit, hence the two theories coincide.

The above actions induce those of the Lie groups of their k-jets, denoted Gk0 , G
k, on the k-jet

space of function germs Jk(Cn+1, o) = OCn+1,o/m
k+1
Cn+1,o, where mCn+1,o ⊂ OCn+1,o denotes the

maximal ideal consisting of function germs vanishing at the origin. Of course, the tangent space
of the Gk0-orbit OGk0 (Jkf(o)) as well as the Gk-orbit OGk(Jkf(o)) at a k-jet Jkf(0) is spanned

by the tangent lines of the action of one-parameter subgroups generated by vector fields in a
suitable form. The respective normal spaces of these orbits are presented as ideal quotients

NJkf(0)OGk0 (Jkf(o)) =
OCn+1,o

〈f〉OCn+1,o
+ 〈 ∂f∂x1

, · · · ∂f
∂xn
〉mCn+1,o

+mk+1
Cn+1,o

,

NJkf(o)OGk(Jkf(o)) =
OCn+1,o

〈f〉OCn+1,o
+ 〈 ∂f∂x0

〉mC,o + 〈 ∂f∂x1
, · · · ∂f

∂xn
〉mCn+1,o

+mk+1
Cn+1,o

.
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Assume C-dimensions of the Jacobian quotients A,B are finite. Then the ideals in the denomi-
nators are decreasing and stabilized as k →∞, hence the C-dimensions of the quotients converge
to certain limits, which are invariant under the G-equivalence relation. We say a deformation
ft ∈ OCn+1,o with parameter t ∈ Cr (possibly nonlinear in t) is versal (more precisely G0-versal)

if the differential δ : Cr → A, δ(t) =
∑
ti
∂ft
∂ti
|t=o ∈ A is surjective, and mini-versal if δ is an

isomorphism.
It is not difficult to see f = {ft} is versal if and only if

∂f0
∂xi

, i = 1, . . . , n,
∂ft
∂tj
|t=0, j = 1, . . . , r

generate the normal space of the OGk0 -orbit over C for any sufficiently large k; in other words,

the k-jet section Jkf : Cn+r → Jk(Cn+1, o) defined by

Jkf(a, t) = “k-jet of ft(x+ (0, a)) at x = o ∈ Cn+1”

is transverse to the Gk0-orbit at o ∈ Cn+r.
We say a d-web WS with a smooth skeleton S and a non-singular first integral is versal

(respectively mini-versal) if its generating function {ft}, constructed in the previous section, is
versal (resp. mini-versal) in the above sense.

Given a generic map µ of Cσ to a parameter space Cτ of a deformation {ft}, t ∈ Cr, the
pullback deformation {fµ(s)}, s ∈ Cσ, defines a singular d-web on Cσ. This does not require the
transversality of µ to the leaves of the web W{ft}. We denote the pullback web by µ∗W{ft} or
Wµ∗{ft} = W{fµ(s)} and call µ the classifying map. The pullback µ∗W{ft} has the natural first
integral induced from W{ft}, which is tautologically defined assigning the critical values of fµ(s)
to s ∈ Cσ and lifting it to the skeleton in a natural manner.

Theorem 4.1. A germ of a smooth codimension-one τ -web on Cσ with a smooth skeleton, a
regular first integral, and a finite G0-codimension is a pullback of a mini-versal τ -web on Cτ via
a map germ µ : Cσ, o→ Cτ , o.

This theorem follows immediately from the next theorem and its corollary in the deformation
theory.

Theorem 4.2. Let f ∈ OCn+1,o be an isolated singularity and assume f has a finite G0-
codimension, or equivalently, dimCA is finite. Let ft, gt, t ∈ Cτ , be versal deformations of
an equal f = fo = go. Then there exist a germ of diffeomorphism χ of Cτ , o and a family of
diffeomorphisms φt of Cn+1, o leaving the first coordinate x0 invariant such that

φt({gt = 0}) = {fχ(t) = 0}, t ∈ Cτ .

In particular, χ∗W{ft} = W{gt}.

The theorem states in particular the mini-versal web W{ft} is determined by fo up to diffeo-
morphism. The proof is routine in Thom-Mather theory, being based on first constructing the
one-parameter family of versal deformations joining {ft} to {gt}, and second the trivialization
of the family. A detailed proof is found in [28] in a different terminology.

Corollary 4.1. Let f ∈ OCn+1,o be an isolated singularity with a finite G0-codimension, and let
dimCA = τ . Let ft, t ∈ Cτ , gs, s ∈ Cσ be deformations of fo = go = f . Assume {ft} is versal.
Then there exists a map germ µ : Cσ, o→ Cτ , o such that

W{gs} = µ∗W{ft}.
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Proof. Let {grs} be a versal deformation with gos = gs with an additional parameter r ∈ Cρ,
and put fut = ft for u ∈ Cρ+σ−τ . Here we suppose ρ + σ − τ ≥ 0 choosing a large ρ. By
Theorem 4.2, these versal deformation with an equal dimension of parameters {fut}, {grs} are
equivalent, thus there exists a diffeomorphism χ of Cρ+σ, 0 such that W{grs} = χ∗W{fut}. Let

i : Cσ → Cρ+σ be the natural embedding and π : Cρ+τ → Cτ be the natural projection. Then
W{gs} = i∗W{grs} and W{fut} = π∗W{ft}. Therefore W{gs} = (π ◦ χ ◦ i)∗W{ft}. �

Example 1. Let us consider the versal web W{ft} constructed in §2. The graph of the critical

values of x0 on ft1t2t3 = x21 + x30 + t1x
2
0 + t2x0 + t3 = 0 ⊂ C2

x0x1
is the set

{x30 + t1x
2
0 + t2x0 + t3 = 0} ⊂ C4

x0t1t2t3

and the versal web on C3
t1t2t3 is given by the family of x0-level sets. A 3-web W{guv} on the plane

C2
uv with go = fo = x21 +x30 is of the form µ∗W{ft} induced from the versal web by Theorem 4.1.

A generic embedding µ : C2
uv → C3

t1t2t3 can be presented as µ(u, v) = (α(u, v), u, v). Thus the
critical-value-graph of the induced web W{guv} = µ∗W{ft} is presented as

C x0←− {x30 + α(u, v)x20 + ux0 + v = 0} ⊂ C3
x0uv

π→ C2
uv.

Here the graph in the middle is smooth with coordinates (u, x0); the first integral is fixed to x0,
while the second projection π varies as the embedding µ varies. If we normalize the projection π
to the Whitney cusp map, we obtain the normal form of 3-webs with the cuspidal singular locus
due to Carneiro [10] and Dufour [13]. Similarly, a generic 4-web on C2

uv with go = x21 + x40 is
given by

C x0←− {x40 + α(u, v)x30 + β(u, v)x20 + ux0 + v = 0} ⊂ C3
x0uv

π→ C2
uv.

These α and β are function moduli of the web structures. This normal form conflicts with a
classification result in [35], and waits for a better explanation.

By Theorem 4.2, a deformation of a versal web is trivial, i.e., equivalent to a trivial family
of the versal web. In particular, a versal web is a cylinder of a mini-versal web. Thus the
complement of the discriminant locus of a versal web possesses the K(π, 1)-property, where the
fundamental group π is the braid subgroup of τ strings given by the τ critical values of the first
integral x0 on Vt : ft = 0.

The following theorem is remarkable as it reduces the classification of versal webs to that of
functions on varieties by G-equivalence, which is weaker than G0-equivalence.

Theorem 4.3. Let f, g ∈ OCn+1,o be G-equivalent. Then f, g have an equal G0-codimension and
their mini-versal webs W{ft} and W{gt} are diffeomorphic.

Proof. Assume f, g are equivalent by a triple (φ, ψ, h): hφ∗f = g. By a straight forward calcu-
lation,

∂g

∂xi
=
∂hφ∗f

∂xi
=

∂h

∂xi
φ∗f + h

∑
j=1,...,n

∂φj
∂xi

φ∗
∂f

∂xj
.

This states that φ∗ sends the OCn+1,o-submodule < f > +J0f to < g > +J0g, where < g > +J0g
stands for the denominator of the quotient A for g. If {s1, . . . , sτ} is a C-basis of the Jacobian
quotient A of f , its pullback {φ∗s1, . . . , φ∗sτ} is a C-basis of the quotient for g. Thus

gt = g +
∑

tiφ
∗si = hφ∗f +

∑
tiφ
∗si = φ∗(h′f +

∑
tisi)

is a mini-versal deformation of g, where h′ is a unit. If we write f ′t = h′f +
∑
tisi, then the

solution Sc ∈ W{gt} coincides with the solution Sψ(c) ∈ W{f ′t}. Thus W{gt} = W{f ′t}. By a
similar calculation, we have also < h′f > +J0h

′f =< f > +J0f as h′ is a unit. Thus {f ′t}
is versal, and {f ′′t = h′f +

∑
tih
′si} is also versal as h′ is a unit. Thus W{f ′t} and W{f ′′t} are
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diffeomorphic by Theorem 4.2. As f ′′t = h′ft, we obtain W{f ′′t} = W{ft}. This completes the
proof. �

A result of Matsuoka [26] asserts that functions on a variety are classified by associated
homomorphisms of C-algebras.

5. Affine Connection of 3-webs on the plane

A complex first-order ODE of one valuable, local in p = dy/dx, is

f(x, y, p) = 0 (∗)

where f is a germ of complex analytic function at a (0, 0, p0). In suitable coordinates one may
assume p0 = 0. The skeleton S ∈ J1(C,C) = Cx × Cy × Cp is defined by f = 0. From now on
we do not assume S to be smooth.

To obtain the solutions of (∗), we assume the equation is locally solved in p as

p = fi(x, y) , i = 1, . . . , d

on a domain nearby the origin with implicit functions fi. The solutions of each explicit differential
equation as above form a germ of curvilinear foliations, hence the entire family of solutions of
(∗) form a configuration of d foliations, i.e., a d-web. We recall some classic results obtained by
Cartan and Blaschke (for details, see e.g. [11, 7, 8, 12]).

One of the basic ideas to extract geometric invariants from a web is to extend the Bott
connection (parallel translation of normal vectors along leaves) of its constituent foliations (if
possible) to an equal affine connection ∇ of the xy-plane. For d = 3, such a connection exists and
called the Chern connection. This connection is defined on the complement of the discriminant
of the equation (in p), and extends meromorphically to the discriminant [4]. The singularity
of the connection depends subtly on that of the equation in general. Hence one may expect to
classify the equations in terms of connection. Indeed, the transverse sections of the mini-versal
3-webs W{ft}, fo = x21 + x30, in §2 are classified by their curvature 2-forms [29].

To introduce such a common affine connection, let us consider

ωi = Ui (dy − fi dx), i = 1, . . . , d

with units Ui 6= 0. In the simplest non-trivial case d = 3, one may impose the normalization
condition

ω1 + ω2 + ω3 = 0 .

Then it is seen that there exists a unique θ such that

d

ω1

ω2

ω3

 =

θ 0 0
0 θ 0
0 0 θ

 ∧
ω1

ω2

ω3

+ (T = 0) (∗∗)

The i-th row of the equation

dωi = θ ∧ ωi
is just the integrability condition for ωi. Omitting the i-th row for any i, the equation (∗∗)
is regarded as the structure equation for an affine connection without torsion. By the above
normalization condition, the resulting connection is independent of the choice of i and U1, U2,
and U3. The affine connection thus defined is called the Chern connection of the 3-web of ω1,
ω2, and ω3; it has connection form Θ = θI and curvature form

Ω = dΘ + Θ ∧Θ = dθ I
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where I stands for the 2 × 2 identity matrix. The curvature form is independent of the choice
of co-frame because it is a similarity matrix. The dθ is called the web curvature by Blaschke [8].
It is not difficult to see that if ω1 = −fxdx, ω2 = −fydy and ω3 = df , then

dθ =
∂2

∂x∂y
log

fx
fy
dx ∧ dy.

The skeleton S is locally identified with the xy-plane via the natural projection. The above
method is generalized to define an affine connection on (the smooth part of) S, which is an
extension of the Bott connection of the foliation given by the contact form for any d ≥ 3.

The following proposition was proved by Lins Neto and the author [24].

Proposition 5.1. Assume the natural projection of a germ of skeleton f(x, y, p) = 0 to xy-plane
has multiplicity d. Then f is equivalent to the polynomial equation of degree d in p,

pd +B2 p
d−2 +B3p

d−3 + · · ·+Bd = 0

where Bi are germs of analytic functions of x, y.

This is seen simply by changing the coordinate y with a first integral of the mean slope
equation y′ = −B1/d for a polynomial f(x, y, p) = pd +B1p

d−1 + · · ·+Bd. The general case is
reduced to the polynomial case by the Weierstrass preparation theorem.

For d = 3, our normal form is
p3 +B p+ C = 0. (∗ ∗ ∗)

Mignard[7] calculated the curvature form of 3-webs given by ODEs without this normalization
and using computer produced a large formula. Henaut [6] provided insight into the web curvature
form from the D-module theory. The following curvature form for the above normal form was
presented by Lins Neto and the author in [24, 32].

Theorem 5.1. The web curvature form dθ of the normal form (∗ ∗ ∗) is

1

6
(log ∆)xy dx ∧ dy + d

{
(6BByC − 4B2Cy) dx+ (6BCx − 9BxC) dy

∆

}
,

where ∆ = 4B3 + 27C2 is the discriminant of the cubic polynomial in p.

From the theorem we immediately obtain

Theorem 5.2. (Resonance Curve Theorem (Lins Neto, Nakai) [24]) Assume d = 3,
B = C = 0 at the origin and the germ of discriminant ∆ at the origin is diffeomorphic to the
(2, 3) cusp; assume also the skeleton is smooth and transverse to the canonical contact element
dy−pdx = 0 in the first jet space. Then the curvature form vanishes on a union of two transverse
non-singular curves passing through the origin; one is tangent to the discriminant at the origin
and the other is transverse. The statement remains valid also in the real smooth case.

Proof. The first assumption implies that (B,C) is a local diffeomorphism of C2 and the second
assumption tells Cx 6= 0 at the origin. By straightforward calculation one sees that the curvature
multiplied by ∆2 has a trivial linear part, the second-degree part is non-degenerate, and its zero
splits into the tangent line of the cusp and another transverse line. �

In the real case, the resonance curve is also real; moreover, the theorem provides a law
of positivity and negativity of the curvature in the sectorial areas between the cusp and the
component of the resonance curve passing through inside. In the 3-web on the left in Fig 4, the
curvature is negative and positive on the respective upper and lower sectorial domains inside
the cusp separated by the resonance curve (see also [29] for the web curvature nearby singular
locus).
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Figure 2. Left:Cusp-Clairaut 3-web: Exponent 1; Right:Rectangular 3-web:
Exponent 1

2

For d ≥ 4, there is no canonical affine connection associated to a d-web, unless the cross ratio
of the tangent lines of d leaves is constant. Henaut [18, 19, 20] defines a curvature from the
viewpoint of Abelian relations. Recently Henaut proved his curvature form is the sum of web
curvatures of all subtracted 3-subwebs in [20].

6. Flat Differential Equations

A 3-web is hexagonal if it is locally flat, in other words, the web curvature form vanishes
identically. The next fact is classically known.

Theorem 6.1. (Linearization Theorem [1,2,4]) A non-singular flat 3-web is locally diffeo-
morphic to the linear 3-web defined by

dx , dy , −(dx+ dy).

From the intuitive geometric point of view, it is interesting to classify singular hexagonal
3-webs on the plane. The following theorem was announced by Lins Neto and the author in
[31, 32] without proof, which has now been given by Agafonov [1].

Theorem 6.2. Assume the solution web of the local first-order ODE (∗) in §5 is a hexagonal
3-web and the discriminant locus in p is diffeomorphic to the (2, 3)-cusp. Then the equation (∗)
is equivalent to one of the following two equations by transformation of the xy-plane.

p3 + xp− y = 0,(Cusp-Clairaut)

p3 +
1

4
xp+

1

8
y = 0.(Rectangular)

These equations have smooth skeletons and their projections onto the xy-plane are the Whit-
ney cusp map. The portraits of the solution hexagonal 3-webs of these equations are drawn
in Figure 2. The reader may appreciate the affine (linear) structure on the complement of the
discriminant. Curiously these hexagonal webs appear in geometric optics: The figure on the
left is apparently the most symmetric 3-web by ray lines tangent to the cuspidal caustics, and
the figure on the right is give by the contour lines of the differences in phases (critical values)
d1 − d2, d2 − d3, and d3 − d1 in the Pearcey web in §10, where d1, d2, and d3 are the critical
values of the potential function 1

4p
4 + 1

2xp
2 + yp.
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Agafonov [2] explains these singular hexagonal 3-webs from the viewpoint of Frobenius man-
ifolds.

7. Klein-Halphen webs and Fermat webs

In this section we introduce some other singular hexagonal 3-webs on the plane. The coordinate
3-web on an analytic surface V ⊂ C3 is defined by the coordinate 1-forms dx, dy, dz. The
coordinate web is hexagonal on the generalized Brieskorn variety

Vα,β,γ : Xα + Y β + Zγ = 0 , α, β, γ ∈ Q∗

as dθ = ∂2

∂x∂y log zx
zy
dx∧dy vanishes identically on the variety. Clearly a pullback of this coordinate

3-web by any non-degenerate map germ φ : C2, o→ Vα,β,γ , o is hexagonal, but it is highly singular
at the preimage of the origin in general.

For positive integers α, β, γ, Halphen [16], Klein [22] and Lins Neto [23] proved that the germ
Vα,β,γ , o admits a finite-to-one dominating map germ φ from C2, o if and only if

1

α
+

1

β
+

1

γ
> 1 .

Moreover, for such a triple (α, β, γ) with α, β, γ ≥ 2, i.e., one of (2, 2, n), (2, 3, 3), (2, 3, 4), (2, 3, 5),
the variety is a quotient of C2 by a certain subgroup of the binary polyhedral group in SU(2)
corresponding to the triple, i.e., a cyclic group of order n, binary Klein quartic group, binary
alternating group of order 24 or the whole binary octahedral group, respectively. Thus the
hexagonal coordinate 3-web on the variety lifts to a singular hexagonal 3-web on C2 with sym-
metry of the subgroup (see c.f. [22] for the explicit form of the quotient map). It is seen that
the web thus constructed possesses also the natural C∗-symmetry and moreover the symmetry
of the whole binary polyhedral group corresponding to the triple. The complete quotients of
C2 by these binary polyhedral groups are known as duVal singularities of type Dn, E6, E7, and
E8. Therefore every duVal singularity of type ADE, including type An, admits a hexagonal
singular web structure, which carries affine structure off the singular locus. (The lift of the
coordinate 3-web on V2,3,3 possesses also the symmetry of binary octahedral group if we allow
transposition of the constituent coordinate foliations of the web. Therefore the E7 singularity
admits two distinct singular affine structures induced from V2,3,3 and V2,3,4.) We call these webs
on the source C2 lifted from Vα,β,γ , Klein-Halphen webs. This construction may be generalized
to certain other values of α, β, γ.

Let us consider the generalized homogeneous Fermat surface

Vα : Xα + Y α + Zα = 0 ,

where α 6= 0 is a rational number. This is the only symmetric germ of an analytic subspace, up
to diffeomorphisms of Cartesian form φ(X) × φ(Y ) × φ(Z), such that the coordinate 3-web is

hexagonal. The coordinate web on Vα induces a hexagonal web Wα on its S3-quotient Ṽα. The
coordinate functions X,Y, Z induce a 3-valued function on the quotient, which is the “defining
level function” of the quotient 3-web. The natural C∗-action on Vα induces that on Ṽα, and then
Ṽp/q is the Zq-quotient of Ṽp, and the Zp-quotient of Ṽp is Ṽ1.

For an exponent α in a certain class, there exists a finite covering map P : C2, o → Ṽα, o
branched at o. Among the positive integers, such a covering map exists only for α = 1, 2, 3, 4
and 5: Ṽ4, Ṽ5 are diffeomorphic to the A1 singularity and A4 singularity, respectively, which
are the quotients of C2 by cyclic groups of orders 2 and 5. For such an α (not necessarily a

positive integer in general) the quotient coordinate 3-web on Ṽα, o lifts to a hexagonal 3-web on
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the source C2, and its first integral is induced from the coordinate functions X,Y, Z. We call
the web thus constructed Fermat web if it exists, and denote by Wα.

Here we present the first-order differential equations defining the Fermat webs for certain
exponents α:

E1 : p3 + xp− y = 0 (Cusp-Clairaut),
E 1

2
: p3 + 4xyp− 8y2 = 0,

E 1
3
: 27x2p3 + 3xp− y = 0,

E 1
6
: 27x2p3 + 12xyp− 8y2 = 0,

where p = dy/dx. The portrait of W 1
2

is the figure on the left in Figure 4. The equations thus

obtained are not local in p in general, as is seen in the small list above, and do not fall within
the classification scheme given by Theorem 3.1.

The equation E1 has the natural C∗-symmetry induced from that on the plane

V1 : Σ1 = X + Y + Z = 0

in XY Z-space. For instance, the action by −1 induces the involution (x, y) → (x,−y) on the
xy-plane, x = Σ2 = XY + Y Z + ZX, y = Σ3 = XY Z, and the action of the cubic root of unity
ω gives the symmetry of order 3, (x, y) → (ω−1x, y). The quotients of E1 by these symmetries
of order 2, 3, and their generating group of order 6 are respectively E 1

2
, E 1

3
and E 1

6
.

For α = −1, we obtain the following Clairaut equation

E−1 : p3 + x2p2 − 2xyp+ y2 = 0,

where x = Σ1, y = Σ3 and p = dy/dx. The explicit form of the differential equations for the
other α can be calculated by computer but they are too big and unsuitable to present here. The
other cases will be published elsewhere.

8. Abelian relation of first integral and exponent

Assume the Fermat web Wα exists for a rational α. By construction, the coordinates X,Y, Z
on the Fermat surface Vα induce a single valued first integral λ on the skeleton of Eα, and it
enjoys the relation

Trace λα =
∑

λα = 0

on the xy-plane, where the sum in the middle is taken over the fiber of projection of the skeleton
onto the xy-plane choosing suitable branches of λα. For instance, λ = p for the equation E1

in the previous section, and the relation Trace p = 0 is apparent by the presentation of the
equation. We call the relation an Abelian relation of the first integral λ.

Consider a germ of 3-web at the origin in the xy-plane defined by a first-order ODE f(x, y, p) =
0 as in §5, which is not necessarily local in p. The Trace λα is well defined in a similar manner
to the above on a punctured neighborhood of the origin for a first integral λ on the skeleton
S : f = 0. Then the Abelian relation Trace λα = 0 implies the web is hexagonal.

Assume another Abelian relation Trace µβ = 0 holds. As the space of Abelian relations for
triples of defining 1-forms of a germ of non-singular plane 3-web is of dimension at most 1 (see
[7, 8, 20] for the detail), it follows dλα = c dµβ on S with a constant c 6= 0, from which λα = cµβ .

Assume S is smooth at a lift C̃ of a solution C ⊂ C2 containing the origin in its closure, and λ, µ
vanishe on C̃ in order 1. Then comparing the orders of vanishing of both sides of λα = cµβ at C̃,
we obtain α = β. Moreover a first integral with an Abelian relation of exponent α is unique up to
multiplication by a constant. The exponent α is uniquely determined by the 3-web if there exists
only one solution C with the above property. We call α the exponent of the hexagonal 3-web
with first integerl. (Remark that the first integral λn fulfills the Abelian relation of exponent
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α/n for any positive integer n, but it vanishes at C̃ in order n. We define the exponent to be ∞
if the Abelian relation does not exist.)

Theorem 8.1. (Universality of Fermat web) Assume a germ of a hexagonal 3-web on the
plane admits an irreducible holomorphic first integral λ with an Abelian relation of exponent α
as above, and assume the Fermat web Wα exists. Assume also λ 6= 0 at a point on each fiber of
the projection of skeleton over (x, y) 6= o near the origin o. Then the web and the first integral
λ are induced from the Fermat web Wα via a holomorphic map of the plane.

Proof. Let ∆ ⊂ C2 denote the subset of those points where the projection of π : S → C2 are
not regular at the fiber of π or λ is not regular at the fiber. Define µ : C2 \ ∆ → C3 by
µ = (Σ1,Σ2,Σ3) with the symmetric polynomials Σi of degree i of the values of λ at the fiber
of π. It is bounded on a neighborhood of the origin, so extends holomorphically to a map of C2

to the quotient Fermat surface Ṽα, and the web WS is the pullback of the quotient web on Ṽα.
By assumption, the extension µ has the fiber µ−1(o) = o ∈ C2. Therefore the pullback of the
branched covering P : C2 → Vα by µ decomposes into a union of non-singular surfaces meeting
at the origin. Let s be a section of the pullback, µ̃′ the natural bundle map covering µ, and set
µ̃ = µ̃′ ◦ s. Then P ◦ µ̃ = µ and WS = µ̃∗Wα. By the definition of µ, the lift µ̃ respects the
first integrals of the leaves passing through those points in the source and target. Therefore λ is
induced from the first integral of Wα. �

For instance, Rectangular web in Figure 2 has exponent 1
2 as is seen by the argument for

Dual-Cusp-Clairaut web in the end of the next §9, thus it is a pullback of the Fermat web W 1
2
.

We remark that Klein-Halphen webs may possess a similar universal property.
In general, a singular d-web admits at most (d − 1)(d − 2)/2 linearly independent Abelian

relations of first integrals by the virtue of the theory of Abelian relation of integrable forms (see
c.f. [20]). The following Clairaut equation defines a 4-web, and the first integral p = dy/dx
enjoys the maximal number ( i.e. 3) of Abelian relations with the various exponents

p4 + xp− y = 0, Trace p = 0, Trace p2 = 0, Trace p5 = 0.

This suggests generalizing our construction of Fermat webs to Brieskorn varieties of higher
codimensions.

9. Dual 3-web

The hexagonal 3-web structure can be also produced by rotation of leaves as follows. The
dual L∗ of a configuration L = L1 ∪ L2 ∪ L3 of lines in the plane passing through the origin is
the unique 3-line configuration (different from L) invariant under the linear symmetry group of
L. The dual 3-web W ∗ of a 3-web W is defined by integrating the dual 3-line configuration of
the tangent 3-line fields of W .

Theorem 9.1. The bi-duality holds: W ∗∗ = W , and W , W ∗ share the same Chern connection.

Corollary 9.1. A 3-web W is flat if and only if its dual W ∗ is flat.

The dual equations of (Cusp-Clairaut), (Rectangular) in Theorem 6.2 are respectively

y′3 +
2x2

3y
y′2 − x y′ + 2x3 + 27y2

27y
= 0,(Dual-Cusp-Clairaut)

y′3 − x2

3y
y′2 − x

4
y′ − 2x3 + 27y2

216y
= 0.(Dual-Rectangular)

These equations have the exponents 1
2 and 1 respectively. The portraits of the solution webs of

these equations are drawn in Figure 3. Dual-Cusp-Clairaut web is the S3-quotient of the plane
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Figure 3. Left: Dual-Cusp-Clairaut web: Exponent 1
2 ; Right: Dual-

Rectangular web: Exponent 1

α+β+γ = 0 in the αβγ-space foliated by the level lines of α−β, and its skeleton is diffeomorphic
to the quotient of the plane by the involution transposing α and β. Thus λ = (α − β)2, well
defined on the skeleton, is a first integral of the equation. The Abelian relation of λ of exponent
1
2 follows from the obvious relation (α − β) + (β − γ) + (γ − α) = 0. Fermat web W 1

2
is also

interesting because it is self-dual, i.e., identical to its dual 3-web. Generalization of the duality
to flat webs in higher dimensions would be interesting.

10. Pearcey web and the stationary phase method

Let us consider the Pearcey integral∫ ∞
−∞

exp
√
−1{1

4
x4 +

1

2
t1x

2 + t2x+ h(t1, t2)} dx.

In the theory of geometric optics, the potential function is supposed to be the distance from a
point in the observation plane (t1, t2) ∈ C2 to a wave front [37]. Huygens principle suggests the
intensity of light at the (t1, t2) near caustics is well approximated by the absolute value of the
integral[6, 37, 33]. This model is associated with the generating function

ft(x0, x1) =
1

4
x41 +

1

2
t1x

2
1 + t2x1 + h(t1, t2)− x0, t =(t1, t2) ∈ C2,

which is non-versal in the manner in §1, 4 and embedded into the versal family with an additional
parameter

FT (x0, x1) =
1

4
x41 +

1

2
t1x

2
1 + t2x1 + t3 − x0, T =(t1, t2, t3) ∈ C3.

The stationary phase method reveals that the integral is approximated by the functional value
of the integrand at the critical points of the potential function in the exponent. This leads us
to the geometry of the family of wavefronts: Phase = constant, which is just our 3-web W{ft}
introduced in §1 and illustrated on the right in Figure 4. We call this web of wave fronts, Pearcey
3-web.

Clearly the intensity is independent of the constant term h. The contour map of the intensity
is given on the left in Figure 5. In the paper of Pearcey [33], the contour map of the phase is also
given for the h identically 0. On the right in Figure 5, we present it with a h suitable for the
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natural wave propagation. The skeleton is smooth if ht1(0, 0) 6= 0. It is interesting to compare
the figures on the right in Figures 2, 3, and the Pearcey 3-web in Figure 4 with the contour maps
of the respective intensity and phase of the Pearcey integral in Figure 5.

Figure 4. Left: Fermat web W 1
2
; Right: non-hexagonal Pearcey 3-web

-10 -8 -6 -4 -2 0 2 4

-6

-4

-2

0

2

4

6

Figure 5. Contour maps of the intensity (above left) and phase (above right).
In the figure on the left, the black dots represent zeros of the integral (small
white dots are computational bugs), whereas in the right figure the black dots
represent the centers of whirlpools.

According to Theorem 5.2 (Resonance Curve Theorem), there exist two smooth curves passing
through the cusp point, on an infinitesimally small neighborhood of which the 3-web structure
is flat. Moreover 3-phases of the wave resonate at some discrete points on those curves. If we
suppose the wave in the last figure is propagating from right to left, some “trajectories” seem to
be trapped in whirlpools inside the cusp.
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[23] Lins Neto, A., On Halphen’s theorem and some generalizations, Ann. Inst. Fourier(Grenoble) 56(2006), no.6,

1947–1982.
[24] Lins Neto, A., Nakai, I., Curvature of 3 webs (in preparation)

[25] Looijenga, E., The complement of the bifurcation variety of a simple singularity, Invent. Math. 23 (1974),

105–116. DOI: 10.1007/BF01405164
[26] Matsuoka, S., An algebraic criterion for right-left equivalence of holomorphic functions on analytic varieties,

Bull. London Math. Soc. 21 (1989), no. 2, 164–170.
[27] Mignard, G., Rang et courbure des 3-tissus de C2, C. R. Acad. Sci. Paris Ser. I Math. 329 (1999), no. 7,

629–632.

[28] Nakai, I., Notes on versal deformation of first-order PDEs and web structure, J. Differential Equations 118
(1995), no. 2, 253–292.

[29] Nakai, I., Web geometry and the equivalence problem of first-order partial differential equation, Rev. Semin.

Iberoam. Mat. Singul. Tordesillas 2 (1998), no. 2, 31–77.

http://dx.doi.org/10.1007/s12220-009-9071-1
http://dx.doi.org/10.1016/j.geomphys.2011.10.020
http://dx.doi.org/10.1002/cpa.3160290603
http://dx.doi.org/10.1007/BF01077644
http://journees-textiles.univ-rennes1.fr
http://dx.doi.org/10.1007/BF01405164


WEBS AND SINGULARITIES 167

[30] Nakai, I., Web geometry and the equivalence problem of the first-order partial differential equations, Web

theory and related topics (Toulouse, 1996), 150–204, World Sci. Publ., River Edge, NJ, 2001.
[31] Nakai, I., Web geometry of solutions of holonomic first order PDEs, Natural Science Report, Ochanomizu

University, Vol.53, no.1 (2002), 107-110.

[32] Nakai, I., Web geometry of solutions of first-order ODEs. In: Geometry and Foliations 2003, Kyoto,
1059874940-nakai.pdf

[33] Pearcey, T., The structure of an electromagnetic field in the neighbourhood of a cusp of a caustic, Philos.

Mag. (7) 37, (1946). 311–317.
[34] Tajima, S., On polar varieties, logarithmic vector fields and holonomic D-modules, Rims Kokyuroku, B40

(2013), 041–051.

[35] Takahashi, M., Bifurcations of completely integrable first-order ordinary differential equations, Journal of
Mathematical Sciences. 144 (2007), no.1, 3854–3869.

[36] Teissier, B., Variétés polaires. II. Multiplicités polaires, sections planes, et conditions de Whitney, Algebraic
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Abstract. We consider the class Vn of germs of holomorphic vector fields in (C2, 0) with van-

ishing (n − 1)-jet at the origin, n > 1. For generic germs v ∈ V2 we prove the existence of an

analytical orbital normal form whose orbital formal normal form has the form vc,b given in [ORV4].

Furthermore, fixing one representative v̂ of the analytic class of a germ v ∈ V2 having the y-axis

invariant, the corresponding formal normal form v̂c,b̂ is analytic and unique (under strict orbital

equivalence). Moreover for generic v ∈ Vn, n ≥ 2 we give a preliminary orbital analytic normal

form which is polynomial and of degree at most n in the y-variable.

1. Introduction

The problem of the formal and analytic classification of germs of holomorphic vector fields
goes back to Poincaré. He proved that, in the generic situation, such classification relies on
the eigenvalues of the linear part of the vector field at the singular point. In such cases, the
formal and analytic classification coincides. As it is well-known (see [IY], [ORV3]) the failure of
the generic assumptions on the eigenvalues of the linear part of the vector field leads either to
simply formal normal forms and complicated analytic ones (and therefore the non coincidence
of the formal and analytic classification) or to highly complicated formal and analytic normal
forms. In this last situation the formal and analytic classification coincides again: the rigidity
phenomena takes place (see [Ce,Mo], [EISV], [M], [Lo1], [Lo2]).

In more complicated situations, when the linear part of the vector field at the singular point
is zero (i.e. for degenerated germs of vector fields), the rigidity phenomena takes place again for
generic dicritic and nondicritic germs (see [ORV1] and [Vo1] for the classical and orbital rigidity-
respectively- of nondicritic germs; [ORV2] for the classical and orbital rigidity of generic dicritic
germs of vector fields and [Ca] for orbital rigidity of dicritic germs with higher degeneracies).

In such cases the formal orbital normal form was obtained and Thom’s problem on the minimal
invariants of the orbital analytic classification of generic dicritic and nondicritic degenerated
germs of vector fields was solved (see [ORV2] and [ORV4]). In those works rather simple formal
orbital normal forms were obtained and the analytic classification relied in a combination of
a finite number of parameters, together with formal invariants related to geometric objects
(involutions and separatrices respectively).

The problem on the analyticity of the formal orbital normal forms was solved for generic
dicritic germs in [ORV3]. However, the analyticity of the formal orbital normal form for nondi-
critic generic germs of vector fields given in [ORV4] was still open. In this work we prove the
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analyticity of such normal forms for the generic case: that is, when the formal orbital normal
form has quadratic principal part.

For higher degeneracies we give a preliminary orbital analytic normal form (polynomial in the
y variable) which does not coincide with the formal orbital normal form given in [ORV4]. We
stress that for higher degeneracies one can expect a non coincidence between the formal analytic
normal forms. A similar behavior was already observed in the classification of the analytic germs
of vector fields with non generic linear part.

As we did in the dicritic case (see [ORV3]), we use surgery of manifolds and Savelev’s Theorem
for the proof of Theorem 2.1. These ideas were firstly introduced by F.Loray in [Lo2] and [Lo3]
for germs at (C2, 0) of holomorphic vector fields having a non generic linear term (nilpotent or
saddle-node) at the origin.

2. Basic notations.

2.1. Notations.

(1) Let Vn be the class of holomorphic germs of vector fields in (C2, 0) with isolated sin-
gularity at the origin, with vanishing (n − 1)-jet at the origin and non vanishing n-jet,
n ≥ 2.

(2) Given v ∈ Vn, we denote by Fv the germ of foliation generated by v.
(3) Two germs v and w in Vn are analytically (formally) orbitally equivalent if there exist an

analytic (formal) change of coordinates H : (C2, 0) → (C2, 0) and an analytic function
(formal series) K : (C2, 0)→ C∗, (K(0) 6= 0) such that H∗v = K · w, where

H∗v(p) = DzHv(z)|z=H−1(p).

(4) The foliations Fv,Fw generated by the germs of vector fields v,w ∈ Vn, respectively,
are called analytically (formally) equivalent if their corresponding vector fields v,w are
analytically (formally) orbitally equivalent.

In other words, in the analytic case, if lv,(x,y) := denotes the leaf through (x, y) of the
foliation Fv then lw,H(x,y) = H(lv,(x,y)).

H

(x, y)

lv,(x,y) :=leaf through (x, y) of Fv

H(x, y)

lw,H(x,y) = H(lv,(x,y))

Figure 2.1. analytic equivalence of Fv and Fw

(5) If the linear part of the germ H is the identity and K(0) = 1, we say that the vector
fields v,w are strictly analytically (formally) orbitally equivalent or the foliations Fv,
Fw are strictly analytically (formally) equivalent.

(6) In the case when K ≡ 1 then the vector fields v, w are analytically (formally) equivalent.
(7) Let v ∈ Vn

(2.1) v = P
∂

∂x
+Q

∂

∂y
, P =

∞∑
k=n

Pk, Q =

∞∑
k=n

Qk ,
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where P and Q are holomorphic functions and Pk, Qk are homogeneous polynomials in
(x, y) of degree k, k ≥ n, corresponding to the terms of order k of its Taylor expansion
at the origin. Let Rn+1 := xQn − yPn.

(8) We say that the germ of vector field v is nondicritic if

(2.2) Rn+1 6≡ 0

and if Rm+1 ≡ 0 we say that the germ of vector field v is dicritic.

Remark 2.1. The condition of nondicriticity is generic in Vn (it is given by the open condition (2.2))
and has finite codimension in the space Vn. On the contrary the dicritic case is nongeneric in Vn. In
this work, unless otherwise stated, one will assume the nondicriticity condition (2.2)

2.2. Main statements and genericity assumptions. We state the main results of this work.
We begin with the genericity assumptions for the first two theorems:

We say that a holomorphic nondicritic germ of vector field v ∈ Vn of the form (2.1) is generic
nondicritic if it satisfies the following genericity assumptions:

G1. The homogeneous polynomial Rn+1 = xQn− yPn is of degree n+ 1 and has only simple
factors,

G2. All the characteristic exponents at the singular points of the blown-up foliations are not
zero or positive rational.

G3. At least at one singular point denoted by p∞ the blown-up foliation F̃v is generated by a
non degenerated vector field holomorphically linearizable and its characteristic exponent
λ∞ is different from -1. This implies that in appropriate coordinates the foliation F̃v

at the point p∞ is locally generated by a linear vector field and the quotient of the
corresponding eigenvalues is different from −1.

The main goal of this work is to prove under the genericity assumptions G1,G2,G3 the fol-
lowing theorems:

Theorem 2.1. (Semi polynomial analytic normal form) Each generic nondicritic germ in Vn,
n ≥ 2, is analytically orbitally equivalent to a germ of vector field of the form

(2.3) vP,Q(x, y) = xP(x, y) ∂∂x + yQ(x, y) ∂∂y ,

with nondicritic singularity at the origin and P,Q polynomials of degree at most n−1 in the “y”
variable with analytic (on x) coefficients.

Theorem 2.2. (Semipolynomial analytic normal form for n = 2) Any generic nondicritic germ
of V2, is analytically orbitally equivalent to a germ of vector field of the form

(2.4) van = x(P1 + x2β(x))
∂

∂x
+ y(Q1 + x2β(x))

∂

∂y

where P1(x, y) = ya0+b1x, Q1(x, y) = y+d1x are homogeneous polynomials of degree 1, and β(x)
is a holomorphic function in a neighborhood of the origin. For fixed principal part xP1

∂
∂x+yQ1

∂
∂y ,

the function β is unique (and therefore van) under strict analytic orbital equivalence.

We stress that any nondicritic generic germ v ∈ Vn can be reduced under, rotation and
rectification of one of its separatrix, to a germ

(2.5) P
∂

∂x
+Q

∂

∂y
, P (0, y) ≡ 0
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Denote by V0
n the class in Vn of germs satisfying (2.5). Hence, the problem of classification of

generic foliations generated by germs in Vn is reduced to the equivalent one of the classification
of generic foliations generated by germs in V0

n.

We stress that strict formal (and analytic) orbital equivalent germs in V0
n have the same

n-jet at the origin. Therefore the problem of strict formal (and analytic) orbital classification of
germs in V0

n is transformed to the analogous one in each class

(2.6) V(v0) =
{
v ∈ V0

n : jn0 (v − v0) = 0
}
,

where v0 := Pn
∂
∂x +Qn

∂
∂y is called the principal part of v and Pn, Qn are homogeneous polyno-

mials of degree n, Pn(0, y) ≡ 0. Note that in this case the blow-up ṽ of v has a singular point
p∞ at infinity, i.e., at v = 0, y = 0, where v = y/x.

For generic germs (see Remark 2.2) the solutions to the formal orbital classification problem
was given in [ORV4]:

Theorem (on the formal classification of nondicritic vector fields [ORV4]) Each generic holo-
morphic nondicritic germ v ∈ Vn, n > 1 is formally orbitally equivalent to a formal series vc,b
of the form

(2.7) vc,b = v0 + vc + vb,

where

(1) v0 := Pn
∂
∂x +Qn

∂
∂y , Pn, Qn are homogeneous polynomials of degree n, and Pn(0, y) ≡ 0

is a generic principal part.
(2) vc = −(Hc)

′
y
∂
∂x + (Hc)

′
x
∂
∂y is a Hamiltonian vector field with polynomial Hamiltonian

(2.8) Hc(x, y) =
∑

ci,jx
iyj , 0 ≤ i ≤ n− 1, 0 ≤ j ≤ n− 1, i+ j ≥ n+ 2,

(3) and vb = b(x, y)(x ∂
∂x+y ∂

∂y ) is a radial vector field such that b(x, y) =
∑n−2
k=0 bk(x)ykxn−k

is a polynomial on the y variable of degree less or equal to n−2 whose coefficients, bk(x),
are formal series on x.

Moreover any two formal series of the form (2.7) that are formally orbitally equivalent to v and
with the same generic principal part v0, coincide.

Remark 2.2. The genericity assumptions in this theorem are slightly different:

G̃1. We ask the principal part v0 to be such that its blow-up has simple singular points (i.e., the

homogeneous polynomial Rn+1(x, y) = xR̃(x, y) of degree n + 1 has only simple factors, and
therefore, in this case, Rn+1(1, u) has n simple roots uj , j = 1, . . . , n, the point at infinity p∞
is also simple)

G̃2. All the characteristic exponents corresponding to the singular points are not rational numbers.
G̃3. Within the proof of Theorem 2.1 we ask that for any k = 2, . . . , n + 1, a determinant of

2k + 2 equations to be different from zero (this determinant is a non trivial polynomial on the
coefficients of the principal part v0).

We stress the relevance of vc in (2.7): For v ∈ V(v0) satisfying the previous genericity assumptions
and having nonsolvable projective monodromy group Gv, the tuple τv = (vc, [Gv]) is Thom’s invariant
on the analytic classification under strict orbital equivalence, where [Gv] is the class of strict analytic
conjugacy of the projective monodromy group Gv (see [ORV4]).
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Remark 2.3. For n = 2 the “Hamiltonian” part vc in (2.7) is zero. Hence, the strict formal orbital
normal form vf := vc,b takes the form:

(2.9) vf = (P2 + x3B)
∂

∂x
+ (Q2 + yx2B)

∂

∂y

where v0 = P2
∂
∂x

+ Q2
∂
∂y

, P2, Q2 are homogeneous polynomials of degree 2, P2(0, y) = 0, degyQ2 = 2,

and B(x) =
∑∞
k=0 bk(x)xk is a formal power series.

Therefore vf in (2.9) is the strict orbital formal normal form for generic nondicritic vector fields in
V(v0). As we state in the next theorem (2.9) is, as well, the orbital strict analytic normal form for
generic nondicritic vector fields in V(v0).

As an immediate consequence of Theorem 2.2 and considering the generic assumptions G1,
G̃1, G3, and G̃3, we have the following:

Theorem 2.3. (Analyticity of the formal normal form for n = 2, vf ) For any generic nondi-
critic germ in V2, its strict formal orbital normal form vf is analytic. Moreover for fixed v0 the
normal form is unique under strict equivalence.

2.3. Structure of the work and acknowledgements. We begin by giving some properties of
the foliation generated by the blow-up of a nondicritic germ satisfying the genericity assumptions
needed in the proof of Theorem 2.1. In the section 4 we give a sketch of the proof of Theorem
2.1. In section 5 we give an appropriate extension of v, define an auxiliary foliation, suitable
biholomorphisms and domains of definition that allow one to use Savelev’s Theorem. Further,
we analyze the Savelev’s diffeomorphism and apply Weierstrass Preparation Theorem. The end
of the proof is given in 5.8. On section 6 we prove Theorem 2.2 and as a consequence of it we
get Theorem 2.3.

We truly appreciate the comments and suggestions of the referee to our work.

3. General properties of nondicritic foliations and prenormalized form.

Following [ORV2], we give in this section a geometric description of the nondicritic foliations
as well as their simplest properties.

Let v be a nondicritic germ in Vn. For any n > 1 the singular the linear part of v at the
singular point 0 ∈ C2 is zero; in 3.1 and 3.2 we introduce its blow-up:

3.1. Blow-up B of (C2, 0). We recall that the blow-up of a point 0 ∈ C2 is the 2-dimensional
complex manifold B obtained from the gluing of two copies of C2 with coordinates (called
standard charts) (x, u) and (y, v) by means of the map φ : (x, u) 7→ (y, v) = (xu, u−1).

v

y

(xu, u−1)

x

u

(x, u)

Figure 3.1. Blow-up of (C2, 0): B = C2
∐

C2/ (y, v) ∼ (xu, u−1).

The projection π : B → (C2, 0), given in the standard charts by π : (x, u) 7→ (x, xu),
π : (y, v) 7→ (yv, y), will be called standard projection as well. The sphere L := π−1(0) ≈ CP1

obtained from the gluing of the regions {0}×C and C×{0} by means of φ|{0}×C∗ will be called
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the pasted sphere (or the exceptional divisor of the blow-up). The map π is holomorphic and
its restriction π |B\L to the set B \L is a biholomorphism whose inverse is denoted by σ and it

is: σ := (π |B\L)−1.

B

v

y

L

π

σ

x

u

x

y

Figure 3.2. Blow-up of (C2, 0)

3.2. Blow-up of germs of vector fields in Vn. As it is known, the lifting σ∗v of a germ of
vector field v in Vn generates, in a neighborhood of the pasted sphere without L, a foliation
which can be uniquely extended to L, as a holomorphic foliation F̃v called the blow-up of Fv at
zero (with a finite number of singularities on L, generally speaking). We denote by ṽ the line

field which generates the foliation F̃v. We call ṽ the blow-up of v.
Let v be a nondicritic germ in Vn. In (x, y)-coordinates, v has the form (2.1) and the blow-up

F̃v of Fv is given locally, in the standard charts, by the equations

(3.1)

du
dx = xQ(x,ux)−uxP (x,ux)

x2P (x,ux) ;

dv
dy = yP (vy,y)−vyQ(vy,y)

y2Q(vy,y) .

Let Rm+1(x, y) = xQm− yPm,m = n, n+ 1, . . . . The condition of nondicriticity R := Rn+1 6= 0

implies that the blow-up F̃v, on the region of definition of the standard chart (x, u), is generated

by the vector field ṽ+(x, u) = P̃+(x, u) ∂∂x + Q̃+(x, u) ∂∂u , where

(3.2) P̃+(x, u) = x[Pn(1, u) +O(x)], Q̃+(x, u) = Rn+1(1, u) +O(x), for x→ 0 .

In the same way, on the region of definition of the standard chart (y, v), the foliation F̃v is

generated by the vector field ṽ−(y, v) = P̃−(y, v) ∂∂y + Q̃−(y, v) ∂∂v where

(3.3) P̃−(y, v) = y[Qn(v, 1) +O(y)] , Q̃−(y, v) = Rn+1(v, 1) +O(y) , for y → 0 .

3.3. Properties of generic germs (Consequences of the genericity assumptions G1,
G2, G3). For any generic nondicritic germ v ∈ Vn, the following statements take place:

(1) The germ v has exactly n+ 1 different separatrices, which are smooth at the origin and
have pairwise transversal intersection.

(2) A resolution (see [C-S]) of a generic nondicritic germ v in Vn consists exactly of one
blow-up.

(3) The corresponding blown-up foliation F̃v has exactly n + 1 singular points p1, ..., pn+1

on the divisor Lv ∼ CP1 and the characteristic exponents λ1, ... , λn+1 are neither zero
nor rational positive numbers.
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Separatrix of Fv
Separatrix of F̃v

σ

π

Figure 3.3. Phase portrait of a generic nondicritic germ of vector field v ∈ V2 and
its blow-up.

(4) Prenormalized form. Without loss of generality we will assume that the singular
point pn+1 is the point at infinity (pn+1 = p∞ = 0 in the standard chart (y, v) and thus
p∞ is a nondegenerated singular point of the vector field ṽ−), and denote by λ∞ the
Camacho-Sad-index with respect to the divisor L. Moreover we assume that the y-axis
(v = 0) is the separatrix at p∞ . We stress that such assumptions can be achieved by
performing suitable (analytic) change of coordinates. An additional (analytic) change of
coordinates allows one to have the x-axis (y = 0) as separatrix at the origin (as well as
in the (x, u) coordinates).

Hence, we assume in what follows that the vector field v is written in its prenormalized
form:

(3.4) v(x, y) = xP̂ (x, y)
∂

∂x
+ yQ̂(x, y)

∂

∂y
,

where P̂ (x, y), Q̂(x, y) are analytic germs at the origin of order n− 1, P̂ =
∑∞
m=n−1 P̂m,

Q̂ =
∑∞
m=n−1 Q̂m, where P̂m, Q̂m are homogeneous polynomials of degree m.

o

rectified separatrix of Fv

rectified separatrix of F̃v

π

Figure 3.4. Phase portrait of a prenormalized nondicritic germ of vector field v ∈ V2

and its blow up.

(5) We stress that the subset Lv \ {p1, ..., pn, p∞} is a leaf of the blown-up foliation F̃v.
Moreover the polynomial r(u) = Rn+1(1, u) has exactly n simple roots; we denote them
by u1, u2, ..., un, r′(uj) 6= 0, and their corresponding characteristic exponents which

coincide in this case with the Camacho-Sad’s index of the foliation F̃v in the singular

points with respect to the divisor Lv, λj , λj =
Pn(1,uj)
∂R
∂y (1,uj)

=
p(uj)
r′(uj)

, j = 1, ..., n, and

λ∞ = −Qn(0,1)
∂R
∂x (0,1)

.
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(6) Note that the germ of vector field v which generates the foliation Fv has Camacho-
Sad’s index at the origin with respect to the separatrix {x = 0} equal to 1 + λ, where
λ = 1/λ∞. By the genericity assumption G3 (given in section 2.2) this index is not zero.

4. Sketch of the proof of Theorem 2.1.

Without loss of generality let v be a generic germ in Vn written in its prenormalized form
(3.3). There exists a cone Cε0 ,

Cε0 :=

{
(x, y) ∈ C2 :

1

ε0
|x| ≤ |y| ≤ ε0

}
,

around the separatrix {x = 0} such that, in the blow-up coordinates (v, y) = (xy , y) the neigh-

borhood Cε0 takes the form

Dε0 ×Dε0 = {(v, y) : |v| ≤ ε0, |y| ≤ ε0} .

Dε0 × Dε0 is a neighborhood of the point p∞ (the origin in the coordinates (v, y)). By the

genericity assumptions the blow-up F̃v of Fv (in the coordinates (v, y)) is locally generated (in a
neighborhood of the singular point p∞) by a linearizable nondegenerated vector field (see generic
condition G3.). Hence, for ε0 small enough there exists a biholomorphism G,

(4.1) G : Dε0 ×Dε0 → (C2, 0)

(preserving the y coordinate) linearizing F̃v.

G

Cε0

Dε0 ×Dε0

σ

π

ỹ ∂
∂ỹ

+ λṽ ∂
∂ṽ

Fv

ỹ

ṽ

y

v

y

x

Figure 4.1. Linearizing the foliation Fv generated by the vector field v within
a conus Cε0

Let us denote by vλ the linear vector field such that vλ = G∗ṽ−: In the charts (ṽ, ỹ) := G(v, y)

the foliation F̃v is thus generated by the vector field:

(4.2) vλ = λṽ
∂

∂ṽ
+ ỹ

∂

∂ỹ

where ỹ = y and λ = 1
λ∞

is the Camacho-Sad’ index of Fvλ at (0, 0) related to the separatrix

{v = 0}, and λ∞ is the Camacho-Sad’ index of Fvλ at (0, 0) corresponding to the separatrix
{y = 0} (the divisor L).

As the vector field vλ is a linear one, it may be extended to the whole complex manifold M

M := (C×Dε) t (C×Dε)/(ṽ,ỹ)∼(ξ=ṽỹ , η= 1
ỹ ), ỹ 6=0,

where G−1(Dε ×Dε) ⊂ Dε0 ×Dε0 for ε small enough.
Let M+ := {(ṽ, ỹ) ∈ Dε × C} , M− := {(ξ, η) ∈ Dε × C}.
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On M the vector field vλ is defined in (4.2) and straight-forward calculations show that vλ
in M− is written as

(4.3) vλ+1(ξ, η) = (λ+ 1)ξ
∂

∂ξ
− η ∂

∂η

Therefore there is a foliation on M defined by the extension of vλ, having no more than two
singular points: the (0, 0) in coordinates (ṽ, ỹ) and the (0, 0) in the coordinates (ξ, η) . We stress
that Camacho-Sad’s index at the origin with respect to the y axis is λ, and the respective index
at the origin in the charts (ξ, η), η = 1

ỹ is −(λ+ 1). This means that the self-intersection index

of the closure {y = 0} in M is −1. Hence, M is the blow-up of a neighborhood of (ṽ, ỹ) = (0, 0).

M

M+

M−

ṽλ+1(ξ, η) = (1 + λ)ξ ∂
∂ξ

+ η ∂
∂η

vλ(ṽ, ỹ) = λṽ ∂
∂ṽ

+ ỹ ∂
∂ỹ

y

x

η

ξ

ṽ

ỹG ◦ σ

CεCε0

index λ + 1 with
respect to y axis

index −(λ + 1) with
respect to η axis

Figure 4.2. Extension of the vector field vλ to M.

We return to the (x, y) coordinates:

Remark that the foliation generated by the vector field v has Camacho-Sad’s index λ+1 with
respect to the y axis. This follows from the correspondence of Fv with Fvλ by means of G ◦ σ .

The next goal is to construct an extension of Fv. For this purpose we use the vector field vλ
(see (4.2)) and the following construction:

We define, in a neighborhood of the origin in the (ṽ, ỹ) coordinates, an annulus Aµ ⊂M,

Aµ := Dε ×Dε \Dε ×Dε′ , ε′ < ε

Let A be the annulus like domain which is the preimage of Aµ under G ◦ σ:

A := (G ◦ σ)−1 (Aµ) , A ⊂ Cε .

We stress that Aµ ⊂M+∩M−. Hence by means of (G◦σ)−1 we may construct a new manifold
by identifying the neighborhood U+ of the origin in the coordinates (x, y), A ⊂ Cε ⊂ U+, with
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the open domain U− = Dε ×D 1
ε

(in the charts (ξ, η)). Namely, we define Φ (see fig 4.3) as the

composition

(4.4) Φ := β ◦G ◦ σ : A→ β(Aµ) ⊂ U− , where β(ṽ, ỹ) = (ξ = ṽỹ, η = 1/ỹ).

U+

A x

y

Aµ

ṽ

ỹ

(G ◦ σ)−1

β

β−1

η

ξ
β(Aµ)

U−

U− = Dε ×D 1
ε

FW,Fy

Φ−1 = (G ◦ σ)−1 ◦ β−1

Φ = β ◦G ◦ σ

Figure 4.3. Extension of the foliation Fv to the complex surface W and foliations FW and Fy .

We denote by W the 2-dimensional complex manifold obtained from the domains U+ and U−
and the transition maps Φ|A, Φ−1|Φ(A), A ⊂ U+, Φ(A) ⊂ U−.

The foliation Fv and Fvλ+1
defined by the vector fields v and vλ+1 in U+ and U− respectively,

define a global foliation FW on W with exactly two singular points O+ and O−: the corresponding
singular point of v and vλ+1. Remark that the disk {0} ×Dε ⊂ U+ is in correspondence under
Φ with the disk {0} ×D 1

ε
⊂ U− (η = 1

ỹ ). This defines a Riemann sphere LW.

Together with the foliation FW we consider the foliation Fy defined by

{y = cst} (η = cst ∈ U−).

This foliation defines a line bundle (the normal bundle over LW on W). To know how LW is
embedded in W it is sufficient to calculate Camacho-Sad’s index for v at (0, 0) with respect
to the separatrix LW. Namely, Camacho-Sad’s index of vλ+1 at (0, 0) with respect to the
separatrix {x = 0} is λ + 1. Hence, by Camacho-Sad’s Theorem, the self-intersection index
LW · LW = (λ+ 1)− (λ+ 1) = 0.

By Savelev’s Theorem [Sa], there exists a biholomorphism Ψ of a neighborhood of LW (in W)
to the direct product (C, 0) × CP1 such that Ψ(LW) = {0} × CP1. By reducing, if necessary,
the domain of definition in our construction we may assume that Ψ is defined in the whole W,
Ψ : W→ (C, 0)× CP1.

We denote by F the foliation induced by FW under the transformation Ψ, F := Ψ(FW).
The foliation F is defined at the direct product (C, 0)× CP1 having singular points Ψ(O+) and
Ψ(O−). In a neighborhood of Ψ(O+) the foliation F is generated by the vector field

v+ := (Ψ ◦ t−1
+ )∗v
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and in a neighborhood of Ψ(O−) the foliation F is generated by the vector field

v− := (Ψ ◦ t−1
− )∗v

where t+ and t− are the natural charts in W corresponding to the domains U+ and U− respec-
tively ( t+ : t−1

+ (U+)→ U+, t− : t−1
− (U−)→ U− ).

Let G : Dε0×Dε0 → (C2, 0) be the linearizing biholomorphism defined in the beginning of this
section. Then, as we will see in 5.8, Theorem 2.1 is a consequence of the following proposition:

Proposition 4.1. The linearizing biholomorphism G : Dε0 × Dε0 → (C2, 0), the coordinate
system in (C, 0) × CP1 and the domains used in the construction described along this section
may be chosen in such way that v+ (v−) is orbitally analytically equivalent to a holomorphic
vector field, polynomial with respect to the y variable.

5. Proof of Proposition 4.1

The proof of the Proposition 4.1 is quite long since we require to give explicit biholomorphisms
and domains.

The first step is to show that the linearizing biholomorphism G (linearizing ṽ− in σ(Cε)) may
be chosen, without loss of generality, as the identity in the y variable.

5.1. Normalization of the biholomorphism G. Let G be the biholomorphism at the begin-
ning of section 4. G transforms the leaves of the foliation Fṽ into the leaves of the foliation Fvλ

(Fvλ is the foliation generated by the vector field vλ -see (4.1)-).
As we wish to have a correspondence between the separatrices {v = 0} and {y = 0} (of the

vector field ṽ), and the separatrices {ṽ = 0} and {ỹ = 0} of the linear vector field vλ, the
biholomorphism G must be written as

G(v, y) = (vG1(v, y), yG2(v, y)),

with Gj(0, 0) 6= 0, j = 1, 2.
We stress that the phase curves (cyλ, y) corresponding to the vector field vλ are invariant under

transformations of the form Φk(v, y) = (v kλ, y k), k(0, 0) 6= 0. For this reason (by performing,
if needed, the composition Φk ◦G for an appropriate k) we may assume that the map G has the
form

(5.1) G(v, y) = (vg(v, y), y), g(0, 0) = 1.

To give an explicit expression of the function g we observe that, in a neighborhood of the origin
in the coordinates (v, y), the foliation Fṽ is defined by the integral curves of the equation:

dv

dy
=
yP (x, y)− xQ(x, y)

y2Q(x, y)

∣∣∣∣
x=vy

;

equivalently, F̃v is defined by the vector field

ṽ− = C(v, y)
∂

∂v
+ y

∂

∂y
,

where

(5.2) C(v, y) =
yP (x, y)− xQ(x, y)

y

∣∣∣∣
x=vy

∂C(v, y)

∂v
(0, 0) = λ.
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Recalling that the biholomorphism G satisfies

G∗ṽ− = vλ ◦G

it follows that

(5.3) vyC(v, y)
∂(vg(v, y))

∂v
+ vy

∂g

∂y
(v, y) = λvg(vy, y)

As {x = 0} is a separatrix of the vector field v, then P (x, y) = xP̂ (x, y) and so

C(v, y) = v c(y) +O(v2), v → 0,

where

(5.4) c(y) =
yP̂ (vy, y)−Q(vy, y)

Q(vy, y)

∣∣∣∣∣
v=0

, c(0) = λ .

Hence, from (5.3) we get that, for v = 0,

(5.5)
g′y(0, y)

g(0, y)
=
−c(y) + λ

y
.

Thus, g(0, y) is a holomorphic function in a neighborhood of y = 0,

g(0, y) = exp

(∫
−c(y) + λ

y
dy

)
, g(0, 0) = 1

5.2. Gluing biholomorphism G ◦ σ. After the rectification of the biholomorphism G intro-
duced in section 4, the composition G ◦ σ that relates the vector fields v and vλ is expressed in
terms of the holomorphic function g (in the coordinate charts (ṽ, ỹ) on M) as

G ◦ σ : (x, y) 7→ (ṽ, ỹ) = (
x

y
g(x/y, y), y).

Recall the change of coordinates β introduced in (4.4), β(ṽ, ỹ) = (ṽỹ, 1/ỹ) = (ξ, η).
The composition Φ = β ◦G ◦ σ is expressed in terms of (x, y) as

(5.6) Φ(x, y) = (β ◦G ◦ σ)(x, y) = (xg(x/y, y), 1/y) ∈ U− .

Hence,

Φ∗v(ξ, η) = (β ◦G ◦ σ)∗v(ξ, η) = (1 + λ)ξ
∂

∂ξ
− η ∂

∂η
.

Moreover, if we define the map α : Dε ×D 1
ε
→ Dε × (CP1,∞), as α(ξ, η) = (ξ, 1

ηx) = (ξ, y),

then the composition α ◦ Φ is expressed on (x, y) as

(5.7) (α ◦ Φ)(x,y) = (xg(x/y, y), y) .

Thus

(5.8) ((α ◦ Φ)∗v) (ξ, η) = (1 + λ)ξ∂ξ + y
∂

∂y
.

We now use (5.7) and (5.8) to understand the consequences of Savelev’s biholomorphism Ψ.
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5.3. Properties of the Savelev’s biholomorphism and its rectification. As it was men-
tioned in section 4, Savelev’s Theorem guarantees the existence of a biholomorphism

Ψ : W→ (C, 0)× CP1.

At a first glance we do not know much about Ψ; we need to understand its behavior through the
charts on W. To this purpose we recall that W is the result of the identification of the domains
U+ and U− . We consider the natural projections: Π± : U± → W, where Π±(p) is the class of

the point p in the identifying space W. Let Ũ± := Π±(U±).

Definition 5.1. We call (Π−1
± , Ũ±) the “natural charts” of the complex manifold W.

Note that Π−1
± = t± (see section 4).

We stress that α ◦ Φ (see (5.7) is just the change of coordinates of the “normal charts” of
W : α ◦ Φ = Π−1

− ◦Π+ (see fig. 5.1).

Figure 5.1. Savelev’s biholomorphism Ψ

Remark that if we define Ψ± := Ψ ◦ Π± : U± → Ψ(U±), then Ψ+ and Ψ− are related by
means of α ◦ Φ (where the composition makes sense):

(5.9) Ψ+ = Ψ− ◦ (α ◦ Φ) .

In order to obtain simple expressions for Ψ+ and Ψ− we proceed to give appropriate coordi-

nates in Ŵ := Ψ(W) = (C, 0) × CP1. To this aim we observe that, from Savelev’s Theorem we
may suppose, without loss of generality, that Ψ(LW) = {x̂ = 0}×CP1. Furthermore, we observe
that in the charts Π−1

± the Riemann sphere LW is given by
{

Π−1
± = 0

}
; hence, the restriction
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of the identifying map α ◦ Φ = Π−1
− ◦ Π+ to the axis {x = 0} is the identity. Therefore, it is

possible to give coordinates such that

(5.10) Ψ+ |x=0= Id, Ψ− |ξ=0= Id .

If we consider the image of {η = 0} under the transformation Ψ−, ` := Ψ−({η = 0}) we get,
from (5.10), that the intersection of ` with Ψ(LW) is transversal in Ψ−(ξ, η) |ξ=0,η=0. Hence if
(x̂, w) are the coordinates of Ψ(W), ` is expressed as (x̂, γ̂(x̂)) in a neighborhood of x̂ = 0, w =∞.
Therefore the curve ` may be rectified by means of a Möebius transformation

w 7→ w

1− γ̂(x̂)w
,

so that Ψ−(ξ, 0) ∈ {w =∞}. Furthermore, under an additional change of coordinates of the

form x̂ 7→ φ̃(x̂) we obtain

(5.11) Ψ− |ξ=0= Id .

We observe that from (5.9) we get

Ψ+
−1 = (α ◦ Φ)−1 ◦Ψ−

−1

and, as α ◦ Φ is the identity on the second coordinate we get that Ψ̃+,2 = Ψ̃−,2, where

Ψ±
−1 = (Ψ̃±,1, Ψ̃±,2).

Hence, for small enough fixed x̂, the function Ψx̂(w) := Ψ̃+,2(x̂, w) may be analytically extended
to all C. From (5.11) we get that such extension, which we denote again by Ψx̂, has a pole at
w = ∞. As Ψ− is a biholomorphism, then the order of the pole of Ψx̂ is one. Thus, Ψx̂ is a
polynomial of degree one on w:

Ψx̂(w) = k(x̂)w + γ(x̂) ,

where k, γ are holomorphic on x̂ and k(0) 6= 0, γ(0) = 0.
In this way the foliation in U+ given by {y = cst} is transformed by the map Ψ+ to the

foliation by curves defined by

Ψ+(x, y) = (Ψ+,1(x, y),Ψ+,2(x, y))

= (x̂, k(x̂)w + γ(x̂)) .

As k(0) 6= 0, γ(0) = 0, we may define for small enough x̂ a rectification biholomorphism

r = r(x̂, w) =

(
x̂,

w

k(x̂)
− γ(x̂)

k(x̂)

)
,

whose inverse is

r−1(x̂, w) = (x̂, k(x̂)w + γ(x̂)) .

This biholomorphism sends the curves k(x̂)w + γ(x̂), with w = c into the curves w = c, c ∈ C
and fix w =∞.

Finally, as r ◦ Ψ+(0, y) = (0, w), where w = w(y) is a biholomorphism, we may perform an
additional change of coordinates r0(x̂, w) = (x̂, y) so that r0 ◦ r ◦ Ψ+(0, y) = (0, y). Therefore,
in what follows we may assume that

(5.12) Ψ+,2(x, y) ≡ y ≡ Ψ−,2(x, y) .

Using (5.10) and (5.12) we get

(5.13) Ψ+(x, y) = (xα+(x, y), y)
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Ψ+ r

r−1

r0

x̂ x̂ x̂ x̂

y yw =∞ w =∞

Ψ+ r r0

Figure 5.2. Rectification process.

(5.14) Ψ−(x, y) = (ξα−(ξ, η), η) ,

where α+ is holomorphic in a neighborhood of the disk {x = 0, |y| < R} ⊂ C×CP1, α+(0, y) 6= 0
and α− is holomorphic in a neighborhood of {ξ = 0, |η| < R} ⊂ C× CP1, α−(0, η) 6= 0.

5.4. Asymptotic of α±. By the substitution of the expression (5.7) for α◦Φ and the expressions
for Ψ+ and Ψ− given in (5.13), (5.14) we get

(xα+(x, y), y) = (ξα−(ξ, η), η)(x g(x/y,y),y)

i.e.
(xα+(x, y), y) = (xg(x/y, y)α−(xg(x/y, y), y) ;

therefore

(5.15) α+(x, y) = g(x/y, y)α−(xg(x/y, y), y) .

Taking limits when x→ 0 we get

(5.16) α+(0, y) = g(0, y)α−(0, y) .

From (5.5) we know that g(0, y) is non vanishing and holomorphic in the disk Dε. Hence,

α−(0, y) =
α+(0, y)

g(0, y)

is holomorphic in Dε. The function α− is holomorphic in Dε′ = {|y| > ε′} ∪ {∞} and coincides

with α+(0,y)
g(0,y) in the annulus given by the intersection Dε ∩Dε′ . Therefore α− can be extended

to the closure C̄. By Liouville’s Theorem we get α− ≡ c ≡ α+(0,y)
g(0,y) for a non zero constant c.

Thus

(5.17)
α+(x, y) = cg(0, y) +O(x)
α−(x, y) = c+O(x) .
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5.5. Action of Ψ+ on the vector field v. After all the previous constructions we may look
to the action of Ψ+ on the vector field v, and the action of Ψ− on (α ◦ Φ)∗v.

We denote

(5.18) v+ := Ψ+∗v and v− := Ψ−∗((α ◦ Φ)∗v) .

By construction, v+ and v− generate in their corresponding domain of definition, a complex
foliation F on the complex manifold W. We stress that the definition of F, v0 and v− are in
concordance with the definitions introduced at the end of section 4 and in section 5.2.

To get an expression of v±(x̂, w) = (P±(x̂, w), Q±(x̂, w)) we use that Ψ±
−1 may be written

as:

Ψ±
−1 : (x̂, w) 7→ (x̂`±(x̂, w), w) ,

where (using (5.13) and (5.17))

(5.19) `+(x̂, w) = ((cg(0, y))−1 +O(x)

(5.20) `−(x̂, w) = c−1 +O(x) .

To get an explicit expression for P±, Q± we recall that Ψ±(x, y) = (xα±(x, y), y), thus

v+(x̂, w) = DΨ+ |Ψ+
−1(x̂,w) v(Ψ+

−1(x̂, w))

=


(
α+ + x

∂α+

∂x

)∣∣∣
Ψ+
−1(x̂,w)

x
∂α+

∂y

∣∣∣
Ψ+
−1(x̂,w)

0 1

 P (Ψ+
−1(x̂, w))

Q(Ψ+
−1(x̂, w))


=


[(
α+ + x

∂α+

∂x

)
P + x

∂α+

∂y
Q
]
(x̂`+(x̂,w),w)

Q (x̂`+(x̂, w), w)

 .

Therefore, v+(x̂, w) = (P+(x̂, w), Q+(x̂, w)), where

(5.21) P+(x̂, w) =

[
α+P + x

∂α+

∂y
Q+O(x2)

]
(x̂`+(x̂,w),w)

and

(5.22) Q+(x̂, w) = Q (x̂`+(x̂, w), w) , q(w) := Q(0, w) .

Analogously, we get explicit expressions for v−(x̂, w) = (P−(x̂, w), Q−(x̂, w))

v−(x̂, w) = DΨ− |Ψ−−1(x̂,w) v(Ψ−
−1(x̂, w))

=

 ∂ξα−
∂ξ

∂ξα−
∂η

0 1

∣∣∣∣∣∣
Ψ−−1(x̂,w)

 (λ+ 1)x̂`−(x̂, w)

w



=

 (λ+ 1)x̂`−(x̂, w)
[
x̂`−(x̂, w)

∂α−
∂ξ

+ α−
]

+ x̂ w `−(x̂, w)
∂ξα−
∂η

w

 .
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Therefore,

(5.23) P−(x̂, w) = x̂`−(x̂, w)

[
(λ+ 1)α−(x̂`−(x̂, w), w) + w

∂ξα−
∂η

]
+O(x̂2)

and

(5.24) Q−(x̂, w) = w .

5.6. Locus of functions P− and Q−. At this stage it is important to recall that our goal is
to prove that v+ may be written as a polynomial of degree n− 1 in w with analytic coefficients
depending on the x variable. To this sake we will look to the locus of P±, Q± and then use a
slightly modified version of Weierstrass Preparation Theorem.

We begin with the study of the locus of P−, and Q−:
From (5.24) we know that Q−(x̂, w) = w does not vanish for |w| > r. Moreover, from (5.20)

we know that `−(x̂, w) = 1/c+ `1(x̂, w), where `1 is a holomorphic function on

∆− = {|x| < δ} × {|w| > r} .
In particular, `1 is holomorphic in the point: x = 0, w =∞. From Cauchy’s inequalities it follows

that in any polydisk ∆′− = {|x| < δ′}×{|w| > r′}, r′ > r, δ′ < δ the inequality
∣∣∣∂α−∂η (x̂, w)

∣∣∣ ≤ ζ
|w|

is satisfied for an appropriate constant ζ = ζ(∆,∆′). By using expressions (5.17) and (5.20) for
α− and `− in (5.23) we get:

(5.25)
P−(x̂, w) = x̂(1/c+ `1(x̂, w))((λ+ 1)(c+O(x̂)) +O(x̂)

= x̂[(λ+ 1) +O(x̂)] .

Therefore P̂−(x̂, w) = P−(x̂,w)
x̂ is holomorphic and does not vanish in ∆′−.

5.7. Locus of functions P+ and Q+. We begin by stating a slightly different version of
Weierstrass Preparation Theorem:

Lemma 5.1. Let F (x, y) be a holomorphic function in the polydisk ∆0 = {|x| < δ0}×{|y| < ε0}
such that the function F (0, y) has, at y = 0 a zero of order N . If F (0, y) has no more zeros
in the disk {|y| < ε0}, then, for any ε, 0 < ε < ε0, there exist δ, 0 < δ < δ0 and holomorphic
functions k,W , defined in ∆ = {|x| < δ} × {|y| < ε} such that

(1) F = kW in ∆
(2) k 6= 0 in ∆

(3) WN (x, y) = W (x, y) = yN +
∑N−1
j=0 aj(x)yj, aj(0) = 0.

WN is known as the Weierstrass polynomial (see Shabat pp.123-126).

Let us consider now the series Q = Qn + Qn+1 + · · · , where Qj denotes the homogeneous
polynomial of degree j in the variables (x, y), j ≥ n, and Qn(x, y) = b0y

n + O(x). As we did
before, let q(y) = Q(0, y). From the genericity assumptions we know that b0 6= 0. Hence q(y)
has at y = 0 a zero of order n.

Let ∆0 = {|x̂| < δ} × {|w| < ε0}, ε < ε0 such that Q+ is holomorphic in ∆0. From (5.22) we

have that q(w) = Q+(0, w) and for any ε̂ ≤ ε and δ̂ < δ it is possible to factorize (by Lemma
5.1) Q+(x̂, w) as

(5.26) Q+(x̂, w) = KQ(x̂, w)Wn(x̂, w),

(x̂, w) ∈ ∆+ =
{
|x̂| < δ̂

}
×{|w| < ε̂}, where KQ 6= 0 at ∆+ and Wn is the Weierstrass polynomial

(of degree n). In particular Q+ has, for small enough fixed x, exactly n zeros in {|w| < ε̂}.
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We consider now the zeros of P+(x̂, w) at x̂ = 0. Recall that the set {x = 0} is invariant for
the vector field v, and {x̂ = 0} is invariant for Ψ∗v. Therefore,

P (x, y) = xP̂ (x, y) and P+(x̂, w) = x̂P̂+(x̂, w) ,

where (see (5.21))

P̂+(x̂, w) =
1

x̂`+(x̂, w)

[
α+ P + x

∂α+

∂y
Q+O(x2)

]
(x̂`+(x̂,w),w)

.

Hence, for x̂ = 0 we get

P+(0, w) = α+(0, w)P̂ (0, w) +
∂α+

∂y
(0, w)Q(0, w) .

Moreover, as α+(x, y) = cg(0, y)+O(x) (see (5.17)), then ∂α+

∂y (x, y) = cg′y(0, y)+O(x). Therefore,

P̂+(0, w) = cg(0, w)
[
P̂ (0, w) +

g′y(0,w)

g(0,w) Q(0, w)
]
.

From (5.3) follows that P̂ (0, w) = c(w)q(w)+q(w)
w (where q(w) = Q(0, w) as before), and from

(5.5)
g′y(0,w)

g(0,w) = c(w)q(w)+q(w)
w , where c(0) = 1. Hence,

P̂+(0, w) = cg(0, w)
[
c(w)q(w)+q(w)

w + c(w)q(w)+q(w)
w q(w)

]
= cg(0, w)

[
(λ+1)q(w)

w

]
.

As g(0, w) satisfies the equation (5.5),

g(0, w) = exp

(∫
−c(y) + λ

y

)
, and g(0, 0) = 1.

Therefore, g(0, w) does not vanish for small enough w. Hence, as q(w) has a zero of order n at

w = 0, then P̂+(0, w) has a zero of order n− 1 for |w| small enough.
From Lemma 5.1, for small enough δ1 and ε1, ∆0 = {|x̂| < δ1}×{|w| < ε1} there existKp(x̂, w)

and Wn−1(x̂, w) such that KP does not vanish in ∆ and Wn−1 is the Weierstrass polynomial of
degree n− 1 such that

(5.27) P+(x̂, w) = KP (x̂, w)Wn−1(x̂, w) .

In particular, for fixed x̂, |x̂| < δ1, P+(x̂, w) has exactly n− 1 zeros in the disk |w| < ε1.

5.8. End of the proof of Theorem 2.1. In 5.7 it was proved that the vector fields

v+ = x̂P̂+
∂

∂x̂
+Q+

∂

∂w
and v− = x̂P̂−

∂

∂x
+Q−

∂

∂w

are generators of the same foliation F of Ŵ = Ψ(W). This implies that in the intersection domain
of v+ and v− the following equality must take place:

x̂P̂−
Q−

=
x̂P̂+

Q+

Then, for x̂ 6= 0,

P̂−
Q−

=
P̂+

Q+

and it can be extended to x̂ = 0. From (5.24), (5.26) and (5.27)
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It follows that

(5.28)
P̂−
w

=
KPWn−1

KQWn
.

Hence,

(5.29)
P̂−(x̂, w)Wn(x̂, w)

wWn−1(x̂, w)
=
KP (x̂, w)

KQ(x̂, w)
.

We stress that for small enough x̂, the right member of (5.27) is holomorphic in the disk
{|w| > r} for r > 0 (see (5.25)). Moreover, as for small enough x̂, Wn(x̂, w), Wn−1(x̂, w) are
polynomials on w, |w| < ε1, they can be extended for any w, |w| > r.

Therefore, for small enough fixed x̂ the left hand side of (5.29) is holomorphic on |w| > r.
At the same time, the right hand side of (5.29) is holomorphic on |w| < ε1. Hence, as r > 0
is arbitrary we can choose r < ε1

2 . Then (5.29) is defined in an annulus and has holomorphic

extension for w ∈ CP1.
Therefore, by Liouville’s Theorem (for x̂ fixed) it is constant, δ = δ(x̂):

P̂−(x̂, w)Wn(x̂, w)

wWn−1(x̂, w)
= δ(x̂) .

Thus,

x̂P̂−Wn

Q+Wn−1
= x̂δ(x̂)

and
P̂−(x̂, w)

Q+(x̂, w)
= x̂δ(x̂)

Wn−1(x̂, w)

x̂Wn(x̂, w)
.

This last equality implies that the vector field v+ is proportional (obtained by multiplication by
a non vanishing function) to

(5.30) ṽ+ = x̂δ(x̂)Wn−1(x̂, w)
∂

∂x̂
+Wn(x̂, w)

∂

∂w
.

To finish the proof of Theorem 2.1 we stress that by construction ṽ+ in (5.30) is orbitally
analytically equivalent to the original vector field v.

Let γ = {w = γ(x̂)} be one separatrix of ṽ+ . The biholomorphism H(x̂, w) = (x̂, w − γ(x̂))
transforms ṽ+ to a vector field v̂+ = H∗ṽ+ having {ŵ = 0} , ŵ = w − γ(x̂), as a separatrix.

hence, the second component of v̂+ has the form Ŵ+(x̂, ŵ) = ŵŴn−1(x̂, ŵ), where Ŵn−1(x̂, ŵ)
is a Weierstrass polynomial of degree n − 1 . Thus, the vector field v̂+ has all the required
properties. This finishes the proof of Theorem 2.1.

6. Analytic normal form for n = 2.

In this section we prove Theorem 2.2. As it was already mentioned in the introduction of
this work, Theorem 2.2 shows that (after rotation and rectification of one of its separatrices)
nondicritic generic germs of vector fields in (C2, 0) have analytic strict orbital normal form given
by

v2(x, y) = (P2 + xB)
∂

∂x
+ (Q2 + yB)

∂

∂y
,

where P2, Q2 are homogeneous polynomials of degree 2, degyQ2 = 2, B(x) = x2b(x) and

b(x) =

∞∑
k=0

bkx
k
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is analytic.
We begin with the preliminary analytic normal form given in Theorem 2.1 for n = 2:

(6.1) v̂(x, y) = x(a(x)y + b(x))
∂

∂x
+ y(c(x)y + d(x))

∂

∂y
,

where a, b, c, d are holomorphic functions in (C, 0), b(0) = d(0) = 0.
Let us denote a0 = a(0), c0 = c(0), b1 = b′(0) and d1 = d′(0). From the genericity assumptions

given in section 3.3 it follows that

(6.2) a0 6= c0, a0 6= 0, c0 6= 0, b1 6= 0, b1 6= d1

Remark 6.1. From a0 6= c0 and b1 6= d1 we get that the polynomial R3(1, u) has exactly two (different)
roots. If a0 = 0 then λ∞ = −1. If b1 = 0 there is a characteristic exponent equal to zero. The same
happens for c0 = 0 for the characteristic exponent associated to p∞.

As c0 6= 0 we may assume that c ≡ 1. Indeed, for x small enough we can divide v̂ by

c(x). Moreover, by performing if needed the change of coordinates x 7→ g(x) = exp
(∫

a0
xa(x)dx

)
(where g is holomorphic since resx = 0

a0
xa(x) = 1) we may assume, without loss of generality that

the vector field v̂ defined in (6.1) satisfies

(6.3) c ≡ 1, a ≡ a0 , and from (6.2) a0 6= 1 .

Proposition 6.1. Let v and w holomorphic vector fields of the form (6.1) satisfying the nor-
malizing conditions (6.3),

v(x, y) = x(a0y + b(x)) ∂
∂x + y(y + d(x)) ∂∂y ,

w(x, y) = x(ã0y + b̃(x)) ∂
∂x + y(y + d̃(x)) ∂∂y .

The necessary and sufficient conditions for the existence of a holomorphic change of coordinates

(6.4)
H : (C, 0)× CP1 → (C, 0)× CP1

H : (x, y) 7→ (ϕ(x), k(x)y)

where

(6.5) ϕ(0) = 0;ϕ′(0) = 1; k(0) = 1,

and such that

(6.6) DHv = qw ◦H
where q = q(x) is an holomorphic function

(6.7) q(0) = 1,

is the solvability of the following equations:

(6.8)

a0 = ã0

b̃ ◦ ϕ =
(
ϕ(x)
x

)µ
b

and

(6.9) (ϕ′d̃ ◦ ϕ)(x) =

(
ϕ(x)

x

)µ+1 [(
xϕ′(x)

ϕ(x)
− 1

)
b(x)µ+ d(x)

]
.
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Proof. The substitution of v and w and H on (6.6) leads to the equality: ϕ′(x) 0

k′(x)y k(x)

 a0xy + xb(x)

y2 + d(x)y

 =

 q(x)ã0ϕ(x)k(x) y + q(x)ϕ(x)b̃(ϕ(x))

q(x)k2(x)y2 + q(x)d̃(ϕ(x)) k(x) y


Therefore,

(6.10)

ϕ′(x)a0 x = q(x)ã0k(x)ϕ

ϕ′(x)b(x)x = q(x)ϕ(x)b̃(ϕ(x))
k′(x)a0x+ k(x) = q(x)k2(x)

k′(x)b(x)x+ k(x)d(x) = q(x)d̃(ϕ(x))k(x)

We stress that condition (6.5) and (6.7) imply that ã0 = a0. Hence, the system of equations
(6.10) is equivalent to:

xϕ′

kϕ
= q(6.11)

x
ϕ′

ϕ
= q

b̃ ◦ ϕ
b

(6.12)

q =
a0xk

′

k2
+

1

k
(6.13)

q d̃ ◦ ϕ =
k′bx

k
+ d(6.14)

By substitution of (6.11) in (6.13) we get

(6.15)
ϕ′

ϕ
= a0

k′

k
+

1

x

The integration of (6.15) yields to an explicit expression of ϕ:

ϕ(x) = x (k(x))
1/µ

,

where µ = 1/a0. Equivalently,

(6.16) k(x) =

(
ϕ(x)

x

)µ
Using (6.16) in (6.11) we get

(6.17)

(
x

ϕ(x)

)µ+1

ϕ′(x) = q(x)

The substitution of (6.17) in (6.12), and (6.15), (6.16) in (6.14) yields to the pair of equations:

(b̃ ◦ ϕ)(x) =

(
ϕ(x)

x

)µ
b(x)

(ϕ′d̃ ◦ ϕ) |x=

(
ϕ(x)

x

)µ+1 [(
xϕ′(x)

ϕ(x)
− 1

)
b(x)µ+ d(x)

]
This proves the Proposition 6.1 �

In what follows we will prove that generic (in the sense G1,G2,G3) germs of vector fields
v ∈ Vn always satisfy the conditions (6.8) and (6.9) of Proposition 6.1. This will imply the
existence of an analytic (non-strict) change of coordinates taking the germ v to its analytic
normal form.
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Let v ∈ Vn be such that v satisfies that the generic assumptions G1,G2,G3. By Theorem 2.1
and normalizations (6.2) and (6.3) v is analytically equivalent to a germ vnorm ∈ Vn such that

(6.18) vnorm = x(ya0 + b(x))
∂

∂x
+ y(y + d(x))

∂

∂y
.

We may write b and d in (6.18) as b(x) = b1x+ x2b2(x) and d(x) = d1x+ x2d2(x) where b2 and
d2 are holomorphic germs in (C, 0).

Remark 6.2. Any generic germ vnorm as in (6.18) satisfies that: a0 6= 0 and b1µ− d1 6= 0. Indeed, if
b1µ− d1 = 0 then the characteristic number at p∞ is -1. This contradicts the generic assumptions. For
a0 see (6.2).

Lemma 6.1. There exists a change of coordinates H satisfying the conditions of Proposition
6.1, such that vnorm is analytically equivalent to

van(x, y) = x(ya0 + b1x+ x2β(x))
∂

∂x
+ y(y + d1x+ x2β(x))

∂

∂y
.

Proof. We prove the Lemma by making a direct substitution of

b̃(x) = b1x+ x2β(x) and d̃(x) = d1x+ x2β(x)

in the equalities (6.8) and (6.9):

(6.19) b1ϕ+ ϕ2β ◦ ϕ =
(ϕ
x

)µ
b

(6.20) ϕ′
(
d1ϕ+ ϕ2β ◦ ϕ

)
=
(ϕ
x

)µ+1
[
d+ bµ

(
xϕ′

ϕ
− 1

)]
.

Multiplying the equation (6.19) by ϕ′ and substracting it from (6.20) we get

ϕ′(d1 − b1)ϕ =
(ϕ
x

)µ [
ϕ′ b(µ− 1) + (d− bµ)

ϕ

x

]
.

Therefore

(6.21) ϕ′
[
xb(µ− 1) + (b1 − d1)

xµ+1

ϕµ−1

]
= (µb− d)ϕ .

The substitution in (6.21) of the expression for b and d, and ϕ(x) = xΨ(x) leads to the equality:

(6.22) xΨ′ + Ψ =
[µb1 − d1 + (µb2(x)− d2(x))x]Ψ

(µ− 1)(b1 + xb2(x)) + (b1 − d1)Ψ1−µ

Let us define F (x,Ψ) = xΨ′+Ψ
Ψ . Then Ψ is solution of the differential equation

(6.23) Ψ′ =

[
F (x,Ψ)− 1

x

]
Ψ

with initial condition Ψ(0) = 1 (see (6.5)).
Together with equation (6.23) we consider the vector field

(6.24) ξ(x,Ψ) = x
∂

∂x
+ (F (x,Ψ)− 1) Ψ

∂

∂y
.

Since µb1 − d1 6= 0 (see Remark 6.1), then the vector field is holomorphic in a neighborhood of
the singular point x = 0,Ψ(0) = 1:

ξ(0, 1) = 0
∂

∂x
+ (F (0, 1)− 1) Ψ

∂

∂y
= (0, 0) ,
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where

F (0, 1) =
µb1 − d1

(µ− 1)b1 + b1 − d1
= 1 .

The eigenvalues of the linearization at the singular point (0, 1) of the vector field ξ are λ1 = 1
(for e1 = ∂

∂x ) and λ2 = F ′Ψ(0, 1) (for the eigenvector e2 transversal to {x = 0}).
Since F ′Ψ = (µ− 1)(b1 − d1)(b1µ− d1)−1 6= 0, by the Hadamard-Perron’s Theorem, there is a

smooth separatrix γ at the singular point (0, 1) with tangent direction at (0, 1) equal to e2.
This curve is, locally, the graphic of a holomorphic function Ψ = Ψ(x) satisfying equation

(6.23) and such that Ψ(0) = 1.
We now substitute this function Ψ in (6.19):

ϕ2β ◦ ϕ =
[
Ψµ(b1x+ b2(x)x2)− b1ϕ

]
.

Therefore

β ◦ ϕ =
x2

ϕ2

[
Ψµ(b1 + xb2(x))

x
− b1Ψ

x

]
.

Thus,

β ◦ ϕ =
1

Ψ2

[
Ψµb2(x) +

b1(Ψµ −Ψ)

x

]
;

and since Ψ(0) = 1, β ◦ ϕ is holomorphic in (C, 0) .
We know that ϕ = xΨ, Ψ(0) = 1 is holomorphic, thus

β =
1

Ψ2

[
Ψ b2(x) + b1

(
Ψµ −Ψ

x

)]
◦ ϕ−1 .

is also holomorphic in (C, 0), and both, ϕ and β are solutions of equations (6.19) and (6.20).
Therefore, by Proposition 6.1, the vector field vnorm is analytically equivalent at the origin to

van = x(ya0 + b1x+ x2β(x))
∂

∂x
+ y(y + d1x+ x2β(x))

∂

∂y
.

Lemma 6.1 is proved. �

Finally, as v is analytically equivalent to vnorm, then it is also analytically equivalent to

van = x(ya0 + b1x+ x2β(x))
∂

∂x
+ y(y + d1x+ x2β(x))

∂

∂y
.

Theorem 2.2 is proved.

6.1. Proof of Theorem 2.3. To prove Theorem 2.3 we recall that by the Theorem of formal
orbital strict classification (see section 2) any generic (in the sense G̃1, G̃2, G̃3) nondicritic germ
of vector field v ∈ V2 is formal orbital strict equivalent to a formal vector field vf

(6.25) vf = (P2 + xB)
∂

∂x
+ (Q2 + yB)

∂

∂y

where v0 = P2
∂
∂x + Q2

∂
∂y , P2, Q2 are homogeneous polynomials of degree 2, degyQ2 = 2,

B(x) = x2b(x), and b(x) =
∑∞
k=0 bk x

k, bk ∈ C, is a formal power series.
We need to prove that if we assume that the singular point at infinity of the blow-up ṽ of

v is linearizable, then the formal normal form (6.2) is analytic; i.e. we will prove that b is a
convergent power series.

By Theorem 2.2 we know that v is orbitally analytically equivalent (non necessarily strict) to
a germ of holomorphic vector field of the form
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x(P1 + x2β(x))
∂

∂x
+ y(Q1 + x2β(x))

∂

∂y

where P1(x, y) = ya0 + b1x, Q1(x, y) = y + d1x, and β(x) is a holomorphic function in a
neighborhood of the origin.

To finish the proof of Theorem 2.3 we stress that it is always possible to define a linear
transformation:

(6.26) L : (x, y) 7→ (α0x, α1x+ α2y)

such that for appropriate constants a0, b1, d1,

van = x(ya0 + b1x+ x2β(x))
∂

∂x
+ y(y + d1x+ x2β(x))

∂

∂y

is linearly equivalent to

w = (P2 + xB)
∂

∂x
+ (Q2 + yB)

∂

∂y
,

where the components of

v0 = P2
∂

∂x
+Q2

∂

∂y

are homogeneous polynomials of degree 2, P2(0, y) = 0, degyQ2 = 2, and B(x) = x2b(x).
The equivalence between v and w is strict (orbital and analytic). Then by the uniqueness of

the formal normal form under strict orbital equivalence, the formal normal form of v, vf , and
w must coincide.

Thus, B(x) is analytic and therefore vf is analytic too. Theorem 2.3 is proved.
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STRONG TOPOLOGICAL INVARIANCE OF THE MONODROMY GROUP

AT INFINITY FOR QUADRATIC VECTOR FIELDS

VALENTE RAMÍREZ

Abstract. In this work we consider foliations on CP2 which are generated by quadratic

vector fields on C2. Generically these foliations have isolated singularities and an invariant

line at infinity. We say that the monodromy groups at infinity of two such foliations having
the same singular points at infinity are strongly analytically equivalent provided there exists

a germ of a conformal mapping at zero which conjugates the monodromy maps defined along

the same loops on the infinite leaf.
The object of this paper is to show that topologically equivalent generic foliations from

this class must have, after an affine change of coordinates, their monodromy groups at infinity
strongly analytically conjugated.

As a corollary it is proved that any two such generic and sufficiently close foliations can only

be topologically conjugated if they are affine equivalent. This improves, in the case of quadratic
vector fields, the main result of [2] which claims that two generic, topologically equivalent and

sufficiently close foliations are affine equivalent provided the conjugating homeomorphism is

close enough to the identity map.

1. Introduction

It is a well known result that every polynomial vector field on C2 can be analytically extended
to a line field on CP2. In this paper we will consider holomorphic foliations on CP2 which in a
fixed affine chart are generated by quadratic vector fields.

1.1. Holomorphic foliations from the class A2.

Definition 1. Let I be a line on CP2 which will be fixed throughout this paper. The space An
is defined to be the class of all foliations on CP2 generated by a polinomial vector field of degree
n in the affine chart C2 ≈ CP2 \ I and having only isolated singularities.

Having fixed this affine chart, the space An can naturally be embedded in the projective
vector space of polynomial vector fields of degree at most n; two such vector fields generate the
same foliation if and only if they differ only by a scalar multiple.

In this work we will deal exclusively with the class of foliations A2. Let A′2 be the subclass of
foliations from A2 which have the line at infinity I invariant and exactly three singularities on
I. The space A′2 is Zariski open in A2.

Definition 2. Two foliations F , F̃ ∈ A2 are topologically equivalent provided there exists a
homeomorphism H : CP2 → CP2 which preserves the orientation both on the leaves and on CP2

and brings the leaves of the first foliation to those of the second one. In such case we will say
that the two foliations are topologically conjugated by the homeomorphism H. The foliations are
said to be affine equivalent if H is an affine transformation.

1This work was partially supported by the grants CONACYT 80065, PAPIIT IN103010, PAPIIT IN102413

and by Programa Educativo, Fundación Telmex.

http://dx.doi.org/10.5427/jsing.2014.9n
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Let F , F̃ in A′2 be two foliations having the same singular locus at infinity Σ = Sing(F) ∩ I.
Choose a base point b on the infinite leaf LF = I \ Σ and consider, for each element on the

fundamental group γ ∈ π1(I \ Σ, b), the monodromy transformations ∆γ and ∆̃γ corresponding

to the foliations F and F̃ respectively.

Definition 3. We say that the monodromy groups at infinity GF and GF̃ of two foliations
having the same singular set at infinity are strongly analytically equivalent provided there exists
a germ h of a conformal mapping at zero such that

h ◦∆γ = ∆̃γ ◦ h
for any element γ of the fundamental group of the infinite leaf.

1.2. Main result.

Theorem 1. If two generic foliations from the class A2 with the same singular points at infinity
are topologically equivalent and the conjugacy fixes these singular points then their monodromy
groups at infinity are strongly analytically equivalent.

This property is called strong topological invariance of the monodromy group at infinity. Note
that for any two topologically equivalent foliations in A′2 we can always assume, after an affine
change of coordinates, that both foliations have the same singular points at infinity and that the
conjugating homeomorphism preserves these singular points.

Previously the following invariance property was known:

Proposition 1 ([5]). If two foliations from A′2 with non-solvable monodromy group at infinity are
topologically equivalent and have the same singular points at infinity then for any set of generators
γ1, γ2 of the fundamental group of the infinite leaf there exists another set of generators ρ1, ρ2

and an analytic germ h : (C, 0)→ (C, 0) such that

h ◦∆γi = ∆̃ρi ◦ h, i = 1, 2.

Contrary to this proposition, Theorem 1 claims that the second set of generators can be
chosen to coincide with the original set of generators. As an important corollary of Theorem 1
we obtain the following result:

Theorem 2. A generic foliation from the class A2 has a neighborhood in this class such that any
other foliation in this neighborhood which is topologically equivalent to the first foliation must be
affine equivalent to the original foliation.

Note that in the above theorem no assumptions are being made about the conjugating home-
omorphism. This property was introduced in [3] and is called ideal rigidity. However, it was
stated as an unknown property for polynomial foliations.

1.3. Sketch of the proofs. A topological equivalence between two generic foliations from the
class A2 having the same singular points at infinity restricts to a homeomorphism H : LF → LF̃
from the infinite leaf onto itself. Theorem 1 is proved by studying the isomorphisms that such
homeomorphism induces on the fundamental group and first homology group of the infinite leaf.
It will be shown that if the conjugacy preseves the singular points at infinity then the induced
isomorphism on homology is the identity map and therefore an inner automorphism is induced
on the fundamental group. From this fact we will easily deduce that the monodromy groups at
infinity are strongly analytically equivalent.

Notice that Theorem 1 is stated only for generic foliations from the class A2. The proof of
Theorem 1 cannot be carried out in a similar way for the classes An with n > 2 due to an
algebraic obstruction; if the fundamental group of the infinite leaf is free on more than two
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generators a trivial action on homology1 does not imply that the action on the fundamental
group is an inner automorphism. The fact that the action on fundamental group is an inner
automorphism is the key ingredient in the proof of Theorem 1.

Ideal rigidity is very closely related to a property called absolute rigidity which was introduced
in [2], yet in Theorem 2 there are no restrictions on the conjugating homeomorphism.

Definition 4. A foliation F ∈ An is absolutely rigid in the class An provided there exists a
neighborhood U ⊆ An of F and a neighborhood U of the identity id : CP2 → CP2 in the space
Homeo(CP2) of homeomorphisms of CP2 onto itself such that every foliation F ′ ∈ U topologically
conjugated to F by a homeomorphism H ∈ U is affine equivalent to F .

Proposition 2 ([2]). A generic foliation from the class An is absolutely rigid.

In the proof of Proposition 2 the closeness of the topological conjugacy to the identity homeo-
morphism is required in order to guarantee that the monodoromy groups at infinity are strongly
analytically equivalent. In the case of quadratic vector fields, in virtue of Theorem 1, such
hypothesis can be dropped and so Theorem 2 is deduced.

1.4. Genericity assumptions. Consider the following properties for a foliation F ∈ A′2:
(i) The monodromy group at infinity GF is non-solvable;

(ii) The characteristic numbers of the singular points at infinity are pairwise different;
(iii) All singularities of F are hyperbolic;
(iv) Foliation F has no algebraic leaves except for the infinite line.

The genericity of conditions (i) and (iv) is discussed in [5]. Foliations having pairwise different
characteristic numbers form a complex Zariski open subset of A′2 and the set of foliations with
hyperbolic singularities determines a real Zariski subset of A′2.

It is proved in [5] that non-solvable groups of germs are topologically rigid, hence condition
(i) is sufficient to prove Theorem 1. For Theorem 2 all conditions (i)–(iv) are assumed.

2. Induced automorphisms on the fundamental group and first homology group

In the following constructions we will consider foliations with close tuples of singular points
at infinity yet not necessarily equal.

Let F ∈ A′2 be a generic foliation and let Σ = {a1, a2, a3} be its singular locus at infinity. Let
D1, D2, D3 be open disks on I centered at a1, a2, a3 respectively with pairwise disjoint closures
and define D = ∪Di. Let b be an arbitrary point in I \D.

Denote by Ũ the set of those foliations in A′2 with the property of having their singularities
at infinity on D and having exactly one singularity on each Di.

Definition 5. Denote by TOP(F , b) the set of all pairs (F̃ ,H) in the product Ũ ×Homeo(CP2)

such that H is a topological conjugacy between F and F̃ that fixes the point b.

Choose any (F̃ ,H) ∈ TOP(F , b). The foliation F , and so does F̃ , has a unique algebraic leaf;
the punctured infinite line. This implies that the homeomorphism H : CP2 → CP2 preserves the

line I and maps bijectively the singular set Σ = Sing(F) ∩ I onto Σ̃ = Sing(F̃) ∩ I.
From now on if H is a homeomorphism from CP2 onto itself which preserves the infinite line

I we shall denote by H its restriction H = H|I.
If Σ 6= Σ̃ the fundamental groups π1(I \Σ, b) and π1(I \ Σ̃, b) do not coincide. However, both

surfaces I \ Σ and I \ Σ̃ deformation retract onto I \D and thus both the fundamental groups

π1(I \ Σ, b) and π1(I \ Σ̃, b) are naturally isomorphic to the group π1(I \D, b).

1See Section 2 for the corresponding definitions.
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In fact, for every loop γ on I \ Σ based on b we can assume, without loss of generality, that
it is contained in I \D and so it can be regarded indistinctly as an element of any of the groups

π1(I\Σ, b), π1(I\Σ̃, b), π1(I\D, b). The concept of strong analytic equivalence for the monodromy
groups can naturally be extended for pairs of foliations whose singularities at infinity are close

enough. In particular, this can be done for foliations F , F̃ if F̃ belongs to the neighborhood Ũ
constructed above.

Definition 3’. Let F̃ ∈ Ũ . We say that the monodromy groups at infinity GF and GF̃ are
strongly analytically equivalent provided there exists a germ h of a conformal mapping at zero
such that

h ◦∆γ = ∆̃γ ◦ h
for any element γ of the fundamental group π1(I \D, b).

We are now going to define the action that H has on the fundamental group by assigning to

each pair (F̃ ,H) ∈ TOP(F , b) an element of the automorphism group of the group π1(I \D, b)
in the following way:

Let r : I \Σ→ I \D and r̃ : I \ Σ̃→ I \D be the retractions mentioned above. Since they are
homotopy equivalences they induce isomorphisms

r∗ : π1(I \ Σ, b)→ π1(I \D, b) and r̃∗ : π1(I \ Σ̃, b)→ π1(I \D, b)
on the fundamental groups. The homeomorphism H|I\Σ also induces an isomorphism

H∗ : π1(I \ Σ, b)→ π1(I \ Σ̃, b).

There exists a unique group automorphism Φ(H) : π1(I \D, b) → π1(I \D, b) which makes the
following diagram commutative:

π1(I \ Σ, b)
H∗ //

r∗
��

π1(I \ Σ̃, b)

r̃∗
��

π1(I \D, b)
Φ(H)

// π1(I \D, b)

Thus we get a well defined map

Φ: TOP(F , b)→ Aut(π1(I \D, b)).
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Here Aut(π1(I\D, b)) denotes the automorphism group of π1(I\D, b). For the sake of simplicity

we shall write Φ(H) instead of Φ(F̃ ,H).

2.1. Inner automorphisms of the fundamental group. Let (F̃ ,H) ∈ TOP(F , b) and sup-

pose Φ(H) = id. For any germ of cross-section Γ at b transversal to the leaves of F and F̃ there
exists (Proposition 1) an analytic germ

h : (Γ, b)→ (Γ, b)

induced by H that conjugates the monodromy groups in the following way

h ◦∆γi = ∆̃ρi ◦ h, i = 1, 2

where ρi is defined by the composition ρi = H ◦ γi and γ1, γ2 are canonical generators of
π1(I \ D, b). But the condition Φ(H) = id implies that the loops ρi are homotopic to the
corresponding γi and so the monodromy groups are strongly analytically equivalent.

The following lemma shows that we can also deduce the strong analytic equivalence of the
monodromy groups in the case when the action on the fundamental group is an inner automor-
phism, not necessarily trivial.

Lemma 1. If (F̃ ,H) ∈ TOP(F , b) and Φ(H) is an inner automorphism on π1(I \D, b) then the
monodromy groups GF and GF̃ are strongly analytically equivalent.

Proof. Let (F̃ ,H) ∈ TOP(F , b) and suppose Φ(H) is an inner automorphism; namely, there
exists an element λ ∈ π1(I \D, b) such that for any γ ∈ π1(I \D, b)

Φ(H)(γ) = λ · γ · λ−1.

Since the curve H ◦ γ is homotopic to Φ(H)(γ) for any γ ∈ π1(I \D, b) there exists an analytic
germ h : (Γ, b)→ (Γ, b) such that

h ◦∆γ = ∆̃λ·γ·λ−1 ◦ h.

This implies

h ◦∆γ = ∆̃λ−1 ◦ ∆̃γ ◦ ∆̃λ ◦ h,
and so

h0 ◦∆γ = ∆̃γ ◦ h0,

where h0 is defined to be h0 = ∆̃λ ◦ h. �

2.2. Induced action on homology. In an analogous way, moving on to the first homology
group, we are now going to define a map

η : TOP(F , b) // Aut(H1(I \D;Z))

(F̃ ,H) � // η(H)

such that η(H) is the only automorphism which makes the following diagram commutative:

H1(I \ Σ;Z)
H∗ //

r∗
��

H1(I \ Σ̃;Z)

r̃∗
��

H1(I \D;Z)
η(H)

// H1(I \D;Z)
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Lemma 2. Let (F̃ ,H) ∈ TOP(F , b). Then η(H) = id provided that H(ai) ∈ Di for each
i = 1, 2, 3.

Proof. Let us choose 1-cycles2 σ1, σ2 : ∆1 → I \ Σ in such a way that they make up a canonical
set of generators of the group H1(I \ Σ;Z) and σi(∆

1) ⊆ Di, H(σi(∆
1)) ⊆ Di.

Define now βi = r ◦ σi. In this way β1, β2 is a canonical set of generators of the group
H1(I \D;Z) which satisfies βi(∆

1) ⊆ ∂Di.

H(σi(∆
1)) ⊆ Di and so r̃ ◦H ◦ σi(∆1) ⊆ ∂Di. Therefore (r̃ ◦H)∗σi must be homologous to

an integer multiple of βi. This implies that the automorphism η(H) can be expressed as

η(H)(β1) = mβ1, η(H)(β2) = nβ2.

for some integers m,n.
On the other hand, the composition r̃ ◦H : I \ Σ → I \D is a homotopy equivalence and so

it induces an isomorphism on the homology group. Thus mβ1 and nβ2 generate H1(I \ D;Z).
This is only possible if m,n = ±1, i.e. (r̃ ◦ H)∗σi ' ±βi, i = 1, 2. But both r̃ and H are
orientation preserving maps and so we conclude that (r̃ ◦ H)∗σi ' βi and thus η(H) is the
identity automorphism. �

3. Proof of the main results

3.1. Proof of Theorem 1.

Proof of Theorem 1. Suppose F and F̃ are generic foliations having the same singular points
at infinity, are topologically conjugated by a homeomorphism H and this topological conjugacy
preserves the singular points at infinity. Without loss of generality we can assume it also preserves

the base point b. Therefore (F̃ ,H) ∈ TOP(F , b) and clearly the condition H(ai) ∈ Di is satisfied.
By Lemma 2 the action on homology η(H) is the identity automorphism.

By Hurewicz Theorem H1(I\D;Z) is naturally isomorphic to the abelianization of π1(I\D, b).
Let q : π1(I \D, b)→ H1(I \D;Z) be the canonical projection. Through q every automorphism
f on π1(I \ D, b) descends to a unique automorphism on H1(I \ D;Z). This assignment gives

2∆1 is the standard 1-simplex ∆1 = {(t0, t1) ∈ R2 | t0 + t1 = 1 and t1, t2 ≥ 0}.
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raise to a natural and surjective homomorphism T : Aut(π1(I \D, b))→ Aut(H1(I \D;Z)) such
that ∀f ∈ Aut(π1(I \D, b)) the diagram commutes:

π1(I \D, b)
f //

q

��

π1(I \D, b)

q

��
H1(I \D;Z)

T (f)
// H1(I \D;Z)

Moreover, the kernel of such homomorphism consists precisely on those automorphisms on
π1(I \D, b) which are inner automorphisms 3 [4]; i.e. Ker(T ) = Inn(π1(I \D, b)).

The homeomorphism H satisfies q ◦ Φ(H) = η(H) ◦ q,

π1(I \D, b)
Φ(H)

//

q

��

π1(I \D, b)

q

��
H1(I \D;Z)

η(H)
// H1(I \D;Z)

and therefore η(H) = T (Φ(H)). Since η(H) = id then Φ(H) ∈ Ker(T ) and so is an inner
automorphism on π1(I \ D, b). By Lemma 1 the monodromy groups GF and GF̃ are strongly
analytically equivalent. �

3.1.1. A remark about conjugating homeomorphisms. Theorem 1 has been proved above by ex-
hibiting explicitly a conformal germ h0 : (C, 0)→ (C, 0) that conjugates the monodromy groups.
In fact, this germ can be realized as the transverse component of a global topological conjugacy

between F and F̃ . Namely, we have the following lemma:

Lemma 3. Let (F̃ ,H) ∈ TOP(F , b) and choose a cross-section Γ at b transversal to the leaves

of F and F̃ . If H(ai) ∈ Di for each i = 1, 2, 3 then there exists another topological conjugacy

H0 : CP2 → CP2 between F and F̃ such that its transverse component

h0 = H0
t
b : (Γ, b) −→ (Γ, b)

yields a strong analytic equivalence between the monodromy groups GF and GF̃ ;

h0 ◦∆γ = ∆̃γ ◦ h0

for any element γ ∈ π1(I \D, b).

Proof. We have a topological conjugacy H that satisfies H(ai) ∈ Di. By Lemma 2 the action
on homology η(H) is trivial and so Φ(H) is an inner automorphism on π1(I \D, b). By the same
arguments used on Section 2.1 there is an analytic germ

h : (Γ, b)→ (Γ, b)

induced byH (its transverse component at b) and an element λ ∈ π1(I\D, b) that the monodromy
groups GF and GF̃ are conjugated in the following way

h ◦∆γ = ∆̃λ−1 ◦ ∆̃γ ◦ ∆̃λ ◦ h,

3This statement would not hold if π1(I \D, b) was a free groups of rank grater than two. This fact is precisely
the obstruction for proving the same result in the case of polynomial vector fields of degree n > 2.
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therefore

(∆̃λ ◦ h) ◦∆γ = ∆̃γ ◦ (∆̃λ ◦ h).

Suppose we can find a homeomorphism H̃ : CP2 → CP2 that self-conjugates F̃ , preserves the
cross-section Γ and such that its transverse component at b

H̃t
b : (Γ, b)→ (Γ, b)

coincides with the germ ∆̃λ. Then the composition H0 = H̃ ◦ H would yield a topological

conjugacy between F and F̃ whose transverse component at b

h0 = H̃t
b ◦ h = ∆̃λ ◦ h

strongly conjugates the monodromy groups GF and GF̃ . Such a homeomorphism H̃ can easily

be constructed in the following way: Consider the monodromy map ∆̃λ. Recall that holonomy
transformations along a path are defined as a finite composition of correspondence maps

∆j : (τj , pj)→ (τj+1, pj+1)

where τj , τj+1 are cross-sections at points pj , pj+1 that lay on the same leaf and belong to a same
flow box. We can assume this correspondence maps are given by the time-one map of a constant
(in the appropriate coordinates) vector field. If the flow box is sufficiently small we can extend

such vector field to a smooth (real C∞) vector field tangent to the leaves of F̃ that vanishes
outside a compact neighborhood of the flow box. The time-one map of this new vector field

is a homeomorphism Hj : CP2 → CP2 which preserves the foliation F̃ , maps the cross-section
(τj , pj) to the cross-section (τj+1, pj+1) and the restriction

Hj |(τj ,pj) : (τj , pj)→ (τj+1, pj+1)

coincides with the correspondence map ∆j .

The composition of all of the homeomorphisms Hj will be a homeomorphism H̃ which self-

conjugates foliation F̃ and whose transverse component at b, by construction, coincides with the

monodromy map ∆̃λ.
Lemma 3 is now proved. �

Remark 1. The homeomorphism H̃ constructed above is isotopic to the identity map on CP2.
Its restriction to the infinite leaf is a map isotopic to the identity and such isotopy is obtained
by sliding the base point b along the closed loop λ. For any loop γ ∈ π1(I\D, b) the composition

H̃ ◦ γ turns out to be homotopic to the loop λ−1 · γ · λ.
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This action is exactly inverse to the one induced by the original conjugacy between F and F̃
and so the composition H̃ ◦H has a trivial action on the fundamental group π1(I \D, b); this is,

(F̃ ,H0) ∈ TOP(F , b) and Φ(H0) = id.

3.2. Topological invariance of the characteristic numbers of the singular points. On
this section we shall define the neighborhood U of F in A2 that is claimed to exist in Theorem

2. Its defining property being that if (F̃ ,H) ∈ TOP(F , b) and F̃ ∈ U then the homeomorphism
H satisfies H(ai) ∈ Di for i = 1, 2, 3. Whenever this situation happens we will say that H
preserves the numbering of the singular points at infinity.

Let us denote by λ1, λ2, λ3 the characteristic numbers of the singular points a1, a2, a3 re-

spectively. Given any other foliation F̃ ∈ Ũ , denote by ai(F̃) the unique singularity that F̃ has

on the disk Di. Let us denote by λ(ai(F̃)) the characteristic number of the singularity ai(F̃)

corresponding to the foliation F̃ . We shall keep writing ai and λi instead of ai(F) and λ(ai(F)).

Let M : Ũ → C3 be the map M(F̃) = (λ(a1(F̃)), λ(a2(F̃)), λ(a3(F̃))). Since the characteristic
numbers λ1, λ2, λ3 are pairwise different there exists ε > 0 such that if j 6= k then |λj−λk| ≥ 2ε.
Denote by Vi the disk Vi = {z ∈ C | |λi − z| < ε} and let U = M−1(V1 × V2 × V3). The map M

is continuous (in fact, it is algebraic [1]) so U is an open neighborhood of F contained in Ũ .

Lemma 4. If F is a generic foliation then for any other foliation F̃ ∈ U topologically conjugated

to F̃ by a homeomorphism H : CP2 → CP2 the homeomorphism H preserves the numbering of
the singular points at infinity; this is, for every i = 1, 2, 3 H(ai) ∈ Di.

Proof. Choose F̃ ∈ U topologically conjugated to F by H : CP2 → CP2. The genericity con-
ditions imposed on F imply that the characteristic numbers of the singularities at infinity are
topological invariants in the following sense [1]: if H is a topological conjugacy between F and

F̃ then λ(H(ai)) = λi. Additionally, from the definition of U it follows that

|λ(aj(F̃))− λk| < ε if j = k

|λ(aj(F̃))− λk| ≥ ε if j 6= k,

which implies H(ai) = ai(F̃) for each i = 1, 2, 3; this is, H preserves the numbering of the
singular points at infinity. �

3.3. Ideal rigidity of foliations from the class A2. In order to conclude that generic foli-
ations from the class A2 are ideally rigid we will use a modified version of Proposition 2 which
appears in [3].

Definition 6. Let S = {a1, ..., an+1} ⊆ I be a finite set of n+ 1 distinct points; D1, ..., Dn+1 a
collection of n+ 1 disjoint open disks covering S; D = ∪Di and b ∈ I \D.

A homeomorphism H : I → I is called homotopically trivial over I \D if H(b) = b, for each
point ai its image H(ai) belongs to the same disk Di and the images H(αi) of the segments
αi = [b, ai] connecting the base point b with each point ai are homotopic to the corresponding
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segments αi in the class of homotopy with the fixed endpoint b and free endpoint ai,t ∈ D
restricted to the respective disk.

A homeomorphism is said to be homotopically trivial without specifying the system of disks,
if it is homotopically trivial over some system of disks.

Definition 7. A foliation F ∈ A′n will be called reasonably rigid if there exists a neighborhood
U of it in An such that any foliation F ′ ∈ U topologically equivalent to F is affine equivalent
to F provided that the topological equivalence between F and F ′ induces a homotopically trivial
homeomorphism of the infinite line I onto itself.

Proposition 3 ([3]). A generic foliation from the class A′n is reasonably rigid.

We now prove Theorem 2.

Proof of Theorem 2. Let F ∈ A2 be a generic foliation. Let U be the neighborhood of F
constructed in Section 3.2. Since foliation F is reasonably rigid there exists a neighborhood U ′

of it in A2 such that any foliation F ′ ∈ U ′ topologically equivalent to F is affine equivalent to
F ′ provided that the topological equivalence between F and F ′ induces a homotopically trivial
homeomorphism.

Suppose now that F̃ ∈ U ∩U ′ is topologically equivalent to F . Without loss of generality we

can suppose this conjugacy preserves the base point b. Since F̃ ∈ U the topological conjugacy H
preserves the numbering of the singular points at infinity and, according to Lemma 3 and Remark
1, we can also suppose that the topological conjugacy satisfies Φ(H) = id. This condition is

equivalent to H being a homotopically trivial homeomorphism. Since F̃ ∈ U ′ we conclude that
both foliations are affine equivalent. �
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SOLENOIDAL MANIFOLDS

DENNIS SULLIVAN

To Xavier Gómez-Mont who discovers and appreciates beautiful mathematics

Abstract. It is shown that every oriented solenoidal manifold of dimension one is the bound-
ary of a compact oriented solenoidal 2-manifold. For compact solenoidal surfaces one can

develop a theory of complex structures parallel to the theory for Riemann surfaces. In partic-

ular, there exists a corresponding Teichmüller space. The Teichmüller space of the solenoidal
surface S obtained by taking the inverse limit of all finite pointed covers of a compact surface

of genus greater than one is a separable Banach manifold version of the universal Teichmuller

space of the upper half plane which is not separable. The commensurability automorphism
group of the fundamental group of the surface acts minimally on this solenoidal version of the

universal Teichmüller space.

A compact Hausdorff space which is locally homeomorphic to a k-disk cross a compact totally
disconnected space is called a laminar manifold. If the totally disconnected space is perfect
and infinite we call the laminar manifold a solenoidal manifold. A laminar manifold is foliated
by its path components. We can speak of smooth laminar manifolds, Riemannian laminar
manifolds, complex laminar manifolds etc. Such structures are meant to be, respectively, smooth,
Riemannian or holomorphic in the leaf direction and continuously varying in the transverse
direction.

Examples:

(i) The mapping torus of a homeomorphism of a Cantor set defines a fibration over the
circle with fiber the Cantor set. The total space is an oriented solenoidal one-manifold.

(ii) The suspension of a representation of the fundamental group of a closed k-manifold
into the group of homeomorphisms of a Cantor set defines a Cantor bundle over the
manifold and again the total space is a solenoidal k-manifold.

(iii) The inverse limit of an infinite system of connected finite covers over a closed k-manifold
defines a solenoidal k-manifold.

Laminar manifolds may be viewed geometrically in the leaf directions as generalizations of com-
pact manifolds. Manifold concepts and theory can be applied to them. Laminar manifolds may
also be viewed in the transverse direction as dynamical systems. The example following Theorem
3 is used seriously in both perspectives.

Theorem 1 (Conversation at IHES with Bob Edwards early 90’s). Any oriented one dimensional
solenoidal manifold is the boundary of an oriented solenoidal surface.

Proof: The argument combines two ideas. First one observes, by choosing enough transversals,
that any oriented solenoid is a mapping torus as in example (i). In more detail, choose a finite set
of transversals cutting every leaf. By adding more transversals one can be sure that starting at
a point on one transversal and going forward (with respect to the orientation) one first meets a
different transversal. This picture presents the solenoid as a mapping torus of a homeomorphism
on a Cantor set K. Second one writes this homeomorphism of K as a product of g commutators

http://dx.doi.org/10.5427/jsing.2014.9o


204 DENNIS SULLIVAN

of homeomorphisms of K using the fact that Homeo(K), the group of homeomorphisms of the
Cantor set, is equal to its commutator subgroup. This is because R. D. Anderson [1] proved that
Homeo(K) is a simple group and in particular it is a perfect group. Now use the fact that the
boundary of a surface of genus g with one boundary component is the product of the commutators
of the standard generators. Then build using the naturally associated representation of the
fundamental group of the surface with boundary into Homeo(K) a compact solenoidal surface
with boundary cantor fibred over the surface with boundary. The solenoidal one manifold in
question appears over the boundary of the surface.

Problem: Is there a describable cobordism classification of oriented solenoidal manifolds in
dimensions 2, 3, . . . ?

Theorem 2. In dimension two, the smoothability and the holomorphicity results for compact
orientable surfaces extends to orientable laminar surfaces.

Proof sketch: One may cover a laminar manifold with product charts that have a reasonable
size in the leaf direction and a very small size in the transverse direction, moreover they can be
chosen to be clopen in the transverse direction by the total discontinuity of the transversals. One
sees then that any argument for compact manifolds that is continuous in parameters extends to
laminar manifolds. Smoothing a compact surface or realizing it as a complex manifold can be
argued to have this continuous form.

Theorem 3 (Candel [3]). For any transversally continuous Riemannian metric on a smooth
laminar surface, sometimes both but at least one of the following holds:

I) the universal cover of every leaf is conformally the disk (compare the example following and
Theorem 4);

II) there is a nontrivial tranverse invariant measure (a measure on each transversal so that
the germs of transversal holonomy maps along paths are measure preserving).

Sketch of Candel’s argument. If I) is not true, some leaf by Ahlfors lemma has a conformal
metric with a sequence of neighborhoods of infinity with bounded length boundaries. This leaf
is used to define the transverse invariant measure by the 70’s argument of Joseph Plante.

Example of a solenoidal surface without transverse invariant measure: Consider the squaring
map Q outside the unit disk in the complex plane. On the inverse limit space of the tower
of covers defined by iterates of Q, the lift of Q is a bijection defining a properly discontinuous
action of Z. The quotient by this action is a solenoidal surface with every leaf hyperbolic and
and possessing no transversal invariant measure (cf [5]).

Theorem 4 (Candel and Verjovsky [3], [6]). If every leaf of a laminar Riemannian surface is
conformally covered by the disk, then the unique constant curvature minus one metric on each
leaf is transversally continuous.

Remark. To my knowledge H.E. Winkelnkemper was the first person to point out (circa 1976)
the very interesting fact that whether a given non compact leaf of a smoothly foliated compact
space with a transversally continuous metric has universal cover conformally the disk is indepen-
dent of the choice of metric and therefore an intrinsic property of the smoothly foliated space.
One can show also it is a topological invariant as well.(The hyperbolic plane is not related to
the euclidean plane by a homeomorphism which is uniformaly continuous in both directions).

Theorem 5 ([5]). The space of hyperbolic structures on a laminar surface (as in Theorem 4) up
to isometries isotopic to the identity has the structure of a separable complex Banach manifold.
The metric is the natural Teichmüller metric based on the minimal conformal distortion of a map
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between structures in the fixed isotopy class. The isotopy classes of homeomorphisms preserving
a chosen leaf act by isometries of this separable Banach manifold and plays the role of the
Teichmuller modular group in the classical case.

Corollary ([5]): The analog of Riemann’s moduli space exists as a Banach orbifold iff this action
is appropriately discontinuous (there is a covering by open balls so that under the action only
finitely many group elements bring a ball back to intersect itself.)

Consider the solenoidal surface S obtained by taking the inverse limit of all finite pointed
covers of a compact surface of genus greater than one and chosen base point. The base points
upstairs in the covers determine a point and a distinguished leaf in the inverse limit solenoidal
surface.

Theorem 6 (based on Kahn-Marković affirmation of the Ehrenpreis Conjecture). The space of
hyperbolic structures up to isometry preserving the distinguished leaf on this solenoidal surface
S is non Hausdorff and any Hausdorff quotient is a point.

Proof: In affirming the Enrenpreis Conjecture Jeremy Kahn and Vladimir Marković show any
two constant negative curvature structures on compact surfaces become almost isometric after
taking appropriate finite covers [4]. This shows the group mentioned in Theorem 5 has every
orbit dense because it is explained in [5] how every point in the Teichmüller space of Theorem 5
is approximated by a hyperbolic structure on some high finite cover of the inverse system.[These
are the transversally locally constant structures of [5]]. The group mentioned in Theorem 5 for
this solenoidal surface is the commensurability automorphism group of the fundamental group of
any higher genus compact surface (this means all isomorphisms between finite index subgroups).
By the affirmation of the Ehrenpreis Conjecture mentioned above this commensurability group
acts densely for each transversally locally constant structure in the Teichmüller space of all
structures. Since the action is isometric one dense orbit implies all orbits are dense.
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GSV-INDICES AS RESIDUES

TATSUO SUWA

Abstract. We introduce a local invariant for a vector field v on a complete intersection V

with an isolated singularity as the residue of the relevant Chern class of the ambient tangent
bundle by a frame consisting of v and some natural meromorphic vector fields associated with

defining functions of V . We then show that the residue coincides with the GSV-index as well
as the virtual index of v so that it provides another interpretation of these indices. As an

application, we give an algebraic formula for the GSV-indices of holomorphic vector fields on

singular curves.

In this note we introduce a local invariant of a vector field v on a complete intersection V
with an isolated singularity. It is the residue arising from the localization of the relevant Chern
class of the ambient tangent bundle by a frame consisting of v and some other vector fields.
The last ones are naturally associated to defining functions of V and are holomorphic on and
normal to the non-singualr part of V (Definition 2.7 below). Although it is a priori of differential
geometric nature, defined in the framework of Chern-Weil theory adapted to the Čech-de Rham
cohomology, it is directly related to a topological invariant coming from the obstruction theory
(cf. (2.10)).

Historically, there is the so-called GSV-index for a vector field v as above ([6], [13]). It is
defined topologically, either using the frame consisting of v and the conjugated gradient vector
fields of defining functions or referring to the Milnor fiber. On the differential geometric side,
there is the virtual index which is the residue arising from the localization by v of the Chern
class of the virtual tangent bundle of V (cf. [11]). It coincides with the GSV-index in the case
considered here, however it can be defined in more general settings.

The topological aspect of the residue mentioned in the beginning is that it coincides with
the GSV-index (Theorem 3.4) and the differential geometric aspect is that it coincides with the
virtual index (Theorem 4.4), so that it provides another interpretation of these indices as well as
another way of computing them. On the way we show how topological and differential geometric
residues of vector fields on complete intersections interacts.

We then apply the above to the case of holomorphic vector fields on singular curves. A direct
computation of the residue taking suitable connections shows an integral representation of the
GSV-index (Proposition 5.1), which was given by M. Brunella in [4] by a different approach.
This in turn gives an algebraic formula for the GSV-index in this case (Corollary 5.2). The
formula is somewhat different from the one in this special case of the general algebraic formula
obtained as homological index by X. Gómez-Mont in [5] (see [2] for complete intersections). It
is only for the case of curves, however the advantage is that each term of it is expressed as the
dimension of the quotient of the ring of holomorphic functions by an ideal generated by a regular
sequence.

A part of this work was done during the author’s stay at l’Institut de Mathématiques de
Luminy some years ago and he would like to thank them for their hospitality and support.
Thanks are also due to J.-P. Brasselet and J. Seade for useful conversations.
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1. Preliminaries

We recall localization theory of characteristic classes in the framework of Chern-Weil theory
adapted to the Čech-de Rham cohomology, as initiated in [10]. Here we adopt the presentation
in [15], see also [18].

Connections. Let M be a C∞ manifold and E a C∞ complex vector bundle of rank l on M .
We denote by Ap(M,E) the C-vector space of complex valued C∞ p-forms with coefficients in E
on M , i.e., C∞ sections of the bundle

∧p
(T cRM)∗⊗E, where T cRM denotes the complexification

of the tangent bundle of M . In the case E = C ×M , the trivial line bundle, we denote it by
Ap(M) so that it is the space of complex valued p-forms on M .

Recall that a connection for E is a C-linear map

∇ : A0(M,E) −→ A1(M,E)

satisfying the “Leibniz rule”

∇(fs) = df ⊗ s+ f∇(s), for f ∈ A0(M) and s ∈ A0(M,E).

Note that every vector bundle admits a connection. If ∇ is a connection for E, it induces a
C-linear map

∇ : A1(M,E) −→ A2(M,E)

satisfying

∇(ω ⊗ s) = dω ⊗ s− ω ∧∇(s), for ω ∈ A1(M) and s ∈ A0(M,E).

The composition

K = ∇ ◦∇ : A0(M,E) −→ A2(M,E)

is called the curvature of ∇.
The fact that a connection is a local operator allows us to get local representations of it and its

curvature by matrices whose entries are differential forms. Thus suppose that ∇ is a connection
for E and that E is trivial on an open set U . If e = (e1, . . . , el) is a frame of E on U , we may
write

∇(ei) =

l∑
j=1

θji ⊗ ej

with θij 1-forms on U . We call θ = (θij) the connection matrix with respect to e. Also, from
the definition we compute to get

K(ei) =

l∑
j=1

κji ⊗ ej , κij = dθij +

l∑
k=1

θik ∧ θkj .

We call κ = (κij) the curvature matrix with respect to e. If e′ = (e′1 . . . , e
′
l) is another frame of

E on U ′, we have e′i =
∑l
j=1 ajiej for some C∞ functions aij on U ∩ U ′. The matrix A = (aij)

is non-singular at each point of U ∩ U ′. If we denote by θ′ and κ′ the connection and curvature
matrices of ∇ with respect to e′, we have

(1.1) θ′ = A−1 · dA+A−1θA and κ′ = A−1κA in U ∩ U ′.
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Chern forms. Since differential forms of even degrees commute one another with respect to
exterior product, we may treat κ above as an ordinary matrix. Thus, for q = 1, . . . , l, we define
a 2q-form σq(κ) on U by

det(Il + κ) = 1 + σ1(κ) + · · ·+ σl(κ),

where Il denotes the identity matrix of rank l. In particular, σ1(κ) = tr(κ) and σl(κ) = det(κ).
Although σq(κ) depends on the connection ∇, it does not depend on the choice of the frame
of E by (1.1) and it defines a global 2q-form on M , which we denote by σq(∇). An important
feature of the forms is that they are closed. We set

cq(∇) =

(√
−1

2π

)q
σq(∇)

and call it the q-th Chern form. The total Chern form is defined by c∗(∇) = 1 +
∑l
q=1 c

q(∇) so
that locally it is given by

(1.2) c∗(∇) = det
(
Il +

√
−1

2π
κ
)
.

Note that it is invertible.
If we have two connections ∇0 and ∇1 for E, we may construct the difference form cq(∇0,∇1),

which is a (2q − 1)-form with the properties that cq(∇1,∇0) = −cq(∇0,∇1) and that

d cq(∇0,∇1) = cq(∇1)− cq(∇0).

In fact the form cq(∇0,∇1) is constructed as follows. We consider the vector bundle

E × R→M × R
and let ∇̃ be the connection for it given by ∇̃ = (1− t)∇0 + t∇1, with t a coordinate on R. Then
we define

cq(∇0,∇1) = p∗c
q(∇̃),

where p∗ denotes the integration along the fiber of the projection p : M × [0, 1]→M .
From the above we see that the class [cq(∇)] of the closed 2q-form cq(∇) in the de Rham

cohomology H2q
d (M) depends only on E and not on the choice of the connection ∇. It is the

q-th Chern class cq(E) of E.

Remark 1.3. If we use the obstruction theory, the q-th Chern class is defined in the integral
cohomology H2q(M,Z). It is shown that the class cq(E) defined as above is equal to its image
by the canonical homomorphism

H2q(M,Z) −→ H2q(M,C)
∼−→ H2q

d (M),

where the last isomorphism is the de Rham isomorphism (e.g., [18]).

Localization. Let E be a vector bundle of rank l. An r-section of E is an r-tuple s = (s1, . . . , sr)
of sections of E. A singular point of s is a point where s1, . . . , sr fail to be linearly independent.
An r-frame is an r-section without singularities. An l-frame is simply called a frame, as already
used above.

Definition 1.4. Let s = (s1, . . . , sr) be a C∞ r-frame of E on an open set U . We say that a
connection ∇ is trivial with respect to s, or simply s-trivial, on U , if ∇(si) = 0, i = 1, . . . , r.

The following is fundamental for the localization we consider :

Proposition 1.5. If ∇ is s-trivial,

cq(∇) = 0, for q ≥ l − r + 1.
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We explain localization process and the associated residues in the case pertinent to ours.
Thus let M be a complex manifold of dimension n and p a point in M . Let U0 = M r {p} and
U1 a neighborhood of p and consider the covering U = {U0, U1} of M . We then work in the
framework of the Čech-de Rham cohomology of U . Let E be a complex vector bundle of rank l
on M . Suppose we have an r-frame s of E on U0, r = l− n+ 1. The n-th Chern class cn(E) of
E is represented by the Čech-de Rham cocycle

(cn(∇0), cn(∇1), cn(∇0,∇1)),

where ∇i is a connection for E on Ui, i = 0, 1. We choose ∇0 so that it is s-trivial. Thus
by Proposition 1.5, cn(∇0) = 0 and the cocycle defines a class cn(E, s), called the localization
of cn(E) by s, in the relative cohomology H2n(M,M r {p};C). This in turn gives rise to the
residue Rescn(s, E; p) as its image by the Alexander isomorphism

H2n(M,M r {p};C)
∼−→ H0({p},C) = C.

The residue is in fact an integer given by

Rescn(s, E; p) =

∫
R

cn(∇1)−
∫
∂R

cn(∇0,∇1),

where R is a 2n-disk around p in U1.

Exact sequence. Let

(1.6) 0 −→ E′′
ι−→ E

ϕ−→ E′ −→ 0

be an exact sequence of vector bundles, and ∇′′, ∇ and ∇′ connections for E′′, E and E′,
respectively. We say that (∇′′,∇,∇′) is compatible with (1.6) if

∇(ι ◦ s′′) = (id⊗ι) ◦ ∇′′(s′′) and ∇′(ϕ ◦ s) = (id⊗ϕ) ◦ ∇(s)

for s′′ in A0(M,E′′) and s in A0(M,E).
The following is proved using the expression (1.2) :

Proposition 1.7. If (∇′′,∇,∇′) is compatible with (1.6),

c∗(∇) = c∗(∇′′) · c∗(∇′).

Remark 1.8. Given connections ∇′′ and ∇′ for E′′ and E′, it is possible to construct a con-
nection ∇ for E so that (∇′′,∇,∇′) is compatible with (1.6). Moreover, this can be done under
the assumption that the connections be trivial with respect to appropriate frames.

Virtual bundles. Let E and E′ be vector bundles and ∇ and ∇′ connections for E and E′,
respectively. We set ∇• = (∇,∇′) and define the total Chern form of the virtual bundle E −E′
by

c∗(∇•) = c∗(∇)/c∗(∇′).
For two pairs of connections ∇•0 = (∇0,∇′0) and ∇•1 = (∇1,∇′1), we may define the difference

form cq(∇•0,∇•1) with similar properties as before. Namely, letting ∇̃• = (∇̃, ∇̃′) with

∇̃ = (1− t)∇0 + t∇1 and ∇̃′ = (1− t)∇′0 + t∇′1,

we set

cq(∇•0,∇•1) = p∗c
q(∇̃•).

The total Chern class c∗(E−E′) of E−E′ is the class of c∗(∇•) in the de Rham cohomology
H∗d (M). It is also given by c∗(E − E′) = c∗(E)/c∗(E′).
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2. Residues of vector fields

The localization theory explained in the previous section applies also to the case of singular
varieties. We first recall this in the situation relevant to ours. For details we refer to [16], [17]
and [18]. Then we define the residue of a vector field on a complete intersection with an isolated
singularity using an appropriate frame.

Residues of multi-sections. Let U be a neighborhood of the origin 0 in Cm and V a subvariety
(reduced, but may not be irreducible) of pure dimension n in U . Assume that V contains 0 and
that V r {0} is non-singular. We take a closed ball B around 0 sufficiently small so that, in
particular, R = B ∩ V has a cone structure over ∂R = L, the link of V at 0 (cf. [12]).

Let E be a C∞ complex vector bundle of rank l on U and s = (s1, . . . , sr) a C∞ r-frame of
E on a neighborhood V ′ of L in V , r = l − n + 1. Then there is a natural localization of the
n-th Chern class cn(E|V ) of E|V by s, which gives rise to a residue, denoted by Rescn(s, E|V ; 0).
This is given as follows. Let ∇0 be an s-trivial connection for E|V ′ and ∇1 a connection for E.

Definition 2.1. The residue of s at 0 with respect to cn is defined by

Rescn(s, E|V ; 0) =

∫
R

cn(∇1)−
∫
∂R

cn(∇0,∇1).

Remark 2.2. 1. The definition of the residue above does not depend on the choice of B or the
connections involved.

2. In practice, we may assume that E is trivial on U and we may take as ∇1 the connection
trivial with respect to some frame of E. In this case, the first term disappears and we have only
an integral on ∂R = L.

The fundamental fact is that the residue above coincides with the “topological residue” defined
by the obstruction theory. To explain this, we denote by Wr(Cl) the Stiefel manifold of ordered
r-frames in Cl. It is (2n−2)-connected and its (2n−1)-st homotopy group is naturally isomorphic
to Z.

Let us first consider the basic case where U = V and l = m = n. Thus r = 1 and s consists of
a single section s. In this case L = S2n−1, a (2n−1)-sphere and, if we denote by h = (h1, . . . , hn)
the components of s with respect to some frame of E, the restriction of h to L defines a map

ϕ : L −→W1(Cn) = Cn r {0}.

On the other hand, by appropriate choices of ∇0 and ∇1, we may show that cn(∇1) = 0
and cn(∇0,∇1) = h∗βn, where βn denotes the Bochner-Martinelli form on Cn (cf. [18, Lemma
3.4.1]). Thus we have

(2.3) Rescn(s, E; 0) = degϕ.

In particular, if E = TU , the holomorphic tangent bundle of U , s = v is a vector field and
this is the Poincaré-Hopf index PH(v, 0) of v at 0.

Coming back to the general case, if V =
⋃
Vi is the irreducible decomposition of V , the link L

has connected components (Li) accordingly, each Li being the link of Vi. The r-frame s defines
a map

ϕi : Li −→Wr(Cl).
Since Li is a connected real (2n − 1)-dimensional manifold, we have the degree of ϕi, as an

integer. We refer to [18, Theorem 6.3.2] for the following (in [17, Theorem 6.1], we need to
assume that V is irreducible) :
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Lemma 2.4. We have
Rescn(s, E|V ; 0) =

∑
degϕi.

Remark 2.5. 1. In the above E and s may be assumed to be only continuous, as they admit
“C∞ approximations”.

2. If E and s are restrictions of holomorphic ones on U , we have an analytic expression of
Rescn(s, E|V ; 0) as a Grothendieck residue (cf. [16]). Moreover, if V is a complete intersection,
or more generally if V admits a smoothing in U , we have an algebraic expression as the dimension
of certain analytic algebra (cf. [17]).

Vector fields on complete intersections. Letting U , V and V ′ be as above, we have an
exact sequence

(2.6) 0 −→ TV ′ −→ TU |V ′
π−→ NV ′ −→ 0,

where TV ′ and TU denote the holomorphic tangent bundles of V ′ and U , and NV ′ the normal
bundle of V ′ in U .

Let us now assume that V is a complete intersection defined by f = (f1, . . . , fk) in U ,
k = m− n. Here we adopt the terminologies in [15, Ch.II, 13] so that V is reduced but may not
be irreducible, to make sure.

In a neighborhood of a regular point of f , we may choose (f1, . . . , fk) as a part of local
coordinates on U so that we have holomorphic vector fields ∂

∂f1
, . . . , ∂

∂fk
away from the critical

set of f . They are linearly independent and “normal” to the non-singular part of V so that
(π( ∂

∂f1
|V ′), . . . , π( ∂

∂fk
|V ′)), which will be simply denoted by ∂, form a frame of NV ′ . Here we

should note that the restriction means the restriction as a section of the vector bundle TU .
Suppose we have a C∞ non-singular vector field v on V ′. Then the (k + 1)-tuple of sections

v =
(
v,

∂

∂f1

∣∣∣
V ′
, . . . ,

∂

∂fk

∣∣∣
V ′

)
of TU |V ′ form a (k + 1)-frame so that we have the residue Rescn(v, TU |V ; 0), which we simply
call the residue of v :

Definition 2.7. The residue of v at 0 is defined by

Res(v, 0) = Rescn(v, TU |V ; 0).

Thus

(2.8) Res(v, 0) =

∫
R

cn(∇1)−
∫
∂R

cn(∇0,∇1),

where ∇0 is a v-trivial connection for TU |V ′ and ∇1 a connection for TU .

Remark 2.9. 1. For the frame v above we cannot use the analytic or algebraic expression
mentioned in Remark 2.5, 2, even if v admits a holomorphic extension to U , as the vector
fields ∂

∂fj
cannot be extended holomorphically through 0. On the other hand, the topological

expression in Lemma 2.4 is still valid :

(2.10) Res(v, 0) =
∑

degϕi,

where ϕi is the map defined by v on each connected component Li of the link L of V .

2. The above residue is, in some sense, dual to the index for a 1-form introduced in [7].

Proposition 2.11. If V is non-singular at 0,

Res(v, 0) = PH(v, 0).
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Proof. In this case, the sequence (2.6) extends to the exact sequence

(2.12) 0 −→ TV −→ TU |V −→ NV −→ 0.

Note that PH(v, 0) is given as the right side of (2.8) with ∇0 and ∇1 replaced by a v-trivial
connection for TV ′ and a connection for TV , respectively.

We take a v-trivial connection ∇′′0 for TV ′, a v-trivial connection ∇0 for TU |V ′ and the ∂-
trivial connection ∇′0 for NV ′ so that (∇′′0 ,∇0,∇′0) is compatible with (2.6). Also let ∇′′1 be
a connection for TV and ∇′1 the ∂-trivial connection for NV . We take a connection ∇1 for
TU so that (∇′′1 ,∇1,∇′1) is compatible with (2.12) (cf. Remark 1.8). Then noting that the
total Chern forms satisfy c∗(∇1) = c∗(∇′′1) · c∗(∇′1) and that c∗(∇′1) = 1, as ∇′1 is trivial, we
have cn(∇1) = cn(∇′′1). Similarly, from the construction of the difference form and noting that
∇′0 = ∇′1 on V ′, we have cn(∇0,∇1) = cn(∇′′0 ,∇′′1). �

Remark 2.13. The above may be shown by obstruction theory as well, the essential point being
again that ( ∂

∂f1
, . . . , ∂

∂fk
) has no singularities on V , if V is non-singular.

In the global case, this type of residues also appear as relative Chern classes. Let us again
start with the basic case. Thus let M be the closure of a relatively compact open set of a complex
manifold M1 of dimension n. Suppose ∂M is (piecewise) C∞ and we have a non-singular vector
field v in a neighborhood M ′ of ∂M in M1. Let ∇0 be a v-trivial connection for TM ′ and ∇1 a
connection for TM1 and define

(2.14) PH(v,M) =

∫
M

cn(∇1)−
∫
∂M

cn(∇0,∇1).

We may extend v to all of M with possibly a finite number of singularities pi and using (2.3),
we see that

(2.15) PH(v,M) =
∑

PH(v, pi).

Coming back to the situation before, let f = (f1, . . . , fk) : U → Ck and B be as above. We
denote by C(f) the set of critical points of f and set D(f) = f(C(f)), which is a hypersurface in
a neighborhood of the origin 0 in Ck. For t sufficiently near 0, we set Vt = f−1(t), which admits
at most isolated singularities C(f) ∩ Vt, all lying in the interior of B. If t is not in D(f), Vt is
non-singular, in fact a Milnor fiber F of f (cf. [12], [8]). Let V ′t be a neighborhood of Rt = B∩Vt
in Vt and vt a non-singular vector field on V ′t . We set vt = (vt,

∂
∂f1
|V ′

t
, . . . , ∂

∂fk
|V ′

t
) and define the

residue Res(vt, Vt) by the formula (2.8) with ∇0 replaced by a vt-trivial connection for TU |V ′
t

and R by Rt. The following is proves as Proposition 2.11 :

Proposition 2.16. If Vt is non-singular,

Res(vt, Vt) = PH(vt, Vt).

3. GSV-index

Let U be a neighborhood of the origin 0 in Cn+k and V a complete intersection in U of dimen-
sion n, as in Section 2. Let v be a non-singular continuous vector field on V ′, a neighborhood
in V of the link L of V . For the definition of the GSV-index of v at 0, we adopt the one in
[15, Ch.IV, 1]. It is in the spirit of the second definition in [6], involving the Milnor fiber, and
is equivalent to the one given in [6] and [13] as the degree of a certain map, provided that V is
irreducible (see Remark 3.3 below).
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Let us consider the situation in the last part of Section 2. Let U ′ be a neighborhood of L
in U . We may assume that U ′ does not contain critical points of f . Then we have an exact
sequence, which extends (2.6), V ′ = U ′ ∩ V :

(3.1) 0 −→ Tf |U ′ −→ TU |U ′ −→ N |U ′ −→ 0,

where Tf denotes the bundle on U rC(f) of vectors tangent to the fibers of f and N a trivial
bundle of rank k on U (cf. Section 4 below). In this situation, N |U ′ may be thought of as
f∗TCk|U ′ . Starting from the given non-singular vector field v on V ′, we may construct a non-
singualr vector field ṽ on U ′ so that it is tangent to V ′t for all t near 0 in Ck. This is done by
taking an extension of v to a section of TU |U ′ and then projecting it to a section of Tf |U ′ by a
splitting of (3.1). Let vt denote the restriction of ṽ to V ′t . For a regular value t of f we denote
Vt by F and vt by w. Then we have the Poincaré-Hopf index PH(w,F ) (cf. (2.14)).

Definition 3.2. The GSV-index of v at 0 is defined by

GSV(v, 0) = PH(w,F ).

Remark 3.3. 1. The definition does not depend on the choice of the regular value t (cf. the
proof of Theorem 3.4 below).

2. If V is irreducible, then L is connected and the above index GSV(v, 0) coincides with the
degree of the map

ψ : L −→Wk+1(Cn+k)

given as the restriction to L of (v, grad f1, . . . , grad fk), where grad fj denotes the complex con-

jugate of the gradient vector field of fj : grad fj =
∑n+k
i=1

∂fj
∂zi

∂
∂zi

(cf. [6], [13]). This can be

shown by the obstruction theory as in [6]. We could also show this by the Chern-Weil theory as
Theorem 3.4 below, considering another residue using the frame (v, grad f1, . . . , grad fk) instead
of (v, ∂

∂f1
, . . . , ∂

∂fk
).

3. Suppose V is not irreducible and let V =
⋃
Vi be the irreducible decomposition. Note that

this happens only if k ≥ n, as V r {0} is assumed to be non-singular. In this case, L has as
many connected components (Li) and it is not appropriate to consider the degree of ψ as above.
However, proceeding as Theorem 3.4 below and using Lemma 2.4, we have GSV(v, 0) =

∑
degψi,

with ψi the restriction of ψ to Li.
To further make comments in this situation, we denote the above index by GSV(v, V ; 0).

If each Vi is also a complete intersection, restricting v to Vi, we have GSV(v, Vi; 0) defined as
in Definition 3.2 and it is expressed as the degree of a map as above, however the point is
that we have to use the defining functions for Vi (not for V ) as (f1, . . . , fk). For that reason,
GSV(v, V ; 0) 6=

∑
i GSV(v, Vi; 0), in general. For example, in the case n = k = 1, denoting V

and Vi by C and Ci, we have

GSV(v, C; 0) =
∑
i

GSV(v, Ci; 0)−
∑
i6=j

(Ci · Cj)0,

where (Ci · Cj)0 denotes the intersection number of Ci and Cj at 0 (see [15, Ch.V, 5] and
references therein).

Let us note that in the beginning of Section 3.2 of [3], V has to be assumed to be irreducible,
even in the higher dimensional case, and that in Remark 3.2.2, loc. cit., there are some misplace-
ments of terms in the second displayed formula : it should be read as above with GSV(v, C; 0)
defined as in Definition 3.2.

Here is the main theorem of this section :
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Theorem 3.4. We have

GSV(v, 0) = Res(v, 0).

Proof. We compute Res(vt, Vt) using (the restriction to Vt of) connections as follows. Let ∇0 be
a ṽ-trivial connection for TU ′ and ∇1 a connection for TU . Then we have

Res(vt, Vt) =

∫
Rt

cn(∇1)−
∫
∂Rt

cn(∇0,∇1).

which depends continuously on t. For a regular value t, this is PH(vt, Vt) (cf. Proposition 2.16),
which is an integer (cf. (2.15)). Thus it does not depend on t, since the regular values are dense.
For a regular value this is GSV(v, 0), while for t = 0, this is equal to Res(v, 0). �

Remark 3.5. 1. The above may be shown by the obstruction theory as well.

2. From the above theorem and (2.10), we see that if V is irreducible, we have another expression
of the GSV-index as the degree of a map, which involves the vector field v and the holomorphic
vector fields ∂

∂fj
. In the case V is not irreducible, we have again from the above theorem and

(2.10), GSV(v, 0) =
∑

degϕi (cf. Remark 3.3, 3 above).

4. Virtual index

The notion of virtual index was introduced in [11]. It can be defined for a vector field on a
certain type of local complete intersection V . To be a little more precise, let S be a compact set
in V and V1 a neighborhood of S such that V1 r S is in the non-singular part of V . For a C∞

vector field v non-singular on V1 r S, we may define the virtual index Vir(v, S) of v at S as the
residue arising from the localization of the n-th Chern class of the virtual tangent bundle of V
by v, n = dimV .

Here we recall the case of isolated singularities. Thus let U , V and V ′ be as in Section 2.
Assume that V is a complete intersection defined by f = (f1, . . . , fk) in U . In this case, the
bundle map π in (2.6) has an extension

π : TU |V −→ N |V
withN a trivial vector bundle of rank k on U (e.g., [15, Ch.II, 13]). The extension is natural in the
sense that N admits a frame ν = (ν1, . . . , νk) extending the frame ∂ = (π( ∂

∂f1
|V ′), . . . , π( ∂

∂fk
|V ′))

of NV ′ . We set τV = TU |V − N |V and call it the virtual tangent bundle of V . Recall that its
total Chern class is given by c∗(τV ) = c∗(TU |V )/c∗(N |V ).

Let v be a C∞ vector field on V ′. Then we will see that the n-th Chern class cn(τV ) of τV
is localized at 0 to give rise to the virtual index Vir(v, 0) of v at 0. In the sequel, we follow the
description of [15, Ch.IV, 3].

We take connections ∇, ∇0 and ∇′0 for TV ′, TU |V ′ and NV ′ , respectively, so that
(i) ∇ is v-trivial : ∇(v) = 0, and that
(ii) the triple (∇,∇0,∇′0) is compatible with (2.6).

We set ∇•0 = (∇0,∇′0). Recall that the total Chern form of the pair ∇•0 of connections is
defined by c∗(∇•0) = c∗(∇0)/c∗(∇′0). By (ii) above, c∗(∇•0) = c∗(∇) so that by (i),

cn(∇•0) = cn(∇) = 0,

which is the key fact for the localization. Let ∇1 and ∇′1 be connections for TU and N ,
respectively, and set ∇•1 = (∇1,∇′1). The total Chern form c∗(∇•1) of the pair ∇•1 is defined as
above and cn(∇•1) is a 2n-form on U . Recall that we have also the difference form cn(∇•0,∇•1).
Let B and R = B ∩ V be as in Section 2.
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Definition 4.1. The virtual index of v at 0 is defined by

(4.2) Vir(v, 0) =

∫
R

cn(∇•1)−
∫
∂R

cn(∇•0,∇•1).

Remark 4.3. 1. If V is non-singular at 0, we have (cf. [15, Ch.IV, Lemma 3.3]) :

Vir(v, 0) = PH(v, 0).

2. In practice we may take as ∇1 and ∇′1 connections trivial with respect to some frames of TU
and N , respectively. In this case, the first term in (4.2) disappears and we have only an integral
on ∂R = L.

3. If v is the restriction to V ′ of some holomorphic vector field on U leaving V invariant, this
integral can be expressed as a Grothendieck residue relative to V (cf. [11], [15, Ch.IV, (7.3)]).
Moreover in this case, we have the “virtual residues” for Chern polynomials of degree n (cf. [15,
Ch.IV, 7]), generalizing the Baum-Bott residues for holomorphic vector fields in [1].

Theorem 4.4. We have

Vir(v, 0) = Res(v, 0).

Proof. We take a v-trivial connection ∇ for TV ′, a v-trivial connection ∇0 for TU |V ′ and a ∂-
trivial connection∇′0 for NV ′ so that (∇,∇0,∇′0) is compatible with (2.6) and set∇•0 = (∇0,∇′0).
Also, let ∇1 be an arbitrary connection TU and let ∇′1 be the ν-trivial connection for N and
set ∇•1 = (∇1,∇′1). Here we recall that ν is a frame extending ∂.

From c∗(∇•1) = c∗(∇1)/c∗(∇′1) and c∗(∇′1) = 1, we have

(4.5) cn(∇•1) = cn(∇1).

To find cn(∇•0,∇•1), recall that it is given by integrating cn(∇̃•) over the 1-simplex [0, 1], where

∇̃• = (∇̃, ∇̃′) with ∇̃ = (1 − t)∇0 + t∇1 and ∇̃′ = (1 − t)∇′0 + t∇′1. Since ∇′0 = ∇′1 on V ′,

we have ∇̃′ = ∇′0 and moreover, c∗(∇̃′) = 1, as ∇′0 is ∂-trivial. Thus we have cn(∇̃•) = cn(∇̃)
exactly as above. Therefore we have cn(∇•0,∇•1) = cn(∇0,∇1), which together with (4.5) implies
the equality. �

Remark 4.6. The above proof is similar to the one for [9, Theorem 4.3]. We note that the
latter can also be simplified as above.

From Theorems 3.4 and 4.4, we recover the following equality, which was initially proved in
[11], see also [14] :

Corollary 4.7. We have

Vir(v, 0) = GSV(v, 0).

Remark 4.8. As can be seen from the above, we could use, instead of ( ∂
∂f1

, . . . , ∂
∂fk

), an arbitrary

k-frame of TU to define the residue Res(v, 0) for similar results, as long as it is normal to the
non-singular part of V . An advantage of the use of ( ∂

∂f1
, . . . , ∂

∂fk
) is, besides its naturalness,

that we have some concrete results as shown in the following section.

5. The case of plane curves

Let C be an analytic curve (reduced but may not be irreducible) defined by f = 0 in a
neighborhood U of 0 in C2 = {(z1, z2)}, containing 0 as a possibly singular point. Also let

ṽ = a1
∂

∂z1
+ a2

∂

∂z2
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be a holomorphic vector field on U , possibly singular at 0 and leaving C invariant. The last
condition can be rephrased as ṽ(f) = hf for some holomorphic function h. Let v denote the
restriction of ṽ to C ′ = C r {0}.

We denote by O the ring of germs of holomorphic functions at 0 in C2. We may assume that,
changing the coordinates of C2 if necessary, the germs of f and a1 are relatively prime in O. In
this case f and ∂f

∂z2
are also relatively prime. We set ∂if = ∂f

∂zi
. Let L denote the link of C at 0.

Proposition 5.1. In the above situation,

GSV(v, 0) =
1

2π
√
−1

∫
L

(da1

a1
− d(∂2f)

∂2f

)
.

Proof. By Theorem 3.4, we only need to compute Res(v, 0) = Rescn(v, TU |C ; 0) for v = (v, ∂∂f |C′),

as given in (2.8).
Let ∇0 be the connection for TU |C′ trivial with respect to v and ∇1 the connection for TU

trivial with respect to ( ∂
∂z1

, ∂
∂z2

). Then we have c1(∇1) = 0. Now we compute c1(∇0,∇1). For

this, consider the connection ∇̃ = (1− t)∇0 + t∇1 of the bundle TU |C′ × R on C ′ × R. Let θ0

and θ1 be the connection matrix of ∇0 and ∇1 with respect to the frame ( ∂
∂z1

, ∂
∂z2

). We have
θ1 = 0. We try to find θ0. We assume that f and a1 are relatively prime as before. Thus f and
∂2f = ∂f

∂z2
are relatively prime so that (z1, f) forms a coordinate system on a neighborhood of

C ′ and we may write ∂
∂f = (∂2f)−1 ∂

∂z2
. The matrix A of change of frame from v to ( ∂

∂z1
, ∂
∂z2

)

can be computed from ( ∂
∂z1

, ∂
∂z2

) = vA to get

A =
∂2f

a1

(
(∂2f)−1 0
−a2 a1

)
.

Thus by (1.1), we have

θ0 = A−1 · dA = −

(
da1
a1

0

∗ −d(∂2f)
∂2f

)
.

Let θ̃ and κ̃ be the connection and curvature matrices of ∇̃ with respect to ( ∂
∂z1

, ∂
∂z2

). Then

we have κ̃ = dθ̃+ θ̃ ∧ θ̃, θ̃ = (1− t)θ0 + tθ1 = (1− t)θ0. The term in κ̃ involving dt is −dt∧ θ0 so
that we have, denoting by p∗ the integration along the fiber of the projection p : C ′× [0, 1]→ C ′,

c1(∇0,∇1) =

√
−1

2π
p∗ tr κ̃ =

1

2π
√
−1

tr θ0 = − 1

2π
√
−1

(da1

a1
− d(∂2f)

∂2f

)
,

which proves the proposition. �

Corollary 5.2. In the above situation,

GSV(v, 0) = dimCO/(f, a1)− dimCO/(f, ∂2f).

Proof. As f and a1 are relatively prime, Γ1 = { z ∈ U | f(z) = 0, |a1(z)| = ε } is a 1-cycle on
C ′ homologous to L, for a small positive number ε. Thus

1

2π
√
−1

∫
L

da1

a1
=

1

2π
√
−1

∫
Γ1

da1

a1
.

Then by the projection formula we have (e.g., [18])

1

2π
√
−1

∫
Γ1

da1

a1
=
( 1

2π
√
−1

)2
∫

Γ

df

f
∧ da1

a1
,

where Γ is the 2-cycle on C ′ given by Γ = { z ∈ U | |f(z)| = |a1(z)| = ε }. The right side above
equals dimO/(f, a1). Similarly for the second term. �
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Remark 5.3. 1. Proposition 5.1 gives an alternative verification of an integral representation
of the GSV-index given in [4, p. 532]. For this, note that we may take −a1 and ∂2f as k and g
in [4].

2. In fact in [4] the right side of the above formula appears as the difference of the orders of zeros
and of poles of a certain vector field on the Milnor fiber. We may also give such an interpretation
on the central fiber C as follows. Note that, on Cr {0}, (a1

∂
∂z1

, ∂∂f ) as well as (v, ∂∂f ) is a frame

of the holomorphic tangent bundle of C2 and we may write ∂
∂f = 1

∂2f
∂
∂z2

. Thus the first term

above may be thought of as the order of zero of the vector field a1
∂
∂z1

at 0 on C and the second

term as the order of pole of the vector field ∂
∂f at 0 on C.

3. The general algebraic formula in [5] reads, in this particular case,

GSV(v, 0) = dimCO/(f, a1, a2)− dimCO/(f, ∂1f, ∂2f).

Compared with the one in Corollary 5.2, the corresponding terms may be different, however
the differences are the same.

4. Also in this case, a general integral formula (cf. [11], [15, Ch.IV, Theorem 7.2]) for the virtual
index gives

GSV(v, 0) =
1

2π
√
−1

∫
Γ1

(∂a1

∂z1
+
∂a2

∂z2
− h
)dz1

a1
,

where Γ1 is as in the proof of Corollary 5.2 and may be replaced by L, and h a holomorphic
function such that ṽ(f) = hf .

5. In this case again, the arguments in [16] are still valid, even if ∂
∂f does not extend through 0.

Thus we may use the formula in the case (2), p.285, loc. cit., to directly obtain the formula in
Proposition 5.1, noting that the matrix F there is given by tA−1, with A as in the above proof.
We should note that F becomes meromorphic in this case.

6. It would be an interesting problem to generalize the above formula to the higher dimensional
and codimensional case.
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DOI: 10.1007/BF01578709
[9] T. Izawa and T. Suwa, Multiplicity of functions on singular varieties, International J. Math. 14 (2003),

541-558. DOI: 10.1142/S0129167X03001910
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HYPERSURFACES IN P5 CONTAINING

UNEXPECTED SUBVARIETIES

I. VAINSENCHER

Abstract. Smooth cubic 4-folds in P5 containing a general pair of 2-planes are known to be
rational. They form a family of codimension 2 in P55. We find a polynomial which encodes, for

all d ≥ 3, the degrees of the loci of hypersurfaces in P5 of degree d containing some plane-pair.

Dedicated to Xavier Gómez-Mont Ávalos

on the occasion of his 60th birthday.

1. introduction

The Noether-Lefschetz theorem tells us that a surface of degree at least four is not supposed
to contain curves besides its intersection with another surface. Asking surfaces of a given degree
to contain say, a (few) line(s), or a conic, a twisted cubic, etc., defines subvarieties, the so called
Noether-Lefschetz loci, in the appropriate projective space. There are polynomial formulas for
their degrees, [4], [14].

Our motivation here stems from a tale told by Joe Harris we were fortunate to attend (cf. [9]).
The theme was the lack of knowledge about the rationality of cubic 4-folds in P5. As an elemen-
tary dimension count shows, a general cubic 4-fold F3 ⊂ P5 contains no plane P2 ⊂ P5. Those
F3 that do contain some P2 are easily seen to form a hypersurface in P55. Now the smooth
cubic 4-folds containing two disjoint planes are known to form a family (of dimension 53) of
rational hypersurfaces. Indeed, through a general point of such hypersurface F , there is exactly
one line which meets both planes; conversely, given a choice of a point on each plane, the line
joining them meets F in a third point, thus establishing a birational map F 99K P2 × P2. See
[11, 1.33, p. 24].

Our aim is to find the degree of the family of cubic 4-folds containing some pair of disjoint
planes in P5. In fact, the answer is given by a polynomial in d which encodes, for each d ≥ 3,
the degree of the locus of hypersurfaces in P5 of degree d containing some plane-pair, cf. (2).

A näıve, direct application of the formula of double points gives a wrong answer, 5 752 908,
instead of 3 371 760, presently dedicated to Xavier. In fact, it turns out that the cubic 4-folds
containing some pair of incident planes contribute a full component to the double point locus.
Ditto for those containing a pair of planes meeting along a line.

We employ the tools pioneered by Geir Ellingsrud and Stein A. Strømme, cf. [6] and master-
fully used by Maxim Kontsevich in [12].

Let us summarize the main construction. Write G for the Grassmann variety of planes in P5.

The family of plane-pairs can be parameterized by a double blowup X̂→ X̃→G×G, first along
the diagonal, then along the strict transform of the locus of plane-pairs containing a line. The

resulting variety X̂ comes equipped with vector bundles Vd, d ≥ 2. The fiber of Vd over each

1991 Mathematics Subject Classification. 14N05, 14N15 (Primary).
Key words and phrases. intersection theory, Noether-Lefschetz locus, enumerative geometry, rational cubic

fourfold.
Partially supported by CNPQ-Brasil.
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q ∈ X̂ is equal to the vector space of homogeneous polynomials of degree d lying in the ideal
of the plane-pair q (or a flat specialization thereof). There are natural C?-actions with finitely

many explicit fixed points in X̂. Bott’s formula applies to compute the answers for as many
values of d as needed to interpolate and find an explicit polynomial. The a priori polynomial
nature of the answers is deduced from Grothendieck-Riemann-Roch.

2. notation and prelims

2.1. Let us start with Fermat’s F3 := x3
0 + x3

1 + x3
2 + x3

3 + x3
4 + x3

5 = 0 just to get a feeling. It
contains a few pairs of disjoint planes in P5, e.g., q = 〈p1, pu〉 with{

p1 : x0 + x1 = x2 + x3 = x4 + x5 = 0,
pu : x0 − ux1 = x2 − ux3 = x4 − ux5 = 0, (u3 = −1, u 6= −1).

A little calculation shows that in the affine neighborhood of the grassmannian of planes in P5

defined by

(1) pa :

 a1,1x3 + a1,2x4 + a1,3x5 + x0,
a2,1x3 + a2,2x4 + a2,3x5 + x1,
a3,1x3 + a3,2x4 + a3,3x5 + x2,

there are 162 planes contained in F3, e.g., x0 +x3, x1 +x5, x2 +x4, or x0 +x3, x1 +x4, ux5 +x2,
with u2 + u+ 1 = 0.

2.2. Cubic 4-folds in P5 depend on
(

3+5
3

)
− 1 = 55 parameters. Those containing say the

plane p0 : x0 = x1 = x2 = 0 can be written uniquely as a0x0 + a1x1 + a2x2 where the ai are
homogeneous polynomials of degree 2. We may assume

a0 = any quadric,
(

7
2

)
= 21 free coefficients,

a1 = has no term with x0,
(

6
2

)
= 15,

a2 = has no term with x0, x1,
(

5
2

)
= 10.

Hence we get a P45-bundle over the grassmannian G=Gr[2,5],
X = {(p, F3) ∈ G× P55 | F3 ⊃ p}.

The dimension of the total space is 54. We expect and get a hypersurface in P55 consisting
of cubic 4-folds which contain some P2 ⊂ P5. This comes from an argument of Castelnuovo-
Mumford regularity (cf. [5]).

2.2.1. Proposition. Hypersurfaces of degree d containing some P2 in P5 form a subvariety of
codimension

(
d+2

2

)
− 9 and degree

7
(
d+5

8

)(
50d19 + 750d18 + 3300d17 + 1800d16 − 7800d15 + 5400d14 − 141400d13 − 367800d12 −

215115d11 − 2480805d10 + 2686380d9 − 538110d8 + 12830747d7 + 86752281d6 − 18022266d5 +
703254420d4 − 305343432d3 + 2350054944d2 − 787739904d+ 2821754880

)
/
(
29 · 310 · 52

)
.

In particular, cubic 4−folds containing some P2 in P5 form a hypersurface in P55 of degree 3402.

Proof. Consider the tautological exact sequence of vector bundles over the grassmannian G,

S // // F // // Q
where F stands for the trivial bundle with fiber H0(P5,OP5(1)) whereas S is the subbundle of
rank 3 with fiber over each p ∈ G equal to the space of linear forms cutting the plane p := P2 in
P5. The fiber of the quotient bundle is Qp = H0(P2,OP2(1)). Taking symmetric power, we get
the exact sequence

S(d) := ker ρ // // Symd F
ρ // // SymdQ .



HYPERSURFACES WITH UNEXPECTED SUBVARIETIES 221

Here ρ stands for the map which sends homogeneous forms of degree d in P5 to their restrictions
to a varying P2 ⊂ P5. The fiber of S(d) over p ∈ G is equal to the space of forms of degree d lying
in the homogeneous ideal of the plane p in P5. The projectivization P(S(d)) ⊂ G×PN consists of
pairs (p, Fd) such that the plane p lies in the hypersurface Fd. The map P(S(d)) → PN induced
by the projection p2 : G× PN → PN is generically injective for all d ≥ 3 due to an argument of
regularity discussed in §2.3.1. Put

m := dimP(S(d)) = 9 +
(
d+5

5

)
−
(
d+2

2

)
− 1.

The image Yd of P(S(d)) in PN has the same dimension m. It consists of all Fd ⊂ P5 containing
some P2. The degree of Yd is given by

∫
hm ∩ [Yd], where h := c1OP5(1) is the hyperplane

class. By the projection formula, we have degYd =
∫
p?2h

m ∩ [P(S(d))]. Pushing forward via the

structure map P(S(d)) → G, it reduces to the calculation of the Segre class: degYd =
∫
G s(S

(d)),

cf. [7, p. 30, §3.1]. The latter is equal to
∫
G c9(SymdQ) in view of the above exact sequence. With

the help of Katz & Strømme’s Schubert package (see [10]) we get the formula. Here is a script
for Macaulay2 [8]:

loadPackage "Schubert2"

pt = base d; X = flagBundle({3,3},pt); (S,Q) = bundles X

g=chern(9,symmetricPower_d Q); use QQ[d][H_(2,3)]

g=substitute(g,QQ[d][H_(2,3)]); g=sub(g,H_(2,3)=>1);

toString factor g

binom=(d,m)->product(i=1..m,i->(d-i+1)/i)

f=binom(d+5,8); f=g/oo ; toString factor f

sub(denominator f,ZZ)

toString factor oo

�

2.3. Double point formula. In view of the formula in 2.2.1, given two general cubic 4-folds
f1, f2 there are 3402 elements in the pencil of cubics α1f1 + α2f2 which contain some 2-plane
P2 ⊂ P5.

Likewise, given a general net of cubic 4-folds, we ask now for the number of its members which
contain two 2-planes.

Let ϕ : Xm → Y n be a map of varieties of dimensions m,n. The double point locus, D(ϕ),
is defined as the closure in X of

{x ∈ X | ∃x′ 6= x, with ϕ(x) = ϕ(x′)}.
Under mild conditions, the above is the support of a cycle in the Chow group, expressed by the
double point formula,

D(ϕ) = ϕ?ϕ?[X]− cn−mTϕ ∩ [X].

Here Tϕ = TX − ϕ?TY , the virtual normal bundle, cf. [7, p. 166, 9.3], [13].

With notation as in 2.2.1, try and apply the double point formula to

X := P(S(3)) = {(p, F3) ∈ G× P55 | p ⊂ F3}
ϕ−→ Y := P55.

The map P(S(3))
ϕ→ P55 is generically injective and its image is the hypersurface Y3 ⊂ P55

of cubic 4-folds containing some p = P2 ⊂ P5. Look at the double point locus D(ϕ). We have
dimD(ϕ) = 53. Its image D(ϕ) ⊂ P55 has the expected dimension 53, and degree 5 752 908;
below is a script.

loadPackage "Schubert2"

X = flagBundle({3,3}); TX=tangentBundle X; (S,Q)=bundles X

S3=symmetricPower_3(Q); R=symmetricPower_3(6*OO_X)-S3
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Y = projectiveBundle’(dual R) ---(this takes too long)

TY=tangentBundle Y; TP55=56*OO_Y(1)-OO_Y

N=TP55-TY ---virtual normal bundle

H=chern(1,OO_Y(1)); toString oo

d=integral (H^54) ---degree of image in P55

c1=chern(1,N); toString oo

dblpt=d*H-c1; integral(H^53*dblpt)/2 ---get 5752908

But. . . It turns out that D(ϕ) is reducible. The point is that, when the two planes are in
special position, they impose less conditions on the linear system of cubics. We recall from [5]
the following regularity bound.

2.3.1. Lemma. The Castelnuovo-Mumford regularity of the saturated homogeneous ideal of a
union of r ≥ 2 subspaces is at most r. �

2.3.2. Consider the correspondence
Z := {(q1, q2, F3) ∈ G×G× P55 | q1 6= q2, F3 ⊃ q1 ∪ q2}.

Let q1,2 = q1 ∪ q2. Now Z decomposes into pieces corresponding to the relative position of
the plane-pair as we now describe.

• 2 general planes, e.g., {
q1 : x0 = x1 = x2 = 0,
q2 : x3 = x4 = x5 = 0.

The homogeneous ideal is generated by the nine quadrics
〈xixj , 0 ≤ i ≤ 2, 3 ≤ j ≤ 5〉.

Recall the Hilbert polynomial, P (t) = 2 + 3t + t2 = 2
(
t+2

2

)
measures, for all t beyond the

regularity, the number of independent conditions imposed on hypersurfaces of degree t to lie in
the homogeneous ideal of q1,2. Thus, the dimension of the fiber of Z over such plane pair is

55− 2
(

5
2

)
= 35. This yields a component of Z of dimension 35 + 18 = 53.

• 2 planes meeting at a point; these form a hypersurface in G×G. Now the homogeneous ideal
is of the form

〈x0, x1x3, x1x4, x2x3, x2x4〉.
Its Hilbert polynomial is P (t) = 1 + 3t+ t2; hence the fiber of Z has dimension 36. We get again
a component of dimension 53.

• 2 planes through a line in P5. The homogeneous ideal is of the form 〈x0, x1, x2x3〉. These plane-
pairs vary in a subvariety of G×G of codimension 4. The Hilbert polynomial is P (t) = 1+2t+t2.
Thus we find a component of Z of dimension = 14 + 55− 16 = 53.

So, that’s a situation where diminishing the dimension of the base is compensated by an equal
increase in the dimension of the fiber.

It follows that the locus in P55 consisting of cubic 4-folds which contain a plane-pair in P5 is

of dimension 53. Hence we may conclude that the map (p, F3)
ϕ7→ F3 is generically injective and

its double point locus receives contribution from the three configurations as described above.
In order to find the degree of the closure of the “good” locus corresponding to two general

planes, we shall pursue below a different route. It amounts to building a smooth 2:1 cover of the
component of the Hilbert scheme of unions of 2-planes in P5.

3. parameter space for unions of 2-planes in P5

Start with G×G, the variety of ordered plane-pairs. Define

S = { plane-pairs with a common line }.
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Let G̃ be the blowup of the diagonal D in G×G.

One checks that, though S is singular along D, its strict transform S̃ ⊂ G̃ is smooth. It is
isomorphic to a natural P3×P3–bundle over G(2, 6) = Gr[1, 5], the grassmannian of lines in P5,
blown-up along its diagonal.

We have dimS = dim S̃ = 14.
Let Ĝ be the blowup of G̃ along S̃. Then Ĝ parameterizes a flat family with general member

the union of two general planes in P5.

In other words, there is a surjective map Ĝ −→ H, where H denotes the Hilbert scheme
component of unions of two planes in P5. See [3] for the case of pairs of subspaces of codimension
2.

The verification of the assertions above can be done using local coordinates. Instead of working
with G×G, we may fix the 2-plane

p0 := 〈x0, x1, x2〉
and consider the variable 2-plane pa as in (1), where the ai,j stand for affine coordinates in G
around p0. Equations for the fiber of S over p0 are given by the 5×5 minors of the 6×6 matrix
of the system p0 = pa = 0. It’s the same as the ideal J of the 2×2 minors of pa = 0 alone. One
sees at once that this is singular precisely at the origin, i.e., p0 : ai,j = 0, i, j = 1, 2, 3. Blowing
up the diagonal means now blowing up G at p0. We choose a3,3 as the local generator of the
exceptional ideal and write

a1,1 = b1,1a3,3, . . . , a3,2 = b3,2a3,3,

the 8 relations for the blowup Ã9 → A9 ⊂ G. Presently
a3,3, bi,j , i, j = 1, 2, 3, (i, j) 6= (3, 3)

are affine coordinates up in the blowup Ã9. Let J ′ be the ideal generated by J upstairs, i.e.,
upon plugging in the relations ai,j = a3,3bi,j . We find that

J ′ = (a3,3)2J̃ ,
with

J̃ = 〈b2,2 − b2,3b3,2, b2,1 − b2,3b3,1, b1,2 − b1,3b3,2, b1,1 − b1,3b3,1〉.
This is the ideal of the (fiber over p0 of the) strict transform S̃ up in the blowup of G×G along
the diagonal. Given a plane-pair (q1, q2) ∈ S, the intersection q1 ∩ q2 is a line provided q1 6= q2.
Thus the rational map

S 99K Gr[1, 5]
(q1, q2) 7−→ q1 ∩ q2

is a morphism off the diagonal D. We claim that it induces a morphism

λ : S̃ −→ Gr[1, 5].

Indeed, the lifted linear system p0 = p̃a = 0 restricted to S̃ yields the system
p0 : x0 = x1 = x2 = b3,1x3 + b3,2x4 + x5 = 0

from which we infer there is always a well defined line lying on both planes. The morphism λ

lifts to yield a map λ̃ to the natural P3×P3-bundle U over Gr[1,5] defined by picking a pair of
2-planes through a line ` ∈ Gr[1, 5],

U = {(q1, q2, `) ∈ G×G×Gr[1, 5] | ` ⊆ q1 ∩ q2}.
One also checks that λ̃ actually induces an isomorphism λ : S̃ −→ Ũ where Ũ denotes the
blowup of the relative diagonal (q1 = q2) in U.

Set for short
Fd := Symd F = H0(P5,OP5(d)),

the space of homogeneous polynomials of degree d. There is a natural rational map
µ : G×G 99K Gr(9,F2)

(q1, q2) 7−→ q1 · q2
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defined by multiplying the 3-dimensional subspaces qi ⊂ F of linear polynomials. The scheme
of indeterminacy of µ is equal to S. It lifts to a rational map

G̃ 99K Gr(9,F2)

with scheme of indeterminacy equal to S̃. Let Ĝ be the blowup of G̃ along S̃. We obtain a
morphism

µ̂ : Ĝ −→ Gr(9,F2)

Over Ĝ, for each degree d ≥ 2, there is a vector subbundle Vd ⊂ Fd of the trivial bundle of
homogeneous polynomials of degree d such that:

• The fiber of Vd over a plane-pair p1,2 ∈ Ĝ is the space of equations of hypersurfaces of degree
d containing p1,2;

• rankVd =
(
d+5

5

)
− 2
(
d+2

2

)
;

• The image Wd in PN = PFd of the projectivization PVd ⊂ Ĝ × PN is the variety of
hypersurfaces containing a (flat specialization of a) plane-pair.

The variety Ĝ inherits a C?-action, with (a lot:-) of isolated fix points. The vector bundles

Vd → Ĝ are equivariant. Bott localization (cf. [6, §2], [15], [1], [2]) applies, enabling us to find
the degree of Wd in PFd, d ≥ 3, to wit,

degWd =

∫
Ĝ
c18(−Vd) =

∑
fixpts

cT18(−Vd)
cT18τ

·

Using Maple, in the flavor explained by Meurer [15] we are able to integrate and find, e.g., for
d = 3, the value degW3 =3 371 760, not in agreement with the double point formula.

An argument employing Grothendieck-Riemann-Roch (cf. [4]) shows that there is a formula
for the degree of Wd ⊂ PFd as a polynomial in d. Actually we got by interpolation the following
polynomial of degree 54 (cf. [16] for a script):

(2)

degWd = 1
232·323·56·72·11·13·17

(
d
3

)(
297797500d51 + 16974457500d50+

438953515000d49 + 6750473730000d48 + 67557745255000d47 + 446469328305000d46

+1821546306580000d45 + 3261093465630000d44 − 5452213497731000d43

−26658904130859000d42 − 1792499938229000d41 − 807392033197659000d40

−6904527757469587700d39+3477546191451769500d38+
168293105176596569800d37−83205055050390026400d36−

4183585166923709725625d35+4729797968873046725475d34+
93623512083339602708675d33−210025261579623597041475d32−

1497759082084784912756740d31+6691368991089621694295820d30+
10512834434651356253342780d29−127045484364059052592597740d28+

173715078834280290838756586d27+1128680664343084906757160738d26−
4994152749025875809985069838d25+2356774599575513190792679230d24+

37766401805433040109235274520d23− 120118775223192214665021263640d22+
64160131759384538259802479140d21+507092558093142767480135015700d20−

1451146056063090731464859692765d19+1272606825133942111965200965455d18+
388312586377531571922451794995d17+3580712277013841049646053016725d16−

20845497262217658319851150940560d15+12031904188478235409221442162320d14+
169428261347272908281967678701280d13−687428225963718953591666450858400d12+

1340013212341098964586554590155520d11−1087468822379100789481710030842880d10−
1847260530393109277960386571454720d9+8564365120882865993680747841936640d8−

18503733474733545031760180202663936d7+28014319703719681406965987557875712d6−
35797411551433954908141875545178112d5+39893149299289869979218029094174720d4−
42655130536947988709557871758540800d3+40106073268823932733976960565248000d2−
24647062713098039616382917672960000d+9496912828923697566983808614400000

)
.
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There are three other known families of rational cubic 4 folds: impose F3 to contain either a
Del Pezzo of degree 5 or a scroll of degree 4 (2 types) in P5 (cf. [11]). It would be nice to find
their degrees. The difficulty lies in describing appropriate parameter spaces for those families of
surfaces.

Acknowledgement. We would like to thank the anonymous referee for very valuable and
detailed comments and corrections.
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In honorem professoris Xavier Gómez-Mont sexagesimum annum complentis.

Abstract. Precompact translation surfaces, i.e. closed surfaces which carry a translation

atlas outside of finitely many finite angle cone points, have been intensively studied for about

25 years now. About 5 years ago the attention was also drawn to general translation surfaces.
In this case the underlying surface can have infinite genus, the number of finite angle cone

points of the translation structure can be infinite, and there can be singularities which are

not finite angle cone points. There are only a few invariants one classically associates with
precompact translation surfaces, among them certain number fields, i.e. fields which are

finite extensions of Q. These fields are closely related to each other; they are often even

equal. We prove by constructing explicit examples that most of the classical results for the
fields associated with precompact translation surfaces fail in the realm of general translation

surfaces and investigate the relations among these fields. A very special class of translation

surfaces are so called square-tiled surfaces or origamis. We give a characterisation for infinite
origamis.

1. Introduction

Let S be a translation surface, in the sense of Thurston [Thu97], and denote by S the metric
completion with respect to its natural translation invariant flat metric. S is called precompact
if S is homeomorphic to a compact surface. We call translation surfaces origamis, if they are
obtained from gluing copies of the Euclidean unit square along parallel edges by translations;
see Definition 2.6. They are precompact translation surfaces if and only if the number of copies
is finite. An important invariant associated with a translation surface S is the Veech group Γ(S)
formed by the differentials of affine diffeomorphisms of S that preserve orientation; as further
invariants one considers the trace field Ktr(S), the holonomy field Khol(S), the field of cross ratios
of saddle connections Kcr(S) and the field of saddle connections Ksc(S); compare Definition 2.9
and Definition 3.2. For precompact surfaces we have the following characterisation:

Theorem A. [GJ00, Theorem 5.5] Let S be a precompact translation surface, and let Γ(S) be
its Veech group. The following statements are equivalent.

(i) The groups Γ(S) and SL(2,Z) are commensurable.
(ii) Every cross ratio of saddle connections is rational. Equivalently the field Kcr(S) is equal

to Q.
(iii) There exists a translation covering from a puncturing of S to a once-punctured flat

torus.
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(iv) S is an origami up to an affine homeomorphism, i.e. there is a Euclidean parallelogram
that tiles S by translations.

The first result of this article explores what remains of the preceding characterisation if S is a
general tame translation surface. Tame translation surfaces are the translation surfaces all of
whose singularities are cone angle singularities (possibly of infinite angle). This includes surfaces
like R2, but also surfaces whose fundamental group is not finitely generated. We define tameness
and the different types of singularities in Section 2. Furthermore, we call S maximal, if it has
no finite singularities of total angle 2π; compare Definition 2.6.

Theorem 1. Let S be a maximal tame translation surface. Then,

(i) S is affine equivalent to an origami if and only if the set of developed cone points is
contained in L+ x, where L ⊂ R2 is a lattice and x ∈ R2 is fixed.

(ii) If S is an origami the following statements (b)-(d) hold. In (a) and (e) we require in
addition that there are at least two nonparallel saddle connections on S:
(a) The Veech group of S is commensurable to a subgroup of SL(2,Z).
(b) The field of cross ratios Kcr(S) is isomorphic to Q.
(c) The holonomy field Khol(S) is isomorphic to Q.
(d) The saddle connection field Ksc(S) is isomorphic to Q.
(e) The trace field Ktr(S) is isomorphic to Q.

However, none of (a)-(e) implies that S is an origami.

In the proof of Theorem 1 we will show that even if we require that in (a) the Veech group of S
is equal to SL(2,Z), this condition does not imply that S is an origami.

If S is precompact, then the four fields Ktr(S), Khol(S), Kcr(S) and Ksc(S) are number fields
and we have the following hierarchy:

(1.1) Q ⊆ Ktr(S) ⊆ Khol(S) ⊆ Kcr(S) = Ksc(S)

Thus by Theorem Theorem A the conditions (a), (b) and (d) in (ii) of Theorem 1 are, for pre-
compact surfaces, equivalent to being an origami. Conditions (c) and (e), however, are even for
precompact translation surfaces not equivalent to being an origami. Indeed, recall that the “gen-
eral” precompact translation surface has trivial Veech group, i.e. Veech group {I,−I}, where I
is the identity matrix (see [Möl09, Thm. 2.1]). This implies that (e) is not equivalent to being an
origami. Furthermore, in Example 4.5 we construct an explicit example of a precompact surface
S that is not an origami and such that Khol(S) = Q. This shows that (c) is not equivalent to
being an origami.

In the case of general tame translation surfaces, the fields Ktr(S), Khol(S), Kcr(S) and Ksc(S)
are not necessarily number fields anymore; compare Proposition 3.6. Furthermore from the
hierarchy in (1.1) it just remains true in general that Khol(S) and Kcr(S) are both subfields
of Ksc(S). Some of the other relations in (1.1) hold under extra assumptions on S; compare
Corollary 4.7. It follows that, in general, if Ksc(S) is isomorphic to Q, then both Khol(S) and
Kcr(S) are isomorphic to Q. In terms of Theorem 1, part (ii), this is equivalent to say that (d)
implies both (b) and (c). Note that furthermore trivially (a) implies (e). We treat the remaining
of these implications in the next theorem.

Theorem 2. There are examples of tame translation surfaces S for which

(i) The Veech group Γ(S) is equal to SL(2,Z) and K is not equal to Q, where K can be
chosen from Kcr(S), Khol(S) and Ksc(S).
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(ii) The fields Ksc(S) (hence also Kcr(S) and Khol(S)) and Ktr(S) are equal to Q, but Γ(S)
is not commensurable to a subgroup of SL(2,Z).

(iii) Kcr(S) or Khol(S) is equal to Q, but Ksc(S) is not.
(iv) The field Kcr(S) is equal to Q, but Khol(S) is not or vice versa: Khol(S) is equal to Q,

but Kcr(S) is not.
(v) The field Ktr(S) is equal to Q, but none of the conditions (a), (b), (c) or (d) in The-

orem 1 hold. Moreover, none of the conditions (b), (c) or (d) imply that Ktr(S) is
isomorphic to Q.

The proofs of the preceding two theorems heavily rely on modifications of the construction
in [PSV11, Construction 4.9] which was there used to determine all possible Veech groups of
tame translation surfaces. We summarise this construction in Section 2.3. One can furthermore
modify the construction to prove that any subgroup of SL(2,Z) is the Veech group of an origami.
From this we will deduce the following statement about the oriented outer automorphism group
Out+(F2) of the free group F2 in two generators:

Corollary 1.1. Every subgroup of Out+(F2) is the stabiliser of a conjugacy class of some
(possibly infinite index) subgroup of F2.

If S is a precompact translation surface, the existence of hyperbolic elements, i.e. matrices
whose trace is bigger than 2, in Γ(S) has consequences for the image of H1(S,Z) in R2 under
the developing map (also called holonomy map; see Section 2) and for the nature of some of the
fields associated with S. To be more precise, if S is precompact, the following is known:

(A) If there exists M ∈ Γ(S) hyperbolic, then the holonomy field of S is equal to Q[tr(M)].
In particular, the traces of any two hyperbolic elements in Γ(S) generate the same field
over Q; see [KS00, Theorem 28].

(B) If there exists M ∈ Γ(S) hyperbolic and tr(M) ∈ Q, then S is an origami; see [McM03b,
Theorem 9.8].

(C) If S is a “bouillabaisse surface” (i.e. if Γ(S) contains two transverse parabolic elements),
then Ktr(S) is totally real; compare [HL06a, Theorem 1.1]. This implies that if there
exists an hyperbolic M in Γ(S) such that Q[tr(M)] is not totally real then Γ(S) does
not contain any parabolic elements; see Theorem 1.2 in ibid.

(D) Let Λ and Λ0 be the subgroups of R2 generated by the image under the holonomy map
of H1(S,Z) and H1(S,Σ;Z), respectively. Here Σ is the set of cone angle singularities
of S. If the affine group of S contains a pseudo-Anosov element, then Λ has finite index
in Λ0; see [KS00, Theorem 30].

The third main result of this paper shows that when passing to general tame translation surfaces
there are no such consequences. For such surfaces, an element of Γ(S) < GL+(2,R) will be called
hyperbolic, parabolic or elliptic if its image in PSL(2,R) is hyperbolic, parabolic or elliptic
respectively.

Theorem 3. There are examples of tame translation surfaces S for which (A), (B), (C) or (D)
from above do not hold.

We remark that all tame translation surfaces S that we construct in the proof of the preceding
theorem have the same topological type: one end and infinite genus. Such topological surfaces
are called Loch Ness monster; see Section 2.

This paper is organised as follows. In Section 2 we review the basics about general translation
surfaces, tame translation surfaces and origamis, their singularities and possible Veech groups.
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In Section 3 we present the definitions of the fields listed in Theorem 1 for general tame trans-
lation surfaces. We prove that the main algebraic properties of these fields which are true for
precompact translation surfaces no longer hold for general translation surfaces. For example,
we construct examples of tame translation surfaces for which the trace field is not a number
field. We furthermore show those inclusions from (1.1) which still are valid for tame translation
surfaces. Section 4 deals with the proofs of the three theorems stated in this section. We refer
the reader to [HS10], [HLT11] or [HHW13] for recent developments concerning tame translation
surfaces.
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2. Preliminaries

2.1. General translation surfaces and their singularities. In this section we review some
basic notions needed for the rest of the article. For a detailed exposition, we refer to [GJ00] and
[Thu97].

A translation surface S will be a 2-dimensional real G-manifold with G = R2 = Trans(R2);
that is, a surface on which coordinate changes are translations of the real plane R2. We can pull
back to S the standard translation invariant flat metric of the plane and obtain this way a flat
metric on the surface. We denote by S the metric completion of S with respect to this natural
flat metric. A translation map is a G-map between translation surfaces. Every translation map
f : S1 −→ S2 has a unique continuous extension f : S1 −→ S2.

Definition 2.1. If S is homeomorphic to an orientable compact surface, we say that S is a
precompact translation surface. Else we say that S is non precompact. Observe that a not
precompact translation surface is not necessarily of infinite type. The union of all precompact
and not precompact translation surfaces form the set of general translation surfaces.

Definition 2.2. Let S be a translation surface. We call the points of S\S singularities of the
translation surface S. A point x ∈ S \ S is called a finite angle singularity or finite angle cone
point of total angle 2πm, where m ≥ 1 is a natural number, if there exists a neighbourhood of x
which is isometric to a neighbourhood of the origin in R2 with a metric that, in polar coordinates
(r, θ), has the form ds2 = dr2 + (mrdθ). The set of finite angle singularities of S is denoted by
Σfin.

Precompact translation surfaces are obtained by glueing finitely many polygons (deprived of
their vertices) along parallel edges by translations. One even obtains all precompact translation
surfaces in this way; see [Mas06]. Thus if S is a precompact translation surface, all of its
singularities are finite angle singularities. If furthermore S has genus at least 2, then, by a simple
Euler characteristic calculation, S always has singularities. For non precompact translation
surfaces, new kinds of singularities will occur. We illustrate this in the following example.
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Figure 1. An infinite-type translation surface.

Example 2.3. In Figure 1 we depict a translation surface obtained from infinitely many copies
of the Euclidean unit square. More precisely, we remove the vertices from all the squares in
the figure. Some pairs of edges are already identified; among the remaining edges we identify
opposite ones which are labelled by the same letter by translations. The result is a translation
surface S which is not precompact. It is called infinite staircase because of its shape. This
and similar shaped surfaces have been intensively studied in the literature; see e.g. [HS10],
[HHW13], [HW12] and [CG12]. S is a prototype for what we will call in this text an infinite
origami or infinite square-tiled surface; compare Definition 2.6. The translation surface S comes
with a natural cover p to the once punctured torus obtained from glueing parallel edges of the
Euclidean unit square again with its vertices removed.
Observe furthermore that the metric completion of the infinite staircase S has four singularities
x1, x2, x3 and x4. Restricted to a punctured neighbourhood of them p is infinite cyclic and the
universal cover of a once punctured disk. In this sense the singularities x1, . . . , x4 generalise
finite angle singularities of angle 2πm. They are prototypes for what we call infinite angle
singularities; compare Definition 2.4.

Definition 2.4. Let S be a translation surface. A point x ∈ S is called an infinite angle
singularity or infinite angle cone point if there exists a neighbourhood of x isometric to the
neighbourhood of the branching point of the infinite cyclic flat branched covering of R2. The
set of infinite angle singularities of S is denoted by Σinf . Points in the set Σ = Σfin ∪ Σinf will
be called cone angle singularities of S or just cone points.
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Definition 2.5. A translation surface S is called tame if all points in S \ S are cone angle
singularities (of finite or infinite total angle). A tame translation surface S is said to be of
infinite-type if the fundamental group of S is not finitely generated.

Every precompact translation surface is tame. There are tame translation surfaces with infinite
angle singularities which are not of infinite type. For example consider the infinite cyclic covering
of the once punctured plane. Explicit examples of infinite-type translation surfaces arise natu-
rally when studying the billiard on a polygon whose interior angles are not rational multiples
of π (see [Val09]). Nevertheless, not all translation surfaces are tame. If one allows infinitely
many polygons, wild types of singularities may occur. Simple examples of not tame translation
surfaces can be found in [Cha04] and [BV13].

In the following we define the very special class of translation surfaces called origamis or square-
tiled surfaces. With Example 2.3 we have already seen a specific instance of them.

Definition 2.6. A translation surface is called origami or square-tiled surface, if it fulfils one of
the two following equivalent conditions:

(i) S is a translation surface obtained from glueing (possibly infinitely many) copies of the
Euclidean square along edges by translations according to the following rules:
• each left edge is glued to precisely one right edge,
• each upper edge to precisely one lower edge and
• the resulting surface is connected;

and removing all singularities.
(ii) S allows an unramified covering p : S∗ → T0 of the once-punctured unit torus

T0 = (R2\L0)/L0,

such that p is a translation map. Here S∗ is a subset of S such that the complement
S\S∗ is a discrete set of points on S. L0 is the lattice in R2 spanned by the two
standard basis e1 = (1, 0) and e2 = (0, 1). Furthermore, S is maximal in the sense that
S\S contains no finite angle singularities of angle 2π.

An origami will be called finite if the number of squares needed to construct it is finite or,
equivalently, if the unramified covering p : S → T0 is finite. Else, the origami will be called
infinite. See [Sch06, Section 1] for a detailed introduction to finite origamis. Infinite origamis
were studied e.g. in [HS10] and [Gut10].

2.2. Developed cone points and the Veech group. In the following we introduce the set
of developed cone points for tame translation surfaces, which will play an important role in the

proof of Theorem 1. Let πS : S̃ −→ S be a universal cover of a translation surface S and Aut(πS)

the group of its deck transformations. From now on, S̃ is endowed with the translation structure
obtained as pull-back from the one on S via πS . Recall from [Thu97, Section 4.3] that for every
deck transformation γ, there is a unique translation hol(γ) satisfying

(2.2) dev ◦ γ = hol(γ) ◦ dev,

where dev : S̃ −→ R2 denotes the developing map. The map hol: Aut(πS)→ Trans(R2) ∼= R2 is
a group homomorphism. By considering the continuous extension of each map in Equation (2.2)
to the metric completion of its domain, we obtain

(2.3) dev ◦ γ = hol(γ) ◦ dev.
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Overall we have the following commutative diagram:

(2.4) S̃
γ

//

dev

		

S̃

dev

��

S̃
. N

]]

γ
//

πS

��
dev

zz

S̃
0�

AA

πS

��
dev

$$

S S

R2
hol(γ)

// R2 .

Definition 2.7. The set of developed singularities of S is the subset of the plane R2 given by

dev(S̃ \ S̃). We denote it by Σ̃(S). If S is a tame translation surface, we also call Σ̃(S) the set
of developed cone points.

Definition 2.8. A singular geodesic of a translation surface S is an open geodesic segment in
the flat metric of S whose image under the natural embedding S ↪→ S issues from a singularity
of S, contains no singularity in its interior and is not properly contained in some other geodesic
segment. A saddle connection is a finite length singular geodesic.

To each saddle connection we can associate a holonomy vector : we ’develop’ the saddle connec-
tion in the plane by using local coordinates of the flat structure. The difference vector defined
by the planar line segment is the holonomy vector. Two saddle connections are parallel, if their
corresponding holonomy vectors are linearly dependent.

Next, we introduce the Veech group, which since Veech’s article [Vee89] from 1989 has been
studied for precompact translation surfaces as the natural object associated with the surface.
Let Aff+(S) be the group of affine orientation preserving homeomorphisms of a translation
surface S. Consider the map

(2.5) Aff+(S)
D−→ GL+(2,R)

that associates to every φ ∈ Aff+(S) its (constant) Jacobian derivative Dφ.

Definition 2.9. Let S be a translation surface. We call Γ(S) = D(Aff+(S)) the Veech group of
S.

Remark 2.10. The group GL+(2,R) naturally acts on the set of translation surfaces: We define
A · S to be the translation surface obtained from S by composing each chart in the translation
atlas with the linear map

(
x
y

)
7→ A ·

(
x
y

)
. Since the map idA : S → A · S which topologically is

the identity map has derivative A, we have that Γ(A · S) = A · Γ(S) ·A−1.

2.3. Constructing tame surfaces with prescribed Veech groups. The proofs of our main
results heavily rely on slight modifications of the construction in the proof of [PSV11, Proposition
4.1]. In this section we review this construction. We will mainly use the notation of [PSV11].
The construction we are about to review proves the following:

Proposition 2.11 ([PSV11, Proposition 4.1]). For any countable subgroup G of GL+(2,R)
disjoint from U = {g ∈ GL+(2,R) : ||g|| < 1} there exists a tame translation surface S = S(G),
which is homeomorphic to the Loch Ness monster, with Veech group G.
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The Loch Ness monster is the unique topological surface S (up to homeomorphism) of infinite
genus and one end. By one end we mean that for every compact set K ⊂ S there exists a
compact set K ⊂ K ′ ⊂ S such that S \ K ′ is connected. We refer the reader to [Ric63] for a
more detailed discussion on surfaces of infinite genus and ends.

First we have to recall a basic geometric operation which will play an important role in the
construction: glueing translation surfaces along marks.

Definition 2.12. Let S be a tame translation surface. A mark on S is an oriented finite length
geodesic (with endpoints) on S. The vector of a mark is its holonomy vector, which lies in R2.
If m,m′ are two disjoint marks on S with equal vectors, we can perform the following operation.
We cut S along m and m′, which turns S into a surface with boundary consisting of four straight
segments. Then we reglue these segments to obtain a tame translation surface S′ different from
the one we started from. We say that S′ is obtained from S by reglueing along m and m′. Let
S0 = S \ (m ∪m′). Then S′ admits a natural embedding i of S0. If A ⊂ S0, then we say that
i(A) is inherited by S′ from A.

Remark 2.13. If S′ is obtained from S by reglueing, then the number of singularities of S′ of a
fixed angle equals the one of S, except for 4π–angle singularities, whose number in S′ is greater
by 2 to that in S (we put ∞ + 2 = ∞). The Euler characteristic of S is greater by 2 than the
Euler characteristic of S′.
We can extend the notion of reglueing to ordered families M = (mn)∞n=1 and M′ = (m′n)∞n=1 of
disjoint marks, which do not accumulate in S, and such that the vector of mn equals the vector
of m′n, for each n.

Outline of the construction. Let {ai}i∈I (with I ⊆ N) be a (possibly infinite) set of generators
for G. We make use of the fact that any group G acts on its Cayley graph Γ and turn the graph
Γ in a G-equivariant way into a translation surface. In the following we describe the general idea
of the construction; below we give the explicit construction for the case that G is generated by
two elements. The construction then works just in the same way for general groups; compare
[PSV11, Construction 4.9].

• With each vertex g of Γ we associate a translation surface Vg. More precisely we start
from some translation surface VId and define Vg to be its translate g · VId by the action
of GL+(2,R) on the set of translation surfaces described in Remark 2.10. Observe that
the linear group G naturally acts via affine homeomorphisms on the disjoint union of the
Vg’s; an element h ∈ G maps Vg to Vh·g. In the next step we will choose disjoint marks
on the translation surfaces Vg. Reglueing the disjoint union of the surfaces Vg along
these marks will give us a connected surface on which G acts by affine homeomorphisms.
At the moment, we can assume VId just to be the real plane R2 equipped with an origin
and a coordinate system.

• We choose marks on the starting surface VId in the following way:
– For each i in I we choose a family Ci = {mi

j}j∈J (with J ⊆ N) of horizontal marks

mi
j of length 1, i.e. the vector of each mark mi

j is the first standard basis vector
e1.

– For each i we choose a family C−i = {m−ij }j∈J of marks with vector a−1
i (e1), i.e.

the vector of m−ij is equal to a−1
i · e1.

– All marks are disjoint.
• On each Vg we take the corresponding marks g(mi

j) and g(m−ij ) with i ∈ I and j ∈ N.

The mark g(mi
j) has the vector g · e1 and g(m−ij ) has the vector ga−1

i · e1.
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• We pair the mark g(mi
j) on the surface Vg with the mark gai(m

−i
j ) on Vgai . Observe

that for both the vector is g · e1.
We now reglue the disjoint union of the Vg’s along these pairs of marks.

This gives us a translation surface S1 on which the elements of G act via affine homeomorphisms,
i.e. Γ(S1) contains G. However we are not yet done, but still have the following problems:

(i) The Veech group Γ(S1) can be bigger than G.
(ii) The singularities can accumulate. In this case S1 is not tame.

(iii) We want the translation surface to have one end.

We resolve the problems in the following way: To enforce that all elements in the Veech group
are in G, we will modify the starting surface VId. We will replace it by a surface obtained from

glueing a decorated surface L̃′Id (described below) to a plane AId = R2. The surface L̃′Id will be
decorated with special singularities. This will guarantee that every orientation preserving affine

homeomorphism permutes the set of the singularities on the L̃′g’s and with some more care we
will establish that it actually acts as one of the elements of G. To avoid accumulation of singu-
larities, we will associate with each edge in the Cayley graph between two vertices g and g′ (let

us say that g−1g′ = ai is the i-th generator) a buffer surface Êig which connects Vg to Vg′ , but
separates them by a definite distance. Finally, we keep track of the end by providing that each Vg
and Êig is one-ended and that after glueing all Vg and Êig, their ends actually merge into one end.
This actually is the reason why we have to choose infinite families of marks. If we do not require
the surface to be a Loch Ness monster, then it suffices to take one mark from each infinite family.

An illustrative example. In the following paragraphs we carry out the construction for the case
where G is generated by two matrices a1 and a2. The general case works in the same way;
compare [PSV11, Construction 4.9].
Constructing the translation surface Vg: We first construct the surface VId. We will obtain

it by glueing two surfaces AId and L̃′Id along an infinite family of marks. Let AId be an oriented
flat plane, equipped with an origin and the standard basis e1 = (1, 0) and e2 = (0, 1). We define
the families of marks as follows:

• For i = 0, 1, 2 let Ci be the family of marks on AId with endpoints ie2 +(2n−1)e1, ie2 +
2ne1, for n ≥ 1. All these marks are pairwise disjoint.

• Given x1, y1 ∈ R, consider the family C−1 of marks on AId with endpoints

(nx1, y1), (nx1, y1) + a−1
1 (e1),

for n ≥ 1. We can choose x1 > 0 sufficiently large and y1 < 0 sufficiently small so that
all these marks are pairwise disjoint and disjoint from the ones in Ci for i = 0, 1, 2.

• Observe that a translate of the lower half-plane in AId is avoided by all already con-
structed marks. In this way we can choose x2,−y2 ∈ R sufficiently large so that the
marks with endpoints (nx2, y2), (nx2, y2)+a−1

2 (e1), for n ≥ 1, are pairwise disjoint and
disjoint with the previously constructed marks. We denote this family by C−2.

Let LId be an oriented flat plane, equipped with an origin OId. Let L̃Id be the threefold cyclic
branched covering of LId, which is branched over the origin. Denote the projection map from

L̃Id onto LId by π. Denote by R the closure in L̃Id of one connected component of the preimage
under π of the open right half-plane in LId. On R consider coordinates induced from LId via π.

We define the following family of marks on L̃Id:

• Let C′ be the family of marks in R with endpoints (2n− 1)e1, 2ne1, for n ≥ 1.

• Let t and b be the two marks in L̃Id with endpoints in R with coordinates e2, 2e2 and
−2e2,−e2, respectively.
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Let L̃′Id be the tame flat surface obtained from L̃Id by reglueing along t and b. We call L̃′Id the

decorated surface. Finally, we obtain VId by glueing AId with L̃′Id along the families of marks C0

and C′. For each g ∈ G we define Vg as the translation surface g · VId.

Observe that if we denote by Õg the unique preimage on L̃g of the origin Og of Lg via the

three-fold covering, then Õg is a singularity of total angle 6π and there are precisely three saddle

connections starting in Õg.

Constructing the buffer surface Êi
g: Let EId, E

′
Id be two oriented flat planes, equipped with

origins that allow us to identify them with R2. We define the following families of vector e1

marks on EId ∪ E′Id.

• Let S be the family of marks on EId with endpoints 4ne1, (4n+ 1)e1, for n ≥ 1.
• Let Sglue be the family of marks on EId with endpoints (4n+2)e1, (4n+3)e1, for n ≥ 1.
• Let S ′ be the family of marks on E′Id with endpoints 2ne2, 2ne2 + e1, for n ≥ 1.
• Finally, let S ′glue be the family of marks on E′Id with endpoints (2n+1)e2, (2n+1)e2+e1,

for n ≥ 1.

Let ÊId be the tame flat surface obtained from EId and E′Id by reglueing along Sglue and S ′glue.

We call ÊId the buffer surface. The surface ÊId comes with the distinguished families of marks
inherited from S and S ′, for which we retain the same notation. Let Ê1

Id and Ê2
Id be two copies

of ÊId and for each g ∈ G let Êig to be the translation surface g · Êig (i ∈ {1, 2}). It is endowed

with the two family of marks Sig and S ′ig .
Construction of the surface S: We finally obtain the desired surface S from the disjoint
union of all Vg’s and Êig in the following way:

• Reglue each mark C1
g on Vg with S1

g on Ê1
g , and each mark S ′1g on Ê1

g with C−1
ga1 on Vga1 .

• Reglue each mark C2
g on Vg with S2

g on Ê2
g , and each mark S ′2g on Ê2

g with C−2
ga2 on Vga2 .

In [PSV11, Section 4] it is carefully carried out that the construction is well defined and gives
the desired result from Proposition 2.11.

3. Fields associated with translation surfaces

There are four subfields of R in the literature which are naturally associated with a translation
surface S. They are called the holonomy field Khol(S), the segment field or field of saddle
connections Ksc(S), the field of cross ratios of saddle connections Kcr(S), and the trace field
Ktr(S); compare [KS00] and [GJ00]. In the following, we extend their definitions to (possibly
non precompact) tame translation surfaces.

Remark 3.1. It follows from [PSV11, Lemma 3.2] that there are only three types of tame
translation surfaces such that S has no singularity: R2, R2/Z and flat tori. Furthermore, tame
translation surfaces with only one singularity are cyclic coverings of R2 ramified over the origin.
Finally, if S has at least two singularities, then there exists at least one saddle connection.

Definition 3.2. Let S be a tame translation surface and S the metric completion of S.

(i) (Following [KS00, Section 7].) Let Λ be the image of H1(S,Z) in R2 under the holonomy
map h and let n be the dimension of the smallest R-subspace of R2 containing Λ; in
particular n is 0, 1 or 2. The holonomy field Khol(S) is the smallest subfield k of R
such that

Λ⊗Z k ∼= kn.

(ii) Let Σ denote the set of all singularities of S. Using in (i) H1(S,Σfin;Z), the homology
relative to the set of finite angle singularities, instead of the absolute homology H1(S,Z),
we obtain the segment field or field of saddle connections Ksc(S).
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(iii) (Following [GJ00, Section 5].) The field of cross ratios of saddle connections Kcr(S) is
the field generated by the set of all cross ratios (v1, v2; v3, v4), where the vi’s are four
pairwise nonparallel holonomy vectors of saddle connections of S; compare Remark 3.3
iii).

(iv) Finally, the trace field Ktr(S) is the field generated by the traces of elements in the
Veech group: Ktr(S) = Q[tr(A)|A ∈ Γ(S)].

In the rest of this section we mean by a holonomy vector always the holonomy vector of a saddle
connection.

Remark 3.3. (i) Definition 3.2 (i) is equivalent to the following: If n = 2, take any two
nonparallel vectors {e1, e2} ⊂ Λ, then Khol(S) is the smallest subfield k of R such that
every element v of Λ can be written in the form a · e1 + b · e2, with a, b ∈ k. If n = 1,
any element v of Λ can be written as a ·e1, with a ∈ Khol(S) and e1 any nonzero (fixed)
vector in Λ. If n = 0, Khol(S) = Q.
The same is true for Ksc(S), if Λ is the image of H1(S,Σfin;Z) in R2.

(ii) Recall that S is a topological surface if and only if all of its singularities have finite cone
angles. However, if Σinf (resp. Σfin) is the set of infinite (resp. finite) angle singularities,

then Ŝ = S\Σinf = S∪Σfin is a surface, possibly of infinite genus. We furthermore have

that the fundamental group π1(S) equals π1(Ŝ) and thus

H1(S,Z) ∼= H1(Ŝ,Z).

Indeed, for every infinite angle singularity p0 ∈ S, there exists by definition a neigh-
bourhood U of p0 in S which is isometric to a neighbourhood of the branching point z0

of the infinite flat cyclic covering X0 of R2 branched over 0. Without loss of generality
we may choose the neighbourhood of z0 as an open ball of radius ε in X0. We then
have that U is homeomorphic to {(x, y) ∈ R2|x > 0} ∪ {(0, 0)} ⊂ R2. In particular,
U and U\{p0} are both contractible, and by the Seifert-van Kampen theorem we have
π1(S\{p0}) ∼= π1(S).

(iii) Recall that the cross ratio r of four vectors v1, . . . , v4 with vi = (xi, yi) is equal to the
cross ratio of the real numbers r1 = y1/x1, . . . , r4 = y4/x4, i.e.

(3.6) (v1, v2; v3, v4) =
(r1 − r3) · (r2 − r4)

(r2 − r3) · (r1 − r4)
.

If ri = ∞ for some i = 1, . . . , 4, one eliminates the factors on which it appears in
Equation (3.6). For example, if r1 = ∞, then (v1, v2; v3, v4) = r2−r4

r2−r3 . If there are no

four non parallel holonomy vectors, Kcr(S) is equal to Q.
(iv) The four fields from Definition 3.2 are invariant under the action of GL(2,R) described

in Remark 2.10, i.e. for A ∈ GL(2,R) we have

Khol(S) = Khol(A · S), Ksc(S) = Ksc(A · S),
Kcr(S) = Kcr(A · S), Ktr(S) = Ktr(A · S).

For Khol(S) and Ksc(S) this follows from (i). Recall that the cross ratio is invariant
under linear transformation. Thus the claim is true for the field Kcr(S). Finally, we
have that Γ(A · S) is conjugated to Γ(S); compare Remark 2.10. Since the trace of a
matrix is invariant under conjugation, the claim also holds for Ktr(S).

It follows directly from the definitions that Khol(S) ⊆ Ksc(S). Furthermore, we see from Re-
mark 3.3 that Kcr(S) ⊆ Ksc(S): Suppose S has two linearly independent holonomy vectors
w1 and w2. By (iv) in the preceding remark we may assume that w1 = e1, w2 = e2 is the
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standard basis. Let v1, v2, v3, v4 be four arbitrary pairwise nonparallel holonomy vectors with
vi = (xi, yi). By (i) we have that all the coordinates xi and yi are in Ksc(S). Thus in particular
the cross ratio (v1, v2; v3, v4) is in Ksc(S). If there is no pair (w1, w2) of linearly independent
holonomy vectors, then Kcr(S) = Q and the inclusion Kcr(S) ⊆ Ksc(S) trivially holds.
Since the Veech group preserves the set of holonomy vectors, we furthermore have that if there
are at least two linearly independent holonomy vectors, then Ktr(S) ⊆ Khol(S). However, if all
holonomy vectors are parallel, it is not in general true that Ktr(S) ⊆ Khol(S). An example of a
surface S showing this is given in [PSV11, Lemma 3.7]: The surface S is obtained from glueing
two copies of R2 along horizontal slits ln of the plane with end points (4n+ 1, 0) and (4n+ 3, 0).
In particular all saddle connections are horizontal and the fields Khol(S), Kcr(S) and Ksc(S)
are all Q. But the Veech group is very big. It consists of all matrices in GL+(2,R) which fix
the first standard basis vector e1; compare [PSV11, Lemma 3.7].

Remark 3.4. The translation surface S from [PSV11, Lemma 3.7] has the following properties:

Γ(S) =

{(
1 t
0 s

)
|t ∈ R, s ∈ R+

}
and Khol(S) = Kcr(S) = Ksc(S) = Q. In particular, we have Ktr(S) = R.

Finally, in Proposition 3.5 we see that for a large class of translation surfaces we have that
Kcr(S) = Ksc(S). The main argument of the proof was given in [GJ00] for precompact surfaces.

Proposition 3.5. Let S be a (possibly non precompact) tame translation surface, S its metric
completion and Σ ⊂ S its set of singularities. Suppose that S has a geodesic triangulation by
countably many triangles ∆k (k ∈ I for some index set I) such that the set of vertices equals Σ.
We then have Kcr(S) = Ksc(S).

Proof. The inclusion ”⊂” was shown in general in the paragraph below Remark 3.3. The inclusion
”⊃” follows from [GJ00, Proposition 5.2]. The statement there is for precompact surfaces, but
the proof works in the same way if there exists a triangulation as required in this proposition.
More precisely, in [GJ00] it is shown that the Kcr(S)-vector space V (S) spanned by the image
of H1(S,Σ;Z) under the holonomy map is 2-dimensional over Kcr(S). Hence Ksc(S) ⊆ Kcr(S).

�

It follows from Theorem 2 that in general no further inclusions between the four fields from
Definition 3.2 hold than those stated above; see Corollary 4.7 for a subsumption of the relations
between the fields.

If S is a precompact translation surface of genus g, then [Ktr(S) : Q] ≤ g. Moreover, the traces
of elements in Γ(S) are algebraic integers (see [McM03a]). When dealing with tame translation
surfaces, such algebraic properties do not hold in general.

Proposition 3.6. For each n ∈ N ∪ {∞} there exists a tame translation surface Sn of infinite
genus such that the transcendence degree of the field extension Ktr(Sn)/Q is n. Sn can be chosen
to be a Loch Ness monster.

Proof. Let {λ1, . . . , λn} be Q-algebraically independent real numbers with |λi| > 2. Define

Gn :=

〈(
µ 0
0 µ−1

)
| µ+ µ−1 = λi with i ∈ {1, . . . , n}

〉
.
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Gn is countable and a subgroup of the diagonal group. In particular, Gn is disjoint from the set
U of contraction matrices; recall Proposition 2.11 for the definition of U . Thus, we can apply
Proposition 2.11 and obtain a surface Sn with Veech group Gn. We have

Q ⊂ Q(λ1, . . . , λn) ⊆ Ktr(Sn) ⊆ L = Q(µ|µ+ µ−1 = λi with i ∈ {1, . . . , n}).
Since the generators µ of L are algebraic over Q(λ1, . . . , λn), it follows that L/Q(λ1, . . . , λn) and
thus also Ktr(Sn)/Q(λ1, . . . , λn) is algebraic and we obtain the claim. �

If µ1 is one of the two solutions of µ+ µ−1 = π and

G :=

〈(
µ1 0
0 µ−1

1

) 〉
,

then we obtain in the same way the following corollary.

Corollary 3.7. There are examples of tame translation surfaces S of infinite genus with a cyclic
hyperbolic Veech group such that Ktr(S) is not a number field. Again the translation surface can
be chosen to be as a Loch Ness monster.

Transcendental numbers naturally appear also in fields associated with Veech groups arising
from a generic triangular billiard. Indeed, let T ⊂ R2 denote the space of triangles parametrised
by two angles (θ1, θ2). Remark that T is a simplex. For every T = T(θ1,θ2) ∈ T , a classical
construction due to Katok and Zemljakov produces a tame flat surface ST from T [ZK75]. If T
has an interior angle which is not commensurable with π, ST is a Loch Ness monster; compare
[Val09].

Proposition 3.8. The set T ′ ⊂ T formed by those triangles such that Ksc(ST ), Kcr(ST ) and
Ktr(ST ) are not number fields, is of total (Lebesgue) measure in T .

Proof. Since ST has a triangulation with countably many triangles satisfying the hypotheses
of Proposition 3.5, the fields Ksc(ST ) and Kcr(ST ) coincide. Without loss of generality we can
assume that the triangle T = T(θ1,θ2) has the vertices 0, 1 and ρeiθ1 (with ρ > 0) in the complex
plane C. When doing the Katok-Zemljakov construction we start by reflecting T at its edges.
Thus in particular ST contains the geodesic quadrangle shown in Figure 2.

0 1

ρeiθ1
e2iθ1

θ1

θ1

Figure 2. Geodesic quadrangle in the surface ST with T the triangle T(θ1,θ2)

Thus the vectors v1 = (1, 0), v2 = (ρ cos θ1, ρ sin θ1) and v3 = (cos 2θ1, sin 2θ1) are holonomy
vectors. Choose {v1, v2} as basis of R2. We then have v3 = a · v1 + b · v2 with

a = −1 and b =
2 cos θ1

ρ
.

Therefore 2 cos θ1
ρ is an element of Ksc(S) = Kcr(S). Furthermore, from [Val12] we know that

the matrix representing the rotation by θ1 is in Γ(ST ). Hence 2 cos θ1 is in Ktr(ST ). Thus if we
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choose the values cos θ1
ρ , respectively cos θ1, to be non algebraic numbers, then Ksc(S) = Kcr(S),

respectively Ktr(ST ), are not number fields. �

4. Proof of main results

In this section we prove the results stated in the introduction.

Proof Theorem 1. We begin proving part (i). Let T0 = T \ {∞} be the once punctured torus
with T = R2/L, where L is a lattice in R2, and with ∞ ∈ T the image of the origin removed.
Let p : S −→ T0 be an unramified translation covering. The existence of such a covering is
equivalent to S being affine equivalent to an origami. We use the notation from Section 2. In

particular πS : S̃ −→ S is a universal cover, S̃ and S are the metric completions of S̃ and S,

respectively, and Σ̃(S) is the set of developed cone points. We then have that the following
diagram commutes, since p and πS are translation maps:

(4.7) S̃

πS

��

� � // S̃

πS

��

dev

""

S
� � //

p

��

S

p

��

R2

πT

||
T0
� � // T .

Given that T \ T0 =∞ = p ◦ πS(S̃ \ S̃), the projection of Σ̃(S) to T is just a point. This proves
sufficiency.

Equation (2.3) implies that if Σ̃(S) is contained in L + x then every hol(γ) is a translation

of the plane of the form z → z + λγ , where λγ ∈ L. Puncture S̃ and S at dev−1(L + x)

and πS(dev−1(L + x)) respectively to obtain S̃0 and S0 and denote R2
0 = R2 \ (L + x). Let

πS| : S̃0 −→ S0 and πT | : R2
0 −→ T0 be the restrictions of the universal covers πS and πT . Given

that S̃0 has the translation structure induced by pull-back of πS|, the map dev| : S̃0 −→ R2
0 is a

flat surjective map; compare [Thu97, §3.4]. Equation (2.2) implies that

(4.8) S̃0

dev|
//

πS|

��

R2
0

πT |

��

S0 T0

descends to a flat covering map p : S0 −→ T0. Hence S = S0 defines a covering over a flat torus
ramified at most over one point. This proves necessity.

Now we prove part (ii). First we prove that every origami satisfies conditions (a), (b), (c),
(d) and (e).
Let p : S → T be an origami ramified at most over ∞ ∈ T . All saddle connections of S are
preimages of closed simple curves on T with a base point at ∞. This implies that all holonomy
vectors have integer coordinates. Thus Ksc(S) = Khol(S) = Kcr(S) = Q. Hence every origami
fulfils conditions (b), (c) and (d) in part (ii). If S furthermore has at least two linearly indepen-
dent holonomy vectors, then the Veech group must preserve the lattice spanned by them. Thus
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it is commensurable to a (possible infinite index) subgroup of SL(2,Z) and S fulfils in addition
(a) and (e).

We finally prove that none of the conditions in theorem (a) to (e) imply that S is an origami.
Example 4.1 shows that neither (a) nor (e) imply that S is an origami. Example 4.2 shows that
neither (b), nor (c), nor (d) imply that S is an origami.

Example 4.1. In this example we construct a tame translation surface S whose Veech group
Γ(S) is SL(2,Z), hence Ktr(S) = Q, but which is not an origami. We achieve this making a
slight modification of the construction presented in Section 2.3. Let G = SL(2,Z). Apply the
construction in Section 2.3 to G but choose the family of marks C−1 in such a way that the
there exists N ∈ Z and irrational α > 0 so that (α,N) is a holonomy vector. This is possible
since in the cited construction the choice of the point (x1, y1) is free. Observe that v1 = (−1, 1),
v2 = (0, 1), v3 = (1, 0) and v4 = (α,N) are holonomy vectors of S. Let li be lines in P1(R)
containing vi, i = 1, . . . , 4 respectively. A direct calculation shows that the cross ratio of these
four lines is α

α+N , which lies in Kcr(S). Hence Kcr(S) is not isomorphic to Q and therefore S
cannot be an origami.

Example 4.2. In this example we construct a surface S whose Veech group is not a discrete
subgroup of SL(2,R) (hence S cannot be an origami, since in addition S has two non parallel
saddle connections) but such that

(4.9) Kcr(S) = Khol(S) = Ksc(S) = Ktr(S) = Q.
Consider G = SL(2,Q) or G = SO(2,Q). These are non-discrete countable subgroups of SL(2,R)
with no contracting elements. Hence we can apply the construction from Proposition 2.11 to
G but choosing the points (xi, yi) that define the families of marks Ci in Q × Q for all i ≥ 1
indexing a countable set of generators of G. The result is a tame translation surface S whose
Veech group is isomorphic to G and whose holonomy vectors S have all coordinates in Q × Q.
This implies (4.9).

�

Proof Theorem 2. Let us first show that (i) holds. The tame translation surface S in Example 4.1
is such that Γ(S) = SL(2,Z) and Kcr(S) is not isomorphic to Q. Since in general Kcr(S) is a
subfield of Ksc(S) this surface also satisfies that Γ(S) = SL(2,Z) and Ksc(S) is not isomorphic
to Q. To finish the proof of (i) we consider the following example.

Example 4.3. In this example we construct a tame translation surface such that Γ(S) =
SL(2,Z) and Khol(S) is not isomorphic to Q. Apply the construction described in Section 2.3 to
G = SL(2,Z) but consider the following modification. Let {e1, e2} be the standard basis of R2.
There exists a natural number n > 0 such that the mark M in AId whose end points are −ne1

and −(n − 1)e1 does not intersect all other marks used in the construction. On a [0, π] × [0, e]
rectangle R, where e is Euler’s number, identify opposite sides to obtain a flat torus T . Consider
on T a horizontal mark M ′ of length 1 and glue AId with T along M and M ′. Then proceed
with the construction in a SL(2,Z)-equivariant way. This produces a tame translation surface
S whose Veech group is SL(2,Z). The image of H1(S,Z) under the holonomy map contains the
vectors e1, e · e1 and π · e2. Hence Khol(S) is not isomorphic to Q.

Part (ii) follows from Example 4.2. We now prove (iii). First we construct S such that
Kcr(S) = Q but Ksc(S) is not. Consider the following example.

Example 4.4. Let P1, P2 and P3 be three copies of R2; choose on each copy an origin, and let
{e1, e2} be the standard basis. Consider the following:
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(i) Let vn be the mark on the plane P1 along segments whose end points are n · e2 and
n · e2 + e1 with n = 0, 1.

(ii) Marks on P2 and P3 along the segments w0, w1 whose end points are (0, 0) and (1, 0),
and then along the segments z0 and z1 whose end points are (2, 0) and (2 +

√
p, 0), for

some prime p.

Glue the three planes along slits as follows: vi to wi, for i = 0, 1 and z0 to z1. The result is a
surface S for which {0, 1,−1,∞} parametrizes all possible slopes of lines through the origin in
R2 containing holonomy vectors of saddle connections. Hence Kcr(S) = Q. On the other hand,
the set of holonomy vectors contains (1, 0), (0, 1), (1, 1) and (

√
p, 0). Therefore Ksc(S) contains

Q(
√
p) as a subfield.

We finish the proof of (iii) by constructing a precompact tame translation surface such that
Khol(S) = Q, but Ksc(S) is not. Consider the following example.

Example 4.5. Consider two copies L1 and L2 of the L-shaped origami tiled by three unit
squares; see e.g. [HL06b, Example on p. 293]. Consider a point pi ∈ Li at distance 0 < ε << 1
from the 6π-angle singularity si, i = 1, 2. Let mi be a marking of length ε on Li defined by a
geodesic of length ε joining pi to si, i = 1, 2. We can choose pi so that both markings are parallel
and the vector defined by them has irrational coordinates. Glue then L1 and L2 along m1 and
m2 to obtain S. By construction h(H1(S,Z)) = Z× Z, hence Khol(S) = Q, but h(H1(S,Σ;Z))
contains an orthonormal basis {e1, e2} and a vector h(m1) with irrational coordinates. This
implies that Ksc(S) is not isomorphic to Q.

We address (iv) now. Observe that the surface S constructed in Example 4.5 satisfies that
Khol(S) = Q but Kcr(S) is not equal to Q. Indeed, we have saddle connections of slope 0, 1
and ∞. Since the slope of h(m1) is irrational, we are done. We now construct S such that
Kcr(S) = Q, but Khol(S) is not. We will furthermore have that S has four pairwise nonparallel
holonomy vectors thus Kcr(S) is not trivially Q.

Example 4.6. Take two copies of the real plane P1 and P2. Choose an origin and let e1, e2

be the standard basis. Let µi > 1, i = 1, 2, 3 be three distinct irrational numbers and define
λ0 = 0 and λn =

∑n
i=1 µi for n = 1, 2, 3. On P1 consider the markings mn whose end points

are ne2 and ne2 + e1 for n = 0, . . . , 3. On P2 consider the markings m′n whose end points are
(n+λn)e1 and (n+λn + 1)e1 for n = 0, . . . , 3. Glue P1 and P2 along the markings mn and m′n.
The result is a tame flat surface S with eight 4π-angle singularities. These singularities lie on
P2 on a horizontal line, and hence we can naturally order them from, say, left to right. Let us
denote these ordered singularities by aj , j = 1, . . . , 8. Let ge1(ai, aj) (respectively ge2(ai, aj)) be

the directed geodesic in S parallel to e1 (respectively e2) joining ai with aj . Define in H1(S,Z)

• the cycle c1 as ge1(a3, a4)ge1(a4, a5)ge2(a5, a3),
• the cycle c2 as ge1(a4, a3)ge1(a3, a2)ge2(a2, a4),
• the cycle c3 as ge2(a6, a8)ge1(a8, a7)ge1(a7, a6).

Where the product is defined to be the composition of geodesics on S, i.e. following one after
the other. Note that h(c1) = (1 + µ2,−1), h(c2) = (−(1 + µ1), 1) and h(c3) = (−(1 + µ3), 1).
We can choose parameters µi, i = 1, 2, 3 so that the Z-module generated by these 3 vectors has
rank 3. Therefore Khol(S) cannot be isomorphic to Q.

We address now (v). We construct first a flat surface S for which Ktr(S) = Q but none of the
conditions (a), (b), (c) or (d) in Theorem 1 hold. We achieve this by making a slight modification
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on the construction of the surface in Example 4.3 in the following way. First, change SL(2,Z)
for SL(2,Q). Second, let the added mark M be of unit length and such that the vector defined
by developing it along the flat structure neither lies in the lattice πZ×eZ nor has rational slope.
The result of this modification is a tame translation surface S homeomorphic to the Loch Ness
monster for which Γ(S) = SL(2,Q) and such that both Kcr(S) and Khol(S) (hence Ksc(S) as
well) have transcendence degree at least 1 over Q.
Finally, an example of a surface S which satisfies (c), (d) and (b), but with Ktr(S) 6= Q, is given
in [PSV11, Lemma 3.7]; see Remark 3.4. We underline that all holonomy vectors in this surface
S are parallel and hence Kcr(S) is by definition isomorphic to Q. For the sake of completeness
we construct a tame translation surface S where not all holonomy vectors are parallel, such
Kcr(S) = Q, but where Ktr(S) is not equal to Q. Let E0 be a copy of the affine plane R2 with a
chosen origin and (x, y)-coordinates. Slit E0 along the rays Rv := (0, y ≥ 1) and Rh := (x ≥ 1, 0)

to obtain Ê0. Choose an irrational 0 < λ < 1 and n ∈ N so that 1 < nλ. Define

M :=

(
λ 0
0 nλ

)
Rkv := MkRv Rkh := MkRh k ∈ Z.

Here Mk acts linearly on E0. For k 6= 0, slit a copy of E0 along the rays Rkv and Rkh to

obtain Êk. We glue the family of slitted planes {Êk}k∈Z to obtain the desired tame flat surface

as follows. Each Êk has a “vertical boundary” formed by two vertical rays issuing from the
point of coordinates (0, (nλ)k). Denote by Rkv,l and Rkv,r the boundary ray to the left and right

respectively. Identify by a translation the rays Rkv,r with Rk+1
v,l , for each k ∈ Z. Denote by Rkh,b

and Rkh,t the horizontal boundary rays in Êk to the bottom and top respectively. Identify by a

translation Rkh,b with Rk+1
h,t for each k ∈ Z.

By construction, {(−λk, (nλ)k)}k∈Z is the set of all holonomy vectors of S. Clearly, all slopes
involved are rational; hence Kcr(S) = Q. On the other hand, M ∈ Γ(S) and tr(M) = (n+ 1)λ.
Note that the surface S constructed in this last paragraph admits no triangulation satisfying the
hypotheses of Proposition 3.5. �

Corollary 4.7. The four fields Ktr(S), Khol(S), Kcr(S) and Ksc(S) satisfy the following rela-
tions:

(i) Khol(S) ⊆ Ksc(S) and Kcr(S) ⊆ Ksc(S).
(ii) For each other pair (i, j), with i, j ∈ {tr,hol, cr, sc}, (i, j) 6= (hol, sc) and (i, j) 6= (cr, sc),

we can find surfaces S such that Ki(S) 6⊆ Kj(S). In these examples we can always
choose Kj(S) to be Q.

(iii) If S has two non parallel holonomy vectors, then Ktr(S) ⊆ Khol(S).
(iv) If S has a geodesic triangulation by countably many triangles whose vertices form the

set Σ of singularities of S, then Kcr(S) = Ksc(S).

Proof. (i) is shown in Section 3 before Remark 3.4; (ii) is shown in Theorem 2 and in Remark 3.4;
(iii) is shown before Remark 3.4 and (iv) is the result of Proposition 3.5. �

Proof Corollary 1.1:
Let Γ be a subgroup of SL2(Z). By Proposition 2.11 we know that there is a translation surface
S with Veech group Γ. Furthermore in the construction all slits can be chosen such that their
end points are integer points in the corresponding plane; thus S is an origami by Theorem 1,
part (i). Hence it allows for a subset S∗ of S, whose complement is a discrete set of points, an
unramified covering p : S∗ → T0 to the once puncture unit torus T0. Recall that p defines the
conjugacy class [U ] of a subgroup U of F2 as follows. Let U be the fundamental group of S∗. It is
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embedded into F2 = π1(T0) via the homomorphism p∗ between fundamental groups induced by
p. The embedding depends on the choices of the base points up to conjugation. In [Sch04] this is
used to give the description of the Veech group completely in terms of [U ]; compare Theorem B
below. Recall for this that the outer automorphism group Out(F2) is isomorphic to GL2(Z).
Furthermore it naturally acts on the set of the conjugacy classes of subgroups U of F2.

Theorem B. The Veech group Γ(S∗) equals the stabiliser of the conjugacy class [U ] in SL2(Z)
under the action described above.

This theorem, that can be found in [Ibid.], considers only finite origamis, but the proof works
in the same way for infinite origamis. Recall furthermore that Γ(S∗) = Γ(S) ∩ SL2(Z) and
Γ(S) ⊆ SL2(Z) if and only if the Z-module spanned by the holonomy vectors of the saddle
connections equals Z2. We can easily choose the marks in the construction in [PSV11] such that
this condition is fulfilled.

�

Proof Theorem 3: First notice that the translation surfaces constructed in the proof of The-
orem 2 parts (i) and (v) are both counterexamples for statements (A) and (B). Furthermore,
Proposition 3.6 shows that two hyperbolic elements in Γ(S) do not have to generate the same

trace field. To disprove (C) we let µ be a solution to the equation µ+ µ−1 = 3
√

11 and G is the
group generated by the matrices

(4.10)

(
1 1
0 1

)
,

(
1 0
1 1

)
and

(
µ 0
0 µ−1

)
,

then Proposition 2.11 produces a tame translation surface S with Veech group G for which
Ktr(S) = Q( 3

√
11) is not totally real and thus is a counterexample for (C).

Finally for disproving (D) we construct a tame translation surface S with a hyperbolic element
in its Veech group for which Λ has infinite index in Λ0. The construction has two steps.
Step 1 : Let M be the matrix given by

(4.11)

(
2 0
0 1

2

)
.

Let S′ be the tame translation surface obtained from Proposition 2.11 for the group G′ generated
by M . Let Λ′ be the image in R2 under the holonomy map of H1(S′,Z), {e1, e2} be the standard
basis of R2 and β := G′ · {e1, e2}. We suppose without loss of generality that e1 and e2 lie in Λ′.
Step 2 : Let α = {vj}j∈N ⊂ R2 \Λ′ be a sequence of Q-linearly independent vectors. We modify
the construction in Proposition 2.11 (applied to G′) in the following way. We add to the page
AId a family of marks parallel to vectors in α. We can suppose that the new marks lie in the
left-half plane Re(z) < 0 in AId and are disjoint by pairs and do not intersect any of the marks
in C1 used in the construction from Step 1. For each j ∈ N there exists a natural number kj such
that 2kj > |vj |. Let Tj be the torus obtained from a 2kj × 2kj square by identifying opposite
sides. Slit each Tj along a vector parallel to vj and glue it to AId along the mark parallel to vj .
Denote by A′Id the result of performing this operation for every j ∈ N, then proceed just the
same construction as in Proposition 2.11. Let S be the resulting translation surface. Observe
that glueing in the tori Tj produces new elements in H1(S,Z) whose image under the holonomy
map lie in Z × Z. Thus the subgroups of R2 generated by the image under the holonomy map

of H1(S
′
,Z) and H1(S,Z) are the same. Let Λ be the image in R2 under the holonomy map of

H1(S,Z). By construction, the index of Λ in Λ0 is at least the cardinality of α, which is infinite.
�
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E-mail address: ferran@matmor.unam.mx

Institute of Algebra and Geometry, Department of Mathematics, Karlsruhe Institute of Technology
(KIT), D-76128 Karlsruhe, Germany

E-mail address: weitze-schmithuesen@kit.edu



Journal of Singularities
Volume 9 (2014), 245-251

Proc. of Algebraic Methods in
Geometry, Guanajuato, 2011

DOI: 10.5427/jsing.2014.9s

COMMENTARIES ON THE PAPER SOLENOIDAL MANIFOLDS BY DENNIS

SULLIVAN

ALBERTO VERJOVSKY

Abstract. Several remarks and comments on the paper about solenoidal manifolds referred
in the title are given. In particular, the fact is emphasized that there is a parallel theory of

compact solenoidal manifolds of dimensions one, two and three with the theory of compact

manifolds of these dimensions.

A k-dimensional solenoidal manifold or lamination is a metric space which is locally the product
of an euclidean k-disk and an infinite perfect and totally disconnected set (a subset of the Cantor
set). These solenoidal manifolds appear naturally in many branches of mathematics. In topology
the Vietoris-Van Dantzig solenoid ([13] [15]) is one of the fundamental examples in topology and
it motivated the development of homology and cohomology theories which could apply to these
spaces, for instance in the paper by Steenrod [10].

Solenoids appear naturally also as Pontryagin duals of discrete locally compact Hausdorff abelian
groups. For instance if Q denotes the rationals with addition as group structure and with the
discrete topology then its Pontryagin dual Q∗ is the universal 1-dimensional solenoid which is a
compact abelian group which fibers over the circle S1 via an epimorphism p : Q∗ → S1 where the
fibre is the Cantor group which is the pro-finite completion of the integers Z. This fact has an
important relationship with the adèles and idèles and its properties are the first steps in Tate’s
thesis.

Again, solenoids appear naturally also as basic sets of Axiom A diffeomorphisms in the sense of
Smale [9]. In particular one-dimensional expanding attractors are solenoidal manifolds and were
studied extensively by Bob Williams [17].

Let H(K) be the group of homeomorphisms of the Cantor K. Let N be a compact manifold
and ρ : π1(N) → H(K) a homomorphism from the fundamental group of N to H(K). There
is a lamination Lρ associated to ρ called the suspension of ρ which is obtained by taking the

quotient of Ñ ×K under the action of π1(N) given by γ(x, k) = (γ(x), ρ(γ)(k)) where Ñ is the

universal cover of N and the action of of π1(N) on Ñ is by deck transformations.

One has a natural locally trivial fibration p : Lρ → N with fibre K.

In his paper Dennis Sullivan shows that any compact, oriented, 1-dimensional solenoidal manifold
S is a mapping torus of a homeomorphism h : K → Kof the Cantor set K. In other words it
corresponds to the representation of the fundamental group of the circle into H(K) induced by
h. The proof is done by finding a global transversal in the oriented case. Since the topological
dimension of the solenoid is one it follows that S embeds continuously in R3. However there is
a nicer proof of this last fact using an unpublished idea I learned form Evgeny Shchepin.

http://dx.doi.org/10.5427/jsing.2014.9s
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Theorem 1. (Shchepin) Let K be the standard triadic Cantor set in the interval [0, 1] ⊂ R ⊂ R2,
and h : K → K any homeomorphism. Then h extends to a homeomorphism H : R2 → R2. We
think of the Cantor set as contained in the x-axis of the (x, y)-plane.

Proof 1. By Tietze extension theorem the map h extends to a continuous map f : R → R. Of
course f might be neither injective nor onto. The map F (x, y) = (x, y + f(x)) is a homeomor-
phism of R2 to itself and F (K) is the graph of h. On the other hand the map h−1 : K → K also
extends to a map g : R→ R. The map G(x, y) = (x− g(y), y) is a homeomorphism of R2. Thus
G◦F sends K to the vertical axis: G◦F (x, 0) = (0, h(x)) if x ∈ K. Then we take H = T ◦G◦F ,
where T (x, y) = (y, x). �

Therefore we see that any oriented one dimensional solenoid S is contained as a “diffuse braid” in
the open solid torus R2×S1 which is the mapping torus of H. In this respect one can consult [5].

The fact that any oriented one-dimensional solenoidal manifold is the suspension of a homeo-
morphism h of the Cantor set implies, as shown in the paper, that any such one-dimensional
solenoidal manifold is cobordant to zero: there exists a compact two dimensional solenoidal man-
ifold whose boundary is the given solenoidal one-dimensional manifold.

The proof is based on the fact that any homeomorphism of the Cantor set is a product of com-
mutators and therefore there exists a representation ρ : π1(Σ) → H(K), where Σ is a smooth
compact surface Σ with connected boundary a circle, such that the restriction of ρ to the element
represented to the boundary is h.

The proof of the fact that de group of homeomorphisms of the Cantor set is perfect is proven in
all detail in the paper [2] by R.D. Anderson.

Some of the most interesting and important solenoids are the two dimensional solenoidal man-
ifolds (or solenoidal surfaces). In this respect Dennis himself has constructed one of the most
beautiful and natural laminations whose Teichmüller space is remarkable: The universal com-
mensurability Teichmüller space [11]. His paper in Acta [3], in collaboration with I. Biswas and
S. Nag, is also an essential reference for this subject.

The idea of considering profinite constructions is very natural. If Σ is a compact surface and if we
consider the inverse limit corresponding to the tower of all finite index coverings of Σ we obtain
a two dimensional solenoidal manifold or surface lamination L: we can consider complex struc-
tures on this lamination so that each leaf has a complex structure and the complex structures
vary continuously in the transversal direction. There exists a canonical projection π : L → Σ.
For a dense set of complex structures the restriction to each leaf is a conformal map to a finite
cover of the original surface. Moreover the inverse limit of a point Kz := π−1{z}, z ∈ Σ is a
Cantor set. In fact in this construction one could use, to get the same inverse limit, any co-final
set of finite coverings, for instance normal subgroups or even characteristic subgroups. In the
latter case Kz is a nonabelian Cantor group.

The lamination L is the suspension of a homeomorphism ρ : π1(Σ)→ H(K).

If Σ is a surface of genus two we can consider a simple closed curve γ in Σ which separates the
surface into two surfaces of genus one with common boundary γ. The restriction of the lam-
ination to γ is an oriented one dimensional solenoid. Thus there exists four homeomorphisms
f1, f2, g1, g2 of the Cantor group Kz such that [f1, f2] = [g1, g2] := h and the one dimensional
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solenoid is the suspension of h.

To me this is fascinating because these four homeomorphisms of the Cantor set satisfying the
commutator relations above determine the universal solenoid. I think that it is a very interesting
problem to understand the structure of these homeomorphisms.

Theorem 2 of the paper by Dennis Sullivan gives a sketch of the theorem that every solenoidal
surface has a smooth structure, and in fact a laminated complex structure. Of course this is a
classical theorem for surfaces (compact or not). This can be attributed to Radó and Kerékjártó
since they prove that every surface can be triangulated (i.e. is homeomorphic to a simplicial
complex of dimension two). There is a more recent proof of this fact by Thomassen [12]. The
triangulation theorem can be adapted to solenoidal surfaces. The definition of a triangulation of
a solenoidal surface is the natural one: each leaf is triangulated and the triangulation depends
continuously in the transverse direction, in other words, if L(z) denotes the leaf through z one
requires:

For every point z ∈ L there exists a subcomplex C ⊂ L(z) which is homeomorphic to a 2-disk
and a homeomorphism φ : C ×K → L such that φ restricted to C × {k} is a simplicial linear
homeomorphsm from C × {k} onto a subcomplex of the triangulated leaf

L(φ(c, k)) (c ∈ C, k ∈ K).

Theorem 2. Let L be a topological compact solenoidal surface then L can be triangulated.

Let me give a sketch of my own proof of this theorem. The Riemann mapping theorem together
with Carathéodory’s theorem of prime ends imply that any continuous Jordan curve in the plane
is locally flat, which implies that every Jordan curve has a topological tubular neighborhood. It
is easy to prove - via the Riemann mapping theorem - that given two topological disks which
are the images of two topological embeddings φi : ∆̄→ S (i = 1, 2) of the unit closed disk in the
complex plane into a topological surface S one can perturb φi (i = 1, 2) to two embeddings φi
such that the images of S1 = ∂∆̄ meet topologically transversally (locally like the intersection
of the coordinate axis in R2 at the origin). A Riemann surface can be covered by coordinate
charts ψj : ∆̄→ S such that the union of images of the disk of radius 1/2 still cover the surface
and the covering is locally finite. We can perturb slightly the embeddings so that the images of
the boundary of the disk of radius 1/2 meet topologically transversally. The union of the images
of the these boundary circles divide the surface into cells with boundary a Jordan curve with a
finite number of marked points where two such curves meet transversally. Using these points we
can subdivide each cell to triangulate the Riemann surface. For a solenoidal surface L a similar
construction works: we can cover the lamination with laminated charts fi : ∆̄ × K → L and
then we can perturb these charts to have in each leaf a situation like the previous for a Riemann
surface.

A triangulated solenoidal surface has a natural flat structure with singularities: we give each
triangle of the triangulation the euclidean metric so that it is an equilateral triangle and all of
these triangles have edges of equal lengths. This provides each leaf with a flat metric singular
at the vertices (a sort of laminated Veech surface). By Riemann extension theorem each leaf is
a complex surface and thus each solenoidal surface has a complex structure

Reciprocally every compact smooth solenoidal manifolds S has a triangulation à la Cairns. Let
me give a sketch of the proof which is modeled on Cairns proof. Whitney embedding theorem
is valid for smooth solenoidal manifolds: there exists a topological embedding j : S → Rn. This
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follows from the usual fact that smooth real valued functions (in the sense of laminations) sepa-
rate points. The embedding j when restricted to a leaf is an embedding (not necessarely a proper
embedding) and if Φ : Dk × T → S (T a closed subset of the Cantor set) is a solenoidal chart
the composition j ◦φ when restricted to a plaque Dk×{t}, t ∈ T is an embedding kt : Dk → Rn.

We require that the embeddings of plaques depend continuously on the transverse parameter
(i.e. the map t 7→ kt ∈ C∞(Dk,Rn) is continuous). Then if we consider the solenoidal manifold
j(S) ⊂ Rn we can apply a very large homothetic transformationT , x 7→ rx x ∈ Rn, r ∈ R with
r > 0 very large so that the curvature of the leaves of j(S is almost zero). Now we consider the
canonical cubulation by unit cubes of Rn and the intersection of T (j(S)) with each cube of the
cubulation. Since we can assume without difficulty that J(S) is transverse to all the skeletons
of the cubulation, we see that each leaf is almost an affine subspace of dimension k with respect
to a unit cube, so that each leaf meets each cube in a convex polytope of dimension k after
subdividing in an obvious way each of these polytopes we get the triangulation of the solenoidal
manifold.
Since every solenoidal surface has a smooth structure we can provide each leaf with a Riemannian
metric in such a way that the metric is smooth on each leaf and it depends continuously on the
transverse parameter. We call such a solenoidal surface with a leaf-wise metric metric g a
solenoidal Riemannian surface (S, g).

Given a compact solenoidal surface (S, g) we see that each leaf has a conformal type with respect
to g, i.e for any z ∈ S the universal covering of the leaf L(z) is conformally equivalent to the
Riemann sphere (elliptic leaf) the complex plane (parabolic leaf) or the Poincaré disk (hyperbolic
leaf). If g′ es any other leaf-wise smooth Riemannian metric the conformal type of the leaf does
not change. This is a beautiful observation of Elmar Winkelnkemper (1976). Therefore one can
speak of a hyperbolic solenoidal Riemannian surface when all the leaves are of hyperbolic type.
We have the analog of the uniformization theorem of Koebe-Poincaré for compact hyperbolic
solenoidal Riemannian surface.

Theorem 3. (Candel [4] and Verjovsky [14]). If every leaf of a laminar Riemannian surface is
conformally covered by the disk, then the unique constant curvature minus one metric on each
leaf is transversally continuous.

Sullivan states and sketches a proof of the following theorem of Alberto Candel [4]:

Theorem 4. For any transversally continuous Riemannian metric on a smooth laminar surface,
sometimes both but at least one of the following holds:

(1) The universal cover of every leaf is conformally the disk.
(2) There is a nontrivial tranversal measure (a measure on each transversal so that the germs

of transversal holonomy maps along paths are measure preserving).

Of course there are compact solenoidal surfaces such that every leaf has universal covering
conformally equivalent to the euclidean plane. For instance the inverse limit of finite covers of a
flat 2-torus. For these laminations some times it is impossible to simultaneously uniformize all
the leaves [6].
Sullivan gives an example of a noncompact surface lamination without transverse measure but
there is, in my opinion, a better compact example which of course Dennis knows since I learned
it from him. Let S2 be the dyadic solenoid given as the inverse limit of

· · · −→ S1 z→z
2

−→ S1 z→z
2

−→ S1.
Then S2 is a compact abelian solenoidal group with a canonical metric which induces Haar
measure on the group. After choosing an orientation, there is a unit vector field Y tangent to
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the lamination. The squaring map F (Z) = Z2 is an isomorphism of S2 onto itself. Its derivative
in the sense of laminations expands by two every unit tangent vector Y (x). The suspension
of F is defined as the mapping torus of F . It is a two dimensional lamination. There is the
canonical suspension flow generated by the vector field X tangent to S2. In fact the leaves of
this lamination are the orbits of a locally free action of the real affine group since we have the
Lie bracet relation [X,Y ] = Y . It is not difficult to prove:

Proposition 1. If L is a compact lamination whose leaves are given by a locally free action of
the real affine group, then the lamination does not admit a transverse measure.

The last part of the paper deals with the Teichmüller theory of compact solenoidal (or laminar)
surfaces. For a compact laminar surface such that all its leaves are hyperbolic it is possible to
develop Teichmüller theory. Almost everything valid for a hyperbolic Riemann surface is also
valid for such a lamination. In general the Teichmüller space is infinite dimensional if the trans-
verse structure is a Cantor set.

Thus it is possible to speak of Teichmüller distance, quadratic differentials, etc.

Theorem 5. The space of hyperbolic structures on a hyperbolic laminar surface (as in Theorem
4) up to isometries isotopic to the identity has the structure of a separable complex Banach man-
ifold. The metric is the natural Teichmüller metric based on the minimal conformal distortion
of a map between structures. The isotopy classes of homeomorphisms preserving a chosen leaf
act by isometries on this Banach manifold.

As was remarked before, Sullivan constructs the universal Teichmüller space of the solenoidal
surface S obtained by taking the inverse limit of all finite pointed covers of a compact surface of
genus greater than one and chosen base point. The base points upstairs in the covers determine
a point and a distinguished leaf L in the inverse limit solenoidal surface. In this space the
commensurability automorphism group of the fundamental group of any higher genus compact
surface acts by isometries. This group is independent of the genus dy definition.

Theorem 6. The space of hyperbolic structures up to isometry preserving the distinguished leaf
on this solenoidal surface S is non Hausdorff and any Hausdorff quotient is a point.

The proof ot this result relies on the recent deep results by Jeremy Kahn and Vladimir Marković
on the validity of the Ehrenpreis Conjecture [7].

The remark by Sullivan is that the action of the commensurability automorphism group of the
fundamental group is by isometries and minimal. The action is described in the paper in Acta
Mathematica [3] mentioned before.

Sullivan does not include in his article the role of laminations in holomorphic dynamics, a subject
created by him to prove the Feiganbaum universality conjectures, and continued, for instance,
in the use of 3-dimensional hyperbolic laminations by Misha Lyubich and Yair Minsky. in [8].

Given any compact manifold M a representation of ρ : π1(M) → H(K), where H(K) is the
group of homeomorphisms of the Cantor set, gives rise to a solenoidal manifold. Therefore if M
is any compact manifold with residually finite fundamental group (as in the case of a Riemann
surface of genus bigger than one or any compact hyperbolic manifold) one has a lamination by
considering the inverse limit of the tower of its finite covers. This is, in a sense, the profinite
completion of a manifold with residually finite fundamental group. The fundamental groups of
compact hyperbolic 3-manifolds are residually finite so that we can consider the infinite tower
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of finite covers.

A direct consequence of the recent results by Ian Agol [1] and Daniel Wise [17] which solve in
the affirmative the question by Bill Thurston whether every hyperbolic 3-manifold M virtually
fibers over the circle (i.e. there exists a finite covering M̃ and a locally-trivial fibration over the

circle p : M̃ → S1) we have:

Theorem 7. Let M be a compact hyperbolic 3-manifold and let L(M) be the compact 3-
dimensional lamination obtained by the inverse limit of the directed set of its finite covers.
Then:

(1) L(M) fibers over M with fiber the Cantor set
(2) There exists a locally trivial fibration π : L(M)→ S1 with fiber a laminar surface S.
(3) By 2. there exists a homeomorphism f : S → S such that L(M) is obtained by suspending

f .

I think that the study of the homeomorphism f in 3 above is interesting. It is the lifting, in the
tower of coverings of the fibre p−1({1}) of the virtual fibration, of the pseudo-Anosov homeo-
morphism of the fibre which determines the fibration over the circle.

A solenoidal manifold (or lamination) is said to be hyperbolic if there exist a Riemannian metric
for which every leaf has constant negative curvature -1.

In view of theorem 7 some natural questions arise:

Question. Let L be a compact laminar surface. Let f : L → L be a homeomorphism. Let M be
the 3-dimensional compact solenoidal manifold which is obtained by suspending f .

(1) When is M a hyperbolic compact solenoidal 3-manifold ?
(2) Is there a classification à la Thurston of isotopy classes of homeomorphisms of compact

laminar surfaces?
(3) Does every compact hyperbolic 3-dimensional hyperbolic lamination fibers over the circle?

Another topic would be to develop the theory of geodesic laminations for compact hyperbolic
solenoidal surfaces.
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