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ON DIVISORIAL FILTRATIONS ASSOCIATED WITH NEWTON

DIAGRAMS

W. EBELING AND S. M. GUSEIN-ZADE

Abstract. We consider divisorial filtrations on the rings of functions on hypersurface sin-

gularities associated with Newton diagrams and their analogues for plane curve singularities.
We compute the multi-variable Poincaré series for the latter ones.

Introduction

A multi-index filtration on the ring OV,0 = OCn,0/(f) of functions on a hypersurface singu-
larity (V, 0) = {f = 0} defined by the Newton diagram Γ = Γf of the germ f was considered in
[4]. The initial idea was to look for a filtration corresponding to a Newton diagram for which the
Poincaré series could be computed and compared with the corresponding monodromy zeta func-
tion. This was inspired by the coincidence of Poincaré series and monodromy zeta functions in
some cases (e.g. in [1]) and relations between them in some other cases (e.g. in [3]). A somewhat
natural filtration on the ring OV,0 corresponding to the Newton diagram Γ = Γf is the divisorial
filtration defined by the divisors in a toric resolution of f corresponding to the facets of the
diagram. However, at that moment the divisorial valuation was regarded as being complicated
to treat. The filtration defined in [4] was regarded as a certain “simplification” of the divisorial
one. This seems not to be the case. It is rather complicated to compute the Poincaré series of
that filtration and moreover the assertion of Theorem 1 of [4] for s > 2 appeared to be wrong.
Another filtration corresponding to a Newton diagram was considered in [5].

Here we discuss an analogue of the divisorial valuation corresponding to a Newton diagram,
describe its generalization for plane curve singularities, and compute the Poincaré series of the
latter one.

For a germ (V, 0) of a complex analytic variety, let π : (X ,D)→ (V, 0) be a resolution of (V, 0)
with the exceptional divisor D = π−1(0) being a normal crossing divisor on X . For an irreducible
component E of D and for g ∈ OV,0, let vE(g) be the order of the zero of the lifting g̃ = g ◦ π
of the germ g to the space X of the resolution along E . The function vE : OV,0 → Z≥0 ∪ {+∞}
is called a divisorial valuation on OV,0. One can consider the multi-index filtration defined by a
collection E1, . . . , Er of components of the exceptional divisor:

(1) J(v) = {g ∈ OV,0 : v(g) ≥ v} ,

where v = (v1, . . . , vr) ∈ Zr≥0, v(g) = (v1(g), . . . , vr(g)), vi(g) = vEi(g), v′ = (v′1, . . . , v
′
r) ≥ v

if and only if v′i ≥ vi for i = 1, . . . , r. This filtration is called a divisorial one. The notion of
the Poincaré series of a multi-index filtration was introduced in [2] (see also [1]). In [1] it was
explained that the Poincaré series of a filtration defined by a formula like (1) is equal to the
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2 W. EBELING AND S. M. GUSEIN-ZADE

integral with respect to the Euler characteristic

(2) P{vi}(t) =

∫
POV,0

tv(g)dχ

over the projectivization POV,0 of OV,0 (t = (t1, . . . , tr), t
v = tv1

1 · · · tvrr ). In this integral, t∞i
has to be assumed to be equal to zero. Also in [1] it was shown that the Poincaré series of the
divisorial filtration corresponding to all the components of the exceptional divisor of a resolution
(uniformization) of a plane curve singularity (C, 0) = {f = 0} ⊂ (C2, 0) (that is to all the
components of the curve (C, 0)) coincides with the Alexander polynomial (in several variables)
of the corresponding link C ∩ S3

ε ⊂ S3
ε , where S3

ε is the sphere of small radius ε centred at the
origin in C2. (The Alexander polynomial becomes the monodromy zeta function of the left hand
side f of the equation of the curve (C, 0) after identification of all the variables.)

For the definition of a multi-index filtration by the formula (1), it is not necessary to assume
that all the vi : OV,0 → Z≥0 ∪ {+∞} are valuations (i.e. that they satisfy the condition
vi(g1g2) = vi(g1)+vi(g2)). It is sufficient to require that all of them are so called order functions.
This means that they satisfy the condition vi(g1 + g2) ≥ min {vi(g1), vi(g2)}, but, in general not
the condition vi(g1g2) = vi(g1) + vi(g2). We shall use order functions to define the filtrations
below.

1. Divisorial filtration corresponding to a Newton diagram

Let Cn be the complex space with the coordinates x1, . . . , xn and let f ∈ OCn,0 be a function
germ non-degenerate with respect to its Newton diagram Γ = Γf . Let p : (X,D) → (Cn, 0) be
a toric resolution of f corresponding to the Newton diagram Γ. The facets of Γ correspond to

some components (say, E1, . . . , Er) of the exceptional divisor D. Let (V, 0) = {f = 0}, let Ṽ be

the strict transform of the hypersurface singularity V , and let Ei := Ṽ ∩ Ei.
For n ≥ 3 the Ei are the irreducible components of the exceptional divisor D = D ∩ Ṽ of

the resolution p|Ṽ : (Ṽ ,D) → (V, 0). Thus one can consider the divisorial valuations vi defined

by these components and the corresponding (multi-index) filtration on OV,0. For n = 2 the
intersections Ei are not, in general, irreducible (if the corresponding facets of Γ have integer
points in their interiors). Therefore for n = 2 the corresponding definition has to be modified.

Let us first reformulate the definition of the divisorial valuations (for n ≥ 3) in terms of the
Newton diagram Γ. Let γ1, . . . , γr be the facets of the diagram Γ and let `i(k̄) = ci be the
reduced equation of the facet γi, i = 1, . . . , r. This means that `i(k̄) = ai1k1 + . . . + ainkn
(k̄ = (k1, . . . , kn)), where ai1, . . . , ain are positive integers with greatest common divisor equal
to 1.

For g ∈ OCn,0[x−1
1 , . . . , x−1

n ], g(x̄) =
∑̄
k

ck̄x̄
k̄ (x̄ = (x1, . . . , xn)), and for i = 1, . . . , r, let

ui(g) := min
k̄:ck̄ 6=0

`i(k̄), and let gγi(x̄) =
∑

k̄:`i(k̄)=ui(g)

ck̄x̄
k̄. For g ∈ OCn,0/(f) (or rather for g ∈

OCn,0) let us define v̂i(g) by

(3) v̂i(g) = sup
h∈OCn,0[x−1

1 ,...,x−1
n ]

ui(g + hf) .

One can see that, for n = 2, v̂i : OCn,0/(f)→ Z≥0 ∪{+∞} is not, in general, a valuation, but
only an order function.

Example. Let f(x, y) = y3 + y2x − x5 and let γ1 be the facet of Γf defined by the equation
2ky + kx = 5. Let g1(x, y) = y + x2, g2(x, y) = y − x2. One has v̂1(gi) = u1(gi) = 2 for i = 1, 2,
but v̂1(g1g2) = u1(g1g2 − x−1f) = u1(−y3x−1) = 5.
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Remark. One can see that this definition resembles the definition used in [4] where similar
order functions were defined by equation (3) with OCn,0[x−1

1 , . . . , x−1
n ] substituted by OCn,0.

Proposition 1. For n ≥ 3, i = 1, . . . , r, and g ∈ OCn,0 one has

v̂i(g) = vi(g) .

Proof. The claim follows from the following statements:

1) vi(g) ≥ v̂i(g);
2) if fγi 6 | gγi , then vi(g) = ui(g);

3) if fγi |gγi , then there exists h ∈ OCn,0[x−1
1 , . . . , x−1

n ] such that ui(g + hf) > ui(g).

Indeed, by iterated applications of 2) and 3) one obtains that either v̂i(g) =∞ or there exists
h ∈ OCn,0[x−1

1 , . . . , x−1
n ] such that vi(g) = ui(g+hf). Therefore v̂i(g) = sup

h∈OCn,0[x−1
1 ,...,x−1

n ]

ui(g+

hf) ≥ vi(g) and 1) implies the assertion.
Statement 1) follows from the facts that: ui(g) is the order of vanishing of the lifting g ◦ π of

g along Ei; vi(g) is the order of vanishing of g ◦ π|Ṽ along Ei ⊂ Ei and therefore vi(g) ≥ ui(g);

vi(g) = vi(g + hf) for any h ∈ OCn,0[x−1
1 , . . . , x−1

n ].

If fγi 6 | gγi , then the intersection ˜{g = 0}∩Ei of the strict transform ˜{g = 0} with the compo-
nent Ei does not contain Ei. Therefore the order of vanishing of g ◦ π|Ṽ along Ei coincides with

the order of vanishing of g ◦ π along Ei, equal to ui(g). This gives 2).
If gγi = hfγi (h ∈ OCn,0[x−1

1 , . . . , x−1
n ]), then (g − hf)γi contains with non-zero coefficients

only monomials x̄k̄ with `i(k̄) > ui(k̄). This gives 3). �

As it was mentioned above, for n = 2 the intersections Ei = Ei ∩ Ṽ may be reducible: i.e.
consist of several points. In this case there is no divisorial valuation associated to Ei. Let us

modify (generalize) the definition of a divisorial valuation in the following way. Let E =
s⋃
j=1

E(j)

be the union of some of the irreducible components of the exceptional divisor D of the resolution

π : (Ṽ ,D)→ (V, 0) and for g ∈ OCn,0 let

vE(g) := min
j=1,...,s

vE(j)(g) .

The function vE : OV,0 → Z≥0 ∪ {+∞} is not, in general, a valuation (for s > 1), but an order

function. The number vE(g) can also be defined as the minimum over all arcs γ on Ṽ at points
of E of the order of g along γ.

One can easily see that this definition gives order functions vi on OV,0 corresponding to the
facets of the Newton diagram Γ = Γf for n = 2 as well so that Proposition 1 also holds in this
case.

2. Plane curve singularities

Here we consider analogues of the order functions vi corresponding to the facets of the Newton
diagram Γ (for n = 2) for plane curve singularities not associated with Newton diagrams (say,
for those whose components may have more than one Puiseux pair). We compute the Poincaré
series of the corresponding filtration and give its specialization for the filtration defined by a
Newton diagram. It seems to be less involved to carry out computations in this way than to
produce them directly by considering Newton diagrams.

Let (C, 0) ⊂ (C2, 0) be a plane curve singularity with an embedded resolution π : (X,D) →
(C2, 0) such that
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1) C is the union of irreducible components C =
⋃
i,j

Cij , where i = 1, . . . , r, j = 1, . . . , si

(si > 0);

2) for each i the strict transforms C̃i1, . . . C̃isi of the components Ci1, . . .Cisi intersect one
and the same component Ei of the exceptional divisor D;

3) for i1 6= i2 the strict transforms C̃i1j1 and C̃i2j2 intersect different components of D (one
can say that E1, . . . , Er are part of the set {Eσ : σ ∈ Σ} of irreducible components of
D).

For an irreducible component Eσ of the exceptional divisor D, σ ∈ Σ, let wσ : OC2,0 \ {0} →
Z≥0 be the corresponding divisorial valuation.

For i = 1, . . . , r, j = 1, . . . , si, let ϕij : (C, 0)→ (C2, 0) be a uniformization of the component
Cij . For g ∈ OC2,0 let vij(g) be the order of vanishing of g ◦ ϕij at the origin. The function
vij(g) : OC2,0 → Z≥0 ∪ {+∞} is a valuation on OC2,0. Let

vi(g) := min
j=1,...,sj

vij(g) .

The function vi : OC2,0 → Z≥0 ∪ {+∞} is, in general, not a valuation, but an order function (if
si > 1).

The order functions v1, . . . , vr define in the usual way an r-index filtration on OC2,0:

(4) J(v) = {g ∈ OC2,0 : v(g) ≥ v} ,
where, as usual, v = (v1, . . . , vr) ∈ Zr≥0, v(g) = (v1(g), . . . , vr(g)). We shall call it the generalized
divisorial filtration.

Let {Eσ : σ ∈ Σ} be the set of all irreducible components of the exceptional divisor D
(Σ ⊃ {1, . . . , r}). Each component Eσ is isomorphic to the complex projective line CP1. For

σ ∈ Σ, let
•
Eσ be the “smooth part” of the component Eσ in the exceptional divisor D, that

is Eσ itself minus the intersection points with all the other components of D, and let
◦
Eσ be

the “smooth part” of the component Eσ in the total transform of the curve C, that is Eσ itself
minus the intersection points with other components of D and also with the strict transform of

the curve C. (One has
◦
Eσ =

•
Eσ for σ /∈ {1, . . . , r}; for σ = i ∈ {1, . . . , r},

◦
Eσ is

•
Eσ minus si

points.)

For σ ∈ Σ, let L̃σ be a smooth arc on the space X of the resolution transversal to Eσ at a

smooth point (i.e. at a point of
•
Eσ). Let the (irreducible) curve Lσ = π(L̃σ) be given by an

equation gσ = 0 (gσ ∈ OC2,0). The curve Lσ (or sometimes the function gσ) is called a curvette
at Eσ. Let mσδ (σ, δ ∈ Σ) be the order of vanishing of gσ along the component Eδ, that is
mσδ = wδ(gσ). One can show that mσδ = mδσ and the matrix (mσδ) is minus the inverse matrix
of the intersection matrix (Eσ ◦ Eδ) of the components Eσ on the manifold X. For σ ∈ Σ, let
mσ := (mσ1, . . . ,mσr) ∈ Zr≥0.

Theorem 1. The Poincaré series of the generalized divisorial filtration (4) is equal to

(5) P{vi}(t) =
∏
σ∈Σ

(1− tmσ )−χ(
•
Eσ) ·

r∏
i=1

(1− tsimi) .

Example. Let si = 1 for i = 1, . . . , r. In this case χ(
◦
Eσ) = χ(

•
Eσ) for σ /∈ {1, . . . , r} and

χ(
◦
Ei) = χ(

•
Ei)− 1. Therefore one has

P{vi}(t) =
∏
σ∈Σ

(1− tmσ )−χ(
◦
Eσ) .



ON DIVISORIAL FILTRATIONS ASSOCIATED WITH NEWTON DIAGRAMS 5

This is just the formula from [1].

Let π : (X,D)→ (C2, 0) be a toric resolution corresponding to the Newton diagram Γ = Γf of
a (Γ-non-degenerate) germ f ∈ OC2,0. The dual graph of the resolution π is a chain. The extreme
vertices of this graph correspond to the components of the exceptional divisor intersecting the
strict transforms of the coordinate lines in C2. (Therefore {x = 0} and {y = 0} are curvettes

corresponding to these components.) For these two components one has χ(
•
Eσ) = 1, for all others

χ(
•
Eσ) = 0. Therefore one has

Corollary 1. The Poincaré series of the filtration associated with the Newton diagram Γ and
defined by the order function v̂i corresponding to the facets of Γ is equal to

(6) P{v̂i}(t) =

∏r
i=1(1− tsimi)

(1− tv(x))(1− tv(y))
.

Remark. A function germ f which is non-degenerate with respect to the Newton diagram Γ =

Γf can be represented in the form f = xayb
r∏
i=1

fi where {fi = 0} is the union of the components

of {f = 0} whose strict transforms intersect the component Ei of the exceptional divisor of a
toric resolution. One can see that the number si of irreducible factors in a decomposition of fi is
equal to the integer length of the facet γi (i.e. to the number of integer points in its interior plus
one) and the Newton diagram Γi of fi is just the facet γi of Γ translated to the origin inside the
positive octant as far as possible. Moreover, the jth component of simi is equal to min

k̄∈Γi
`j(k̄).

Proof of Theorem 1. Let JNC2,0 = OC2,0/m
N+1 be the space of N -jets of functions on (C2, 0) (m

is the maximal ideal of OC2,0). One can see that for a function g ∈ OC2,0 with wσ(g) ≤ N for

all σ ∈ Σ, the values wσ(g) and also vi(g) are defined by the N -jet jNg of g. (This follows from

the fact that, for h ∈ mN+1, all wσ(h) and vi(h) are greater than N .) Let ĴN ⊂ JNC2,0 be the

set of N -jets g with wσ(g) ≤ N for all σ ∈ Σ. The equation (2) implies that

P{vi}(t) ≡
∫
PĴN

tv(g)dχ

modulo terms of degree > N . Recall that here t∞i should be assumed to be equal to 0.
Without loss of generality, we can suppose that, for any function g ∈ OC2,0 with wσ(g) ≤ N

for all σ ∈ Σ, the strict transform ˜{g = 0} of the zero level curve of g intersects the exceptional

divisor D only at smooth points, i.e. at points of
•
D =

⋃
σ

•
Eσ. Such a resolution can be obtained,

if necessary, by additional blow-ups of intersection points of the components of D. Each such

blow-up produces an additional component Eσ with χ(
•
Eσ) = 0 and therefore it does not effect

the right hand side of the equation (5).
Let

Y =
∐
{kσ}

(∏
σ

Skσ
•
Eσ

)
=
∏
σ

( ∞∐
k=0

Sk
•
Eσ

)

be the configuration space of all effective divisors on
•
D =

⋃ •
Eσ and let w : Y → Zr≥0 be the

function which maps the component
∏
σ S

kσ
•
Eσ of Y to

∑
σ kσmσ. For a function g ∈ OC2,0

with wσ(g) ≤ N for all σ ∈ Σ, let I(g) ∈ Y be the intersection of the strict transform ˜{g = 0} of
{g = 0} with D, i.e. the collection of the intersection points with multiplicities. One can see that
I(g) only depends on the N -jet of g, (w1(g), . . . , wr(g)) = w(I(g)) and also (v1(g), . . . , vr(g)) =



6 W. EBELING AND S. M. GUSEIN-ZADE

w(I(g)) if (and only if) for each i = 1, . . . , r, the effective divisor I(g) does not contain all the
points pi1, . . . , pisi . (If I(g) contains all the points pi1, . . . , pisi , then vi(g) is not determined by
I(g).)

For a component Eσ of D let gσq = gσq(x, y) be an analytic family of functions such that
{gσq = 0} is a curvette corresponding to the component Eσ and its strict transform passes

through the point q ∈
•
Eσ. (One can take two functions gσ,q′ and gσ,q′′ with the described

properties for two different points q′ and q′′ from
•
Eσ and define gσq as λgσ,q′ + µgσ,q′′ with

appropriate λ and µ.)
If A = B

∐
C, then

∞∐
k=0

SkA =

( ∞∐
k=0

SkB

)
×

( ∞∐
k=0

SkC

)
.

This permits to rewrite Y as Y ′ × Y ′′, where

Y ′ =
∏
σ

( ∞∐
k=0

Sk
◦
Eσ

)
, Y ′′ =

∏
i

( ∞∐
k=0

SkPi

)
,

where Pi is the set {pi1, . . . , pisi} consisting of si points.

For y ∈ Y , y =
∑
σ,j `

′
σjqσj +

∑r
i=1

∑si
j=1 `

′′
ijpij , where qσj are points of

◦
Eσ, let

gy :=
∏
σ,j

g
`′σj
σqσj ·

r∏
i=1

si∏
j=1

f
`′′ij
ij ,

where gσqσj is the curvette corresponding to Eσ through the point qσj . One can see that
I(gy) = y.

For an element g ∈ ĴN with I(g) = y, one has I(g) = I(gy), i.e. the strict transforms of
{g = 0} and {gy = 0} intersect the exceptional divisor D at the same points with the same
multiplicities. This means that the ratio gy ◦ π/g ◦ π of the liftings of g and gy is regular (has
no zeros and poles) on D and therefore it is constant (say, equal to a) on it. If g 6= gy, let
hλ := gy + λ(ag − gy) for λ ∈ C∗. One can see that wσ(hλ) and vi(hλ) do not depend on λ. In

this way we decompose the space of elements of PĴN different from all gy into C∗-families with
constant values of v. Since the Euler characteristic of C∗ is equal to zero, this means that the
integral (with respect to the Euler characteristic) of tv over the complement of {gy} is equal to
zero and therefore (up to terms of degree > N)

P{vi}(t) ≡
∫
Y

t v(gy)dχ.

For y ∈ Y , vi(gy) is finite if and only if y does not contain all the points pi,1, . . . , pi,si . If, for
each i, y does not contain all the points pi,1, . . . , pi,si , one has v(gy) = w(y). Therefore

(7)

∫
Y

t v(gy)dχ =

∫
Y ′

tw(y′)dχ ·
∫
Y ′′0

tw(y′′)dχ ,

where Y ′′0 ⊂ Y ′′ is the set of elements
r∑
i=1

sj∑
j=1

`ijpij such that for each i at least one of the

coefficients `ij is equal to zero.
One has ∫

Y ′

tw(y′)dχ =
∏
σ∈Σ

( ∞∑
k=0

χ(Sk
◦
Eσ)t kmσ

)
.
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Due to the equation
∞∑
k=0

χ(SkZ)tk = (1− t)−χ(Z)

one has

(8)

∫
Y ′

tw(y′)dχ =
∏

(1− tmσ )−χ(
◦
Eσ) .

(This is just the computation from [1].)
For the second factor in (7) one has∫

Y ′′0

tw(y′′)dχ =

r∏
i=1

 ∑
(`i1,...,`isi )∈Z

si
≥0
\Zsi>0

t (
∑
`ij)mi


=

r∏
i=1

 ∑
(`i1,...,`isi )∈Z

si
≥0

t (
∑
`ij)mi −

∑
(`i1,...,`isi )∈Z

si
>0

t (
∑
`ij)mi

(9)

=

r∏
i=1

[
(1− tmi)−si − t simi(1− tmi)−si

]
=

r∏
i=1

(1− tmi)−si(1− t simi) .

Since χ(
•
Eσ) = χ(

◦
Eσ) + si, the equations (7), (8), and (9) imply (5). �

Remark. Here, in contrast to [1], we make computations of integrals with respect to the Euler
characteristic not over POC2,0, but over a subspace of PJNC2,0 since the set of functions {gy|y ∈ Y }
is not measurable in POC2,0 (i.e. its Euler characteristic is not defined).
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FOLIATIONS ON P2 ADMITTING A PRIMITIVE MODEL

GILBERTO D. CUZZUOL & ROGÉRIO S. MOL

Abstract. Given a foliation F on P2
C, by fixing a line L ⊂ P2

C, the polar pencil of F with
axis L is the set of all polar curves of F with respect to points l ∈ L. In this work we study

foliations F which admit a polar pencil whose generic element is reducible. To such an F
is associated a primitive model, which is a foliation F̃ whose polar pencil, besides having

irreducible generic element, is such that its fibers are contained in those of the polar pencil
of F . This work focuses on relating geometric properties of a foliation F with those of its

primitive model F̃ .

1. Introduction

This work deals with reducibility properties of the pencil of algebraic curves

P : {αP (x, y) + βQ(x, y) = 0; (α : β) ∈ P1},

where (x, y) ∈ C2 and P (x, y) and Q(x, y) are polynomials in C[x, y]. More specifically, we
want to give conditions that identify when the generic element of this pencil is reducible. One
situation is obvious: if the generators P and Q have a common irreducible factor, then this will
be a factor for all elements in this pencil. Thus we can suppose P and Q relatively prime. In this
case, Stein’s factorization Theorem (see [3]) asserts that the generic element of P is reducible

if and only if there are polynomials P̃ (x, y) and Q̃(x, y) and a rational function r : P1 → P1 of
degree greater than one such that

P (x, y)

Q(x, y)
= r

(
P̃ (x, y)

Q̃(x, y)

)
.

To this situation we associate two foliations on the projective plane P2: a foliation F induced in
affine coordinates (x, y) ∈ C2 by the polynomial vector field

v = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
,

and a second foliation F̃ induced in the same affine coordinates by the vector field

ṽ = P̃ (x, y)
∂

∂x
+ Q̃(x, y)

∂

∂y
.

We call F a non-primitive foliation and, if the generic element of the pencil

P̃ : {αP̃ (x, y) + βQ̃(x, y) = 0; (α : β) ∈ P1}

is irreducible, we say that F̃ is a primitive foliation, which is a primitive model for F . Our idea

is to study this configuration by relating geometric properties of F and F̃ . As a byproduct, we

12000 Mathematics Subject Classification. Primary 32S65 ; Secondary 14C21.
2Keywords. Holomorphic foliation, polar varieties, linear systems.
3First author supported by FAPEMIG; second author supported by FAPEMIG and Pronex/FAPERJ.
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will obtain information about problem of the reducibility of the generic element of the pencil P
itself.

After presenting basic facts about foliations on P2 in section 2, we develop in section 3 the
concept of primitive and non-primitive foliations. We prove that a non-primitive foliation and
its primitive model have the same singularities in the affine plane C2 and, in Proposition 2, we
establish a relation between their Milnor numbers. A consequence of this fact is that a foliation
having only non-degenerate singularities is primitive. This, in its turn, implies that the generic
foliation in the space of foliations of degree d on P2 is non-primitive.

We finally dedicate section 4 to the study of the singularities of F and F̃ that lie over the line
at infinity L∞. Proposition 3 asserts that a non-primitive foliation always has singularities in
L∞. We also consider the case where L∞ is invariant by F and the sum of its Milnor numbers
over L∞ is minimal, equal to the degree of the foliation plus one. By Proposition 5, this occurs
if and only if all singularities of F in L∞ are either non-degenerate or saddle nodes having L∞
as a weak separatrix. Proposition 7 says that, when both a non-primitive foliation F and its

primitive model F̃ leave L∞ invariant, then the sum of the Milnor numbers at L∞ is minimal

for F if and only if it is minimal for F̃ . This apparently contrasts to what happens to Milnor

numbers of singularities on the affine plane C2: the passage from the primitive model F̃ to
the non-primitive F “degenerates” these singularities, in the sense that their Milnor numbers
increase, as shown in Proposition 2.

2. Preliminaries

A foliation F of degree d ≥ 0 in P2 = P2
C is induced in homogeneous coordinates (X : Y :

Z) ∈ P2 by a 1-form

ω = A(X,Y, Z)dX +B(X,Y, Z)dY + C(X,Y, Z)dZ, (1)

where A,B and C are homogeneous polynomials of degree d+ 1 satisfying the Euler condition

XA(X,Y, Z) + Y B(X,Y, Z) + ZC(X,Y, Z) = 0. (2)

This means that we have a foliation of dimension two on C3 which contains in its leaves the lines
through the origin, so that the foliation goes down to a foliation of dimension one on P2. The
singular set of F , denoted by Sing(F), is the set of common zeroes of A,B and C. We suppose,
throughout this text, that Sing(F) has codimension two, which amounts to requiring that A,B
and C have no common factor. In the affine plane Z = 1 with affine coordinates x = X/Z and
y = Y/Z the foliation F is induced by the 1-form

ω = A(x, y, 1)dx+B(x, y, 1)dy.

The foliation F is also given by the integral curves of the dual vector field of ω:

v = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
.

Here P (x, y) = −B(x, y, 1) and Q(x, y) = A(x, y, 1). We have two situations: if the line at
infinity L∞ : {Z = 0} is invariant by F then Z divides A and B. Furthermore, for k > 1, Zk is
not a common factor for A and B, since otherwise Z would be a common factor of A,B and C by
the Euler condition. This implies that max{degP,degQ} = d. On the other hand, if the line at
infinity is not invariant by F , then Z is not a factor of both A and B, thus P (x, y) = −B(x, y, 1)
as well as Q(x, y) = A(x, y, 1) have degree d+1. The Euler condition written in affine coordinates
reads

xA(x, y, 1) + yB(x, y, 1) + C(x, y, 1) = xQ(x, y)− yP (x, y) + C(x, y, 1) = 0.
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The terms of degree d+ 2 in the above relation give the equation

xQd+1(x, y)− yPd+1(x, y) = 0,

where Pd+1 and Qd+1 stand for the homogeneous part of degree d+ 1 of P and Q, respectively.
Thus, there is a homogenous polynomial G(x, y) of degree d such that Pd+1(x, y) = xG(x, y) and
Qd+1(x, y) = yG(x, y). We conclude that, when L∞ is not invariant, F is induced by a vector
field of the type

v = (xG(x, y) + P̂ (x, y))
∂

∂x
+ (yG(x, y) + Q̂(x, y))

∂

∂y
, (3)

where P̂ and Q̂ comprise the terms of degree d and lower of P and Q.
Reciprocally, let F be a foliation induced in affine coordinates (x, y) by a polynomial vector

field of the form

v = (xG(x, y) + P̂ (x, y))
∂

∂x
+ (yG(x, y) + Q̂(x, y))

∂

∂y
,

where G, when non-zero, is a homogeneous polynomial of degree d, while P̂ and Q̂ are either
polynomials of degree d, when G = 0, or of degree d or lower, when G 6= 0. Then F is a foliation
of degree d and L∞ is F-invariant if and only if G = 0.

Let now F be a germ of foliation at p = (0, 0) ∈ C2, which is induced in local coordinates
(x, y) by a vector field

v = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
,

where P,Q ∈ Op are relatively prime germs of analytic functions. The Milnor number of F at p
is defined as

µp(F) = dimC
Op

(P,Q)
,

where (P,Q) ⊂ Op refers to the ideal generated by P and Q. Evidently, µp(F) is a non-negative
integer, which is non-zero if and only p is a singularity for F (see [1] for more details).

Suppose now that the germ of foliation F has a smooth separatrix S, that is, a germ of
holomorphic invariant curve passing through p = (0, 0). If we take local coordinates such that
S = {y = 0} then F will be induced by a vector field of the form

v = P (x, y)
∂

∂x
+ yQ(x, y)

∂

∂y
,

which, restricted to S, is the vector field v|S = P (x, 0)∂/∂x. We define the relative Milnor
number of F with respect to S as the order of v|S at x = 0, that is

µp(F , S) = dimC
Op

(P, y)
= orderx=0v|S = orderx=0P (x, 0).

It comes straight from the definition that µp(F , S) ≤ µp(F). We also remark that, when p is a
regular point for F , both numbers are zero.

Now, if S is a germ of a smooth analytic curve at p, non-invariant by F , we take local
coordinates (x, y) such that p = (0, 0) and S : {y = 0}, so that Q(x, 0) 6= 0. The order of
tangency between F and S at p is the following number:

τp(F , S) = orderx=0Q(x, 0).

The invariants µp(F), µp(F , S) and τp(F , S) are independent of the local coordinates and of
the local expression of a vector field representing F .
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Next we state some global results about these invariants which will be used in the sequel. Let
F be a foliation of degree d on P2. First of all, given a line L ⊂ P2 non-invariant by F , then∑

p∈P2

τp(F , L) = d.

In fact, we can take a system of affine coordinates (x, y) ∈ C2 for which that L has equation
y = 0 and such that F and L are not tangent at q = L ∩ L∞, that is τq(F , L) = 0. Here L∞
denotes the line at infinity. We can also suppose that L∞ is not F-invariant, so that F is induced
by a polynomial vector field as in (3). Simple calculations show that the fact that τq(F , L) = 0

is equivalent to the degree of Q̂ in (3) being d. Furthermore, since L is not invariant by F ,

the variable y does not divide Q̂, so that Q̂(x, 0) actually has degree d. The result follows by
noticing that at each point p = (x0, 0) ∈ L, the order of tangency τp(F , L) is the multiplicity of

x0 as a root of Q̂(x, 0).
Now, if L ⊂ P2 is an F-invariant line it holds∑

p∈L
µp(F , L) = d+ 1. (4)

To see this, it suffices to take an affine coordinate system (x, y) ∈ C2 such that L∞ is not invariant
by F , L has equation y = 0 and q = L∩L∞ is a regular point for F , so that µq(F , L) = 0. Thus,
supposing that F is induced by a vector field as in (3), for a point p = (x0, 0) ∈ L, we have that

µp(F , L) is the order of x0 as a root of P (x, 0) = xG(x, 0) + P̂ (x, 0). The result follows from the
fact that, since q 6∈ Sing(F), this polynomial has degree d+ 1.

Finally, the sum of Milnor numbers of F on P2 gives a Bézout type theorem for F , which
reads ∑

p∈P2

µp(F) = d2 + d+ 1, (5)

where d is the degree of F . To see this we suppose that F is induced in affine coordinates
(x, y) ∈ C2 by the polynomial vector field v = P (x, y)∂/∂x+Q(x, y)∂/∂y. By an appropriate
choice of the line at infinity L∞ we may suppose that it does not contain any of the singularities of
F . This also implies that L∞ is not invariant by F , so that P and Q have degree d+1. Bézout’s
Theorem for the projective curves defined by P and Q give that the sum of their intersection
numbers is (d + 1)2 = d2 + 2d + 1. The sum corresponding to points contained in the affine
plane C2 equals the sum of the Milnor numbers of singularities of F . The result is achieved by
noticing that the two curves have d points of intersection over L∞, with multiplicities counted.

3. Primitive models of foliations

Let F be a foliation on P2. Given a point l ∈ P2, the polar curve of F with center at l ∈ P2

is the closure of the set of points p ∈ P2 \ Sing(F) such that T P
pF passes through l:

PFl = {p ∈ P2 \ Sing(F); l ∈ T P
pF}.

Here T P
pF is the line through p with direction TpF . When F is induced in affine coordinates

(X : Y : Z) ∈ P2 by a polynomial 1-form

ω = A(X,Y, Z)dX +B(X,Y, Z)dY + C(X,Y, Z)dZ

as in (1), the polar curve with center l = (α : β : γ) has equation

αA(X,Y, Z) + βB(X,Y, Z) + γC(X,Y, Z) = 0.

It follows that if F has degree d ≥ 1 then PFl is a curve of degree d + 1. Furthermore PFl
contains all singularities of F as well as the point l. This object was studied in [2] and [4].
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As the point l ∈ P2 moves, the curves PFl form a linear system of dimension two, the polar
net of F . If we fix a line L ⊂ P2 and take all polar curves of F whose centers lie in L we have
the polar pencil of F with axis L. It is the set of curves

αA(X,Y, Z) + βB(X,Y, Z) + γC(X,Y, Z) = 0 , (α : β : γ) ∈ L ,

and will be denoted by P(F , L).

Proposition 1. Let L ⊂ P2 be an F-invariant line. Then L is a fixed component of P(F , L)
with multiplicity one. Reciprocally, the only fixed component admitted in P(F , L) is the line L,
in which case it is F-invariant and of multiplicity one. In particular, if L is not invariant by F
then P(F , L) has no fixed components.

Proof. Suppose first that L is F-invariant and fix l ∈ L. Then, the F-invariance of L gives
that l ∈ T P

pF for every p ∈ L \ Sing(F). Thus, L ⊂ PFl . Since l ∈ L is arbitrary, we have
L ⊂ P(F , L). In what concerns its multiplicity, putting L : {Z = 0} in the above system of
homogeneous coordinates, we have

P(F , L) = {αA(X,Y, Z) + βB(X,Y, Z) = 0; (α : β) ∈ P1}.

Thus, if L were a fixed element of the pencil with multiplicity k > 1, then Zk would be a divisor
of both A and B, and the Euler condition (2) would imply that Zk−1 would be a divisor of
C and we would find a component of codimension one in Sing(F), which is not allowed. For
the converse, we first remark that if P(F , L) has a line L′ in its base, then L′ = L. Actually,
if p ∈ L′ \ Sing(F) then l ∈ T P

pF for every l ∈ L. But, if L′ 6= L and if p 6∈ L, then T P
pF

intersects L in only one point. Thus, the only possibility left is that L′ = L. Then for a fixed
l ∈ L and for every p ∈ L \ Sing(F) we have l ∈ T P

pF . This means that T P
pF = L for every

p ∈ L \ Sing(F), which gives the F-invariance of L. By the first part of the proof, L has
multiplicity one. Finally, an irreducible fixed component of P(F , L) of degree greater than one
with equation F (X,Y, Z) = 0 would mean that F is a factor of both A and B and thus, by
the Euler condition, it would be a factor of C, giving rise to a codimension one component in
Sing(F), which is impossible. �

Let F be a foliation in P2 as before. Its modified polar pencil with axis at the line L ⊂ P2,
denoted by P∗(F , L), is the pencil obtained from P(F , L) in the following way:

P∗(F , L) =

{
P(F , L)− L if L is F-invariant

P(F , L) if L is not F-invariant

Evidently P∗(F , L) is free of fixed components.
We now choose an affine system of coordinates (x, y) ∈ C2 such that L is the line at infinity

by making L : {Z = 0}, x = X/Z and y = Y/Z, where F is induced by the vector field

v = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
.

In the coordinates (x, y), both P(F , L) and P∗(F , L) are given by

{αP (x, y) + βQ(x, y) = 0; (α : β) ∈ P1}.

By means of Bertini’s Theorem concerning linear systems whose generic element is reducible,
it is proved in [4] that the generic element of the polar net of a foliation on P2 is irreducible.
However, it comes out that the polar net of a foliation might contain a pencil whose generic
element is reducible. Evidently, if L is a line invariant by F , then L belongs to all elements of
the polar pencil having L as an axis, that is L is a fixed element of the polar pencil. By removing
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L from the pencil, we can again ask if its generic element is reducible. Taking affine coordinates
(x, y) ∈ C2 such that L = L∞ is the line at infinity then the polar pencil becomes

{αP (x, y) + βQ(x, y) = 0; (α : β) ∈ P1}.

We remark that now there are no elements of codimension one in the pencil, since the fact that
Sing(F) has codimension 2 implies that P and Q have no common factor. We can then apply
Stein’s factorization Theorem (see [3]): the generic element of the pencil {αP (x, y) +βQ(x, y) =

0 , (α : β) ∈ P1} is reducible if and only if there are polynomials P̃ (x, y) and Q̃(x, y) and a
rational function r : P1 → P1 of degree greater than one such that

P (x, y)

Q(x, y)
= r

(
P̃ (x, y)

Q̃(x, y)

)
.

This means that the pencil induced by P and Q “factors” through the one induced by P̃ and Q̃.

We can ask once again if the generic element of the pencil {αP̃ (x, y) + βQ̃(x, y) = 0; (α : β) ∈ P1}
is reducible. If true, we can repeat the process above, until we reach a situation where d̃ is min-

imal and the generic element of {αP̃ (x, y) + βQ̃(x, y) = 0; (α : β) ∈ P1} is irreducible.
We say that a foliation F on P2 is primitive if for every line L ⊂ P2 the modified polar pencil

of F with axis L has irreducible generic element. If for some line L ⊂ P2 the modified polar
pencil of F with respect to L has reducible generic element, we say that F is non-primitive (with
respect to L). In this case, taking affine coordinates (x, y) ∈ C2 with respect to which L is the
line at infinity, and a polynomial vector field

v = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
(6)

that induces F , we find polynomials P̃ (x, y) and Q̃(x, y) and a rational function r : P1 → P1 of

degree m = deg(r) ≥ 2 such that P/Q = r(P̃ /Q̃) and so that the pencil P(P̃ , Q̃) has irreducible
generic element. Notice that, putting t = z/w, we write r(t) = r(z/w) = S(z, w)/T (z, w), where
S and T are homogeneous polynomials of degree m, so that{

P (x, y) = S(P̃ (x, y), Q̃(x, y))

Q(x, y) = T (P̃ (x, y), Q̃(x, y)).
(7)

We now define a foliation F̃ on P2 induced, in the same system of affine coordinates (x, y), by
the vector field

ṽ = P̃ (x, y)
∂

∂x
+ Q̃(x, y)

∂

∂y
.

Since P(P̃ , Q̃) has irreducible generic element, P̃ and Q̃ are relatively prime, so Sing(F̃) has

codimension two. F̃ is said to be a primitive model for F . The number m = deg(r) will
be called degree of ramification of F . We remark that the property of being a non-primitive
foliation and that of being the primitive model of a foliation involves fixing an affine plane with
coordinates (x, y) ∈ C2 and a line at infinity L∞ ⊂ P2. The degree of the vector field (6) inducing
F is called the affine degree of F , and is denoted by dega(F). If F is a non-primitive foliation

admitting a primitive model F̃ , we evidently have

dega(F) = m dega(F̃),

where m is the degree of ramification.
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Fix an affine plane in P2 with coordinates (x, y) ∈ C2. Let F1 and F2 be foliations on P2

induced, respectively, by polynomial vector fields

v1 = P1(x, y)
∂

∂x
+Q1(x, y)

∂

∂y
and v2 = P2(x, y)

∂

∂x
+Q2(x, y)

∂

∂y
.

Definition 1. The foliations F1 and F2 are said to be linearly equivalent if there exist a, b, c, d ∈
C such that ad− bc 6= 0 and{

P1(x, y) = aP2(x, y) + bQ2(x, y)

Q1(x, y) = cP2(x, y) + dQ2(x, y).

The notion of linear equivalence defines equivalence classes in the space of foliations on P2.
From the expression (3) it is easy to see that, in such an equivalence class, all foliations have the
same degree d and leave L∞ invariant, with the possible exception of one, which has degree d−1
and for which L∞ is not invariant. Nevertheless, the affine degree is the same for all foliation
in a class of linear equivalence. Therefore, a foliation of degree d for which L∞ is not invariant
is always linear equivalent to a foliation of degree d + 1 which leaves L∞ invariant. Evidently,
two primitive models for the same foliation are linearly equivalent. On the other hand, two
non-primitive foliations which are linearly equivalent have the same class of primitive models.

In the next two examples we introduce two classes of foliation which will appear in Theorem
1 below.

Example 1. We say that a foliation F on P2 is homogeneous with center at l ∈ P2 if F is
induced in affine coordinates (x, y) ∈ C2 for which l = (0, 0) by a polynomial vector field

v = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y

such that P (x, y) and Q(x, y) are homogeneous polynomials of the same degree. One outstanding
property of a foliation F which is homogeneous with center at l ∈ P2 is that its polar curve with
center at l is F-invariant and consists of d+1 lines passing through l, with multiplicities counted.
If F is a homogeneous foliation centered at l = (0, 0) as above, then the line at infinity is invariant
by F and d = deg(F) = dega(F). The only singularity in C2 is l = (0, 0), which has Milnor
number µl(F) = d2. Observe that this, along with expression (5), implies that∑

p∈L∞

µp(F) = d+ 1.

All the singularities of F on the line at infinity L∞ are at the intersection of L∞ and one of
the invariant lines L which form the polar curve with center l. If L has multiplicity one as a
component of PFl , then p = L∩L∞ is a non-degenerate singularity, meaning that the linear part
of any vector field which induces F near p has two non-zero eigenvalues. On the other hand, if
this multiplicity is k > 1, then p = L ∩ L∞ is a saddle-node whose weak separatrix is contained
in L∞. We finally observe that any curve in the polar pencil of F with axis at L∞ consists of
d+ 1 lines passing through (0, 0) ∈ C2.

Example 2. Let F be a foliation on P2. We say that F is a foliation in one variable if in some
affine coordinate system (x, y) ∈ C2 it is induced by a polynomial vector field of the kind

P (x)
∂

∂x
+Q(x)

∂

∂y
,

where P and Q are polynomials depending only on the variable x. Since Sing(F) has codimension
two, P and Q are without common factors, which results that F has no singularities in the affine
plane C2. It is easy to see that the line at infinity is F-invariant, for its non-invariance would
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imply, from expression (3), that the higher order terms of P and Q would depend on both x
and y. Thus, d = deg(F) = dega(F). We also remark that, if x0 is a root of Q(x), then the line
x = x0 is F-invariant. These invariant lines all meet L∞ at a singularity p. If deg(P ) < deg(Q),
then this is the only singularity of F . If deg(P ) ≥ deg(Q) there is still another singularity on
L∞. For a foliation in one variable as above, any element of the polar pencil with axis at L∞
consists of d+ 1 vertical lines, with multiplicities counted.

Theorem 1. Let F be a non-primitive foliation on P2 which admits a primitive model of affine
degree one. Then either F is a homogeneous foliation or it is a foliation in one variable.

Proof. Let F̃ be a primitive model for F , induced in affine coordinates (x, y) ∈ C2 by the

polynomial vector field P̃ (x, y)∂/∂x+ Q̃(x, y)∂/∂y.

1st case: Either P̃ or Q̃ is a constant. Then, by means of a linear equivalence, we may

suppose that F̃ is induced by a vector field of the form (ax + by)∂/∂x + ∂/∂y, where a 6= 0 or

b 6= 0. If a = 0, evidently F̃ is a foliation in one variable. If a 6= 0, by applying the affine change
of coordinates (u, v) = (ax+ by, y), we arrive to the same conclusion.

2nd case: Both P̃ and Q̃ have degree one. Let us put P̃ = ax+ by + e and Q̃ = cx+ dy + f .

We first consider the situation where P̃ and Q̃ have no common root in the affine plane C2. This
means that ax+ by is a multiple of cx+ dy by a non-zero constant. Thus, by linear equivalence,

we can suppose that P̃ = ax + by and Q̃ = 1 and we come to the first case, where F is a

foliation in one variable. We then suppose that P̃ and Q̃ have a common root in C2. By an

affine change of coordinates, we can suppose that this root is (0, 0), which makes P̃ = ax + by

and Q̃ = cx+dy. If r(t) is the rational map such that P/Q = r(P̃ /Q̃), writing t = z/w, we have
r(z/w) = F (z, w)/G(z, w), where F and G are homogeneous polynomials of degree equal to the
degree of r. We finally conclude that

P (x, y) = F (ax+ by, cx+ dy) and Q(x, y) = G(ax+ by, cx+ dy)

which says that F is a homogeneous foliation. �

If F is a non-primitive foliation with primitive model F̃ then, in the affine plane C2, the

singular points for F and for F̃ are the same. In fact, with the notation of (7), we know that

P (x, y) = S(P̃ (x, y), Q̃(x, y)) and Q(x, y) = T (P̃ (x, y), Q̃(x, y)). Evidently, the common zeroes

of P̃ and Q̃ are zeroes of both P and Q, which gives Sing(F̃)|C2 ⊂ Sing(F)|C2 . Reciprocally, the

existence of a point (x0, y0) in C2 which is singular for F but not for F̃ would imply the existence

of a common factor for S(z, w) and T (z, w). Thus we actually have Sing(F̃)|C2 = Sing(F)|C2 .

Proposition 2. Let F be a non-primitive foliation having F̃ as primitive model and m as the
degree of ramification. If p ∈ C2 then

µp(F) = m2µp(F̃).

Proof. We keep the notation of (7). We consider the following maps from C2 to C2:
Φ(x, y) = (P (x, y), Q(x, y)),

Φ̃(x, y) = (P̃ (x, y), Q̃(x, y)),

H(z, w) = (S(u, v), T (u, v)).

We have Φ = H ◦ Φ̃. We first remark that the Milnor number of the vector field P∂/∂x+Q∂/∂y
at a singularity p is the number of pre-images of Φ = (P,Q) lying near p of any point q sufficiently
near (0, 0) ∈ C2. The result follows by noticing that, since S and T are homogeneous of degree
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m and without common factors, the Milnor number of S∂/∂u + T∂/∂v at (0, 0) is m2 (see [1],
section 2). �

Corollary 1. If F is a foliation having three non-aligned singularities each of them having the
property that its Milnor number is not divisible by some m2, where m ∈ Z and m ≥ 2. Then F
is a primitive foliation. In particular, if F has three non-aligned non-degenerate singularities,
then F is primitive.

Corollary 2. Let F be a foliation having only non-degenerate singularities. Then F is primitive.

Proof. Since all singularities of F have Milnor number 1, the above corollary implies that all
singularities of F would lie in L∞ if F were non-primitive. Summing up their Milnor numbers we
have

∑
p∈L∞

µp(F) = d2 + d+ 1, where d is the degree of F . If L∞ were F-invariant, we would

have
∑

p∈L∞
µp(F , L∞) = d+1, which leads to a contradiction since µp(F) = µp(F , L∞) = 1 for

a non-degenerate singularity. If L∞ were non-invariant, then
∑

p∈L∞
τp(F , L∞) = d, which is a

contradiction since, when p ∈ Sing(F) is non-degenerate, it holds τp(F , L∞) = µp(F) = 1. �

Corollary 3. Let Fol(d) be the space of foliations of degree d in P2. Then the set of primitive
foliations contain a non-empty Zariski open set.

4. The study of the singularities on L∞

We have seen in the previous section that a non-primitive foliation F and its primitive model

F̃ have the same singularities in the affine plane C2, and its Milnor numbers are related by
Proposition 2. The objective of this section is to explore the consequences of this fact to the

singularities of F and F̃ that lie over L∞.

Let us consider a non-primitive foliation F of degree d0 having a primitive model F̃ of degree

d̃0. We denote the affine degrees of F and F̃ respectively by d and d̃. By summing up Milnor
numbers we get ∑

P2

µp(F) =
∑
C2

µp(F) +
∑
L∞

µp(F)

= m2
∑
C2

µp(F̃) +
∑
L∞

µp(F)

= m2

(∑
P2

µp(F̃)−
∑
L∞

µp(F̃)

)
+
∑
L∞

µp(F)

thus, using (5), we obtain∑
L∞

µp(F)−m2
∑
L∞

µp(F̃) =
∑
P2

µp(F)−m2
∑
P2

µp(F̃)

= (d2
0 + d0 + 1)−m2(d̃0

2
+ d̃0 + 1). (8)

The values of d0 and d̃0 in terms of the affine degrees d and d̃ depend only on the fact of L∞
being F-invariant or not. We consider three cases:

1st case: L∞ is F̃-invariant but not F-invariant.
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We have d0 = d− 1 and d̃0 = d̃ and, putting this in equation (8),∑
L∞

µp(F)−m2
∑
L∞

µp(F̃) = (d2 − d+ 1)−m2(d̃2 + d̃+ 1)

= ((md̃)2 −md̃+ 1)−m2(d̃2 + d̃+ 1)

= −m2d̃−md̃−m2 + 1. (9)

This allows us to conclude the following:

Proposition 3. Let F be a non-primitive foliation. Then F has some singularity in L∞.

Proof. If L∞ is F invariant then formula (4) implies that it must contain some singularity.

Suppose now that L∞ is not invariant by F . By linear equivalence, we can suppose that F̃
leaves L∞ invariant. If Sing(F) ∩ L∞ = ∅ then

∑
L∞

µp(F) = 0. The above formula gives

−m2
∑
L∞

µp(F̃) = −m2d̃−md̃−m2 + 1.

Thus, m would be a divisor of the right side of the equation, which is absurd. �

Suppose now that L∞ is F̃-invariant and that
∑

L∞
µp(F̃) = d̃0 + 1 = d̃ + 1. In this case,

expression (9) reads ∑
L∞

µp(F)−m2(d̃+ 1) = −m2d̃−md̃−m2 + 1,

which implies ∑
L∞

µp(F) = −md̃+ 1.

This is a contradiction, since the right side is negative. We get the following conclusion:

Proposition 4. Let F be a non-primitive foliation having a primitive model F̃ leaving L∞
invariant. Suppose that

∑
L∞

µp(F̃) = d̃ + 1, where d̃ = deg(F̃). Then L∞ is F-invariant. In

particular, if all singularities of F̃ in L∞ are non-degenerate, then L∞ is F-invariant.

In the situation of the Proposition 4, relation (4) reads
∑

L∞
µp(F̃ , L∞) = d̃ + 1. Thus, the

hypothesis
∑

L∞
µp(F̃) = d̃ + 1 is a condition of minimality on the Milnor numbers of F̃ over

L∞, as explained in the next result:

Proposition 5. Let F be a germ of foliation having a singularity at p ∈ C2 and let L be a germ
of smooth separatrix at p. Then µp(F , L) ≤ µp(F). Furthermore, equality occurs if and only if
one of the two alternatives holds:

(i) p is a non-degenerate singularity of F ;

(ii) p is a saddle-node having L as its weak separatrix.

Proof. Suppose that F is induced at p by a local vector field P∂/∂x+Q∂/∂y, where P,Q ∈ Op.
Let us denote µp(P,Q) := µp(F). For a vector field P∂/∂x + Q1Q2∂/∂y, where Q1, Q2 ∈ Op,
we have µp(P,Q1Q2) = µp(P,Q1) + µp(P,Q2) (see [1]). Let us suppose that the separatrix L
has equation y = 0, so that F is induced by a vector field of the form P∂/∂x + yQ1∂/∂y for
some Q1 ∈ Op . Thus

µp(F) = µp(P, yQ1) = µp(P, y) + µp(P,Q1) = µp(F , L) + µp(P,Q1),

where we used that µp(F , L) = µp(P, y). The result follows by noticing that µp(P,Q1) ≥ 0. Now,
equality holds if and only if µp(P,Q1) = 0. This means that the vector field P∂/∂x + Q1∂/∂y
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is non-singular at p. Since P (p) = 0 we must have Q1(p) 6= 0. This gives at least one non-zero
eigenvalue for P∂/∂x + Q∂/∂y, which implies (i) or (ii). Reciprocally, if p is a non-degenerate
singularity, then µp(F) = µp(F , L) = 1. In the case of a saddle-node having y = 0 as weak
separatrix, after an analytic change of coordinates, we may suppose that we have the normal
form of the saddle node: xk+1∂/∂x + y(1 + λxk)∂/∂y, where λ ∈ C and k ≥ 0. Its easy to see
that µp(F) = µp(F , L) = k + 1. �

2nd case: L∞ is F-invariant but not F̃-invariant. We have d0 = d and d̃0 = d̃− 1. Equation
(8) gives ∑

L∞

µp(F)−m2
∑
L∞

µp(F̃) = (d2 + d+ 1)−m2((d̃− 1)2 + d̃)

= ((md̃)2 +md̃+ 1)−m2(d̃2 − d̃+ 1)

= m2(d̃− 1) +md̃+ 1.

Let us suppose that the sum of Milnor numbers of F at L∞ is minimal, that is
∑

L∞
µp(F) =

d0 + 1 = d+ 1. This gives

−m2
∑
L∞

µp(F̃) = m2(d̃− 1).

This implies that d̃ = 1 and
∑

L∞
µp(F̃) = 0, that is, F̃ is the radial foliation. Thus, F is a

homogeneous foliation. As commented on Example 1, for a homogeneous foliation F of degree
d0, it holds

∑
L∞

µp(F) = d0 + 1. We can thus state the following result:

Proposition 6. Let F be a non-primitive foliation of degree d0 which leaves L∞ invariant,

having a primitive model F̃ for which L∞ is non-invariant. It holds
∑

L∞
µp(F) = d0 + 1 if and

only if F is a homogeneous foliation and, in this case, F̃ is the radial foliation.

3rd case: L∞ is both F-invariant and F̃-invariant. We have d0 = d and d̃0 = d̃, thus∑
L∞

µp(F)−m2
∑
L∞

µp(F̃) = (d2 + d+ 1)−m2(d̃2 + d̃+ 1)

= ((md̃)2 +md̃+ 1)−m2(d̃2 + d̃+ 1)

= −m2d̃+md̃−m2 + 1.

Suppose now that
∑

L∞
µp(F̃) = d̃0 + 1 = d̃+ 1. This is equivalent to∑

L∞

µp(F)−m2(d̃+ 1) = −m2d̃+md̃−m2 + 1,

which in its turn is equivalent to∑
L∞

µp(F) = md̃+ 1 = d+ 1 = d0 + 1.

We reach the following conclusion:

Proposition 7. Let F be a non-primitive foliation of degree d0 having a primitive model F̃ of

degree d̃0. Suppose that both foliations leave L∞ invariant. Then
∑

L∞
µp(F̃) = d̃0 + 1 if and

only if
∑

L∞
µp(F) = d0 + 1.

This results shows an interesting behavior concerning non-primitive foliations and their prim-

itive models. If F is a non-primitive foliation having F̃ as primitive model, both of them having

the line at infinity invariant, then the passage from F̃ to F degenerates all singularities in the
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affine plane C2, in the sense that µp(F) = m2µp(F̃) for every p ∈ Sing(F)|C2 = Sing(F̃)|C2 ,
where m is the degree of ramification. On the other hand, this process does not degenerate the

singularities of F̃ lying in L∞, in the sense that, considering Proposition 5, if all singularities

of F̃ in L∞ are either non-degenerate or saddle-nodes with weak separatrix over L∞, then the
same property holds for the singularities of F in L∞.
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THE ALUFFI ALGEBRA

ABBAS NASROLLAH NEJAD & ARON SIMIS

Abstract. We deal with the quasi-symmetric algebra introduced by Paolo Aluffi, here named
the (embedded) Aluffi algebra. This algebra is a sort of “intermediate” algebra between the

symmetric algebra and the Rees algebra of an ideal, which serves the purpose of introducing

the characteristic cycle of a hypersurface in intersection theory. The results described in the
present paper have an algebraic flavor and naturally connect with various themes of commuta-

tive algebra, such as standard bases à la Hironaka, Artin–Rees like questions, Valabrega–Valla

ideals, ideals of linear type, relation type and analytic spread.
We give estimates for the dimension of the Aluffi algebra and show that, pretty generally,

the latter is equidimensional whenever the base ring is a hypersurface ring. There is a converse

to this under certain conditions that essentially subsume the setup in Aluffi’s theory, thus sug-
gesting that this algebra will not handle cases other than the singular locus of a hypersurface.

The torsion and the structure of the minimal primes of the algebra are clarified.

In the case of a projective hypersurface the results are more precise and one is naturally
led to look at families of projective plane singular curves to understand how the property

of being of linear type deforms/specializes for the singular locus of a member. It is fairly

elementary to show that the singular locus of an irreducible curve of degree at most 3 is of
linear type. This is roundly false in degree larger than 4 and the picture looks pretty wild as

we point out by means of some families. Degree 4 is the intriguing case. Here we are able to
show that the singular locus of the generic member of a family of rational quartics, fixing the

singularity type, is of linear type. We conjecture that every irreducible quartic has singular

locus of linear type.

Introduction

This work is inspired on a paper of P. Aluffi ([2]) that shows, in the case of a hypersurface, how
to define a so-called characteristic cycle in parallel to the well-known conormal cycle in intersec-
tion theory. To accomplish it, Aluffi introduces an intermediate algebra between a symmetric
algebra of an ideal and the corresponding Rees algebra (blowup).

Aluffi has dubbed his construction a quasi-symmetric algebra. Since there are many homo-
morphic images of the symmetric algebra that could equally benefit from this terminology, we
have decided to call it an embedded Aluffi algebra. This has the advantage of indicating that
the algebra itself has a more complex behavior for more general schemes than for hypersurfaces
and, as such, it will often tilt to the other end of the spectrum, namely, become a honest blowup
algebra.

The definition of the algebra is based on taking ideals J ⊂ I ⊂ R in an arbitrary ring, by
setting

A
R�R/J

(I/J) := SR/J(I/J)⊗SR(I) RR(I).

The R-embedded Aluffi algebra is functorial in the following sense: let R → R′ be a ring
homomorphism, let J ′ ⊂ I ′ ⊂ R′ denote the respective images of J ⊂ I under this map. If this
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map induces an isomorphism R/J ' R′/J ′ then it induces a ring surjection

A
R�R/J

(I/J)� A
R′�R′/J′ (I

′/J ′).

Thus, it makes sense to take the inverse limit of such ring surjections. Letting A denote the
common target and a the common ideal in the target, Aluffi takes

A(a) : = lim
R�A

A
R�A

(a).

A point made in his work is that A(a) is actually independent of the choice of the source R
(i.e., of the presentation R/J ' A) provided R is constrained to be regular. Thus, if R is indeed
regular then A(a) ' A

R�A
(a) by the structural map.

Motivated by the case where R is regular, we will study a single member A
R�A

(a) of this
inverse system and, accordingly, omit “R-embedded” if this causes no confusion.

The overall goal of this work is to study the nature of the algebra ab initio and then apply it
to a concrete case. Now, Aluffi focused on the case of a hypersurface – or, so to say, a Cartier
divisor. Though not explicitly, his work suggests that the application to intersection theory as
he had in mind may not turn out to be suitable for more general varieties. One of our results
explains this insufficiency by showing that if the Aluffi algebra is equidimensional – actually, it
suffices to know that two of the minimal primes have the same dimension – then the variety has
codimension one. Moreover, if the Aluffi algebra is actually pure-dimensional (i.e., no embedded
primes and equidimensional) then the variety has to be a Cartier divisor.

Grosso modo the material presented here encloses two sorts of results. First, one studies the
properties of the Aluffi algebra in a quite general ring-theoretic setup, bringing in some of the
typical objects and invariants of commutative algebra. This will take up the first two sections.
The third section deals with the special case of a projectively embedded hypersurface and its
singular locus (“gradient ideal”), which is the main background in Aluffi’s work for this sort of
embedding.

One has a better view of how more structured is the algebra in the case of a homogeneous
equation than in that of its affine companion. In characteristic zero the intervenience of the
Euler formula becomes crucial in order to obtain the specifics of the algebra.

A major case, as already pointed out by Aluffi, is the case where the ideal I is of linear type
– meaning that SR(I) = RR(I). As it follows immediately from the definition, this assumption
implies that A

R�R/J
(I/J) = SR/J(I/J). We show that the converse holds in the case where J

is a principal ideal generated by a regular element.
It is our belief that the algebra is relevant on its own and may play a role in situations other

than having J a principal ideal. Therefore, we deal as much as possible with its structure in the
general case – i.e., when the ideal J has arbitrary codimension. We find that it is closely related
to known themes of commutative algebra, such as standard bases (à la Hironaka), Artin–Rees
number and relation type of an ideal.

One aspect of this to identify the torsion of the Aluffi algebra as the so-called Valabrega–Valla
module. This module – actually an ideal in the Aluffi algebra – has been mainly considered in
[16, 5.1] in connection to the situation in which J is a reduction of the ideal I. However, in
this case the structural surjection AR�A(I/J)� RR/J(I/J) to the relative blowup is actually
an equality in all high degrees, hence the two algebras are finite R/J-modules, a case one can
dismiss as of no interest for the present theory, as we are mainly interested in the case where I
has a regular element modulo J – or at least when ht (J) < ht (I) (strict inequality).

An equally meaningful topic is the nature of the associated primes of the Aluffi algebra. This
could throw some light on the summands of the so-called shadow of the characteristic cycle, a
notion introduced by Aluffi in [loc.cit.] (we thank R. Bedregal for calling our attention to this
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matter). We get pretty close to describing its minimal primes. Since often the algebra is just the
symmetric algebra of an ideal, getting hold of its associated primes undergoes the same hardship
one faces for the latter. Actually, as we will show, the basic intuition one has about the minimal
primes of the symmetric algebra will work for the Aluffi algebra as well.

Our motivation for the last section comes from Aluffi’s quest of the nature of the algebra in
the case that J is generated by the equation of a reduced hypersurface and I defines its singular
locus. Our main interest is to understand its impact in the case of a projective hypersurface and
even more modestly, on the nature of the singularities of plane such curves in low degrees.

Thus, let J = (f) ⊂ R be a principal ideal, where R = k[X1, . . . , Xn]. We will focus on
the Jacobian ideal I = If = (f, ∂f/∂X1, . . . , ∂f/∂Xn). We are particularly motivated by the
problem as to when I is an ideal of linear type. Now, in general f will not be Eulerian, hence the
local number of generators of If maybe an early obstruction – examples of this sort are easily
available.

At the other extreme, if f is Eulerian – e.g., if f homogeneous in the standard grading of the
polynomial ring and and its degree is not a multiple of the characteristic – then it seems like a
good bet to expect that I often be of linear type over R. Of course, I/(f) over R/(f) will never
be of linear type – not even generated by analytically independent elements for that matter –
as the defining equations of the dual variety to V (f) is a permanent obstruction.

In order to stress the partial derivatives of the homogeneous polynomial f we will call If the
gradient ideal of f . We will assume throughout that char(k) = 0 or at least that the latter does
not divide the degree of f . In this case, by the Euler formula, f ∈ If . One may name the Aluffi
embedded algebra in this case the gradient Aluffi algebra of f .

We show that, for a regular element a ∈ R, the Aluffi algebra of a pair (a) ⊂ I ⊂ R is
equidimensional. However, its structure is still intricate even when a is the equation of an
irreducible projective hypersurface and I, its gradient ideal. A sufficiently tidy case is that
of the singular locus of f being set-theoretically a nonempty set of points. Algebraically, this
translates into the gradient ideal If being a (strict) almost complete intersection, a situation
which is fairly manageable.

We will by and large consider the property of being of linear type for If along certain families
of plane curves. Part of the difficulty of the theory is that, perhaps unexpectedly, the notion of
being of linear type is neither kept by specialization nor by generization.

We discuss the property of being of linear type for the gradient ideal, giving evidence that
its behavior may be rather erratic. The main question is to understand how the nature of the
singularities reflect on the algebra and on its minimal primes, with an eye to the cycle components
of Aluffi’s characteristic shadow.

Here we are able to show that the singular ideal of the general member of a family of irreducible
rational quartics, fixing the singularity type, is of linear type. The proof is of some substance
as it uses a classification of these curves in terms of quadratic Cremona maps. We conjecture
that any irreducible quartic has gradient ideal of linear type. In the case of rational quartics, a
classification of the possible families allows for a computational verification of this conjecture.
However, we have found no theoretical argument that works for all rational quartics and not
just for the general member of each of these families.

1. The embedded Aluffi algebra

1.1. Preliminaries. Let A be a ring and a an ideal of A. Let R be a ring surjecting onto A
and let I denote the inverse image of a in R. Note that the symmetric algebra SR(I) maps
surjectively both to the Rees algebra RR(I) and (by functoriality of the symmetric algebra) to
SA(a).



THE ALUFFI ALGEBRA 23

Definition 1.1. The R-embedded Aluffi algebra of a is defined by

A
R�A

(a) : = SA(a)⊗SR(I) RR(I).

We develop a few general preliminaries about the R-embedded Aluffi algebra. The first is a
useful presentation that has already been observed in [2, Theorem 2.9] in the context of schemes.

Lemma 1.2. In the above setup, write I/J := a ⊂ R/J := A, where I ⊂ R is the inverse image
of a in R. There are natural A-algebra isomorphisms

A
R�A

(a) ' RR(I)

(J, J̃)RR(I)
'
⊕
t≥0

It/JIt−1.

where J is in degree 0 and J̃ is in degree 1. In particular, there is a surjective A-algebra
homomorphism A

R�A
(a)� RA(a).

Proof. By the universal property of the symmetric algebra, one sees that

SR/J(I/J) ' SR(I)

(J, J̃)SR(I)
.

Tensoring with RR(I) gives the first isomorphism. The second one is now immediate from the

definition of J̃ .

From the definition and Lemma 1.2, the Aluffi algebra is squeezed as

(1) SR/J(I/J)� A
R�R/J

(I/J)� RR/J(I/J)

and is moreover a residue ring of the ambient Rees algebra RR(I).
If no confusion arises, for a fixed ambient R we will simply refer to this algebra as the Aluffi

algebra of a = I/J . Unless stated otherwise, we will assume that J ( I ( R.
Note that if the ideal I is of linear type – i.e., the natural surjection SR(I) � RR(I) is

injective – then trivially SA(I/J) ' A
R�A

(I/J). The following example shows that in general
there is no converse to this statement even when R is a hypersurface domain.

Example 1.3. Let R = k[x, y, z] = k[X,Y, Z]/(XY −Z2), with J = (x, z) (the ideal of a ruling
in the affine cone) and I = (x, y, z). Then R/J ' k[Y ] and I/J ' (Y ). Therefore, I/J is of
linear type, hence SR/J(I/J) ' AR�R/J(I/J) ' RR/J(I/J).

This is a particular instance in the following large class: take (R,m) to be a non-regular local
ring – or a non-degenerate standard graded algebra over a field and its irrelevant ideal – with
J ⊂ I = m such that R/J is regular. Then I/J is generated by a regular sequence on R/J ,
hence is of linear type, while m is never of linear type.

It would be interesting to find such examples with (R,m) a regular local ring and J ⊂ mI.
In the special case where J is a hypersurface, no such examples exist as we now indicate.

Proposition 1.4. Let R be a Noetherian ring and let I denote an ideal. If a ∈ I is a regular
element then I is of linear type if and only if the natural surjection

SR/(a)(I/(a))� A
R�R/(a)

(I/(a))

is an isomorphism.

Proof. The trivial implication has already been mentioned above. For the reverse direction,
consider an R-algebra presentation S := R[T] � RR(I) based on a set of generators b =
{b1, . . . , bn} of I. Write J =

⊕
i≥1 Ji for the kernel of this map, where Ji stands for the

homogenous part of degree i of J in the standard grading of S. Note that J1S ⊂ J defines
likewise the symmetric algebra of I on S, so we need to show that for any r ≥ 0, Jr ⊂ J1S.
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We induct on r, the result being trivial if r = 1. Thus, let r ≥ 2. By Lemma 1.2 one has

J ⊂ (J1, ã, a)S.

Let F = F (T) ∈ Jr. Then F = L+ ãG+ aH where L ∈ J1Sr−1, G ∈ Sr−1 and H ∈ Sr. Note
that, if a =

∑n
j=1 cjbj then ã =

∑n
j=1 cjTj , hence ã(b) = a, i.e., evaluating ã on the generators

of I gives back a. Therefore

0 = F (b) = L(b) + ã(b)G(b) + aH(b)

= a · (G+H)(b),

since L ∈ J . As a is a regular element, G + H ∈ J , hence, by homogeneity, G ∈ Jr−1 and
H ∈ Jr.

By the inductive hypothesis, G ∈ J1Sr−2, hence ãG ∈ J1Sr−1. Therefore, F ∈ (J1Sr−1)S +
aJrS, thus showing the equality of ideals JrS = (J1Sr−1)S + aJrS. By the graded version of
Nakayama’s lemma, this implies that JrS = (J1Sr−1)S, as was to be shown.

There is the following consequence, for which we claim no priority.

Corollary 1.5. Let R be a Noetherian ring and let {a1, . . . , am} ⊂ R be a regular sequence.
If I ⊂ R is an ideal containing {a1, . . . , am} such that I/(a1, . . . , am) is of linear type on
R/(a1, . . . , am) then I is of linear type on R.

Proof. Induct on m. For m = 1, it readily follows from (1) and Proposition 1.4.
Next assume that m ≥ 2 and write J = (a1, . . . , am). Set R̄ := R/(a1, . . . , am−1) and,

likewise,

J̄ := J/(a1, . . . , am−1) = (am) ⊂ Ī := I/(a1, . . . , am−1).

Clearly, Ī/(am) ' I/J in R̄/(am) ' R/J . Therefore, the assumption that I/J is of linear type
on R/J implies that Ī/(am) is of linear type on R̄/(am), where am is a regular element in R̄.
By the first part, Ī is of linear type on R̄. Then, by the inductive hypothesis, I is of linear type
on R.

1.2. Dimension. A few routine statements follow from the preliminaries of the previous sub-
section.

Proposition 1.6. Let J ( I ( R be ideals of the Noetherian ring R.

(a) If J has a regular element then dimAR�R/J(I/J) ≤ dimR.
(b) If I/J has a regular element then

min{dimR+ 1 , dimSR/J(I/J) } ≥ dimAR�R/J(I/J) ≥ dimR/J + 1.

Proof. (a) Since RR(I) is R-torsionfree, one has ht JRR(I) ≥ 1. Therefore

dimAR�R/J(I/J) ≤ dimRR(I)/JRR(I) ≤ dimR+ 1− 1 = dimR.

(b) This follows immediately from (1) by the well-known dimension formula for the Rees
algebra of an ideal containing a regular element.

Remark 1.7. In (a) this is all one can assert in such generality because if, e.g., a power of the
ideal I is contained in J , then dimAR�R/J(I/J) = dimR/J .

Perhaps less routine is the following result.

Theorem 1.8. Let R be a catenary, equidimensional and equicodimensional Noetherian ring and
let I ( R be an ideal containing a regular element a. Then AR�R/J(I/(a)) is equidimensional
and dimAR�R/J(I/(a)) = dimR.
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Proof. Under the assumptions on R, I/(a) and a, one can apply Proposition 1.6, (a), and the
right hand inequality of (b) to conclude that dimAR�R/J(I/(a)) = dimR− 1 + 1 = dimR.

To prove the equidimensionality part, we will show that AR�R/(a)(I/(a)) is equidimensional
locally at every prime ideal P ⊂ RR(I) in its support. Localizing first at P∩R in the base ring one
can assume that (R,m) is local, with P∩R = m and I ⊂ m. Now,M = (m, Iu) ⊂ RR(I) ⊂ R[Iu]
is not a minimal prime of AR�R/(a)(I/(a)). This is because the Aluffi algebra is graded, with
grading induced from RR(I), hence M would actually be its unique associated prime, which is
impossible as dimR ≥ 1. Thus, for the purpose of showing equidimensionality, we may assume
that P is a homogeneous ideal properly contained in M.

Let I = (b1, . . . , bn). Note that in the present situation, one has by Lemma 1.2:

AR�R/(a)(I/(a)) ' RR(I)/(a, ã).

Write RR(I) = R[b1u, . . . , bnu] ⊂ R[u], so that ã =
∑n
j=1 cjbju, for suitable cj ∈ R.

Suppose first that (Iu) 6⊂ P. Say, b1u /∈ P. Localizing at P yields

AR�R/(a)(I/(a))P ' R[Iu]P/(a, ã)P ' R
[
I

b1
, b1u, (b1u)−1

]
P′

/a, c1 +

m∑
j=2

cj
bj
b1


P′

= R

[
I

b1
, b1u, (b1u)−1

]
P′

/(
a,
a

b1

)
P′

= R

[
I

b1
, b1u, (b1u)−1

]
P′

/(
a

b1

)
P′
,

where P ′ denotes the corresponding image of P. The rightmost ring above is a factor ring of a
catenary, equidimensional and equicodimensional ring by a principal ideal generated by a regular
element, hence it is equidimensional and so is AR�R/(a)(I/(a))P too.

Suppose now that (Iu) ⊂ P. Then m 6⊂ P since P (M, hence p := P ∩R ( m. Note that p
is a prime containing a.

If I 6⊂ p then AR�R/(a)(I/(a))P is a localization of the ring

Rp[Ipu]/(a, ã) = Rp[u]/(a, au) = Rp[u]/(a)

and we conclude as above. If I ⊂ p then AR�R/(a)(I/(a))P is a localization of the Aluffi algebra
ARp�Rp/(a)(I/(a)) and we conclude by induction on dimR.

A geometric version of Theorem 1.8 case is stated in [2, Corollary 2.18].
We will have more to say about the equidimensionality of the Aluffi algebra in subsequent

sections.

1.3. Local or graded case. In this part we assume that (R,m) is a Noetherian local ring and
its maximal ideal or a standard graded algebra over a field and its maximal irrelevant ideal.
Throughout R/m is an infinite field.

Let J ⊂ I ⊂ m. We confront ourselves with two quite opposite situations, namely, when
J ⊂ mI and when J contains minimal generators of I. Note that if J is a reduction of I then
J ⊂ mI would entail It = JIt−1 ⊂ mIt, for t >> 0, hence It = {0}, i.e., I would be nilpotent.

Drawing upon a terminology of geometry, let us agree to say that the pair J ⊂ I of ideals is
non-degenerate if J ⊂ mI. If on the other extreme, J ⊂ I is generated by a subset of minimal
generators of I, we may call the pair J ⊂ I totally degenerate. The latter case can usually be
disposed of by a standard argument (see Proposition 2.2).
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We recall that the analytic spread of I, denoted `(I), is the dimension of the R/m-standard
algebra RR(I)/mRR(I). It can be shown that `(I) coincides with the number of minimal gen-
erators of a least possible reduction of I, but we shall have no occasion to use this result. The
behavior of `(I) in face of other numerical invariants related to I is as follows:

ht I ≤ `(I) ≤ min{µ(I),dimR},

where µ(I) denotes minimal number of generators. We will say that I has maximal analytic
spread if `(I) = dimR. Note that this forces µ(I) ≥ dimR.

Proposition 1.9. Let (R,m) be as above with R/m infinite. Suppose that J ⊂ I is a non-
degenerate pair and that J has a regular element. Then

(i) `(I) ≤ dimAR�R/J(I/J) ≤ dimR; in particular, if I has maximal analytic spread then
dimAR�R/J(I/J) = dimR.

(ii) If I has maximal analytic spread and, moreover, µ(I) = dimR, then mRR(I) is a
minimal prime of AR�R/J(I/J) of maximal dimension.

(iii) If J ⊂ I2 then dimAR�R/J(I/J) = dimR.

Proof. (i) J ⊂ mI implies JIt−1 ⊂ mIt for every t ≥ 0. This yields a surjective homomorphism
AR�R/J(I/J)� RR(I)/mRR(I), from which follows the leftmost inequality.

The other inequality stems from Proposition 1.6, (a).

(ii) The assumption `(I) = µ(I) = dimR implies that I is generated by analytically inde-
pendent elements and the latter entails that RR(I)/mRR(I) is a polynomial ring over R/m.

In particular, mRR(I) is a prime ideal of RR(I). Since JIt−1 ⊂ mIt ⊂ m then (J, J̃) ⊂
mRR(I) as ideals ofRR(I). Therefore AR�R/J(I/J)/mAR�R/J(I/J) ' RR(I)/mRR(I), hence
mAR�R/J(I/J) is a prime ideal with

dimAR�R/J(I/J)/mAR�R/J(I/J) = dimR = dimAR�R/J(I/J)

by the first part.

(iii) Write gr I(R) for the associated graded ring of I. Since J ⊂ I2, one has JIt−1 ⊂ It+1

for every t ≥ 0. This yields a surjective homomorphism AR�R/J(I/J)� gr I(R), showing that
dimAR�R/J(I/J) ≥ dimR. The reverse inequality follows from Proposition 1.6, (a).

We wrap up with a comment on the last result. Namely, we actually have

dimAR�R/J(I/J) ≥ max{`(I),dimR/J + 1}

provided I has a regular element modulo J . The interesting case is when `(I) ≥ dimR/J + 1.
If, say, R is catenary and equidimensional, it would entail

dimAR�R/J(I/J) ≥ dimR+ 1

2
.

2. Structural properties

In this section one looks more closely at the internal structure of the Aluffi algebra and relate
some of the elements of this structure to well-known notions in ideal theory.
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2.1. Torsion and minimal primes. By Lemma 1.2 one has

AR�R/J(I/J) ' RR(I)/(J, J̃)RR(I) =
⊕
t≥0

It/JIt−1.

Since RR/J(I/J) =
⊕

t≥0(It, J)/J '
⊕

t≥0 I
t/J ∩ It, the kernel of the natural surjection

A
R�R/J

(I/J)� RR/J(I/J) is the homogeneous ideal

(2) VVJ⊂I :=
⊕
t≥2

J ∩ It

JIt−1
,

dubbed as the module of Valabrega–Valla (see [13], also [16, 5.1])

We retrieve a result of Valla ([15, Theorem 2.8]):

Corollary 2.1. Let J ⊂ I ( R be ideals of the local ring R. If I/J is of linear type over R/J
(e.g., if I is generated by a regular sequence modulo J) then J ∩ It = JIt−1 for every positive
integer t.

Proof. This follows immediately from the structural “squeezing” (1).

Note that the assumption in [6, Proposition 3.10] to the effect that I be of linear type over R
does not intervene in the above statement.

Here is a useful explicit situation, where we write I = (J, a), with no particular care for
minimal generation.

Proposition 2.2. Let I = (J, a). If J ∩ at ⊂ Jat−1, for every t ≥ 0 then AR�R/J(I/J) �
RR/J(I/J) is an isomorphism.

Proof. One has:

J ∩ It = J ∩ (J, a)t = J ∩ (J(J, a)t−1, at) = J(J, a)t−1 + J ∩ at ⊂ JIt−1 + Jat−1 ⊂ JIt−1.

Remark 2.3. In the notation of the previous proposition, one of the main results of [7] is that
if a is generated by a d-sequence modulo J then the assumption of the proposition is fulfilled.
Therefore, under the hypothesis of [loc.cit.], the surjection AR�R/J(I/J) � RR/J(I/J) is an
isomorphism. This result, however, is a special case of Corollary2.1 if one uses that an ideal
generated by a d-sequence is of linear type. Of course, the proof of this fact requires some
non-trivial work on itself and is previous to the later results, such as [6].

When J = (a) is a principal ideal, one has a result somewhat subsumed in the spirit of [15].

Proposition 2.4. Let a be an ideal in the ring R and let a ∈ R be an element such that
at : a = at for every integer t ≥ 0. Then the inclusion (a) ⊂ (a, a) induces an isomorphism
A
R�R/(a)

((a, a)/(a)) ' RR/(a)((a, a)/(a)).

Proof. The assumption means that (a) ∩ at = aat for every t ≥ 0, hence (a) ∩ (a, a)t =
a(a, a)t−1 + (a) ∩ at = a(a, a)t−1 for t > 0.

The Valabrega–Valla module gives the torsion in as many cases as the ones in which the Rees
algebra is the symmetric algebra modulo torsion.

Proposition 2.5. Let J ⊂ I ( R be ideals of the Noetherian ring R. If I/J has a regular
element then the R/J-torsion of the embedded Aluffi algebra of I/J is the kernel of the natural
surjection A

R�R/J
(I/J)� RR/J(I/J).
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Proof. Consider the general elementary observation: given a ring A and A-modules

N �M � K

such that the A-torsion of N is the kernel of the composite N � K then the A-torsion of M is
the kernel of M � K. We apply this to the situation in (1), by recalling that if a ⊂ A has a
regular element in the ring A then the A-torsion of the symmetric algebra SA(a) is the kernel of
the natural surjection SA(a)� RA(a).

Recall that, given a ring S, an ideal b ⊂ S and an S-module E, one denotes by H0
b(E) the

zeroth local cohomology of E with respect to b. One has

H0
b(E) ' E : b∞ := { ε ∈ E | ∃n ≥ 0, bnε = {0} }.

Corollary 2.6. Let J ⊂ I ( R be ideals of the Noetherian ring R. If I/J has a regular element
then VVJ⊂I = H0

I/J(A), where A denotes the Aluffi algebra and VVJ⊂I is the Valabrega–Valla

module as introduced above.

Proof. By Proposition 2.5, VVJ⊂I is the R/J-torsion of A. On the other hand, localizing at
primes of the base R/J not containing I/J makes the surjection SR/J(I/J) � RR/J(I/J) an
isomorphism, hence also the surjection A � RR/J(I/J). Therefore, A is torsionfree locally at
those primes. Since I/J has regular elements, the result follows easily (see, e.g., [11, Lemma
5.2]).

Remark 2.7. The last result says, in particular, that there exists an integer k ≥ 0 such that
Ik (J ∩ It) ⊂ JIt−1 for every t ≥ 1. Later on we will relate such an exponent to the so-called
Artin–Rees number.

By the same principle, one can get a hold of the minimal primes of the Aluffi algebra. Quite
generally, to any ideal a ⊂ R we associate its extended–contracted ideal

ã := aR[u] ∩R[Iu] =
∑
t≥0

(a ∩ It)ut

in the Rees algebra RR(I) ' R[Iu] ⊂ R[u] (u a variable over R).

Proposition 2.8. Let J ⊂ I ( R be ideals of the Noetherian ring R. Any minimal prime ℘
of AR�R/J(I/J) on RR(I) is either of the form ℘ = p̃ for some minimal prime of R/J on
R, or else has the form (q, ℘+) where q := ℘ ∩ R contains a minimal prime of R/I on R and
℘+ = ℘ ∩ (Iu).

Proof. By Corollary 2.6 – rather by its proof – a power of I annihilates the kernel ofAR�R/J(I/J)�
RR/J(I/J) lifted to RR(I) – call it K. If ℘ ⊂ RR(I) is a minimal prime of AR�R/J(I/J)
it follows that ℘ contains either K or I. In the first case, it contains a minimal prime of
RR(I)/K ' RR/J(I/J) hence must be a minimal prime of the latter on RR(I). But, it is well
known that the above extending-contracting operation induces a bijection between the minimal
primes of R/J on R and the minimal primes of RR/J(I/J) on RR(I).

In the case I ⊂ ℘, since ℘ is homogeneous in the natural N-grading of RR(I), then it is clear
that ℘ = (q, ℘+), where ℘+ = ℘ ∩RR(I)+; obviously, q contains a minimal prime of R/I on R.

Remark 2.9. Note that if ℘ ⊂ RR(I) is a minimal prime of AR�R/J(I/J) containing I then
℘+ behaves erratically: it can actually be zero in certain cases (see, e.g., Proposition 1.9, (ii)).
On the other hand, its contraction q ⊂ R may turn out to be an embedded associated prime of
R/I and not a minimal one (see Section 3).
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Corollary 2.10. Let J ⊂ I ( R be ideals of a Noetherian ring R such that I/J has a regular
element. If AR�R/J(I/J) is equidimensional then

dimAR�R/J(I/J) = dimR/J + 1.

Proof. This readily follows from Proposition 2.8 and the known value of the dimension of
RR/J(I/J) under the present assumption on I/J .

Equidimensionality of AR�R/J(I/J) if J has codimension ≥ 2 may be quite rare. The next
result shows that, at least in the local or graded case, pure-dimensionality is really infrequent
under this assumption.

Proposition 2.11. Let (R,m) be a Noetherian local ring and its maximal ideal m or a standard
graded algebra over a field and its maximal irrelevant ideal m. Assume that R/m infinite. Let
J ⊂ I ⊂ m, with J having a regular element and I having a regular element modulo J . Suppose
that:

(i) J ⊂ I ⊂ m is a non-degenerate pair and `(I) = µ(I) = dimR ; or else
(ii) J ⊂ I2.

If AR�R/J(I/J) is equidimensional then J has height one. If AR�R/J(I/J) is pure-dimensional
then J is an ideal of pure height one (hence, principal if R is regular).

Proof. By Proposition 2.8, RR/J(I/J) is equidimensional. In particular, one has

dimAR�R/J(I/J) = dimRR/J(I/J) = dimR/J + 1 ≤ dimR− ht J + 1.

On the other hand, by Proposition 1.9, (ii) or (iii), dimAR�R/J(I/J) = dimR. Therefore,
ht J ≤ 1 (hence ht J = 1 since J has a regular element by hypothesis).

Now, assume that AR�R/J(I/J) is pure-dimensional. Let p ∈ AssR(R/J) have height ≥ 2.
By Proposition 2.8 and the the pure-dimensionality of AR�R/J(I/J), the prime p̃ satisfies

dimAR�R/J(I/J) = dimAR�R/J(I/J)/p̃ = dimRR(I)/p̃ = dimRR/p((p, I)/p)

= dimR/p+ 1 ≤ dimR− ht p+ 1 ≤ dimR− 2 + 1 = dimR− 1.

Again Proposition 1.9, (ii) or (iii) gives a contradiction.

More difficult is to get hold of non-trivial embedded primes of AR�A(I/J). In the case where
J is the ideal of a homogeneous hypersurface in projective space there are often embedded primes
containing the irrelevant ideal.

We wrap up with the following

Question 2.12. Suppose as above that J = (a) ⊂ mI, I/(a) has a regular element and I
has maximal analytic spread. To what extent can we assert that, conversely, AR�A(I/J) is
pure-dimensional?

This seems to be the case in a variety of situations such as the one considered in Section 3.

2.2. Relation to the Artin–Rees number. A close associate to VVJ⊂I is the well-known ideal

ker (gr I(R)� gr I/J(R/J)) =
⊕
t≥0

(It+1 + J ∩ It)/It+1,

generated by the I-initial forms of elements of J . Recall that the I-initial form of an element
a ∈ R is the residue class a∗ of a in Iν(a)/Iν(a)+1 where ν(a) is the Ith order of a (i.e., a ∈
Iν(a) \ Iν(a)+1, setting ν(a) =∞ and a∗ = 0 if a ∈ ∩t≥0It).

A set of elements of J is called an I-standard base of J if their initial forms in gr I(R) generate
the above ideal. If R is Noetherian local then an I-standard base of J is a generating set of J
(see [5, Lemma 6]). We will shorten ν(ai) to νi if ai is sufficiently clear from the context.



30 ABBAS NASROLLAH NEJAD & ARON SIMIS

The following basic result will be used throughout.

Theorem 2.13. ([13]) Let J = (a1, . . . , am) be an ideal of ring R. Then {a1, . . . , am} is an
I-standard base of J if and only if

J ∩ It =

m∑
i=1

aiI
t−νi

for every positive integer t.

This result implies immediately:

Proposition 2.14. Let R be a Noetherian local ring and J ⊂ I be ideals of R. Let {a1, . . . , am}
be an I-standard base of J such that 1 ≤ ν1 ≤ ν2 ≤ · · · ≤ νm.

(a) The surjection A
R�R/J

(I/J) � RR/J(I/J) is an isomorphism if and only if νm = 1

(i.e., ν1 = · · · = νm = 1)
(b) More generally

R ∩ Iνm−1RR(I) ⊂ A ⊂ R ∩ Iν1−1RR(I),

where R =
⊕

t≥0 J ∩ It and A =
⊕

t≥0 JI
t−1.

(c) If ν1 > 1 and J is not contained in any minimal prime of R, then dimAR�R/J(I/J) =
dimR.

Proof. (a) One direction is obvious from Theorem 2.13. For the reverse implication, assume
that J ∩ It = JIt−1 for every positive integer t. By the above remark, one may assume that
a1, . . . , am is a minimal set of generators of J . If for some i, ai ∈ I2 then by hypothesis ai ∈ JI,
which clearly contradicts the minimality of a1, . . . , am.

(b) By definition, we want to show the two inclusions

J ∩ It+νm−1 ⊂ JIt−1 ⊂ J ∩ It+ν1−1

as subideals of J ∩ It, for every t ≥ 1.
This is however a straightforward consequence of Theorem 2.13 as one has thereof

J ∩ Iνm+t−1 =

m∑
i=1

aiI
νm+t−1−νi ⊂

m∑
i=1

aiI
t−1 = JIt−1,

and similarly

J ∩ Iν1+t−1 =

m∑
i=1

aiI
ν1+t−1−νi ⊃

m∑
i=1

aiI
t−1 = JIt−1.

(c) Quite generally, for a positive integer r one has

dimRR(I)/R ∩ IrRR(I) ≥ max{dimRR(I)/R , dimRR(I)/IrRR(I)}
= max{dimRR/J(I/J), dim gr I(R)} = dimR.

On the other hand, since J is assumed to be of positive height, by Proposition 1.6 (a) one has
dimAR�R/J(I/J) ≤ dimR. The result follows now at once.

We close with yet another condition for the surjection AR�R/J(I/J)� RR/J(I/J) to be an
isomorphism.

For this recall that, pretty generally, given ideals J, I ⊂ R the Artin–Rees number of J relative
to I is the integer

min{k ≥ 0 | J ∩ It = (J ∩ Ik)It−k ∀ t ≥ k}.
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We observe that if J ⊂ I ( R, where R is Noetherian and J has regular elements then the
Artin–Rees number of J relative to I is ≥ 1.

Proposition 2.15. Let J ⊂ I ( R be ideals of a Noetherian ring R and let k ≥ 1 be an upper
bound for the Artin–Rees number of J relative to I, i.e., J ∩ It = (J ∩ Ik)It−k ∀ t ≥ k.

Then Ik−1 annihilates the kernel of the surjectionAR�R/J(I/J) � RR/J(I/J). Moreover,
the latter is an isomorphism if and only if the Artin–Rees number of J relative to I is 1.

Proof. One has (J ∩ It)Ik−1 = (J ∩ Ik)It−kIk−1 = (J ∩ Ik)It−1 ⊂ JIt−1 for t ≥ k. On the
other hand, for t ≤ k − 1, one has Ik−1 ⊂ It−1, hence (J ∩ It)Ik−1 ⊂ (J ∩ It)It−1 ⊂ JIt−1.

The second assertion is clear.

More generally:

Lemma 2.16. Let J ⊂ I ⊂ R be ideals of a ring R. Assume that ` is an upper bound for
the Artin–Rees number of J relative to I such that J ∩ It = JIt−1 for every t ≤ `. Then
AR�R/J(I/J)� RR/J(I/J) is an isomorphism.

Proof. By assumption J ∩ It = It−`(J ∩ I`) for t ≥ `. Now use the assumed equality J ∩ I` =
JI`−1 to get J ∩ It = JIt−1 for t ≥ `.

Given a ring A and an ideal a = (a1, . . . , an) ⊂ A, one lets R[T1, . . . , Tn] → RR(a) = R[aT ]
be the graded map sending Ti to ai T . The relation type of a is the largest degree of any minimal
system of homogeneous generators of the kernel J . Since the isomorphism R[T1, . . . , Tm]/J '
RR(a) is graded, an application of the Schanuel lemma to the graded pieces shows that the
notion is independent of the set of generators of a.

Corollary 2.17. Let R be a Notherian ring and let J ⊂ I be ideals in R such that

(i) I/J has relation type at most ` as an ideal of R/J .
(ii) J ∩ It = JIt−1 for every t ≤ `.

Then AR�R/J(I/J)� RR/J(I/J) is an isomorphism.

Proof. By Lemma 2.16, it suffices to show that ` is an upper bound for the Artin–Rees number
of J relative to I. Thus, Let I be generated by elements a1, . . . , an and let let a ∈ J ∩ It,
with t ≥ `. Then there exists a homogeneous F ∈ R[T] = R[T1, . . . , Tn], of degree t, such
that F (a1, . . . , an) = a. Since a ∈ J , reducing modulo J shows that F is a polynomial relation
on a1, . . . , an modulo J . Then, by assumption there are polynomials Gi, Hi ∈ R[T] of degrees
`, t−`, respectively, such thatGi(a1, . . . , an) ≡ 0 (mod JR[T]) for i = 1, . . . , n and F ≡

∑
iGiHi

(mod JR[T]). Write F =
∑
GiHi + L for some homogeneous polynomial L ∈ JR[T] of degree

t. Since
L(a1, . . . , an) ∈ JIt ⊂ It−`(J ∩ I`),

then Gi(a1, . . . , an) ⊂ J ∩ I` and Hi(a1, . . . , an) ∈ It−` for t ≥ `. This shows that the element
a = F (a1, . . . , an) ∈ It−`(J ∩ I`), that is, J ∩ It = (J ∩ I`)It−` for t ≥ `.

Using the notion of standard base we can add a tiny bit on the problem of describing the
associated primes of the Aluffi algebra.

Proposition 2.18. Let J ⊂ I ( R be ideals of a Noetherian ring R such that I/J has a regular
element. If p ∈ AssR(R/J) then p̃ ∈ AssRR(I)(AR�R/J(I/J)).

Proof. Let p ∈ AssR(R/J). Since I/J contains a regular element, one has I 6⊂ p. Let a1, . . . , am
be an I-standard base of p, so that p = (a1, . . . , am) and

p̃ =
⊕
t≥0

p ∩ It =
⊕
t≥0

(
m∑
i=1

aiI
t−νi

)
,
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where νi = νI(ai). Write ν = maxi νi for i = 1, . . . ,m and take b ∈ Iν−1 \ p (note that if ν = 0,
which is a possibility, one means any b 6∈ p).

Write R =
⊕

t≥0 J ∩ It and A =
⊕

t≥0 JI
t−1.

Say, p = J : a. We claim that p̃ = A : ab which will prove that p̃ is an associated prime of
AR�R/J(I/J)) on RR(I).

For this, let ct ∈ J ∩ It ⊂ p ∩ It =
∑m
i=1 aiI

t−νi , with t ≥ 0. Then

bct ∈
m∑
i=1

ai bI
t−νi ⊂

m∑
i=1

aiI
t−νi+ν−1 ⊂

m∑
i=1

aiI
t−1 = p It−1 = (J : a)It−1 ⊂ JIt−1 : a,

hence bp̃ ⊂ A : a, hence p̃ ⊂ A : ab.
For the inverse inclusion, since A ⊂ R, it follows that A : ab ⊂ R : ab = (R : a) : b. Note that

J̃ : a = (J : a)R[t] ∩RR(I) = (JR[t] : a) ∩RR(I) = (JR[t] ∩RR(I)) : a = R : a.
Therefore A : ba ⊂ p̃ : b = p̃. Thus, p̃ = A : ab as was to be shown.

2.3. Selected examples. Let us agree to call a pair of ideals J ⊂ I ⊂ R an A-torsionfree pair
if the map AR�A(I/J)� RR/J(I/J) is injective.

The examples we have in mind in this part are of the two sorts mentioned previously, namely,
of totally degenerate or non-degenerate pairs. The first kind will be based on Proposition 2.2. For
these, we let R = k[X] be an N-graded polynomial ring over a field k, J ⊂ R is a homogeneous
ideal and I ⊂ R is the Jacobian ideal of J , by which we always mean the ideal (J, Ir(Θ)) where
r = ht (J) and Θ stands for the Jacobian matrix of a set of generators of J . One knows that
this maybe a slack ideal, but it is well defined modulo J .

First we state a general format that implies an A-torsionfree pair J ⊂ I.

Example 2.19. Let J ⊂ R = k[x] be an ideal generated by forms of the same degree d ≥ 1. If
I = (J,mr), where m = (x) and r ≥ d, then the pair J ⊂ I is A-torsionfree.

To see this, one uses Proposition 2.2. Namely, it suffices to show that J ∩ mrt ⊂ Jmr(t−1)

for every t ≥ 1. Let a1, . . . , am be generators of J of degree d and let F be a form in the ai’s
such that F ∈ mrt. Then F =

∑m
i=1Giai where Gi =

∑
aαxα ∈ Rrt−d+δ for δ ≥ 0, since

Rrt−d+δ = Rr−d+δ Rrt−r, so we can rewrite Gi as

Gi =
∑

|α|=r−d+δ
|β|=rt−r

aα,β xα+β , hence F =
∑

|α|=r−d+δ

xα

 s∑
i=1

|β|=rt−r

(xβ)ai


Therefore F ∈ Jmrt−r = Jmr(t−1), as required.

Instances of this situation seem to be any of the following ideals J with respect to the respective
Jacobian ideal I.

(a) The defining ideal of the rational normal curve ;
(b) The defining ideal of the Segre embedding of Pr × Ps, with r > 1 or s > 1 ;
(c) The defining ideal of the 2–Veronese embedding of a projective space ;
(d) The ideal generated by the 4× 4 Pfaffians.

It is well-known that J is the ideal of 2–minors of the generic Hankel, square, symmetric
matrix, respectively, and, lastly, the ideal generated by the maximal Pfaffians of a 5 × 5 skew-
symmetric.

Let I denote the Jacobian ideal of J on R. Set m = (x) and write ht J = r ≥ 2. We would
need to prove that Ir(Θ) = mr, where Θ is the Jacobian matrix of the natural generators of J .
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A calculation of a good deal of cases gives evidence to this equality – actually, it may be the
expression of a more general fact disguised under an inductive procedure.

Note that the case of the Segre embedding of P1 × P1 is exceptional, essentially because it is
a hypersurface. Here the ideal of 1-minors is x which is of linear type, but clearly the defining
ideal of the relative blowup contains the equation of the dual to the (self-dual) quadric surface.

Example 2.20. Consider the monomial x1 · · ·xn ∈ R = k[x1, . . . , xn] (n ≥ 3) and let J ⊂ R be
the ideal generated by its partial derivatives ai =: x1x2 · · · x̂i · · ·xn, for i = 1, ..., n. If I is the
Jacobian ideal of J the pair J ⊂ I is A-torsionfree.

Proof. Its well-known and easy that J is a codimension 2 perfect ideal with Hilbert–Burch
matrix

ϕ =



x1 0 0 . . . 0
0 0 0 . . . x2
...

...
... . . .

...
0 0 xn−2 . . . 0
0 xn−1 0 . . . 0
−xn −xn −xn . . . −xn


.

Setting ∆i,j :=
∂aj
∂xi

= x1x2...x̂i...x̂j ...xn, and inspecting the Hessian matrix Θ of x1 · · ·xn – a
symmetric matrix – one finds three basic types of 2× 2 minors, namely

• Principal minors:

det

(
0 ∆i,j

∆i,j 0

)
= ∆2

i,j ,

one for each pair i < j;
• vanishing minors:

det

(
∆i,j ∆i,j′

∆i′,j ∆i′,j′

)
= 0,

one for each choice of row indices 1 ≤ i, i′ ≤ n and column indices 1 ≤ j, j′ ≤ n;
• semidiagonal minors of typical form

Λj := det

(
∆i,j 0
∗ ∆i′,i

)
.

Since clearly, Λj ∈ J , we get that the Jacobian ideal I of J is generated by J and the squares of
the second partial derivatives of x1 · · ·xn, i.e., I = (J,∆2

i,j) for 1 ≤ i < j ≤ n.

As a side curiosity we note that I = (J, I2(Θ)) = (J, In−2(ϕ)2), hence
√
I = In−2(ϕ), so in

particular I/J has codimension one. This example will therefore yield a case of a height one ideal
in R/J which is A-torsionfree, but clearly not of linear type because its number of generators
on R/J is too large.

Setting ∆ = (∆2
i,j | 1 ≤ i < j ≤ n), the usual algorithmic procedure to find generators of the

intersection of monomial ideals yields for any t ≥ 2

J ∩∆t = ((xi, xj)∆
2t
i,j , (F))

where F is the set of all monomials in ∆t excluding the monomials ∆2t
i,j for 1 ≤ i < j ≤ n.

Another calculation shows that (xi, xj)∆
2t
i,j ∈ J∆t−1, for 1 ≤ i < j ≤ n, and that F ⊂ J2∆t−2.

This proves that J ∩∆t ⊂ JIt−1.
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Question 2.21. (k algebraically closed) Let J ⊂ R = k[x1, . . . , xn] denote the homogeneous
defining ideal of an arrangement of linear subspaces of dimension n−3 of An. If I is the Jacobian
ideal of J , when is J ⊂ I an A-torsionfree pair?

Plausibly, a similar question can be posed about the Jacobian ideal of a hyperplane arrange-
ment.

Example 2.22. Let J ⊂ R = k[x1, . . . , xn] denote the ideal of the coordinate points in projective
space Pn−1, i.e., J = (xixj | 1 ≤ i < j ≤ n). If I is the Jacobian ideal of J the pair J ⊂ I is
A-torsionfree.

Proof. Since J contains all square-free monomials of degree 2, it is rather transparent that the
Jacobian ideal I of J is generated by J and pure powers of the variables. Moreover, a closer
inspection shows that, more precisely,

I = (J, xn−11 , . . . , xn−1n ).

Setting ∆ := (xn−11 , . . . , xn−1n ), a procedure based on finding generators of the intersection of
monomial ideals yields for any t ≥ 2

J ∩∆t = (x
t(n−1)
i (x1, . . . , x̂i, . . . , xn), (F)),

where (F) is the set of all monomials in ∆t excluding the monomials x
t(n−1)
i for i = 1, · · · , n.

A calculation shows that x
t(n−1)
i (x1, . . . , x̂i, . . . , xn) ∈ J∆n−1 for i = 1, · · · , n and that (F) ⊂

J2∆t−2. This proves that J ∩∆t ⊂ JIt−1.

Example 2.23. Let J ⊂ R = k[x, y, z] denote the homogeneous defining ideal of the four points
(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1) and (1 : 1 : 1) in the projective plane P2

k and let I denote its
Jacobian ideal. An easy calculation gives

J = (x2 − xz, y2 − yz) and I = (x2 − xz, y2 − yz, x(2y − z), y(2x− z), (2x− z)(2y − z)).

In terms of the internal grading of the algebra, using the description in Proposition 2.5, the
torsion is generated by the appropriate residues of {xz2(x− z), yz2(y− z)} ⊂ J ∩ I2. For further
details see [10, 1.1].

The last two examples motivate the following

Question 2.24. (k algebraically closed) Let J ⊂ R = k[x1, . . . , xn] denote a radical homoge-
neous ideal of codimension n− 1 (i.e., the ideal of a reduced set of points). If I is the Jacobian
ideal of J , when is J ⊂ I an A-torsionfree pair?

3. The gradient Aluffi algebra of a projective hypersurface

In this section we will deal with the case where J is generated by the equation of a reduced
hypersurface.

Thus, let J = (f) ⊂ R be a principal ideal, where R = k[X1, . . . , Xn]. We will focus on the
Jacobian ideal If = (f, ∂f/∂X1, . . . , ∂f/∂Xn). We are particularly motivated by the problem
as to when If is an ideal of linear type. In general, if f is not Eulerian, the local number of
generators of If maybe an early obstruction to this property. We will consider the case where f
is homogeneous in the standard grading of the polynomial ring and its degree is not a multiple
of the characteristic – hence, f ∈ If . In this context the ideal If will often be of linear type.

We call If the gradient ideal of f and the corresponding algebra AR�R/(f)(If/(f)), the
gradient Aluffi algebra of f . By Proposition 1.6 (d), it is equidimensional of dimension dimR = n.
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3.1. Preliminaries on the gradient ideal. If f defines a smooth hypersurface then If is
irrelevant, i.e., is generated by a regular sequence, hence is of linear type. We regard this case as
uninteresting and assume that f has singularities. This entails ht (If/(f)) ≤ n− 2. If moreover
f is reduced then ht (If/(f)) ≥ 1. For n = 3 we therefore find ht (If/(f)) = 1. Ideals of height
1 in non-regular rings of dimension 2 are a tall order and typically involve a non-trivial primary
decomposition.

Thus, even over projective plane curves the structure of the gradient Aluffi algebra seems to
be fairly intricate. Note that for n = 3, the ideal If is an almost complete intersection. Since
we regard the linear type case as a limit situation we would like to understand this case first.

Now, for an almost complete intersection this property is fairly under control. For convenience
we file the following general result, which collects in a more detailed version several known
facts about an almost complete intersection (see [12, Proposition 3.7], also [6, Proposition 8.4,
Proposition 10.4, Remark 10.5]).

Lemma 3.1. Let R denote a Cohen–Macaulay local ring and let I ⊂ R denote a proper ideal of
height h ≥ 0. Assume that

• I is a strict almost complete intersection (i.e., minimally generated by h+ 1 elements)
• R/I is equidimensional (i.e., dimR/I = dimR/P for every minimal prime P of R/I)
• I satisfies the so-called sliding depth inequality depthR/I ≥ dimR/I − 1.

Let Rm
ϕ−→ Rh+1 −→ I −→ 0 stand for a minimal free presentation of I as an R-module.

The following conditions are equivalent:

(1) ht I1(ϕ) ≥ ht I + 1
(2) IP is a complete intersection for every minimal prime P of R/I
(3) I is of linear type.

Proof. (1) ⇒ (2) Localizing at such a prime leaves some element of I1(ϕ) invertible, so up to
an elementary transformation on ϕP the local presentation has the form

Rm−1P ⊕RP
ϕP−→ RhP ⊕RP −→ IP −→ 0,

with

ϕP =

(
1 0

0 ψ

)
Therefore, we get a free presentation Rm−1P

ψ−→ RhP −→ IP −→ 0, thus showing that IP is
generated by (at most) h elements.

(2) ⇒ (3) By [6, Proposition 10.4] the symmetric algebra of I is a Cohen–Macaulay ring.
Therefore, by [6, Proposition 8.4] it suffices to show that ht IQ ≤ htQ for every prime Q ⊂ R
containing I. Let P be a minimal prime of R/I contained in Q. If P = Q the hypothesis
guarantees the inequality. Otherwise ht (Q) ≥ h + 1. But ht (IQ) = ht IP = h because R/I is
equidimensional, hence we are through.

(3) ⇒ (1) By [6, Lemma 8.2 and Proposition 8.4] one has ht It(ϕ) ≥ rank(ϕ)− t + 2 for every
1 ≤ t ≤ rank(ϕ) = h. In particular, ht I1(ϕ) ≥ h− 1 + 2 = ht I + 1.

Corollary 3.2. Let f ∈ R = k[x1, . . . , xn] stand for a reduced homogeneous polynomial. Assume
that the singular locus of V (f) ⊂ Pn−1 consists of a nonempty set of points. The following are
equivalent:

(1) The coordinates of the vector fields of Pn−1 vanishing on f generate an irrelevant ideal.
(2) Locally at each singular point of V (f) the gradient ideal is a complete intersection.
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(3) The gradient ideal of f is of linear type.

Proof. A vector field v =
∑n
i=1 ai∂/∂xi vanishes on f if and only if

∑n
i=1 ai∂f/∂xi = 0.

Therefore the coordinates of all such vector fields generate the ideal of 1-minors of a syzygy
matrix of the gradient ideal. The result then follows from Lemma 3.1 once its hypotheses are
verified in this setup, as we next proceed to see.

Since f is assumed to be reduced, whose singular locus is a nonempty set of isolated singu-
larities, its gradient ideal is a (homogeneous) ideal of codimension n − 1, hence can only have
minimal primes of codimension n− 1 in R. Therefore it is equidimensional.

Finally, the depth condition is trivially verified for the numbers in question.

So much for the linear type property. Clearly, this property implies that the partial derivatives
are algebraically independent over k. The latter property in turn reads geometrically to the effect
that the polar map associated to the hypersurface V (f) ⊂ Pn−1 is dominant. In characteristic
zero this is tantamount to saying that the Hessian of f does not vanish (cf. [4] for a detailed
account on this).

The following result collects parts of the main backstage for the Aluffi gradient algebra.

Theorem 3.3. Let k denote an infinite field, let f ∈ R = k[x] = k[x1, . . . , xn] be a reduced
homogeneous polynomial whose degree is not a multiple of the characteristic of k and let If ⊂ R
denote the corresponding gradient ideal. Assume that

(i) The singular locus of V (f) ⊂ Pn−1 consists of a nonempty set of points (equivalently,
dimR/If = 1)

(ii) The partial derivatives of f are algebraically independent over k.

Then:

(a) The minimal primes of the gradient Aluffi algebra on RR(If ) are
• The minimal prime ideals of RR/(f)(If/(f)), all of the form

∑
t≥0(p) ∩ It for a

prime factor p of f
• The extended ideal (x)RR(If )
• Prime ideals whose lifting to R[T] = R[T1, . . . , Tn] from a presentation R[T]/A '
RR(I) have the form (P, f), where P ⊂ R is a minimal prime of R/If and f is an
irreducible homogeneous polynomial in k[T].

(b) The gradient Aluffi algebra has non-trivial torsion.
(c) If is an ideal of linear type (respectively, weakly of linear type) if and only if the natural

surjection

SR/(f)(If/(f))� AR�R/(f)(If/(f))

is an isomorphism (respectively, an isomorphism in all high degrees).
(d) The symmetric algebra SR/(f)(If/(f)) is Cohen–Macaulay ; in particular, if If is of

linear type then the gradient Aluffi algebra is Cohen–Macaulay.

Proof. (a) We apply Proposition 2.8, from which the first set of minimal primes is clear.
To see that (x)RR(If ) is a minimal prime thereof one proceeds as follows. There is a presen-

tation of the gradient Aluffi algebra

(3) AR�R/(f)(If/(f)) ' R[T]/(Jf , f,
n∑
i=1

xiTi),

where Jf denotes the defining ideal of the Rees algebra RR(If ) on R[T].
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Since the partials are homogeneous of the same degree algebraic independence over k is
tantamount to analytic independence (i.e., the relations of the generators of If have coefficients
in the ideal (x)). Therefore, the result follows from Proposition 1.9, (ii).

Let P be a minimal prime of AR�R/(f)(If/(f)) whose contraction P to R contains If and
is properly contained in (x). By Proposition 2.8, P = (P,P+). By assumption (i) it follows
that P is a minimal prime of R/If , hence has height n− 1. By Theorem 1.8, AR�R/(f)(If/(f))
is equidimensional. Therefore the lifting of P to R[T] has height n. Since the lifting of any
minimal generator of (P+) is irreducible in k[T] it follows that the lifting of P to R[T] has the
required form.

(b) The defining equation of the dual curve to f belongs to the presentation ideal ofRR/(f)(If/(f))
onR[T] and not to (x)R[T], hence by (a) it does not belong to the defining ideal ofAR�R/(f)(If/(f))
on R[T].

(c) This is a straightforward application of Proposition 1.4. The argument for the weak version
of the property of being of linear type is exactly the same as in [loc.cit.].

(d) We apply the criterion of [6, Theorem 10.1]. Namely, we have to verify the following
conditions:

(A) µ(If/(f)P/f ) ≤ ht (P/(f)) + 1 = htP , for every prime ideal P ⊃ If of R.
(B) depth (Hi)P/(f) ≥ ht (P/(f))−µ(If/(f)P/(f))+i = htP−µ(If/(f)P/(f))+i−1, for every

prime ideal P ⊃ If of R and every i such that 0 ≤ i ≤ µ(If/(f)P/(f))−ht (If/(f)P/(f)),
and where Hi denotes the ith Koszul homology module of the partial derivatives on
R/(f).

Note that the primes containing If are m = (x1, . . . , xn) and its minimal primes, the latter all
of height n− 1.

(A) Since If itself is generated by n elements, it suffices to check the minimal primes. Thus,
let P ⊂ R be such a prime. Say, without lost of generality, that xn 6∈ P . Because of the Euler
relation, ∂f/∂xn ∈ If locally at P and module (f). Therefore, locally at P and module (f), If
is generated by n− 1 = ht (P ) elements.

(B) If P is a minimal prime of If we saw in (A) that µ(If/(f)P/(f)) = n−1. Since htP = n−1,
the condition is trivially verified as i = 0, 1.

Thus, let P = m. Again, an easy inspection of the numbers tell us that only the case where
i = 2 needs an argument and, in this case, one has to prove that depth (H2)m/(f) ≥ 1. Localize
R at m and update the notation, so R := Rm ⊃ If := Ifm ⊃ (f) = (f)m and H2 := (H2)P/(f).

Now, f is a nonzero element in If and If has grade n − 1 in R. Thus, there is a regular
sequence in If of length n − 1 starting with f . Write L ⊂ If for the ideal generated by this
regular sequence.

The following isomorphism is well know (see, e.g., [3, Theorem 1.6.16]):

H2 ' HomR/(f)

(
R/(f)

If/(f)
,
R/(f)

L/(f)

)
' HomR/(f) (R/If , R/L) .

Therefore AssR/(f)(H2) = SuppR/(f)(R/If ) ∩ AssR/(f)(R/L) ⊂ AssR/(f)(R/L). But L is

generated by a regular sequence of length n − 2 modulo f by construction, while dimR/(f) =
n− 1. It follows that m/(f) 6∈ AssR/(f)(R/(J, f)), hence m/(f) 6∈ AssR/(f)(H2).

Remark 3.4. For n ≤ 4, if the partial derivatives are k-linearly independent then the result of
Gordan–Hesse–Noether implies that they are algebraically independent over k (see [4, Proposi-
tion 2.7] for a proof of the case n = 3 based on an observation of Zak). Thus, the assumption in
this range is just linear independence.
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As to (c), it’s valid with no restriction when f is reduced since the defining equations of the
dual variety to the hypersurface V (f) belong to the presentation ideal Af and, moreover, the
ideal generated by these contains properly the defining ideal of the polar map of V (f) (see [4,
Remark 2.4]).

Example 3.5. Here is a simple illustration. Let f = x2y2 + x2z2 + y2z2, the equation of a
plane quartic with 3 ordinary nodes. The minimal primes of the corresponding gradient Aluffi
algebra, lifted to k[x, y, z, T, U, V ], are (x, y, z)k[x, y, z, T, U, V ], (x, y, V ), (x, z, U), (y, z, T ) and
its lifted torsion. Since If is of linear type (see next section), these are of course the minimal
primes of the symmetric algebra SR/(f)(If/(f)).

3.2. Gradient ideals of linear type along a family. In general, the gradient ideal If will
not be of linear type. This subsection will prepare the ground to showing that if f is the equation
of an irreducible plane rational quartic then If is an ideal of linear type.

We can immediately show simple cases of rational plane quintics whose corresponding gradient
ideals are not of linear type. Moreover, though the corresponding gradient Aluffi algebras are
equidimensional, they tend to behave quite erratically from the viewpoint of the Cohen–Macaulay
locus and of the associated primes. It is apparent that this behavior reflects the nature of the
singularities, but it is in general quite misterious.

Example 3.6. Let f = y4z+x5+x3y2. Then If = (x2(5x2+3y2), y(2x3+4y2z), y4). Canceling
the common factor among the last two generators, gives rise to the obvious Koszul relation.
From this it immediately follows that the radical of the ideal generated by the coordinates of
the syzygies of If has x, y among its minimal generators. The rest follows by inspection, as it is
not difficult to verify that no syzygy coordinate has as term a pure z-power. By Corollary 3.2,
If is not of linear type.

Of course everything in this example is easily obtained by machine computation. The three
algebras SR/(f)(If/(f))� AR�R/(f)(If/(f))� RR/(f)(If/(f)) are all distinct, but of the same
dimension. The leftmost is Cohen–Macaulay, while the Aluffi algebra has no embedded primes
though it is not Cohen–Macaulay.

Now let f = zy2(x2 + y2) + x5 + y5 + x3y2. Here the symmetric algebra is Cohen–Macaulay,
while the Aluffi algebra has embedded primes.

In this part we study families of singular plane curves and a certain “partial” gradient ideal
for the linear type property and the corresponding Aluffi algebra. We start by making clear
what we mean by a family for our purposes. Note that the considerations that follow work ipsis
litteris for hypersurfaces.

Let k[u] = k[u1, . . . , um] stand for a polynomial ring over the field k and let F ∈ S :=
k[u][x, y, z] denote a polynomial which is a form on x, y, z. We give S the structure of standard
graded ring over k[u]. The basic assumption is that the content of F with respect to the
u-coefficients is 1. Then F is a non-zero-divisor on k[u]/I for every ideal I ⊂ k[u], hence
Tor1k[u](k[u]/I, k[u][x, y, z]/(F )) = {0} for any such ideal. This gives that the inclusion k[u] ⊂
k[u][x, y, z]/(F ) is flat, hence defines a family of curves in P2 over the parameters u.

Thus, we speak of a family of plane curves over the parameters u when referring to this setup.
We will of course adhere to the terminology of calling general member of the family the equation
of the plane curve obtained by substituting general values in k for u. Moreover, our interest lies
on the case where the general member of the family is a reduced singular plane curve. In this
case we speak of a family of plane singular curves.
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In the sequel we will assume moreover that m ≤
(
d+2
2

)
− 1, where d is the (homogeneous)

degree of F in x, y, z and that F has the form

(4) F = ϕ0(x, y, z) +

m∑
j=1

ujϕj(x, y, z),

where {ϕj(x, y, z) | 0 ≤ j ≤ m} is a set of monomials of degree d in x, y, z, and ϕ0(x, y, z) 6= 0.

Note that the form of F depends on the singular points of the general member. Thus, it makes
sense to speak about a normal form or canonical form of F depending on this singular locus.
Our convention is that such a normal form is to be obtained through projective transformations
applied to the x, y, z-coordinates allowing coefficients from k[u]. Besides, in order to account for
degeneration of singularities of the general member we need correspondingly to consider certain
degeneration ideals in the parameter ring k[u].

Write

F ≡ ϕ0(x, y, z) + ψ(x, y, z, u1, . . . , um),

as in (4), where ϕ0(x, y, z) involves the singularity type in terms of the projectivized tangent
cones on suitable affine pieces.

Example 3.7. Let us write a normal form for the family of irreducible singular quartic plane
curves such that the singular locus of the general member consists of one simple node - note
that at this point it is not totally clear that there exists at all such a family in the sense we
established, since we must first obtain some F ∈ S that works. By projectivities one can assume
that the node is P = (0 : 0 : 1) and the tangent cone at z 6= 0 has equation xy. Since the
general member ought to vanish at P then we may omit the terms in z4, z3x and z3y. Thus, an
intermediate step towards a normal form is

F = xyz2 + u1x
3z + u2x

2yz + u3xy
2z + u4y

3z + u5x
4 + u6x

3y + u7x
2y2 + u8xy

3 + u9y
4.

We can see that the specialization of F by k-values factors properly if both u1 and u5 have
vanishing k-values; similarly, if both u4 and u9 have vanishing k-values. Thus, for writing a
normal form we may incorporate x4 and y4 as terms of ϕ0(x, y, z). Finally, the projectivity
x = x, y = y, z = z − 1

2 (u2x + u3y) (characteristic 6= 2) allows to eliminate the terms in x2yz

and xy2z. Up to renaming parameters, this yields the following normal form:

F = xyz2 + x4 + y4 + u1x
3z + u2y

3z + u3x
3y + u4x

2y2 + u5xy
3

3.3. Degeneration for the linear type condition. A piece of difficulty regarding the ques-
tion as to how the property of being of linear type moves on a family is that this property
is neither kept by specialization nor by generization. This difficulty permeates the theory by
often conflicting with the usual degeneration conditions considered in the realm of families of
hypersurfaces.

The normal form has degenerations to other normal forms whose general member has more
involved singularities or even acquires new singular points. The following example may illuminate
this phenomenon.

Example 3.8. Consider the family of irreducible rational plane quartics with exactly three
nodes. In [8, Lemma 11.3] a normal form is given of a family whose general member is an
irreducible quartic with three double points, namely

F = λx2y2 + µx2z2 + νy2z2 + 2xyz(u1x+ u2y + u3z), λνµ 6= 0.
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To get a normal form whose general member is an irreducible quartic with three nodes, substi-
tuting x = (ν/λµ)1/4x, y = (µ/λν)1/4y, z = (λ/µν)1/4z and renaming, one obtains the normal
form

F = x2y2 + x2z2 + y2z2 + 2xyz(u1x+ u2y + u3z).

Note that for k-values u1 = ±1, one of the nodes degenerates into a cusp and, similarly,
for u2 = ±1 or u3 = ±1. Thus, the general member requires that the k-values of the triple
(u1, u2, u3) do not lie on the hypersurface V ((u21 − 1)(u22 − 1)(u23 − 1)) in order that it have
exactly three nodes.

Requiring that the general member acquire no new singular points besides the three nodes
imposes yet another obstruction. Of course, in the present low degree 4, because of genus
reason there will be new singular points only if the general member properly factors. As we will
see this obstruction is precisely given by the hypersurface whose equation is the discriminant
2u1u2u3 + u21 + u22 + u23 − 1 of a suitable conic (see Section 3.4).

The following is a basic result for this part. It would mostly suffice for it to assume that the
u-coefficients of the terms of F be algebraically independent over k. We observe that a similar
result holds for families of hypersurfaces whose general member is reduced and irreducible and,
moreover, the singular locus is a nonempty set of points.

Theorem 3.9. Let F denote a family of singular plane curves of degree d ≥ 2, on parameters
a = u1, ..., um, whose general member is reduced and irreducible. Write S = k[u][x, y, z]. Let
IF ⊂ S denote the ideal generated by the x, y, z-partial derivatives of F and let I ∈ S stand for
the ideal of 1–minors of the syzygy matrix of IF . Then:

(a) IF has codimension 2
(b) I has codimension at most 3
(c) If k is algebraically closed of characteristic zero, the following are equivalent:

(i) I has codimension 3.
(ii) The contraction of the ideal I : (x, y, z)S∞ to k[u] has codimension ≥ 1.
(iii) The plane projective curve F (α) ∈ k[x, y, z] obtained by evaluating u 7→ α off a set

of codimension ≥ 1 in Amk has gradient ideal of linear type.
(iv) There is some α ∈ Amk for which the evaluated ideal I(α) ∈ k[x, y, z] has codimen-

sion 3.

Proof. (a) Clearly, codim (IF ) ≤ 3. Since the general member is singular and reduced its
gradient ideal has codimension 2. This forces codim (IF ) = 2.

(b) We go more algebraic: the ring S = k[u][x, y, z] is standard graded with S0 = k[u]. Since
F is a homogeneous polynomial in this grading, its partial derivatives are homogeneous of same
degree. We claim that any syzygy of the partial derivatives has coefficients in (x, y, z)S. Indeed,
since the partial derivatives are homogeneous of the same degree d ≥ 1 in x, y, z, any syzygy is
homogeneous of non-negative degree in x, y, z. Now, if a syzygy would happen to be of degree 0,
i.e., with all its coordinates in the zero degree part k[u], this would force, by reading the relation
in degree 0, a polynomial relation among the coefficients of degree 0 of the partials, hence a
polynomial relation of u, which is nonsense since these are indeterminates over k.

Incidentally, note this argument breaks down for syzygies of a higher order as the first syzygies
may have different degrees in S.

(c) (i) ⇒ (ii) Write m = (x, y, z)S. Since codim (I) = 3 and m is a minimal prime therein by
the proof of (b), the saturation I : m∞ picks up the primary components of I not containing m.
This shows that (I : m∞) ∩ k[u] 6= {0}.
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(ii) ⇒ (iii) Let g = g(u) ∈ (I : m∞) ∩ k[u] be any nonzero element. By hypothesis, g
conducts a power of (x, y, z)S inside I. Giving u k-values α off V ((I : m∞) ∩ k[u]) yields a
power of the maximal ideal (x, y, z) ⊂ k[x, y, z] inside the image I(α) of I by this evaluation.
Let f = F (α) ∈ k[x, y, z] denote the member of the family thus obtained. Then I(α) ⊂ I1(ϕ),
where ϕ denotes the syzygy matrix of the partial derivatives of f . This shows that I1(ϕ) is
(x, y, z)-primary. Therefore, the result follows from Corollary 3.2.

(iii)⇒ (iv) The hypothesis is that the gradient ideal of the general member of the family is of
linear type. Again by Corollary 3.2 this implies that the ideal of 1-minors of such a plane curve
has codimension 3. On the other hand, for general value α of u, one has I(α) = I1(ϕα), where
ϕα stands for the syzygy matrix of F (α).

(iv) ⇒ (i) By definition, I(α) = (I,u − α)/(u − α) upon identifying k[u, x, y, z]/(u − α) =
k[x, y, z] under the surjection k[u][x, y, z]� k[x, y, z] such that u 7→ α. Since u− α is a regular
sequence in a polynomial ring we easily get

ht ((I,u− α)/(u− α)) = ht (I,u− α)− ht (u− α) ≤
ht (I) + ht (u− α)− ht (u− α) = ht (I),

which implies the result.
The following example illustrates the various obstructions.

Example 3.10. The one-parameter family F = y4z + x5 + ux3y2 (see Example 3.6) is such
that I has codimension 2, hence the gradient ideal of the general member F (α) of the family is
not of linear type. Clearly, it follows that I(α) has height ≤ 2 for any α ∈ k. A computation
with Macaulay gives moreover that the associated primes of S/I are (x, y) ⊂ (x, y, z). Perhaps
surprisingly, the special member F (0) is easily seen to have gradient ideal of linear type, i.e.,
the ideal of 1-minors of the syzygy matrix of the special member F (0), obtained by evaluating
F at 0, has codimension 3. This simple example shows that the property in question does not
deform to the generic member.

Under the equivalent assumptions of item (c) of Theorem3.9, one can give the approximate
structure of the contracted ideal in item (ii).

Proposition 3.11. Let the assumptions be those of Theorem 3.9 and assume that I has codimen-
sion 3. If I has a minimal prime of codimension 3 other than m = (x, y, z)S then (I : m∞)∩k[u]
has codimension 1. If, moreover, I is pure-dimensional then this contraction is a principal ideal.

Proof. Let p be a minimal prime of codimension 3 of I other than m. Since IF ⊂ I (because
of the Koszul relations) then p contains a minimal prime of IF . But the latter are of two sorts:
either the extensions of the minimal primes (in k[x, y, z]) of the singular points of the general
curve of the family, or else minimal primes of codimension 3. In the first case, p contains two
independent 1-forms in k[x, y, z] which, up to a projective change of coordinates, can be assumed
to be x, y. Clearly, these forms are part of a minimal set of generators of p and (x, y, I) ⊂ p. But
I is homogeneous in the variables k[x, y, z], generated in positive such degrees (see the argument
in the proof of (b)), hence there exist suitable polynomials gj(u) ∈ k[u] and integers kj ≥ 1,
1 ≤ j ≤ s, such that

(x, y, I) = (x, y, zkjgj(u), 1 ≤ j ≤ s).
Since z /∈ p, necessarily some gj(u) ∈ p. But then p = (x, y, p(u)), for some prime factor of
gj(u).

We now deal with the case where p contains a minimal prime of IF of codimension 3, hence
coincides with it. Let pi, 1 ≤ i ≤ r denote the minimal primes of codimension 3 of I. Each of
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these, by the previous argument, has a minimal generator pi(u) ∈ k[u]. Then(∏
i

pi

)
∩ k[u] = (

∏
pi(u)),

a principal ideal. On the other hand,

√
I : m∞ ⊂

⋂√
Pi : m∞ ⊂

⋂
(
√
Pi : m∞) =

⋂√
Pi =

⋂
pi =

√∏
i

pi,

where Pi denotes the pith primary component of I. This proves that the contraction (I :
m∞) ∩ k[u] has codimension ≤ 1, hence is exactly 1 by Theorem 3.9.

The additional assertion at the end of the statement is now clear.

3.4. Rational quartics. We review some preliminaries about rational quartics, the basic ref-
erence being [17].

An irreducible rational quartic having only double points can be obtained as a rational trans-
form from a non-degenerate conic by means of one of the three basic plane quadratic Cremona
maps:

(1) P2 99K P2 with defining coordinates (yz : zx : xy)
The base locus of this Cremona map consists of the points (1 : 0 : 0), (0 : 1 : 0) and

(0 : 0 : 1), each with multiplicity one (in the classical terminology, three proper points –
see [1]).

(2) P2 99K P2 with defining coordinates (xz : yz : y2)
The base locus of this Cremona map consists of the points (0 : 0 : 1) and (1 : 0 : 0),

with multiplicity 1 and 2, respectively (in the classical terminology, one proper point
and another proper point with a point in its first neighborhood).

(3) P2 99K P2 with defining coordinates (y2 − xz : yz : z2)
The base locus of this Cremona map consists of the point (1 : 0 : 0) with multiplicity

3, a so-called triple structure on a point (in the classical terminology, one proper point
with a point in its first neighborhood and a point in its second neighborhood).

Theorem 3.12. (k algebraically closed of characteristic zero) Let F = F (u, x, y, z) ∈ k[u, x, y, z]
be a family of rational plane curves of degree 4 with a fixed set of singular points in the sense
previously defined. Then the general member f = F (α) ∈ k[x, y, z] in this family has gradient
ideal of linear type.

Proof. We will actually show a bit more, namely, that any irreducible rational quartic falls
within a family whose general member has the required property for its gradient ideal. In this
vein, we can and will assume that the members of any family are singular. This is because the
gradient ideal of any smooth plane curve is generated by a regular sequence, hence trivially of
linear type.

Now, any irreducible rational quartic f ∈ k[x, y, z] has at least one double singular point and
at most a triple point. Let us first consider the situation where f has a double point – hence
has at most 3 such points and no triple point.

In this case, as explained above, f comes from a conic by means of a Cremona map.
Let Q = u1x

2 + u2y
2 + u3z

2 + 2u4yz + 2u5zx + 2u6xy be the equation of the conic as
above, assumed non-singular, i.e., the corresponding symmetric matrix has nonzero determinant
∆ = u1u2u3 + 2u4u5u6 − u1u24 − u2u25 − u3u26 (the discriminant of Q).

Applying the above Cremona maps, we obtain, respectively:
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(1) A quartic with exactly three double points at P1 = (1 : 0 : 0), P2 = (0 : 1 : 0) and
P3 = (0 : 0 : 1), where P1 (respectively, P2, P3) is a node except when the principal
minor u1u2 − u26 vanishes (respectively, except when the principal minors u1u3 − u25,
u2u3 − u24 vanish).

Here we may harmlessly assume that u1 = u2 = u3 = 1 provided they are all nonzero.
In this block belong the following families.

(a) Three nodes:

f̃ = y2z2 + x2z2 + x2y2 + 2xyz(u4x+ u5y + u6z), u4, u5, u6 6= ±1, ∆ 6= 0

where ∆ = 2u4u5u6 − u24 − u25 − u26 + 1.
(b) Two nodes and one cusp:

f̃ = y2z2 + x2z2 + x2y2 + 2xyz2 + 2xyz(u4x+ u5y), u4, u5 6= ±1, ∆ 6= 0

where ∆ = 2u4u5 − u24 − u25 = −(u4 − u5)2.
(c) One node and two cusps:

f̃ = y2z2 + x2z2 + x2y2 + 2xy2z + 2xyz2 + 2u4x
2yz, u4 6= ±1

(d) Three cusps :

f̃ = y2z2 + x2z2 + x2y2 − 2xyz(x+ y + z)

(2) A quartic with a double point at P1 = (0 : 0 : 1) (which is a node or a cusp according
as to whether u2 6= 0 or u2 = 0) and a double point at P2 = (1 : 0 : 0) (which is either
a tacnode or a ramphoid cusp according as to whether the principal minor u1u3 − u25 is
nonzero or vanishes).

Here we may assume that u1 = u3 = 1 and u6 = 0.
It comprises the following families.

(e) One tacnode and one cusp:

f̃ = x2z2 + y4 + 2y3z + 2u5xy
2z, u5 6= ±1

(f) One tacnode and one node :

f̃ = z2(x2 + y2) + y4 + 2y2z(u4y + 2u5x), u5 6= ±1, ∆ = u24 + u25 − 1 6= 0

(g) One ramphoid cusp and one node:

f̃ = x2z2 + y4 + 2zy3 + 2xy2z + u2z
2y2, u2 6= 0

(h) One ramphoid cusp and one cusp:

f̃ = x2z2 + y4 + 2zy3 + 2xy2z

(3) A quartic with an oscnode at P1 = (1 : 0 : 0) if u2 6= 0; else, a singularity of type A6.
Here we may assume that u1 = 1 and u5 = u6 = 0. Namely, we get the following

forms.
(i) One oscnode :

f̃ = (y2 − xz)2 + y2z2 + u3z
4, u3 6= 0

(j) One singularity of type A6:

f̃ = (y2 − xz)2 + 2yz3
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An irreducible rational quartic having only double points – ordinary or not – falls within the
following families up to coordinate change, according to the nature of its singularities. We have
written f̃ instead of F to help us think of the general member instead of the family itself. To
keep track of the parameters in each case we have maintained the original indices, however
anaesthetical they may look.

Note the two kinds of degeneration: first, whether a member of the family factors is controlled
by the vanishing of the corresponding value of ∆; second, whether the non-general member goes
across stratified subfamilies is controlled by the vanishing of another ideal in k[u] - we will call
the latter ideal the strata degeneration locus.

We now consider the case where the quartic has a triple point, say, at P = (0 : 0 : 1).
Generally, for a plane irreducible curve of degree d with a singular point of multiplicity d− 1

(hence, a rational curve), it is frequently easier to look at the linear type condition. In the case
of a quartic, up to a projective change of coordinates, the equation of the curve has the form
ϕ(x, y) z + ψ(x, y) = 0, where ϕ can moreover be brought up to one of the forms x(y2 − x2),
xy2 and y3, and ψ may be further normalized in such a way that the resulting family has as few
parameters as possible.

(4) After these reductions, any irreducible plane quartic having (0 : 0 : 1) as a triple point
falls within three basic families, according to the nature of the triple point:

(k) An ordinary triple point:

f̃ = x(y2 − x2)z + y4 + x2y(u1y + u2x)

(l) A triple point with double tangent:

f̃ = xy2z + x4 + y4 + u1x
3y

(m) A higher cusp :

f̃ = y3z + x4 + u1x
2y2.

The proof proceeds by dealing with each of the above types.

Block (1)

(a) By Theorem 3.9, it suffices to show that I(0) has codimension 3. From the symmetrical

parametric structure of f̃ , the inclusion I(0) ⊂ If̃(0) is an equality. On the other hand, by direct

verification, the latter ideal admits the following syzygies: xy2 − xz2
−y3 − yz2
y2z + z3

 ,

 −x3 − xz2
x2y − yz2
x2z + z3


Bringing in besides the generators of the gradient ideal, one obtains after a calculation x3, y3, z3 ∈
I(0). Thus, I(0) has codimension 3.

We first note that (b)–(d) are obvious successive strata of the family (a).
(b) In this first stratum the evaluated ideal I(0) has codimension 2, so one may try another

evaluation. Note that one cannot blindly apply the result of (a) to claim that, here too, there is
some general value α for which the assertion holds, since α could lie outside the open set obtained
in (a). (Of course, it goes without saying that an explicit such open set can be computed by
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way of Theorem 3.9, (ii) and we even have a conjecture about its form.) Instead, we resort to a
painful hand verification, namely, the following is a syzygy of I: x2(u24 − 1) + xy(u4u5 − 1) + 2xz(u4 − u5) + yz(u4 − u5)

y2(u25 − 1) + xy(u4u5 − 1) + xz(u5 − u4) + 2yz(u5 − u4)
3z2(u4 − u5) + xy(u4 − u5) + xz(2u24 − u5u4 − 1) + yz(−2u25 + u5u4 + 1)


Looking at the first summand of each coordinate, one sees that for any “value” α = (u4, u5) ∈ A2

k

with u4 6= u5 and u4 6= ±1, u5 6= ±1, pure powers of x, y, z remain and the ideal generated by
the coordinates will have codimension 3, hence also the corresponding I(α).

(c) In this stratum by the same token, we look at the following two syzygies: −xy + xz
3y2 + 2xyu4 + xz + 3yz
−3z2− 2xzu4 − 2xy − 3yz

 ,

 x2(u4 + 1) + 3/2xy + 3/2xz + yz
3/2y2 − xy(u4 + 1) + 1/2yz
3/2z2 + 2/2yz + xz(u4 + 1)


An identical analysis as above, looking at the pure powers, allow to choose any “value” u4 6= −1.

(d) Here too it suffices to look at the following syzygies x2 + xy + 2/3xz − 2/3yz
−xy − y2 + 2/3xz − 2/3yz

−1/3xz + 1/3yz

 ,

 xy + xz − 2/3yz
−y2 + 1/3yz
1/3yz − z2


Once more, pure powers of the variables are easily located.

Block (2)

(e) As in the proof of (a), here too the ideal I(0) contains the ideal of 1-minors of the syzygy
matrix of If̃(0). One can check that the latter ideal admits the following syzygies: 2x2 − 3y2

xz
−2xz

 ,

 2xy + 3xz
yz

−2yz − 3z2

 .

Bringing in the generator ∂f̃(0)/∂y = 4y3 + 6y2z, one readily sees that I(0) has codimension
3.

(f) This follows the same pattern as (e). The relevant syzygies to look at are x2 + y2

0
−xz

 ,

 2xy2 + xz2

yz2

−2y2z − z3


and the calculation to get suitable powers of x, y, z inside I(0) is pretty straightforward.

(g) If we indulge ourselves allowing a computation with Macaulay, we get u22 ∈ (I : m∞). By
Theorem 3.9, every member in this family has gradient ideal of linear type. Alternatively, one
can look for I evaluated, say, at u2 7→ 1. One column turns out to be 5x2 − y2 + xz − yz

y2 + xy + xz + yz
−z2 − 2y2 − xz − 2yz


Thus, the ideal generated by the three coordinates above already has codimension 3.
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(h) Again, a computation with Macaulay gives the following syzygies: 2y2 − 3xz
−yz
3z2

 ,

 x2 − 27/50xz
1/5xy + 1/5y2 + 3/25xz − 9/50yz
−2/5y2 − xz − 6/25yz + 27/50z2

 .

Thus, we locate pure powers as terms of the coordinates. Alternatively, note the coordinates 3z2

and x2 − 27/50xz = x(x− 27/50z) are invertible locally at (x, y) and (y, z), respectively. Since
the latter are the two singular minimal primes of the quartic, this shows that the gradient ideal
is locally a complete intersection at these primes, hence is of linear type.

Block (3)

(i) The discussion of this case is analogous to the one of (g). A computation with Macaulay
yields get u3 ∈ (I : m∞). Therefore, every member in this family has gradient ideal of linear
type. As previously enacted, the ideal I(1) has codimension 3 through a convenient analysis of
its terms.

(j) The following vectors are directly seen to be syzygies of the gradient ideal: 6y2 + xz
3yz
−z2

 ,

 7x2 + 18yz
3xy

6y2 − 7xz

 .

A straightforward calculation gives the right codimension.

Block (4) (Triple point)

(k) The discussion of this case is much like the one of (a) in that the parametric structure of f̃
allows to see that the syzygies of If̃(0) are contained in the syzygies of If̃ evaluated at 0. It then

suffices to check that If̃(0) is of linear type. We do this by arguing that it is locally a complete

intersection at its unique singular prime (x, y). For this, it suffices to consider the syzygy x2 − 2/3y2 + 1/6xz
1/6yz

−(3x+ 1/2z)z


where the last coordinate is invertible locally at (x, y).

(l) As in (k), the syzygies of If̃(0) are contained in the syzygies of If̃ evaluated at 0. Here it

is elementary to guess the syzygy  0
xy

−4y2 − 2xz


Using further the generators of the gradient ideal of f̃(0), it is readily seen powers of the variables
among the entries.

(m) This case is like the previous one, only more elementary. We argue that I(0) has codi-
mension 3 as before by looking at the obvious syzygy of If̃(0) 0

y
−3z


which clearly tells us that the ideal is locally a complete intersection at (x, y).
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Remark 3.13. We have drawn quite a bit on computation to verify all cases of the theorem.
Using Theorem 3.9, to have a computation-free argument it would suffice to show that the
contraction (I : m∞) ∩ k[u] coincides set-theoretically with the product ∆a of the discriminant
and the strata degeneration locus a ⊂ k[u]. We conducted a computational verification of this
fact for all four blocks of families. Thus, morally, the conjecture for rational quartics is settled.
However, we have found no immediate theoretical reason pointing at least to an ideal inclusion
(I : m∞)∩ k[u] ⊂ ∆. Note that, according to Proposition 3.11, one expects that the contraction
also have codimension one, whereas the strata degeneration locus is given by a principal ideal.

It seems natural to conjecture that any irreducible quartic has gradient ideal of linear type.
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Universitária, 50740-540 Recife, PE, Brazil
E-mail: abbasnn@dmat.ufpe.br, aron@dmat.ufpe.br



Journal of Singularities
Volume 3 (2011), 48-82

received 13 September 2009
in revised form 21 February 2011

DOI: 10.5427/jsing.2011.3d

Combinatorial computation of the motivic Poincaré series

E. Gorsky

Abstract

We give an explicit algorithm computing the motivic generalization of the Poincaré
series of a plane curve singularity introduced by A. Campillo, F. Delgado and S. Gusein-
Zade. It is done in terms of the embedded resolution. The result is a rational function
depending of the parameter q, at q = 1 it coincides with the Alexander polynomial of the
corresponding link. For irreducible curves we relate this invariant to the Heegaard-Floer
knot homology constructed by P. Ozsváth and Z. Szabó. Many explicit examples are
considered.
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1 Introduction

In the series of articles (e.g. [3],[4]) A. Campillo, F. Delgado and S. Gusein-Zade proved
that the Alexander polynomial of the link of the plane curve singularity is related to the
generating function arising in the purely algebraic setup.

Let C = ∪ri=1Ci be a germ of a plane curve,

γi : (C, 0)→ (Ci, 0)

are the uniformizations of its components. If f ∈ O = OC2,0 is a germ of a function on
(C2, 0), we define

vi(f) = Ord0f(γi(t)),

and the Poincaré series of the curve C is defined ([4]) as the integral with respect to the Euler
characteristic

PC(t1, . . . , tr) =

∫
PO
tv11 · . . . · trvrdχ, (1)

where PO denotes the projectivization of O as a vector space. For example, if C is irreducible,
we can define the decreasing filtration

O ⊃ J1 ⊃ J2 ⊃ . . . , Jn = {f ∈ O|v1(f) ≥ n}, (2)

and

PC(t) =

∞∑
n=0

tn dim Jn/Jn+1. (3)

Let ∆C(t1, . . . , tn) denote the Alexander polynomial of the intersection of C with a small
sphere centered at the origin. The theorem of Campillo, Delgado and Gusein-Zade says that
if r = 1, then

(1− t)PC(t) = ∆C(t), (4)

and if r > 1, then
PC(t1, . . . , tr) = ∆C(t1, . . . , tr).

In [5] there was proposed the following natural generalization of the Poincaré series. One
can naturally define the motivic measure on the space of functions, and consider the following
motivic integral, generalizing (1):

PCg (t1, . . . , tr) =

∫
PO
tv11 · . . . · trvrdµ. (5)
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If r = 1, we can rewrite (5) as the generalization of (3):

PCg (t) =

∞∑
n=0

tn
qcodimJn − qcodimJn+1

1− q
, (6)

therefore in this case one can deduce Pg(t) from P (t). If r is greater than 1, the situation
becomes more complicated. Nevertheless, the explicit algorithm for the computation of the
motivic Poincaré series is presented in Theorem 3.

Definition: The reduced motivic Poincaré series is the power series

P g(t1, . . . , tr) = (1− qt1) · . . . · (1− qtr) · Pg(t1, . . . , tr). (7)

We prove that the reduced motivic Poincaré series satisfies the following properties.

1. Polynomiality. P g(t1, . . . , tr; q) is a polynomial in variables t1, . . . , tr and q. We give
a bound for its degree on t1, . . . , tr.

2. Reduction to the Alexander polynomial. If n = 1, then

P g(t; q = 1) = ∆(t),

where ∆ denote the Alexander polynomial of the link of the corresponding plane curve
singularity. If n > 1, then

P g(t1, . . . , tr; q = 1) = ∆(t1, . . . , tr) ·
r∏
i=1

(1− ti).

3. Forgetting components. Let C be a curve with r components, and C1 be an irre-
ducible curve. Then

P
C∪C1

g (t1, . . . , tr, tr+1 = 1) = (1− q)PCg (t1, . . . , tr). (8)

If C has only one component, then

P
C

g (t = 1) = 1.

This property is clear from the equation (5), but seems to be curious and, for exam-
ple, does not hold for the Alexander polynomial (we cannot reconstruct the Alexander
polynomial of a sublink from the Alexander polynomial of a link by setting the corre-
sponding variable to 1).

4. Symmetry. Let µα be the Milnor number ([2]) of Cα, let (Cα ◦Cβ) be the intersection
index of Cα and Cβ , let µ(C) be the Milnor number of C. Let

lα = µα +
∑
β 6=α

(Cα ◦ Cβ), δ(C) = (µ(C) + r − 1)/2.
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Remark that
∑r
α=1 lα = 2δ(C).

It is known that the Alexander polynomial is symmetric in a sense that

∆(t−1
1 , . . . , t−1

r ) =

r∏
α=1

t1−lαα ·∆(t1, . . . , tr), r > 1

and
∆(t−1) = t−µ∆(t), r = 1.

In Theorem 4 we prove a generalization of this identities that holds for any r, namely,

P g(
1

qt1
, . . . ,

1

qtr
) = q−δ(C)

∏
α

t−lαα · P g(t1, . . . , tr).

5. Relation to the knot homology. For irreducible curves we prove that P g(t) can
be related by the simple procedure to the Poincaré polynomial of the Heegaard-Floer
knot homology constructed by P. Ozsváth and Z. Szabó. This homology theory is
a ”categorification” of the Alexander polynomial, tightly related with the symplectic
topology and Seiberg-Witten theory. Since the origins of our and their construction are
quite far, the relation between them seems to be interesting. No conceptual proof for
this fact is known, and we just use that both answers are determined by the Alexander
polynomial in the same way.

The paper is organized in the following way. In the section 2 we recall the definition of
the Poincaré series of a plane curve singularity. Then we recall the definition of the motivic
measure on the space of functions and give, following [5], two definitions of the motivic
Poincaré series as a motivic integral and in terms of the multi-index filtration associated
with the curve. We give the simple method of deduction of the motivic Poincaré series from
the ordinary Poincaré series for irreducible curves. In Theorem 2 we recall the formula from
[5] expressing the motivic Poincaré series in terms of the embedded resolution of a curve.
This formula is proved by Campillo, Delgado and Gusein-Zade using thorough analysis of
the geometry of the functional spaces defined by the embedded resolution of a curve.

In the section 3 we apply Theorem 2 to a nonsingular curve and explain step-by-step
the calculation of all sums involved. It turns out to be a curious exercise, and this simplest
example is a toy model for the consequent combinatorial work.

The section 4 contains several steps of the simplification of Theorem 2. In the result
(Lemma 6) the motivic Poincaré series is expressed in terms of some quantities cK(n). In
Lemma 5 the generating function for these quantities is explicitly written in the closed form.
This allows to compute the motivic Poincaré series.

Applying Lemma 6 directly, we get a lot of similar summands which cancel after all
substitutions, but this cancellation is not clear from lemmas 5 and 6. For example, it is not
even clear, that the answer is a polynomial.

Therefore in the rest of section 4 we discuss the analogues of the identity

∞∑
n=0

tnq
n2+3n

2 (q−n − tq) = 1
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arising in the nonsingular case. The result of this investigation is Theorem 3, where we
formulate an explicit algorithm of calculation of the motivic Poincaré series. This algorithm
does not involve infinite sums, and can be implemented as a short Mathematica program.

The algorithm is presented in the same manner as in Lemma 6: the motivic Poincaré
series is expressed in terms of some quantities dP (n), which fit into the explicitly defined
generating function HP (u). This function is generally more complicated than the one from
Lemma 5, but in some examples (Lemma 9) it has more or less compact form.

Section 5 contains a bunch of explicit answers for the curves with resolutions containing
up to 3 divisors.

In the section 6 we prove the symmetry property for the motivic Poincaré series (Theorem
4). It generalizes the known symmetry property for the Alexander polynomial of a link.
From the viewpoint of the algebraic geometry, it is related to the Gorenstein property of
the coordinate ring of a curve ([6]), thus it seems to be related to the Kapranov’s functional
equation ([11],[10]) for the motivic zeta function of a curve.

We prove the symmetry property by proving the analogous statements for all steps of our
algorithm: the function HP (u) is symmetric, what implies some relations for its coefficients
dP (n) and, therefore, for the Poincaré series.

The main result of the section 7 is Theorem 6 describing the surprising relation between
the motivic Poincaré series of an irreducible plane curve singularity and another deformation
of the Alexander polynomial, namely, the Poincaré polynomial for the Heegaard-Floer knot
homology ([18],[19]). The proof is based on the fact that in both cases the Poincaré poly-
nomial (and series) is defined by the Alexander polynomial. We also give some corollaries
from this fact which look more geometric. A filtered complex of Z[U ]-modules analogous to
the Ozsváth-Szabó complex CFL−(K) is constructed. This gives an algebraic model for the
minus- and hat-versions of the Heegaard-Floer complexes for algebraic knots.

We also compare the motivic Poincaré series with the Heegaard-Floer homologies of two-
component links, corresponding to the singularities of type A2n−1.

The motivic Poincaré series has been independently studied by J. Moyano-Fernandez and
W. Zuniga-Galindo in [14]. Their approach is based on the study of the multi-dimensional
semigroup of the singularity instead of its resolution. In particular, they gave alternative
proofs of the Theorems 3 and 4 of this article.
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2 Poincaré series and its generalization

2.1 Poincaré series

Let C = ∪ri=1Ci be a reduced plane curve singularity at the origin in C2, and Ci are its
irreducible components. Let γi : (C, 0)→ (Ci, 0) be the uniformizations of these components.

We define r integer-valued functions on the space O = OC2,0 by the formula

vi(f) = Ord0(f(γi(t)))

and Zr-indexed filtration
Jv = {f ∈ O|vi(f) ≥ vi}.

Note that Jv are also defined for negative values of v. This filtration is decreasing in a sense
that if v1 ≺ v2, then Jv1 ⊃ Jv2 . Consider the Laurent series

LC(t1, . . . , tr) =
∑
v

tv11 . . . tvrr · dim Jv/Jv+1.

Definition:([6], [3]) The Poincaré series of the curve C is defined by the formula

PC(t1, . . . , tr) =
LC(t1, . . . , tr) ·

∏r
i=1(ti − 1)

t1 · . . . · tr − 1
.

For example, if r = 1, we have

PC(t) =

∞∑
v=0

tv · dim Jv/Jv+1.

One can prove, that PC is always a power series. More geometric meaning of this definition
is given by the following interpretation of the Poincaré series as an integral with respect to
the Euler characteristic.

Proposition.([4]) Let PO denote the projectivization of the functional space O as a vector
space. Then the following equation holds:

PC(t1, . . . , tr) =

∫
PO
tv11 · . . . · tvrr dχ. (9)

On the other hand, consider the link of C – the intersection of C with a small three-
dimensional sphere centred at the origin. We denote its multi-variable Alexander polynomial
by ∆C(t1, . . . , tr). Campillo, Delgado and Gusein-Zade proved the following

Theorem 1 ([4]) If r = 1 then

PC(t)(1− t) = ∆C(t), (10)

and if r > 1 then
PC(t1, . . . , tr) = ∆C(t1, . . . , tr). (11)
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2.2 Motivic measure

Let O = OC2,0 be the space of formal germs of analytic functions at the origin on the plane.
It is the set of formal power series f(x, y) (without degree 0 term). Let On be the space of
n-jets of such arcs, let πn : O → On be the natural projection.

Let K0(V arC) be the Grothendieck ring of complex quasiprojective varieties. It is gen-
erated by the isomorphism classes of complex quasiprojective varieties modulo the relations
[X] = [Y ] + [X \ Y ], where Y is a Zariski locally closed subset of X. Multiplication is given
by the formula [X] · [Y ] = [X × Y ]. Let L = [C] ∈ K0(V arC) be the class of the affine line in
this ring.

The Euler characteristic provides a ring homomorphism

χ : K0(V arC)→ Z.

Consider the ring K0(V arC)[L−1] with the following filtration: Fk is generated by the
elements of the type [X] · [L−n] with n − dimX ≥ k. Let M be the completion of the ring
K0(V arC)[L−1] corresponding to this filtration.

On an algebra of subsets of O Campillo, Delgado and Gusein-Zade ([5]), following the
ideas of Kontsevich, Denef and Loeser ([7]) constructed a measure µ with values in the ring
M.

Definition:([5]) A subset A ⊂ O is said to be cylindric if there exist n and a constructible
set An ⊂ On such that A = π−1

n (An). For the cylindric set A define its motivic measure by
the formula

µ(A) = [An] · L−
(n+1)(n+2)

2 .

Remark that dimOn = (n+1)(n+2)
2 , hence the definition of the motivic measure is in fact

independent on n. In a full analogy with [7], this measure can be extended to an countable-
additive M-valued measure on a suitable algebra of subsets of O.

Definition: A function f : O → G with values in an abelian group G is called simple, if its
image is countable or finite, and for every g ∈ G the set f−1(g) is measurable. Using this
measure, one can define in the natural way the motivic integral for simple functions on O as∫

O
fdµ =

∑
g∈G

g · µ(f−1(g)),

if the right hand side sum converges in G⊗M.

Remark. Note that for cylindric sets the Euler characteristic can be defined by the formula
χ(A) = χ(An). This gives a Z−valued measure on the algebra of cylindric sets. However, it
cannot be extended to the algebra of measurable sets. This measure provides a notion of an
integral with respect to the Euler characteristic for functions on O with cylindric level sets.
It is clear that for such functions

χ(

∫
O
fdµ) =

∫
O
fdχ.
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Using the same construction, one can define the motivic measure on the projectivization
PO of the functional space.

As a direct generalisation of the equation (9) Campillo, Delgado and Gusein-Zade pro-
posed the following

Definition: Motivic Poincaré series is the motivic integral

PCg (t1, . . . , tr) =

∫
PO
tv11 · . . . · tvrr dµ (12)

As above, this definition can be reformulated in terms of the multi-index filtration on the
space of functions. Let q = L−1 be a formal variable. Let h(v) = codimJv, and

Lg(t1, . . . , tr, q) =
∑
v∈Zr

qh(v) − qh(v+1)

1− q
· tv11 . . . tvrr .

Then the following equation holds ([5]):

PCg (t1, . . . , tr; q) =
LCg (t1, . . . , tr) ·

∏r
i=1(ti − 1)

t1 · . . . · tr − 1
. (13)

An example of the calculation of the motivic Poincaré series for the singularities of type
A2n−1 directly from the equation (13) is presented in the section 7.4 below.

2.3 Irreducible case

If r = 1, the equation (13) has a very clear form, since in this case

PCg (t) = LCg (t).

Remark that
codimJv = dimO/J1 + dim J1/J2 + . . .+ dim Jv−1/Jv, (14)

so the series PCg (t) can be reconstructed from the series PC(t).
The functional v(f) = Ord0f(γ(t)) is a valuation on the ring O.The set of values of v

is an integer semigroup S = {σ1, σ2, σ3, . . .}. For example, for the singularity xp = yq (its
link is the torus (p, q) knot) we have x(t) = tq, y(t) = tp, so the corresponding semigroup is
generated by p and q. The coefficient at tv in PC(t) vanishes, if Jv = Jv+1 (or, equivalently,
v does not belong to the semigroup S) , and equals to 1 otherwise. Therefore we have

PC(t) = 1 + tσ1 + tσ2 + tσ3 + . . . .

Now the equation (14) implies the following formula for the motivic Poincaré series:

PCg (t; q) = 1 + qtσ1 + q2tσ2 + q3tσ3 + . . . . (15)

Example. Consider the cusp x2 = y3. Its semigroup is generated by 2 and 3, the Poincaré
series is equal to

P (t) = 1 + t2 + t3 + t4 + . . . ,
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the motivic Poincaré series is equal to

Pg(t) = 1 + qt2 + q2t3 + q3t4 + . . . .

Note that
P (t)(1− t) = 1− t+ t2,

what equals to the Alexander polynomial of the trefoil knot.

2.4 Formula of Campillo, Delgado and Gusein-Zade

In [5] Campillo, Delgado and Gusein-Zade gave a formula for the generalized Poincaré series
in terms of the resolution.

Let π : (X,D)→ (C2, 0) be an embedded resolution where D = ∪si=1Ei is the exceptional
divisor. Let E•i be Ei without intersection points of Ei with other components of D, E◦i
be E•i without intersection points of Ei with the components of the strict transform of our
curve. Let A = (Ei ◦ Ej) be the intersection matrix and M = −A−1.

Let I0 = {(i, j) : i < j,Ei ∩ Ej = pt}, K0 = {1, . . . , r}. For σ ∈ I0, σ = (i, j) let i(σ) = i,
j(σ) = j. For I ⊂ I0, K ⊂ K0 let

NI,K := {n = (ni, n
′
σ, n
′′
σ, ñ
′
k, ñ
′′
k) : ni ≥ 0, i = 1 . . . , s

n′σ, n
′′
σ, σ ∈ I; ñ′k > 0, ñ′′k > 0, k ∈ K}.

For n ∈ NI,K , i = 1, . . . , s, let

n̂i = ni +
∑

σ∈I:i(σ)=i

n′σ +
∑

σ∈I:j(σ)=i

n′′σ +
∑

k∈K:i(k)=i

ñ′k. (16)

Let

F (n) =
1

2
(

s∑
i,j=1

mij n̂in̂j +

s∑
i=1

n̂i(

s∑
j=1

mijχ(E•j ) + 1)) +
∑
k∈K

ñ′′k , (17)

F (n̂) =
1

2
(

s∑
i,j=1

mij n̂in̂j +

s∑
i=1

n̂i(

s∑
j=1

mijχ(E•j ) + 1)),

and

w(n) =

s∑
i=1

n̂imi, vk(n) := wi(k)(n) + ñ′′k .

Theorem 2 ([5])

Pg(t1, . . . , tr, q) =
∑

I⊂I0,K⊂K0

∑
n∈NI,K

qF (n)−
∑s
i=1 ni−|I|−|K| · (1− q)|I|+|K|×

×
s∏
i=1

min{ni,1−χ(E◦i )}∑
j=0

(−1)j
(

1− χ(E◦i )

j

)
qj

 · tv(n).

56



We briefly recall the sketch of the proof from [5]. Consider a function f ∈ O and its
pullback π∗f on the space of resolution X. Now let I(f) be the set of intersection points in
D such that there are components of the strict transform of X passing through them, K(f)
is the analogous set of intersection points of strict transform of C with D. Now ni(f) is the
intersection index of the strict transform of f with the smooth part of Ei, n

′
σ and n′′σ are

intersection indices of the component of the strict transform of f passing through σ with
Ei(σ) and Ej(σ) respectively, ñ′k and ñ′′k are intersection indices of the component passing
through the point k with Ei(k) and corresponding component of C respectively.

Given these sets and multiplicities, the value of the function t
v1(f)
1 · . . . · tvr(f)

r is equal to
tv(n). Every summand in Theorem 2 is equal to this value multiplied by the motivic measure
of the set of functions providing such set of data.

3 Example: nonsingular curve

Let us check that for the nonsingular curve the complicated expression from Theorem 2
coincides with the expected one.

We have one divisor and one component of the strict transform of the curve. We have
I0 = ∅, K0 = {1}. Also we have χ(E◦) = 1, χ(E•) = 2, hence 1 − χ(E◦) = 0. To sum over
K ⊂ K0, consider two cases:

1) K = ∅. In this case F (n) = 1
2 (n2 + 3n), and we have a sum

∞∑
n=0

tnq
n2+3n

2 · q−n

2) K = {1}. In this case F (n) = 1
2 (n̂2 + 3n̂) + n′′, and we have a sum

∞∑
n̂=1

q
n̂2+3n̂

2 tn̂
n̂−1∑
n=0

q−n−1(1− q)
∞∑

n′′=1

qn
′′
tn
′′

=

∞∑
n̂=1

q
n̂2+3n̂

2 tn̂(q−n̂ − 1) · qt

1− qt
.

Summing these two expressions, we get

1 +

∞∑
n=1

tnq
n2+3n

2 (q−n +
qt

1− qt
(q−n − 1)) = 1 +

1

1− qt

∞∑
n=1

tnq
n2+3n

2 (q−n − qt) =

1 +
1

1− qt
(

∞∑
n=1

tnq
n(n+1)

2 −
∞∑
n=1

tn+1q
(n+1)(n+2)

2 ).

In the last sum all coefficients at tn for n ≥ 2 cancel, therefore

Pg(t; q) = 1 +
tq

1− qt
=

1

1− qt
.
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4 Combinatorics

4.1 Preliminary simplification

Let

Pk,n(q) =

n∑
j=0

(−1)jqj
(
k

j

)
(k can be negative, but n should be non-negative and integer).

Lemma 1 Let SnX denote the nth symmetric power of a space X. Then

[Sn(CP1 − k{pt})] = q−nPk−1,n(q).

Proof . If Y denote the union of k points on C1, then we have

Sm(CP1) = tmi=0S
i(Y )× Sm−i(CP1 \ Y ),

what is equivalent to the following multiplicativity property:

∞∑
n=0

tn[Sn(CP1)] =

∞∑
n=0

tn[Sn(Y )] ·
∞∑
n=0

tn[Sn(CP1 \ Y )].

Since
∞∑
n=0

tn[Sn(CP1)] =

∞∑
n=0

tn[CPn] =
1

(1− t)(1− Lt)
,

we get
∞∑
n=0

tn[Sn(CP1 − k{pt})] =
(1− t)k−1

(1− Lt)
=

∑
a,b

(−1)a
(
k − 1

a

)
taLbtb =

∞∑
n=0

tn
n∑
a=0

(−1)a
(
k − 1

a

)
Ln−a =

∞∑
n=0

tnq−nPk−1,n(q).

�

Let us fix some notations.

Definition: Let
fi(I,K) =

∑
σ∈I:i(σ)=i

1 +
∑

σ∈I:j(σ)=i

1 +
∑

k∈K:i(k)=i

1,

fi(I) =
∑

σ∈I:i(σ)=i

1 +
∑

σ∈I:j(σ)=i

1.

Note that
∑s
i=1 fi(I,K) = 2|I|+ |K|,

∑s
i=1 fi(I) = 2|I|.
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To any divisor Ei we associate the factor

φi(I,K, n̂) = P1−χ(E◦i )−fi(I,K),n̂i−fi(I,K),

and let
G(I,K, n̂) = q|I|(1− q)|I|+|K|

∏
i

φi(I,K, n̂).

Now we can start the simplification of the algorithm proposed in Theorem 2. The next
two lemmas will allow us to reduce the summation over all quadruples (ni, n

′
σ, n
′′
σ, ñ
′
k) to the

summation by a single variable n̂i defined by (16).

Lemma 2 Let us fix n̂i. Then∑
ni,n′σ,n

′′
σ ,ñ
′
k

q−ni−fi(I,K)P1−χ(E◦i ),ni(q) = q−n̂iφi(I,K, n̂). (18)

Proof . By Lemma 1 we have∑
ni,n′σ,n

′′
σ ,ñ
′
k

q−ni−fi(I,K)P1−χ(E◦i ),ni(q) =
∑

ni,n′σ,n
′′
σ ,ñ
′
k

q−fi(I,K)[Sni(E◦i )].

Consider a ni-tuple of points on E◦i , intersection points σ ∈ I such that i(σ) = i with
multiplicities n′σ − 1, intersection points σ ∈ I such that j(σ) = i with multiplicities n′′σ − 1,
intersection points k ∈ K such that i(k) = i with multiplicities ñ′k−1. We get the unordered
n̂i − fi-tuple of points on E◦i ∪ fi(I,K). Thus the sum (18) equals to

q−fi(I,K)[Sn̂i−fi(I,K)(E◦i ∪ fi(I,K))] = q−n̂iP1−χ(E◦i )−fi(I,K),n̂i−fi(I,K)(q).

�

Lemma 3

Pg(t1, . . . , tr, q) =
∑

I⊂I0,K⊂K0

∑
n̂i≥fi(I,K)

tMn̂qF (n̂)
s∏
i=1

q−n̂iφi(I,K, n̂)× (19)

q|I|(1− q)|I|+|K|
∏
k∈K

qtk
1− qtk

.

Proof . First, remark that for every k∑
ñ′′k>0

qñ
′′
k t
ñ′′k
k =

tkq

1− tkq
,

so from now on we can forget about summation over ñ′′k .
We have

q−
∑s
i=1 ni−|I|−|K| = q|I|

s∏
i=1

q−ni−fi(I,K),
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therefore we can reformulate the statement of Theorem 2 in the form

Pg(t1, . . . , tr, q) =
∑

I⊂I0,K⊂K0

q|I|(1− q)−|I|
∑

n̂i≥fi(I,K)

tMn̂qF (n̂)×

s∏
i=1

 ∑
ni,n′σ,n

′′
σ ,ñ
′
k

q−ni−fi(I,K)P1−χ(E◦i ),ni(q)

 .
Now the equation (19) follows from the Lemma 2. �

Definition: By the reduced motivic Poincaré series from now on we mean

P g(t1, . . . , tr) = Pg(t1, . . . , tr) ·
r∏
j=1

(1− tjq).

Lemma 4

∑
un̂G(K, I, n̂) = q|I|(1− q)|I|+|K|

∏
i

u
fi(K,I)
i

1− ui
(1− uiq)1−χ(E◦i )−fi(I,K) (20)

The proof of this lemma can be found in the Appendix.

Definition: Let
cK(n) =

∑
I

∑
K1⊂K

(−1)|K|−|K1|G(K1, I, n),

AK(u) =
∑
n

uncK(n).

The next lemma provides a closed formula for the functionAK(u), which can be considered
as a generating function for the quantities cK(n).

Lemma 5

AK(u) = (−1)|K|
∏
i

(1− uiq)|K∩Ei|−1(1− ui)|K∩Ei|−1
∏
σ

(1− qui(σ) − quj(σ) + qui(σ)uj(σ)).

The proof of this lemma can be found in the Appendix. The next lemma expresses the
reduced motivic Poincaré series in terms of the quantities cK(n).

Lemma 6
P g(t1, . . . , tr, q) =

∑
n

tMnqF (n)−
∑
ni
∑
K

tKq
|K|cK(n). (21)
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Proof . From the equation (19) we get

Pg(t1, . . . , tr, q) =
∑

I⊂I0,K⊂K0

∑
n̂i≥fi(I,K)

tMn̂qF (n̂)
s∏
i=1

q−n̂iφi(I,K, n̂)×

q|I|(1− q)|I|+|K|
∏
k∈K

qtk
1− qtk

=

∑
I⊂I0,K⊂K0

∑
n̂i≥fi(I,K)

tMn̂qF (n̂)
s∏
i=1

q−n̂iφi(I,K, n̂)× q|I|(1− q)|I|+|K|
∏
k∈K

qtk
1− qtk

=

1∏n
i=1(1− qti)

∑
n̂

tMnqF (n)−
∑
ni
∑
K

tKq
|K|
∑
I⊂I0

∑
K1⊂K

(−1)|K|−|K1|G(K1, I, n̂) =

1∏n
i=1(1− qti)

∑
n̂

tMnqF (n)−
∑
ni
∑
K

tKq
|K|cK(n̂).

�

Lemma 6 together with Lemma 5 gives the explicit description of P g(t): it is expressed
in terms of some quantities cK(n), which fit together into the generating function AK(u).
Lemma 5 provides a closed formula for this generating function.

Nevertheless, as the model example with a nonsingular curve shows, lots of summands in
the sum (21) have the same power in t, and for n large enough we have a huge number of
cancellations.

4.2 Cancellations

We say that a subset K ⊂ K0 is proper everywhere, if for all i K ∩ Ei is a proper subset of
K0 ∩ Ei. We denote the set of proper everywhere subsets by P. For any K ⊂ K0 let E(K)
be the set of divisors such that for i ∈ E(K) the set K ∩ Ei is empty. Sometimes we will
write i ∈ P , if i /∈ E(P ).

Using these notations, every subset K ⊂ K0 can be presented (uniquely) in the following
way: we fix a proper everywhere subset P (K) and a set of divisors E ⊂ E(P (K)) where all
intersection points with K0 belong to K.

For a set E of divisors let ∆(E) be the number of pairs of intersecting divisors from E.
Let µi(E) = 1, if i ∈ E and µi(E) = 0 otherwise.

Lemma 7 For a proper everywhere set P let

H̃P (u1, . . . , us) =
∑

E⊂E(P )

(−1)|K0∩E|
∏

u
−

∑
aijµj

i ·q∆(E)
∏
i∈E

(q−ui)ki−1
∏

i/∈(P∪E)

(1−qui)ki−1

(22)

×
∏
σ

(1− q1−µi(σ)(E)ui(σ) − q1−µj(σ)(E)uj(σ) + q1−µi(σ)(E)−µj(σ)(E)ui(σ)uj(σ)).

Then the polynomial H̃P is divisible by
∏
i∈E(P )(1− ui).
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The proof of this lemma can be found in the Appendix.
The next lemma explains the relation of the function H̃P (u1, . . . , us) (which is a modifi-

cation of the function AK(u)) to the coefficients cK(n) defined above. It is the main technical
instrument in the study of the cancellations.

Lemma 8∑
n

un
∑

E⊂E(P )

q−
∑
i∈E ni−∆(E)−

∑
i∈E aii−|E|q|K0∩E| × cP∪E(ni +

∑
aijµj(E)) =

(−1)|P |
∏
i∈P

[(1− qui)ki−pi−1(1− ui)pi−1] · 1∏
i∈E(P )(1− ui)

H̃P (u1, . . . , us).

The proof of this lemma can be found in the Appendix.

Definition: For a proper everywhere set P define the quantities dP (n) by the equation

HP (u) =
∑
n

dP (n)undP (n) =

∏
i∈P [(1− qui)ki−pi−1(1− ui)pi−1]∏

i∈E(P )(1− ui)
H̃P (u1, . . . , us). (23)

Remark that by Lemma 7 the function HP (u) is polynomial in u, so we have only finite
number of non-zero coefficients dP (n).

Combining the statements of Lemma 6 and Lemma 8, we get the following result.

Theorem 3 Then

P g(t1, . . . , tr) =
∑
P∈P

(−1)|P |q|P |tP ×
∑
n

dP (n)tMnqF (n)−
∑
ni .

Proof . From Lemma 6 we have

P (t) =
∑
n1

tMn1qF (n1)−
∑
ni
∑
K⊂K0

tKq
|K|cK(n1) =

∑
P∈P

q|P |tP
∑
n1

tMn1qF (n1)−
∑
ni

∑
E⊂E(P )

tEq
|K0∩E|cP∪E(n1).

Let us collect the coefficient at tMn. We have

Mn1 +
∑

µj(E) = Mn, n1 = n+
∑

aijµj(E).

and

(F (n)−
∑

ni)− (F (n1)−
∑

n1i) =
1

2
[−2

∑
mijniajsµj(E)

−
∑

mijaisµs(E)ajlµl(E)−
∑

mijχ(E•i )ajsµs(E) +
∑

aijµj(E)].

Remark that ∑
i 6=j

aij = 2− χ(E•j ),
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hence
(F (n)−

∑
ni)− (F (n1)−

∑
n1i) =

∑
i∈E

ni + ∆(E) +
∑
i∈E

aii + |E|.

Thus

P (t) =
∑
P∈P

q|P |tP
∑
n

tMnqF (n)−
∑
ni

∑
E⊂E(P )

q−
∑
i∈E ni−∆(E)−

∑
i∈K aii−|E|

×q|K0∩E|cP∪E(n+
∑

aijµj(E)).

Now we apply Lemma 8.
�

Corollary 1 The power series P g(t1, . . . , tr) is a polynomial.

4.3 The algorithm

If every line Ei is intersected by the one component of the strict transform, any proper
everywhere set should be empty. Therefore we get the following statement as a corollary of
Theorem 3.

Lemma 9 Suppose that each divisor Ei is intersected by exactly one component of the strict
transform of the curve. Then the reduced motivic Poincaré series can be computed using the
following algorithm.

1. Consider the polynomial

A(u1, . . . , ur) =
∏
σ

(1− qui(σ) − quj(σ) + qui(σ)uj(σ)).

2. Consider the Laurent polynomial

H̃(u1, . . . , ut) =
∑
K⊂K0

(−1)|K|q∆(K)
∏

u
−

∑
aijµj

i ·A(u1q
−µ1(K), . . . , urq

−µr(K)).

3. This polynomial is divisible by
∏

(1− ui). Let

H(u1, . . . , ur) =
H̃(u1, . . . , ur)∏r

i=1(1− ui)
.

4. Expand this polynomial:

H(u1, . . . , ur) =
∑

dnu
n,

and now
P g(t1, . . . , tr) =

∑
dnt

MnqF (n)−
∑
ni .
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5 Examples

5.1 One divisor

We consider the singularity
xk0 − yk0 = 0,

which is geometrically a union of k0 pairwise transversal lines. Its minimal resolution has one
divisor and k0 components of the strict transform intersecting it. In particular, for k0 = 1 we
get a non-singular case considered above. For 0 < k < k0 let the numbers ck(n) be defined
by the equation

Ak(u) =

∞∑
n=0

unck(n) = (1− uq)k0−k−1(1− u)k−1,

and for k = 0 let the numbers c0(n) be defined by the equation

A0(u) =

∞∑
n=0

unc0(n) =
(1− uq)k0−1 − u(u− q)k0−1

1− u
.

The polynomials Ak(u) have degree k0 − 2 for k > 0, A0(u) has degree k0 − 1, so we have a
finite number of non-zero ck(n).

From the Theorem 3 we conclude that

P g(t1, . . . , tk0) =
∑

K⊂ 6=K0

(−1)|K|q|K|tK

∞∑
n=0

c|K|(n)(t1 . . . tk0)nq
n(n+1)

2 .

For example, if k0 = 2,

A1(u) = 1, A0(u) =
1− uq − u(u− q)

1− u
= 1 + u,

so
P g(t1, t2) = 1− qt1 − qt2 + qt1t2.

If k0 = 3,

A1(u) = 1− qu,A2(u) = 1− u,A0(u) = 1 + (1− 2q − q2)u+ u2,

so

P g(t1, t2, t3) = 1− q(t1 + t2 + t3) + q2(t1t2 + t1t3 + t2t3) + q(1− 2q − q2)t1t2t3+

q3t1t2t3(t1 + t2 + t3)− q3t1t2t3(t1t2 + t1t3 + t2t3) + q3t21t
2
2t

2
3.

This answer can be rewritten as

P g(t1, t2, t2) = (1− qt1)(1− qt2)(1− qt3)− q3t1t2t3(1− t1)(1− t2)(1− t3) + q(1− q)2t1t2t3.
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5.2 Two divisors

Suppose that the second divisor is intersected by two components of the strict transform,
and the first one by one component. This corresponds to the singularity

x · (y − x2) · (y + x2) = 0.

The matrix M is equal to

M =

(
1 1
1 2

)
,

χ(E•1 ) = χ(E•2 ) = 1,

so

F (n1, n2) =
1

2
(n2

1 + 2n1n2 + 2n2
2 + 2n1 + 3n2).

If P = ∅, we get

H̃∅(u1, u2) = (1− qu1 − qu2 + qu1u2)(1− qu2)− (1− u1 − qu2 + u1u2)(1− qu2)u2
1u
−1
2

+(1− qu1 − u2 + u1u2)(q − u2)u−1
1 u2 − q(1− u1 − u2 + q−1u1u2)(1− qu2)u1 =

1

u1u2
(1− u1)(1− u2)(−u3

1 + u1u2 + u2
1u2 − qu2

1u2 − q2u2
1u2 + qu3

1u2

+qu2
2 + u1u

2
2 − qu1u

2
2 − q2u1u

2
2 + u2

1u
2
2 − u3

2),

if P is one point on the second divisor, we get

H̃pt(u1, u2) = (1− qu1 − qu2 + qu1u2)− (1− u1 − qu2 + u2)u2
1u
−1
2 =

− 1

u2
(1− u1)(u2

1 − u2 − u1u2 + qu1u2 − u2
1u2 + qu2

2).

Finally we get the following answer (t0 corresponds to the first divisor):

P g(t0, t1, t2) = 1− qt0 − qt1 + q2t0t1 − qt2 + q2t0t2 + q2t1t2 + qt0t1t2 − q2t0t1t2 − q3t0t1t2

−q2t0t
2
1t2 + q3t0t

2
1t2 − q2t0t1t

2
2 + q3t0t1t

2
2 + q2t0t

2
1t

2
2 − q3t0t

2
1t

2
2 − q4t0t

2
1t

2
2 + q4t20t

2
1t

2
2

+q4t0t
3
1t

2
2 − q4t20t

3
1t

2
2 + q4t0t

2
1t

3
2 − q4t20t

2
1t

3
2 − q4t0t

3
1t

3
2 + q4t20t

3
1t

3
2.

This answer can be rewritten as

P g(t0, t1, t2) = (1− qt0)(1− qt1)(1− qt2)− q4t0t
2
1t

2
2(1− t0)(1− t1)(1− t2)

+(1− q)qt0t1t2(1− qt1 − qt2 + qt1t2).

If q = 1, we get the known Alexander polynomial:

P g(t0, t1, t2; q = 1) = (1− t0)(1− t1)(1− t2)(1− t0t21t22).

If t2 = 1, we get the known answer for A1 singularity:

P g(t0, t1, 1) = (1− q)(1− qt0 − qt1 + qt0t1).
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If t0 = 1, we get the answer for A3 singularity:

P g(1, t1, t2) = (1− q)(1− qt1 − qt2 + qt1t2 + q2t1t2 − q2t21t2 − q2t1t
2
2 + q2t21t

2
2),

so
P
A3

g (t1, t2) = (1− qt1)(1− qt2) + qt1t2(1− qt1 − qt2 + qt1t2) =

(1− qt1)(1− qt2) + q2t1t2(1− t1)(1− t2) + (1− q)qt1t2.

This answer agrees with the general answer for the singularities of type A2n−1 in the
section 7.5.

5.3 Three divisors

For simplicity we assume that each divisor is intersected by one component of the strict
transform. This corresponds to the singularity

x · y · (x2 − y3) = 0.

Matrix M is equal to

M =

1 1 2
1 2 3
2 3 6

 ,

χ(E•1 ) = χ(E•2 ) = 1, χ(E•3 ) = 0,

so

F (n1, n2, n2) =
1

2
(n2

1 + 2n2
2 + 6n2

3 + 2n1n2 + 4n1n3 + 6n2n3 + n1 + 2n2 + 4n3).

Now
A(u1, u2, u3) = (1− qu1 − qu3 + qu1u3)(1− qu2 − qu3 + qu2u3),

so

E(u1, u2, u3) =
1

u1u2u2
3

(u2
3u3u1 − u1

3u3
2q + u1

4u3u2 − u1
2u2

2u3
2 − u2

2u3
2u1+

u1
4u2

3u3 − u3
3u1

2q − u1
3u2u3

2 + u1
3u2

3u3 + u1
2u2

3u3 − u3
3qu2−

u1
3u2

2u3
2 − u3

3u1q − u2
2u3

2q − u1
2u2u3

2 − u3
2u1u2 + u2

2u1
4u3 − u1

3u2
3qu3+

u2
2u3

2u1
2q − u1

4u3u2
2q − u1

4u3
2u2q − u2

3u3
2u1q − u2

3u3u1
2q + u3

3u1q
2u2+

u2
2u3

2u1q
2 + u1

3u2
2u3q

2 + u1
3u3

2u2q
2 − u1

4u2
3 + u1

2u3
3 + u3

3u1 + u3
2u1

2u2q+

u1
3u3

3 + u3
3u2

2 + u3
3u2 + u3

3 − u3
4),

and

P g(t1, t2, t3) = 1− t3q + t1
2t2

3t3
7q7 + t1

2t2
2t3

5q5 + t1t2t3
3q3 + t1t2

2t3
4q4 − t12t2

4t3
7q7+

t2t3q
2 − t1t2t33q2 + t1t2q

2 − t1t22t3
4q3 − t12t2

2t3
5q4 − t1t22t3

2q2 − t12t2
3t3

5q5−
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t1
3t2

3t3
7q7 − t13t2

4t3
6q7 + t1

2t2
3t3

5q4 + t1
2t2

2t3
4q3 + t1

2t2
2t3

3q4 − t12t2
2t3

3q3+

t1
2t2

3t3
4q5 + t1

2t2
4t3

6q7 + t1t2
2t3

2q3 − t12t2
3t3

6q7 − t12t2
2t3

4q5 − t1t22t3
3q4−

t1t2t3q
3 + t1t2

2t3
3q2 − t2q + t1t3q

2 − t1t2t32q2 + t1
3t2

4t3
7q7+

t1t2t3
2q − t1q − t12t2

3t3
4q4 + t1

3t2
3t3

6q7.

It can be rewritten as

P g(t1, t2, t3) = (1− t1q)(1− t2q)(1− t3q)− t12t2
3t3

6q7(1− t1)(1− t2)(1− t3)−

t1t2t
2
3q(q − 1)(1− t2q)(1− t3q)− t21t22t43q4(q − 1)(1− t2)(1− t3)−

t1t
2
2t

3
3q

2(q − 1)(1− t1q) + t1t
2
2t

4
3q

3(q − 1)(1− t1).

In this presentation the symmetry of P g is clear, since every line in the right hand side
is invariant under the change ti ↔ q−1t−1

i .
If we set q = 1, we get

P g(t1, t2, t3, q = 1) = (1− t21t32t63)(1− t1)(1− t2)(1− t3).

If we consider only singularity of type A2, we set t1 = t2 = 1, t3 = t, and

P g(1, 1, t) = (1− q)2(1− tq + t2q),

so

Pg(1, 1, t) =
1− tq + t2q

1− tq
= 1 +

∞∑
k=2

tkqk−1.

This answer coincides with the one obtained in the section 2.3.

6 Symmetry

In this section we prove the symmetry property for the reduced motivic Poincaré series
(Theorem 4). The strategy of the proof passes along the lines of the computation described
in Lemma 6: namely, we prove the symmetry property for the generating function AK(u) in
Lemma 10, deduce from it a certain relations on its coefficients cK(n) in Lemma 11. Since we
can express the motivic Poincaré series in terms of cK(n), we can finish the proof by fitting
this relations to the statement of Theorem 4.

Lemma 10

AK(
1

qu1
, . . . ,

1

qus
) = q1−|K|

s∏
i=1

u
χ(E◦i )
i ·AK(u1, . . . , us).
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Proof .

AK(
1

qu
) = (−1)|K|

∏
i

(1− 1

ui
)|K∩Ei|−1(1− 1

uiq
)|K∩Ei|−1

∏
σ

(1− 1

ui(σ)
− 1

uj(σ)
+

1

qui(σ)uj(σ)
) =

AK(u)
∏
i

u
1−|K∩Ei|
i u

1−|K∩Ei|
i q1−|K∩Ei|

∏
σ

(qui(σ)uj(σ))
−1 =

AK(u)qs−|K|−|I0|
∏

u
2−|K0∩Ei|+χ(E•i )−2
i .

It rests to note that |I0| = s− 1 and χ(E◦i ) = χ(E•i )− |K0 ∩ Ei|. �

Lemma 11

cK(n1, . . . , ns) = q1−|K|+ncK(−χ(E◦1 )− n1, . . . ,−χ(E◦s )− ns),

where n =
∑s
i=1 ni.

Proof .

AK(
1

qu1
, . . . ,

1

qus
) =

∑
n

cK(n1, . . . , ns)u
−nq−n = q1−|K|

∏
u
χ(E◦i )
i

∑
z

cK(z1, . . . , zs)u
z.

We have
zi + χ(E◦i ) = −ni, zi = −χ(E◦i )− ni.

�

Theorem 4 Let µα be the Milnor number of Cα, and (Cα ◦ Cβ) is the intersection index
of Cα ◦ Cβ, µ(C) is the Milnor number of C. Let lα = µα +

∑
β 6=α(Cα ◦ Cβ) and δ(C) =

(µ(C) + r − 1)/2. Then

P g(
1

qt1
, . . . ,

1

qtr
) = q−δ(C)

∏
α

t−lαα · P g(t1, . . . , tr).

The theorem follows from Lemma 11 describing the symmetry of the coefficients cK(n) and
Lemma 6 describing P g(t1, . . . , tr) in terms of cK(n). The detailed proof is rather technical
and can be found in the Appendix.

Corollary 2 The degree of the polynomial P g(t1, . . . , tr) with respect to the variable ti is

equal to li. The greatest monomial in it equals to qδ(C)
∏r
i=1 t

li
i .

Alternative proof of the symmetry property for the motivic Poincaré series can be found in
[14], where it is deduced from the theorem of Campillo, Delgado and Kiyek on the symmetry
of the multi-variable Poincaré series of a plane curve singularity.
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7 Relation to the Heegaard-Floer knot homology

7.1 Heegaard-Floer homology

In the series of articles (e.g. [18],[19],[20],[22], see also [23]) P. Ozsváth and Z. Szabó con-
structed new powerful knot invariants, Heegaard-Floer knot (and link) homology. To each

link L = ∪ri=1Ki they assign the collection of homology groups ĤFLd(L, h), where d is an
integer and h belongs to some r-dimensional lattice. Their original description was based
on the constructions from the symplectic topology, later ([12],[13]) there were elaborated
combinatorial models for them. All of these homologies are invariants of the link L, and they
have the following properties ([19], [13]).

First, they give a ”categorification” of the Alexander polynomial of L: if r = 1, then∑
h

χ(ĤFL∗(L, h))th = ∆s(t),

where ∆s(t) = t− deg ∆/2∆(t) is a symmetrized Alexander polynomial of L. If r > 1, then

∑
h

χ(ĤFL∗(L, h))th =

r∏
i=1

(t
1/2
i − t−1/2

i ) ·∆s(t1, . . . , tr).

Second, they have the symmetry extending the symmetry of the Alexander polynomial:

ĤFLd(L, h) ∼= ĤFLd−2H(L,−h),

where H =
∑r
i=1 hi.

These properties are similar to the ones of the polynomials P g(t), and one could be
interested in comparison of these objects. It turns out, that for knots (of course, P g(t) is
defined only for the algebraic ones) this comparison can be done.

In [22] for the relatively large class of knots, containing all algebraic knots, the following
statement was proved.

Theorem 5 ([22]) Let the symmetrized Alexander polynomial have the form

∆s(t) = (−1)k +

k∑
i=1

(−1)k−i(tni + t−ni)

for some integers 0 < n1 < n2 < . . . < nk. Let n−j = −nj , n0 = 0. For −k ≤ i ≤ k let us
introduce the numbers δi by the formula

δi =


0, if i=k

δi+1 − 2(ni+1 − ni) + 1, if k-i is odd

δi+1 − 1, if k-i> 0 is even.

Then ĤFL(K, j) = 0, if j does not coincide with any ni, and ĤFL(K,ni) = Z belongs
to the homological grading δi.
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In what follows we will need more detailed algebraic structure of the Heegaard-Floer
homology which can be described in the following way ([19]).

Consider the ring
R = Z[U1, . . . , Ur].

For every r-component link L there exists a Zr-filtered chain complex CFL−(S3, L) of R-
modules, whose filtered homotopy type is an invariant of the link L. Filtrations naturally
correspond to the components of the link L. The operators Ui lowers the homological grading
by 2 and the filtration level by 1. The homologies of the associated graded object are denoted
as HFL−(S3, L). If one sets U1 = U2 = . . . = Ur = 0, he gets a new Zr-filtered chain complex

of Z-modules, which will be denoted as ĈFL(L). The homology of the associated graded

object are denoted as ĤFL(L), and they are the homology discussed above.
The filtration on the second complex is compatible with the forgetting of components

(proposition 7.1 in [19]). Namely, let M be the two-dimensional graded vector space with
one generator in grading 0 and one in grading −1.

Proposition. Let L be an oriented, r-component link in S3 and distinguish the first com-

ponent K1. Consider the complex ĈFL(L) viewed as a Zn−1-filtered chain complex where
the filtration corresponding to the first component is omitted. The filtered homotopy type

of this complex is identified with ĈFL(L−K1)⊗M .

If we forget all components of L, we get either the complex

ĈF (S3)⊗Mr−1,

where ĈF (S3) has one-dimensional homology in grading 0 or

CF−(S3) = Z[U ],

where all Ui acts by the multiplication by U .
This proposition is a direct analogue to the equation (8).

The three-manifolds with simplest Heegaard-Floer homology are the rational homology
spheres Y , for which the rank of the Heegaard-Floer homology is equal to the order of the
first (singular) homology, i.e.

rk ĤF (Y ) = |H1(Y ;Z)|.

These manifolds are called L-spaces, for example, lens spaces are L-spaces. In the case that
some positive surgery on K gives an L-space, we call K an L-space knot. It was proved by
M. Hedden in [9] that all algebraic knots (i.e. links of irreducible plane curve singularities)
belong to the class of L-space knots.

It was proved in [22], that for the L-space knot K and any filtration level n

rk H∗(CFL−(K,n)/U1(CFL−(K,n))) = 1. (24)

This is a key geometric ingredient in the proof of Theorem 5.
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7.2 Matching the answers

Consider the Poincaré polynomial for the Heegaard-Floer homologies:

HFL(t, u) =
∑

udts dim ĤFLd,s(K).

It categorifies the Alexander polynomial in the sense that

HFL(t,−1) = t− deg ∆/2∆(t).

Remark that the coefficients in P g(t, q) are always equal to 0 or to ±1. It can be proved
from the equation (15).

Theorem 6 Take P g(t, q) and let us make a following change in it: tαqβ is transformed to

tαu−2β, and −tαqβ is transformed to tαu1−2β . We get a polynomial ∆̃g(t, u). Then

∆̃g(t
−1, u) = t− deg ∆/2HFL(t, u). (25)

Example. For (3, 5) torus knot we have

Pg(t, q) = 1 + qt3 + q2t5 + q3t6 +
q4t8

1− qt
,

P g(t, q) = 1− qt+ qt3 − q2t4 + q2t5 − q4t7 + q4t8,

∆̃g(t, q) = 1 + u−1t+ u−2t3 + u−3t4 + u−4t5 + u−7t7 + u−8t8,

and
HFL(t, u) = t4 + u−1t3 + u−2t+ u−3t0 + u−4t−1 + u−7t−3 + u−8t−4.

Proof . To prove (25) we match Theorem 5 with the equation (15).
In the notation of Theorem 5 the non-symmetrized Alexander polynomial equals to

∆ =

−k∑
i=k

(−1)k−itnk−ni =

2k∑
i=0

(−1)itnk−nk−i ,

P (t) =
∆

1− t
=

k−1∑
i=0

nk−nk−2i−1−1∑
j=nk−nk−2i

tj +
t2nk

1− t
.

Note that for i > 0

δk−2i = δk−2i+1 − 1 = δk−2(i−1) − 2(nk−2i+2 − nk−2i+1),

so

Pg(t, q) =

k−1∑
i=0

nk−nk−2i−1−1∑
j=nk−nk−2i

q(j−nk+nk−2i)−δk−2i/2tj +
t2nkqnk

1− qt
,
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P g(t, q) =

k−1∑
i=0

(q−δk−2i/2tnk−nk−2i − q−δk−2i−1/2tnk−nk−2i−1) + t2nkqnk .

Now

∆̃g(t, u) =

k−1∑
i=0

(uδk−2itnk−nk−2i + uδk−2i−1tnk−nk−2i−1) + t2nku−2nk ,

tnk∆̃g(t
−1, u) =

k−1∑
i=0

(uδk−2itnk−2i + qδk−2i−1tnk−2i−1) + t2nku−2nk =

k∑
i=−k

uδitni = HFL(t, u).

�

7.3 Comparing filtered complexes

In this section we try to describe the relation between the knot filtration on the Heegaard-
Floer complexes and the filtration on the space of functions defined by a curve.

To be more close to the algebraic setup, we reverse all signs for filtrations and for the
homological (Maslov) grading as well (so we get cohomology groups). The Alexander grading
is also changed to get the non-symmetrized Alexander polynomial. In another words, the
Poincaré polynomial of the resulting cohomology coincides with ∆̃g(t, u

−1). The operator U
will now increase the homological grading by 2.

Consider a Z≥0-indexed filtration Jn by vector subspaces (with finite codimensions) on a
infinite-dimensional complex vector space J0. It induces a filtration by projective subspaces
PJn on PJ0 = CP∞:

PJ0
j1←↩ PJ1

j2←↩ PJ2
j3←↩ . . . ,

so we have a sequence of corresponding Gysin maps in cohomology:

H∗(PJ0)
(j1)∗←↩ H∗−2·codimJ1PJ1

(j2)∗←↩ H∗−2·codimJ2PJ2

(j3)∗←↩ . . . .

We get a Z≥0-indexed filtration

Fk = (jk)∗(H
∗(PJk))

in H∗(CP∞) = Z[U ], which is compatible with the multiplication by U . If we also know (as
for the filtration defined by the orders on the curve), that dim Jk/Jk+1 ≤ 1, we conclude that
U increase the filtration level at least by 1.

The motivic Poincaré series in this setup can be written as

Pg(t, q) =
∑
k,n

tkqn/2 dimHn(Fk/Fk+1).

The situation is similar to the Heegaard-Floer complexes, but U may increase the filtration
level more that by 1. To avoid this problem, we should modify the complex.

Example. Consider the following filtered complex T : it has generators Uka0, Uka1 and
Uka2. The homological degree of U laj equals to 2l+ j and its filtration level equals to l+ j.
The differential is defined as

d(a1) = a2 + Ua0.
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One can check that∑
k,n

tkun dimHn(Tk/Tk+1) = 1 + u2t2 + u4t3 + u6t4 + . . .

(so this complex corresponds to minus-version of the Heegaard-Floer homology of the trefoil

knot) and rkH∗(Tk/UTk) = 1 for all k. Remark that if T̂ k = Tk/UTk−1, then∑
k,n

tkun dimHn(T̂k/T̂k+1) = 1 + ut+ u2t2,

what is the Poincaré polynomial for the hat-version of the Heegaard-Floer homology of the
trefoil.

Let us turn to the general case. Consider the complex

C0 = F0[U1] + (F0[1])[U1] (26)

with the filtration
Cn =

⊕
k+l=n

U l1Fk ⊕
⊕

k+l=n−1

U l1Fk[1]

and the natural action of the operator U1 of homological degree 2. The differential is given
by the equation

d(x) = U1 · x+ Ux.

One can check that this differential preserves the filtration Cn and commutes with U1.

Lemma 12
H∗(Cn/Cn+1) = Fn/Fn+1, rk H∗(Cn/U1(Cn)) = 1.

Proof . We have

Cn/Cn+1 =
⊕
k+l=n

U l1(Fk/Fk+1)⊕
⊕

k+l=n−1

U l1(Fk/Fk+1)[1].

Since the U1-increasing component of the differential

d1(U l1x[1]) = U l+1
1 x

gives the isomorphism
d1 : U l1(Fk/Fk+1)→ U l+1

1 (Fk/Fk+1),

we have
H∗(Cn/Cn+1) = Fn/Fn+1.

Also we have

Cn/U1(Cn) = F0 ⊕ F0[1]
⊕

k+l=n,l>0

U l1(Fk/Fk+1)⊕
⊕

k+l=n−1,l>0

U l1(Fk/Fk+1)[1],
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and up to the isomorphisms d1 we have the complex F0 ⊕ F0[1] with the differential

d2(x[1]) = Ux,

so
rk H∗(Cn/U1(Cn)) = 1.

�

The properties of the complex C0 are similar to the ones of the complex CFL−(K). More
precisely, the calculations of [22] (lemma 3.1 and lemma 3.2) imply the following

Proposition. Suppose that a cochain complex C has a filtration Ck, k ≥ 0 and an injective
operator U of homological degree 2 acting on it such that

1)U(Ck) ⊂ Ck+1 and U−1(Ck) ⊂ Ck−1 (this means that U increase the level of filtration
exactly by 1)

2)H∗(Ck/U(Ck)) has rank 1 for all k.

Then
3) For all k the rank of H∗(Ck/Ck+1) is at most 1.

Let {0, σ1, σ2, . . .} is the set of k such that this rank is 1. Then
4) H∗(Cσk/Cσk+1) belongs to degree 2k.

Let

Q(t, q) =

∞∑
k=0

qktσk , Q(t, q) = Q(t, q)(1− qt).

Let us make a following change in Q: tαqβ is transformed to tαu2β , and −tαqβ is transformed
to tαu2β−1.

5) The result is equal to∑
k,n

tkun dimHn(Ck/(Ck+1 + UCk−1)).

The second condition is analogous to the equation (24) for the Heegaard-Floer homology
of the L-space knots.

The last result can be reformulated as follows. Consider the complex Ĉk = Ck/UCk−1,

then the last homology is the homology of the associated graded object Ĉk/Ĉk−1. The mul-
tiplication by 1− qt corresponds to the exact sequence

0→ Ck−1/Ck
U→ Ck/Ck+1 → Ĉk/Ĉk+1 → 0.

As a corollary we get that the series Q(t, 1) determines completely all discussed cohomol-
ogy. Since for the filtered complexes C and CFL− we have Q(t, 1) = ∆(t)/(1 − t) for both,
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we have the equality of the cohomology of the associated graded objects and the more clear
proof of the Theorem 6. As an another corollary, we get the equation

H∗(CFL−(S3)/CFL−s (S3,K)) ∼= H∗(P(O/Js)), (27)

which looks more geometric than the Theorem 6.

Remarks.
1. It would be interesting to construct the analogous Zn-filtered complex of Z[U1, . . . , Un]

for multi-component links which would carry the information about the Poincaré series of
the corresponding multi-index filtration.

2. It would be also interesting to compare these results with the ones of [15], [16] and [17]
computing the Seiberg-Witten and Heegaard-Floer invariants of links of surface singularities.

7.4 Example: A2n−1 singularities

Since the algorithm of computation of the (reduced) motivic Poincaré series is quite com-
plicated, it is useful to have a series of answers where the motivic Poincaré series and the
Heegaard-Floer link homology can be computed.

Proposition. Consider the singularity of type A2n−1 given by the equation

y2 = x2n.

From the topological viewpoint this corresponds to the 2-component link, whose components
are unknotted, all intersections are positive and the linking number of the components equals
to n. Then

Pg(t1, t2) = 1 + qt1t2 + . . .+ qn−1tn−1
1 tn−1

2 +
qn(1− q)tn1 tn2

(1− t1q)(1− t2q)
.

Proof . For the proof we use the equation (13). Parametrisations of the components are

(x(t1), y(t1)) = (t1, t
n
1 ), and (x(t2), y(t2)) = (t2,−tn2 ),

so
xayb|C1 = ta+bn

1 , xayb|C2 = (−1)bta+bn
2 .

If a < n, then every function with order a on C1 has a form xa + . . ., so its order on C2 is
also equal to a.

For every a, b ≥ n consider the function xa−n(xn + y) + xb−n(xn − y). Its restrictions on
C1 and C2 are respectively equal to 2ta1 and 2tb2, therefore

dim Ja,b/Ja+1,b = dim Ja,b/Ja,b+1 = 1.

The codimensions h(v1, v2) are equal to v1 + v2−n, if v1, v2 ≥ n, to v2, if v1 < n, v2 ≥ n,
to v1, if v2 < n, v1 ≥ n, and to max(v1, v2), if 0 ≤ v1, v2 < n. We have

LA2n−1
g (t1, t2, q) =

∑
0≤max(v1,v2);min(v1,v2)<n

tv11 t
v2
2 q

max(v1,v2) + (1 + q)

∞∑
v1,v2=n

tv11 t
v2
2 q

v1+v2−n,
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hence

LA2n−1
g (t1−1)(t2−1) = −1+(1− q)t1t2 + . . .+(qn−2− qn−1)tn−1

1 tn−1
2 + qn−1(1− q+ q2)tn1 t

n
2

+
qn+1tn+1

1 tn2 (q − 1)

1− qt1
+
qn+1tn1 t

n+1
2 (q − 1)

1− qt2
+
qntn+1

1 tn+1
2 (1 + q)(1− q)2

(1− qt1)(1− qt2)
,

and

PA2n−1
g =

L
A2n−1
g (t1 − 1)(t2 − 1)

t1t2 − 1
= 1 + qt1t2 + . . .+ qn−1tn−1

1 tn−1
2 +

qn(1− q)tn1 tn2
(1− qt1)(1− qt2)

.

�

Corollary 3

P
A2n−1

g (t1, t2) = [1 + (q + q2)t1t2 + . . .+ (qn−1 + qn)tn−1
1 tn−1

2 + qntn1 t
n
2 ] (28)

−(t1 + t2)[q + q2t1t2 + . . .+ qntn−1
1 tn−1

2 ].

In [19] Ozsváth and Szabó computed the Heegaard-Floer homology of the corresponding
links. In their notation the answer has the following form (everywhere we write the Poincaré
polynomials of the corresponding complexes). Let

Y l(d)(t1, t2, u) = ud(tl1 + tl−1
1 t2 + . . .+ tl2) + ud−1(tl−1

1 + . . .+ tl−1
2 ),

B(d)(t1, t2, u) = ud + (t1 + t2)ud+1 + ud+2t1t2.

Then

HFLA2n−1
(t1, t2, u) = Y 0

(0)t
n/2
1 t

n/2
2 + Y 1

(−1)t
n/2−1
1 t

n/2−1
2 +

n∑
i=2

B(−2i)t
n/2−i
1 t

n/2−i
2 .

Since Y 0
(0) = 1 and Y 1

(−1) = u−1(t1 + t2) + u−2 one can simplify this as

HFLA2n−1
(t1, t2, u) = t

n/2
1 t

n/2
2 + (u−1(t1 + t2) + u−2)t

n/2−1
1 t

n/2−1
2

+

n∑
i=2

(u−2i + (t1 + t2)u−2i+1 + u−2i+2t1t2)t
n/2−i
1 t

n/2−i
2 ,

so
t
n/2
1 t

n/2
2 HFLA2n−1(t−1

1 , t−1
2 , u) = 1 + (u−1(t1 + t2) + u−2t1t2)

+

n∑
i=2

(u−2iti1t
i
2 + (t1 + t2)u−2i+1ti−1

1 ti−1
2 + u−2i+2ti−1

1 ti−1
2 ) =

[1 + 2u−2t1t2 + . . .+ 2u−2n+2tn−1
1 tn−1

2 + u−2ntn1 t
n
2 ]

−(t1 + t2)[u−1 + u−3t1t2 + . . .+ u−2n+1tn−1
1 tn−1

2 ].

The last expression is similar to (28) in analogy with the Theorem 6.
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8 Appendix

Proof of Lemma 4.
We have∑

un̂iφi(I,K, n̂) =
∑
j

∞∑
n̂=j+fi(K,I)

un̂i(−1)j
(

1− χ(E◦i )− fi(I,K)

j

)
qj =

ufi(K,I)

1− u
∑
j

(−1)j
(

1− χ(E◦i )− fi(I,K)

j

)
(uq)j =

ufi(K,I)

1− u
(1− uq)1−χ(E◦i )−fi(I,K),

and ∑
un̂G(K, I, n̂) = q|I|(1− q)|I|+|K|

∏
i

u
fi(K,I)
i

1− ui
(1− uiq)1−χ(E◦i )−fi(I,K).

�
Proof of Lemma 5

AK(u) =
∑
I

q|I|(1− q)|I|
∑
K1

(−1)|K|−|K1|(1− q)|K1|
∑
n

un
∏
i

φi(I,K1, n).

We have ∑
n

un
∏
i

φi(I,K1, n) =
∏
i

u
fi(K,I)
i (1− uiq)1−χ(E◦i )−fi(I,K)

1− ui
.

Now ∑
K1i⊂(K∩Ei)

(−1)|K∩Ei|−|Ki1|(1− q)|K1i| 1

1− ui
u
fi(K1,I)
i (1− uiq)1−χ(E◦i )−fi(I,K1) =

1

1− ui
u
fi(K,I)
i (1− uiq)1−χ(E◦i )−fi(K,I)×∑

K1i

(−1)|K∩Ei|−|K1i|(1− q)|K1i|u
|K1i|−|K∩Ei|
i (1− uiq)|K∩Ei|−|K1i| =

1

1− ui
u
fi(K,I)
i (1− uiq)1−χ(E◦i )−fi(K,I)(1− q − 1− uiq

ui
)|K∩Ei| =

1

1− ui
(−1)|K∩Ei|u

fi(K,I)−|K∩Ei|
i (1− uiq)1−χ(E◦i )−fi(K,I)(1− ui)|K∩Ei|.

Remark that fi(K, I)− |K ∩ Ei| = fi(I) and

χ(E◦i ) + fi(K, I) = χ(E•i )− |K0 ∩ Ei|+ |K ∩ Ei|+ fi(I),

hence the last expression can be rewritten in a form

(−1)|K∩Ei|u
fi(I)
i (1− uiq)1−χ(E•i )+|K∩Ei|−fi(I)(1− ui)|K∩Ei|−1.
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Also∑
I

q|I|(1−q)|I|
∏
i

u
fi(I)
i (1−uiq)−fi(I) =

∏
σ

(1+q(1−q)ui(σ)uj(σ)(1−ui(σ)q)
−1(1−uj(σ)q)

−1) =

∏
i

(1− uiq)χ(E•i )−2
∏
σ

(1− qui(σ) − quj(σ) + qui(σ)uj(σ)).

Therefore
AK(u) = (−1)|K|

∏
i

(1− uiq)1−χ(E•i )+|K∩Ei|(1− ui)|K∩Ei|−1×

×
∏
i

(1− uiq)χ(E•i )−2
∏
σ

(1− qui(σ) − quj(σ) + qui(σ)uj(σ)) =

(−1)|K|
∏
i

(1− uiq)|K∩Ei|−1(1− ui)|K∩Ei|−1
∏
σ

(1− qui(σ) − quj(σ) + qui(σ)uj(σ)).

�
Proof of Lemma 7
We have to prove that H̃P = 0 at uβ = 1 for β ∈ E(P ). Suppose that Eβ is intersected

by Eα1
, . . . , Eαk . For every set E of divisors not containing Eβ let us compare the summands

corresponding to E and to E ∪ Eβ .
For E at uβ = 1 we have∏

i 6=β

u
−

∑
aijµj

i (−1)|K0∩E|q∆(E)
∏
i∈E

(q − ui)ki−1(1− q)kβ−1
∏

i/∈(P∪E)

(1− qui)ki−1

×
∏
σ/∈Eβ

(1− q1−µi(σ)(E)ui(σ) − q1−µj(σ)(E)uj(σ) + q1−µi(σ)(E)−µj(σ)(E)ui(σ)uj(σ)) · (1− q)k.

For E ∪ E1 at uβ = 1 we have

k∏
j=1

uαj
∏
i 6=β

u
−

∑
aijµj

i (−1)kβ+|K0∩E|q∆(E∪E1)(q − 1)kβ−1
∏
i∈E

(q − ui)ki−1
∏

i/∈(E∪P )

(1− qui)ki−1

×
∏
σ/∈Eβ

(1−q1−µi(σ)(E)ui(σ)−q1−µj(σ)(E)uj(σ)+q
1−µi(σ)(E)−µj(σ)(E)ui(σ)uj(σ))·

k∏
j=1

(1−q)q−µαj (E)uαj .

It rests to note that ∆(E ∪ Eβ)−∆(E) =
∑k
j=1 µαj (E).

�
Proof of Lemma 8.

∑
n

un
∑

E⊂E(P )

q−
∑
i∈E ni−∆(E)−

∑
i∈E aii−|E|q|K0∩E| × cP∪E(ni +

∑
aijµj(E)) =

∑
E⊂E(P )

∏
u
−

∑
aijµj(E)

i · q
∑
aijµi(E)µj(E) · q−∆(E)−

∑
i∈I aii+|K0∩E|−|E|
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×
∑
n1

∏
i

(uiq
−µi(E))n1i · cP∪E(n1) =

∑
E⊂E(P )

∏
u
−

∑
aijµj(E)

i ·AP∪E(uiq
−µi(E))q∆(E)+|K0∩E|−|E| =

(−1)|P |
∑

E⊂E(P )

∏
u
−

∑
aijµj(E)

i · (−1)|K0∩E|q∆(E)+|K0∩E|−|E|
∏
i∈E

[(1− ui)−1(1− uiq−1)ki−1]

×
∏
i∈P

[(1− qui)ki−pi−1(1− ui)pi−1]
∏

i/∈(P∪E)

[(1− qui)ki−1(1− ui)−1]

×
∏
σ

(1− q1−µi(σ)(E)ui(σ) − q1−µj(σ)(E)uj(σ) + q1−µi(σ)(E)−µj(σ)(E)ui(σ)uj(σ)) =

(−1)|P |
∏
i∈P

[(1− qui)ki−pi−1(1− ui)pi−1] · 1∏
i∈E(P )(1− ui)

×
∑

E⊂E(P )

(−1)|K0∩E| ·
∏

u
−

∑
aijµj(E)

i · q∆(E)
∏
i∈E

(q − ui)ki−1
∏
i/∈E

(1− qui)ki−1

×
∏
σ

(1− q1−µi(σ)(E)ui(σ) − q1−µj(σ)(E)uj(σ) + q1−µi(σ)(E)−µj(σ)(E)ui(σ)uj(σ)).

�
Proof of Theorem 4.
Let ki = |K0 ∩ Ei|. From Lemma 6 we get

P g(
1

qt1
, . . . ,

1

qtr
) = (t1 · . . . · tr)−1

∑
n

t−Mnq−
∑
mijkinjqF (n)−

∑
ni
∑
K

tKcK(n) =

t−1−Mχ(E◦)
∑
n

tM(χ(E◦)−n)q−
∑
mijkinjqF (n)−

∑
ni

×
∑
K

q1−|K|+n · tK · cK(−χ(E◦i )− ni). (29)

Let
ξi = −χ(E◦i ), n1 = ξ − n.

Then

F (n)−
∑

ni =
1

2
[
∑

mijninj +
∑

mijniχ(E•j )−
∑

ni],

so
2[F (n1)−

∑
n1i − F (n) +

∑
ni] =∑

mij(ξi − ni)(ξj − nj) +
∑

mij(ξi − ni)χ(E•j )−
∑

(ξi − ni)

−
∑

mijninj −
∑

mijniχ(E•j ) +
∑

ni =

−2
∑

mij(ξi + χ(E•i ))nj + 2
∑

nj + 2(F (ξ)−
∑

ξi) =
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−2
∑

mijkinj + 2
∑

nj + 2(F (ξ)−
∑

ξi).

Thus (29) is equal to

t−1−Mξq−F (ξ)+
∑
ξiq1−|K0|

∑
tMn1qF (n1)−

∑
n1i

∑
K

tKq
|K|cK(n1).

It rests to compute the powers of tα and of q.
Remark that

∑
ξi = |K0| − 2, so

∑
ξi + 1− |K0| = −1.

Also
2F (ξ) =

∑
mijkikj − 2

∑
mijkiχ(E•j ) +

∑
mijχ(E•i )χ(E•j )+∑

mijkiχ(E•j )−
∑

mijχ(E•i )χ(E•j ) +
∑

ξi =∑
mijkikj −

∑
mijkiχ(E•j ) + |K0| − 2.

The formula of A’Campo ([1]) says that

1− µ =
∑

mχ(Sm) =
∑

χ(E◦i )mijkj =
∑

mij(χ(E•i )− ki)kj ,

so
2F (ξ) = µ− 1 + |K0| − 2 = 2δ − 2.

Thus −F (ξ)− 1 = −δ.
Also for every α one has

1− µα =
∑
j 6=i(α)

mi(α)jχ(E•j ) +mi(α),i(α)(χ(E•i(α))− 1),

and for β 6= α
Cα ◦ Cβ = mi(α),i(β),

so ∑
β 6=α

Cα ◦ Cβ =
∑
j 6=i(α)

mi(α),jkj +mi(α),i(α)(ki(α) − 1)

and
1− µα − Cα ◦ Cβ =

∑
j

mi(α),jχ(E◦j ).

�
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Poincaré series. Monatshefte für Mathematik 150 (2007), no. 3, 193–210.

[6] A. Campillo, F. Delgado, K. Kiyek. Gorenstein property and symmetry for one-
dimensional local Cohen-Macaulay rings. Manuscripta Math. 83 (1994), no. 3-4, 405–
423.

[7] J. Denef, F. Loeser. Germs of arcs on singular algebraic varieties and motivic integration.
Inventiones Math. 135 (1999), no.1, 201–232.

[8] D. Eisenbud, W. Neumann. Three-dimensional link theory and invariants of plane curve
singularities. Ann. of Math. Studies 110. Princeton Univ. Press, Princeton, NJ, 1985.

[9] M. Hedden. On knot Floer homology and cabling II. Int. Math. Res. Not. IMRN 2009,
no. 12, 2248-2274.

[10] F. Heinloth. A note on functional equations for zeta functions with values in Chow
motives. Ann. Inst. Fourier (Grenoble) 57 (2007), no. 6, 1927-1945.

[11] M. Kapranov. The elliptic curve in the S-duality theory and Eisenstein series for Kac-
Moody groups, arXiv: math.AG/0001005
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[14] J.J. Moyano-Fernández, W. A. Zuñiga-Galindo. Motivic Zeta Functions for Curve Sin-
gularities. Nagoya Math. J. 198 (2010), 47-75.

[15] A. Némethi, L. Nicolaescu. Seiberg-Witten invariants and surface singularities. Geome-
try and Topology, 6 (2004), 269–328.
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Linear components of the tangent cone in the Nash

modification of a complex surface singularity

Jawad Snoussi

Abstract

We prove that each linear component of the tangent cone of a complex surface sin-
gularity corresponds to at least one singular point in the normalized Nash modification,
whenever the minimal resolution factors through the blow-up of the origin of the germ.
We give an example of a surface whose tangent cone has no linear component and the
normalized Nash modification is singular.

1 Introduction

Let (X,x) be a germ of equidimensional complex analytic singularity. The Nash modification
of (X,x) is a modification that consists in replacing each singular point of a representative of
the germ by all the possible limits of directions of tangent spaces. More precisely, let X ⊂ Cn
be a representative of (X, 0), and suppose it has pure dimension d. Call Sing(X) the singular
locus of X. We define the map:

λ : X \ Sing(X) → G(d, n)
y 7→ TyX

where G(d, n) is the Grassmannian of d-dimensional vector space in Cn and TyX is the
direction of tangent space to X at y. The closure of the graph of λ in X × G(d, n) is a
complex analytic space of dimension d. Call it X̃ and endow it with the restriction ν of the
projection on the first factor. The datum ν : X̃ → X is the Nash modification of X.

If y is a singular point of X, the fibre ν−1(y) consists of the vector spaces T obtained
as limits of directions of tangent spaces TynX of a sequence of non singular points of X
converging to y. We will simply call it a limit of tangent spaces to X at y. The limits of
tangent spaces to analytic varieties have been studied in the 70’s and 80’s by D.T Lê, B.
Teissier, J.P.G. Henry, M. Merle, T. Gaffney and others, see [8, 6, 5, 2].

We will focus in this work on the 2-dimension case. Let (S, s) be a complex surface
singularity. We will denote by CS,s its tangent cone. We recall that this is the algebraic
variety defined by the ideal generated by all the initial forms at s of the holomorphic functions
of the ideal defining the surface S. The tangent cone is strongly related to the limits of tangent
spaces to the surface. This relation is established and explained in [7].

In particular, any two-dimensional plane, tangent to the tangent cone is a limit of tangent
spaces to the surface at s. So whenever CS,s has a linear two-dimensional plane as an
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irreducible component, this plane will correspond to a limit of tangent spaces to S at s.
These linear components will be called the planar components of the tangent cone.

The Nash modification of a surface singularity is not necessarily normal, not even when
the original surface is normal. Call n : S̄ → S̃ the normalization of the surface obtained by
Nash modification. The composition map ν ◦ n : S̄ → S will be called the normalized Nash
modification of the surface singularity (S, s).

The normalization map being finite, each point in the exceptional fiber of the Nash mod-
ification S̃ has finitely many pre-images in the normalized Nash modification. In particular,
since each planar component of the tangent cone corresponds to a point in the exceptional
fiber of ν, then each of these components corresponds to finitely many points in the normal-
ized Nash modified surface S̄.

In terms of this last correspondence, our main result states that whenever (S, s) is a
surface singularity for which the minimal resolution factors through the blow-up of the point
s, then any planar component of the tangent cone corresponds to at least a singular point in
the normalized Nash modification of (S, s).

Then we give an example showing that the converse is false. Namely we exhibit a minimal
singularity whose tangent cone has no planar component and the normalized Nash modifica-
tion has two singular points.

This example shows some limit of the analogy between the pairs (Nash modification, polar
curves) and (point blow-up, hyperplane sections) for normal surfaces. Indeed, the singular
points of the normalized blow-up of the origin of a normal germ of a surface are fixed points of
the family of polar curves. Meanwhile a singular point of the normalized Nash modification
of a normal germ of surface need not be a fixed point of the family of hyperplane sections ;
see [10, 11].

2 The result

Let (S, s) be a germ of complex surface singularity and let f1, . . . , fr be holomorphic functions
on it. For each α ∈ Pr−1 we define the curve Cα to be the zero set on (S, s) of a linear
combination Σri=1aifi, where (a1 : . . . : ar) are homogeneous co-ordinates of α. The family
of curves (Cα)α is the linear system of curves generated by f1, . . . , fr and parametrised by
Pr−1.

Consider now a modification µ : X → (S, s).

Definition 2.1. A point η ∈ µ−1(s) is called a fixed point, or a base point, of the family
of curves (Cα)α if there exists an open set U ⊂ Pr−1, such that for any α ∈ U the strict
transform of the curve Cα by the modification µ contains the point η.

In [11, Thms 3.2 and 4.2], we proved the following:

Proposition 2.2. Let (S, s) be a reduced equidimensional germ of complex surface singular-
ity. The normalized Nash modification of (S, s) factors through the blow-up of the point s in
S if and only if the tangent cone CS,s does not have any planar component.

Moreover, the planar components of the tangent cone correspond exactly to the fixed points
of the linear system of hyperplane sections on S at s in the Nash modification.
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The aim of this short note is to show how the planar components of the tangent cone
contribute in the singularities of the surface obtained by Nash modification.

Theorem 2.3. Let (S, s) be a germ of reduced and equidimensional complex surface singu-
larity. Suppose that the minimal resolution of (S, s) factors through the blow-up of the point
s. Then to any planar component of the tangent cone CS,s corresponds at least one singular
point in the surface obtained by the normalized Nash modification.

Proof:
Let P be a planar component of the tangent cone CS,s. It is a limit of tangent planes

to the surface at s. So it corresponds to a point η in the exceptional fibre of the Nash
Modification. Call η1, . . . , ηd the inverse image of η by the normalization map.

Let us consider the following commutative diagram:

X̄
τ−−−−−→ X

π

y
y ρ

S̄ S′

n

y
y e

S̃
ν−−−−−→ S

where n : S̄ → S̃ is the normalization of the Nash modified surface, the map π : X̄ → S̄
is the minimal resolution of the singularities of S̄, e : S′ → S is the blow-up of the point s
and ρ : X → S′ is the minimal resolution of the singularities of S′.

Since the composition ν◦n◦π is a resolution of S it factors through the minimal resolution
of S which coincides by hypothesis with the minimal resolution of S′. Let us call τ : X̄ → X
the factorisation map.

By proposition 2.2, η is a fixed point of the linear system of hyperplane sections of S at
s in the surface S̃. Since the normalization map is finite, at least one of the points ηi ∈ S̄
is still a fixed point of the hyperplane sections. Suppose η1 is. And suppose it is not a
singular point of the surface S̄. Then, the minimal resolution π induces an isomorphism over
a neighborhood of η1. So the inverse image π−1(η1) is again a fixed point of the hyperplane
sections of S at s in the resolution X̄ and hence in the minimal resolution X and in the
blow-up of the origin S′.

The universal property of the blowing up asserts that the linear system of hyperplane
sections does not have any fixed point in the blown-up surface. So this contradicts the
assumption of η1 being a non singular point of S̄.

So at least one of the ηi ∈ S̄ is a singular point.

Remark 2.4. There exists a class of normal two-dimensional singularities, called rational
surface singularities having the property that any resolution factors through the blow-up of
the singularity. For more details on rational surface singularities see for example [1] and [9].
So our hypothesis in theorem 2.3 is satisfied by a non trivial class of surface singularities.
However it would be interesting to see if the conclusion of theorem 2.3 is valid for a general
complex reduced purely two-dimensional singularity.
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Example 2.5. The A2 singularity given by the equation x2+y2+z3 is a rational double point
singularity. Its tangent cone is a union of two planes. The Nash modification of this surface
was studied by G. Gonzalez-Sprinberg in [4]. There it is shown that the Nash modification
of this surface has exactly two singular points corresponding precisely to the planes of the
tangent cone at the origin.

3 The converse is false

Consider a normal two-dimensional singularity (S, 0) having the diagram of figure 1 as dual
graph of its minimal resolution π : X → S.

E E E E
1

E
3 4 52

Figure 1: Dual graph of the minimal resolution

Where all the irreducible components Ei, 1 ≤ i ≤ 5, of the exceptional divisor are
rational smooth curves intersecting transversally. The self intersections are given as follows:
E2

1 = E2
5 = −3 and E2

2 = E2
3 = E2

4 = −2. This singularity is rational, and actually even
minimal, i.e. the fundamental cycle (or equivalently in this case, the maximal ideal cycle)
in the minimal resolution is Z = Σ5

i=1Ei. A surface with minimal singularity has also the
property that its tangent cone is reduced.

It is well known that the surface S′ obtained by the contraction of the irreducible com-
ponents of the exceptional divisor satisfying the property Z · Ei = 0 (known as Tyurina
components) is isomorphic to the surface obtained by the blow-up of the origin in S. The
image under this contraction of the irreducible components of the exceptional fibre such that
Z · Ei < 0 (the non-Tyurina components) is precisely the projective tangent cone of the
surface (S, 0).

So in this example, the projective tangent cone has two (reduced) and irreducible com-
ponents obtained by the images of E1 and E5 in the contraction of E2, E3 and E4. Moreover
the degree of each of these components is given by the (positive) number −Z · Ei. So the
projective curve associated to the tangent cone is the union of two irreducible and reduced
curves of degree two, intersecting in one point. This intersection point is the only singular
point of the surface S′; it is an A3 singularity. In particular, the tangent cone CS,0 has no
planar component.

A normalized modification of a normal surface singularity factors through the Nash mod-
ification if and only if the family of (local and absolute) polar curves of the surface at the
singular point have no fixed point in the normalized modification ([12, Thm. III.1.2]). M.
Spivakovsky studied extensively Nash modification on normal surfaces, generalizing a previ-
ous work by G. González-Sprinberg in [3]. In particular he gave a precise characterization of
the fixed points of the polar curves in the minimal resolution of a minimal surface singularity,
and determined the components of the exceptional fibre that intersect a general polar curve;
see [12, Thm.III 5.4.]. Let us state this result:

Consider π : X → S the minimal resolution of a minimal surface singularity. Call
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E =
⋃
i

Ei the decomposition of the exceptional fiber into its irreducible components and Γ

the dual graph associated to it. Let Vi be the vertex of Γ corresponding to Ei. The cycle
Z = ΣiEi is in the case the so called fundamental cycle. It satisfies Z · Ei ≤ 0 for all i.
Let Vi0 be a vertex such that Z · Ei0 = 0. The Tyurina component of Γ containing Vi0 is
the connected component of Γ \ {Vi, Z · Ei < 0} that contains Vi0 . We define the integer si
associated to Vi as follows:

if Z · Ei < 0 then si = 1
if Z · Ei = 0 call ∆ the Tyurina component of Γ containing Vi. In this case the value si

is the minimal number of edges between Vi and Γ \∆ plus 1.
Let Vi and Vj be two adjacent vertices in Γ. The edge joining both vertices is called a

central edge if si = sj .
A vertex Vi is called a central vertex if there exist at least two vertices Vj and Vk adjacent

to Vi such that Vj = Vk = Vi − 1.
The criterion established by M. Spivakovsky in [12, Thm.III 5.4.] says the following:
The fixed points of the polar curves in the minimal resolution are precisely the points of

X corresponding to the central edges of the graph Γ. Away from these points, the general
polar curve intersects a component Ei if and only if Vi is a central vertex or Z · Ei ≤ −2.

Applying this criterion to our example, we obtain that:
- The dual graph in figure 1 has no central edge, and hence the minimal resolution has

no fixed point of the polar curves. So the minimal resolution π : X → S factors through the
Nash modification, and hence it is also the minimal resolution of the normalization S̄ of the
Nash modification S̃ of S.

- The general polar curve intersects exactly the irreducible components E1, E3 and E5. So
the surface obtained by the contraction of the irreducible curves E2 and E4 is the normalized
Nash modified surface S̄.

The surface S̄ has then two A1 singularities.
This examples shows that it is possible the have a rational surface singularity whose

tangent cone has no planar component and whose normalized Nash modification has singu-
larities.

Remark 3.1. In [10], we proved that a singular point of the normalized blow-up of the origin
of a germ of a normal surface singularity is always a base point of the linear system of polar
curves. We used to think that the similar behavior of the hyperplane sections in the blow-up
of the origin with the polar curves in the Nash modification of normal surfaces would suggest
that all singular points of the normalized Nash modification of a normal surface are fixed
points of the family of hyperplane sections. However this example shows that it is not always
the case.
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de variétés polaires, C. R. Acad. Sci. Paris Sér. A-B 291 (1980), no. 4, A291–A294.
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A COMPLETE CHARACTERIZATION OF A0-SUFFICIENCY OF
PLANE-TO-PLANE JETS OF RANK 1

OLAV SKUTLABERG

Abstract. Sufficient conditions for A0-sufficiency of plane-to-plane r-jets are known. These

conditions are stated in the form of two  Lojasiewicz inequalities which have to be satisfied.
The first of these inequalities is known to be necessary for A0-sufficiency, and in this article
we prove that the second inequality is also necessary for A0-sufficiency of all jets of rank 1.

We also prove that a simpler  Lojasiewicz inequality is equivalent to the second inequality for
rank 1 jets.

1. Introduction

Let E[r](n, p) be the set of Cr map germs (Rn, 0) → (Rp, 0). Two map germs f and g in
E[r](n, p) are As-equivalent if there exist germs of Cs diffeomorphisms h : (Rn, 0) → (Rn, 0) and
k : (Rp, 0) → (Rp, 0) such that g = k ◦ f ◦ h−1. If f, g ∈ E[r](2, 2) are As-equivalent, then we
write f ∼As g. If f and g are A0-equivalent, then we say that they are topologically equivalent,
and if f and g are not A0-equivalent, then they are topologically different. A jet ω ∈ Jr(n, p)
is A0-sufficient in E[r](n, p) if every f ∈ E[r](n, p) with jrf(0) = ω is A0-equivalent to ω. There
exists no general theorem giving necessary and sufficient conditions for A0-sufficency of r-jets
in E[r](n, p) for arbitrary n and p. Known results include a characterization of A0-sufficient
jets with 0 as an isolated singular point (see [1]), and a study of A0-sufficiency in E[r](2, 2) of
jets from R2 to R2 (see [2]). The result in [2] gives a complete characterization of A0-sufficent
plane-to-plane jets for a restricted class of jets, and it is the aim of this article to extend the
result of [2] to a complete characterization of A0-sufficient plane-to-plane jets of rank 1.

We identify r-jets in Jr(2, 2) with polynomial maps R2 → R2 of degree ≤ r with zero constant
term. Let ω ∈ Jr(2, 2). Let Jω(p) denote the Jacobian determinant of ω at p and let Σ(ω) =
Jω−1(0) denote the singular set of ω. Σ(ω) is an algebraic set. Let B(x, ρ) denote the open ball
in R2 with center x and radius ρ. If ω is a nonzero singular jet, then there is a real number
ρ0 > 0 and a natural number N such that (Σ(ω) \ {0}) ∩ B(0, ρ) has exactly N topological
components whenever 0 < ρ < ρ0. These components are called branches of ω.

Let C1, C2, . . . , CN denote the branches of ω. Since Σ(ω) is an algebraic set, the Curve
Selection Lemma implies that each of these branches has a well defined tangent direction at the
origin. We think of these directions as points on S1. If all these points are distinct, then we say
that ω has different tangent directions at 0. Note that a line through the origin represents two
different tangent directions corresponding to antipodal points on S1.

Identify J1(2, 2) with R4 by identifying (ax + by, cx + dy) with (a, b, c, d) and let Σ =
{(a, b, c, d)|ad − bc = 0} ⊂ J1(2, 2). Let F : R2 → R2 be a Cr map with r ≥ 2. The germ
of F at a singular point p is a fold singularity if two conditions are satisfied. The first condition
is that j1F t Σ at p. If the first condition is satisfied, then Σ(F ) is a Cr−1 manifold in a neigh-
bourhood of p. The second condition for fold singularities is that TpΣ(F ) + ker D(JF )(p) = R2.
Whether or not the germ of F at a point p in the source of F is a fold singularity is determined
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by the non-constant part of the 2-jet extension of F at p, i.e. the 2-jet extension at 0 of the map
q 7→ F (q + p) − F (p) which will be denoted by J2F (p).

An element of J2(2, 2) is then thought of as a polynomial map as above. We may use the
coefficients of these polynomials as coordinates of J2(2, 2), and hence identify J2(2, 2) with
R4 × R6 by identifying the polynomial map given by

(x, y) 7→ (ax + by + ex2 + 2fxy + gy2, cx + dy + hx2 + 2ixy + jy2)

with (L,H) = ((a, b, c, d), (e, f, g, h, i, j)). It is shown in [2] that in these coordinates, the set of
singular 2-jets which are not folds is given by

Γ =
{

(a, . . . , j) | ad − bc = 0,

(
a b
c d

)(
aj − bi − cg + df

−ai + bh + cf − de

)
=
(

0
0

)}
.

For every C2 map F : R2 → R2 we may define a map (LF ,HF ) : R2 → J2(2, 2) = R4 × R6

induced by J2F via the identifications above.
Let d(·, Σ) denote the distance function from a point in R4 to Σ with respect to the norm on

J1(2, 2) induced by the Euclidean norm on R4. For all f ∈ E[r](2, 2), define

df (p) = d(j1f(p), Σ).

For all ϵ, ρ > 0 and f ∈ E[r](2, 2), define

Hϵ,ρ(f) =
{

p | d(j1f(p), Σ) ≤ ϵ ∥p∥r−1
, 0 < ∥p∥ < ρ

}
.

Hϵ,ρ(ω) is a semialgebraic set with Σ(ω) ∩ B(0, ρ) \ {0} ⊂ Hϵ,ρ(ω).

Proposition 1.1 (Proposition 2.1 of [2]). Let r ≥ 2 and let ω ∈ Jr(2, 2) be a singular, nonzero
jet such that 0 is not isolated in Σ(ω). Let Γ and C1, . . . , CN and Hϵ,ρ(ω) be as explained above.
Consider the following condition:

(I) There is a neighbourhood U of 0 and a constant C > 0 such that if p ∈ U and (L,H) ∈ Γ,
then

∥Lω(p) − L∥ + ∥Hω(p) − H∥ ∥p∥ ≥ C ∥p∥r−1
.

Assume that condition (I) is satisfied. Then there exist ϵ0 > 0 and ρ0 > 0 such that the following
is satisfied: For each ρ such that 0 < ρ < ρ0, and for each ϵ such that 0 < ϵ < ϵ0, Hϵ,ρ(ω) has
exactly N connected components and we can label these components by H1

ϵ,ρ, . . . , H
N
ϵ,ρ, such that

for i = 1, . . . , N , Ci ⊂ Hi
ϵ,ρ.

Theorem 1.2 (Theorem 2.3 of [2]). If ω ∈ Jr(2, 2) has an isolated singularity at the origin,
then ω is A0-sufficient in E[r](2, 2) if and only if inequality (I) of Proposition 1.1 holds.

In this article, whenever ω is an r-jet which satisfies (I) and we speak about Hϵ,ρ(ω), it is
understood that ϵ < ϵ0 and ρ < ρ0 where ϵ0 and ρ0 have the properties stated in Proposition
1.1.

Theorem 1.3 (Main Theorem of [2]). Let r > 2 and let ω ∈ Jr(2, 2) be a jet as described in
Proposition 1.1 . Let Γ, C1, . . . , CN and Hϵ,ρ(ω) be as defined above and assume that condition
(I) from Proposition 1.1 is satisfied. Let ρ0 and ϵ0 be as in the conclusion of 1.1. Consider the
following condition :

(II) There exist ρ > 0 with ρ < ρ0 and ϵ > 0 with ϵ < ϵ0 and a constant C such that if Hi
ϵ,ρ(ω)
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and Hj
ϵ,ρ(ω) are distinct components of Hϵ,ρ(ω) and p ∈ Hi

ϵ,ρ(ω) ∪ {0} and q ∈ Hj
ϵ,ρ(ω) ∪ {0}

then
∥ω(p) − ω(q)∥ ≥ C(∥p∥r−1 + ∥q∥r−1) ∥p − q∥ .

Assume also that the condition (II) above is satisfied, then ω is A0-sufficient in E[r](2, 2) .

Moreover, the condition (I) of Proposition 1.1 is a necessary condition for A0-sufficiency in
E[r](2, 2) for all jets in Jr(2, 2) with r > 2, and if we consider singular, nonzero jets ω where
0 is not isolated in Σ(ω), and where ω has different tangent directions at 0, then condition (II)
above is also a necessary condition for A0-sufficiency in E[r](2, 2).

Proposition 1.4. If ω ∈ Jr(2, 2) satisfies (I), then every Cr realization of ω has only regular
points and fold singularities outside the origin. If ω does not satisfy (I), then there is a Cr

realization of ω with a sequence of simple cusp points converging to the origin. Furthermore,
simple cusps are topologically different from folds and regular points.

Proof. The first assertion follows from the defining property of Γ and Lemma 4.1 of [2]. The
second assertion is the content of Lemma 6.3 of [2]. The last assertion is the content of Lemma
6.6 of [2]. �

Proposition 1.5. If ω ∈ Jr(2, 2) satisfies (I) and (II), then the restriction of every Cr realiza-
tion of ω to its singular set is injective. If ω has different tangent directions and satisfies (I)
but does not satisfy (II), then there is a Cr realization of ω having a sequence of singular double
points converging to the origin.

Proof. The first part of the Proposition follows from Lemma 4.12 of [2] and the last part follows
from Lemma 6.4 of [2]. �

Definition 1.6. A map germ z = (z1, z2) : (R2, 0) → (R2, 0) of rank 1 is in standard form if
z1(x, y) = x.

Theorem 1.3 can be quite difficult to apply in practice. In the case of rank 1 jets in standard
form, the following theorem gives the neat conditions that characterize A0-sufficient jets.

Theorem 1.7. Let r > 2 and let ω(x, y) = (x, f(x, y)) ∈ Jr(2, 2) and let C1, . . . , CN be as
above. Then ω is A0-sufficient in E[r](2, 2) if and only if the conditions (i) and (ii) below are
satisfied:

(i) There are a neighbourhood U of 0 and a constant C > 0 such that if p ∈ U , then

|fy(p)| + |fyy(p)| ∥p∥ ≥ C ∥p∥r−1
.

(ii) There are a neighbourhood U of 0 and a constant C > 0 such that if Ci and Cj are
different components of Σ(ω) \ {0} and p = (x, y) ∈ Ci ∪ {0} ∩U and q = (x, v) ∈ Cj ∪ {0} ∩U ,
then

|f(p) − f(q)| > C(∥p∥r−1 + ∥q∥r−1)|y − v|.

There is also an analogue of Theorem 1.2 for rank 1 jets in standard form.

Theorem 1.8. If ω ∈ Jr(2, 2) is in standard form and has an isolated singularity at the origin,
then ω is A0-sufficient in E[r](2, 2) if and only if (i) of Theorem 1.7 holds.

Proof. This follows immediately from Theorem 1.2 and Lemma 2.2 of Section 2.2 which says
that for jets in standard form, (i) and (I) are equivalent. �

From now on we consider only singular jets where 0 is not an isolated singularity. The main
step in the proof of Theorem 1.7 is to prove the following proposition:
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Proposition 1.9. For jets of rank 1 in standard form, (II) ⇔ (ii).

The virtue of Theorem 1.7 is that both the set Γ and the sets Hϵ,ρ are left out of the theorem.
Also, when verifying (ii) one only needs to consider pairs of points with the same x-components.
Finally, the validity of Theorem 1.7 is not restricted to the case of jets with different tangent
directions at 0.

Theorem 1.7 holds for rank 1 jets given in a special form. For rank 1 jets in general, the
following theorem holds.

Theorem 1.10. Let r > 2 and let ω ∈ Jr(2, 2) be a jet of rank 1. Then ω is A0-sufficient in
E[r](2, 2) if and only if (I) of Theorem 1.3 and (II’) below hold:

(II’) There is a neighbourhood U of 0 and a constant C > 0 such that if i ̸= j and p ∈ Ci ∩U
and q ∈ Cj ∩ U , then

∥ω(p) − ω(q)∥ > C(∥p∥r−1 + ∥q∥r−1) ∥p − q∥ .

The article is organized as follows: In Section 2 we prove that Theorem 1.7 implies Theorem
1.10. Section 3 contains a thorough study of the hornshaped neighbourhoods Hϵ,ρ. This enables
us to prove that inequality (II’) implies inequality (II) for rank 1 jets. This is the topic of Section
4. In Section 4 we also give the proof of Proposition 1.9. This proposition is the key to the
construction of a certain Whitney field in Section 5. This Whitney field is the main technical
tool in the proof of the necessity of (ii) for all rank 1 jets in standard form, and will conclude
the demonstration of Theorem 1.7 and Theorem 1.10.

In the rest of the article, A0-sufficiency of an r-jet is understood to mean A0-sufficiency in
E[r](2, 2). Sometimes only the term ’sufficiency’ will be used.

Notation 1 (., &, ∼). Let F and G be two nonnegative real-valued functions defined on some
subset of some Euclidean space E. We will use the notation F & G if there is a constant a > 0
such that F ≥ aG. The notation F . G means that there is a constant b > 0 such that F ≤ bG.
If F . G and F & G, then we write F ∼ G. For two sequences (pn) and (qn) in E and positive
real valued functions F and G, F (pn) & G(qn) means that there is a positive constant a and a
natural number N such that F (pn) ≥ aG(qn) when n > N . Similarly, F (pn) . G(qn) means
that there is a positive constant b and a natural number N such that F (pn) ≤ bG(qn) when
n > N . Of course, F (pn) ∼ G(qn) means that F (pn) & G(qn) and F (pn) . G(qn).

Notation 2 (O, o). If F and G are real-valued functions defined in a neighbourhood of 0 in
some Euclidean space, then F (x) = o(G(x)) means that F (x)/G(x) → 0 as x → 0. If (pn) and
(qn) are sequences converging to 0, then F (pn) = o(G(qn)) means that F (pn)/G(qn) → 0 as
n → ∞. For fractional power series β and γ, O(β) denotes the order of β and β = o(γ) means
that O(β) > O(γ).

Acknowledgements: The author wishes to thank Professor Hans Brodersen for sharing his
ideas and for many helpful discussions.

2. Coordinate changes

2.1. Suitable coordinates. To establish the connection between Theorem 1.7 and Theorem
1.10, we have to investigate how our  Lojasiewicz inequalities behave under coordinate changes.
Let ω ∈ Jr(2, 2) and let ω′ = k ◦ ω ◦ h−1 where h and k are germs of Cr diffeomorphisms
(R2, 0) → (R2, 0).

Lemma 2.1. ω is A0-sufficient if and only if jrω′ is A0-sufficient.
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Proof. Assume that ω is sufficient and let ω̃ be a Cr realization of jrω′. Then jr(k−1 ◦ ω̃ ◦ h) =
jr(k−1◦jrω′◦h) = ω. Thus ω̃ ∼A0 jrω′, and hence, jrω′ is sufficient. Conversely, suppose jrω′ is
sufficient and let ω̄ be a Cr realization of ω. Then clearly jr(k◦ ω̄◦h−1) = jr(k◦ω◦h−1) = jrω′.
Thus ω̄ ∼A0 k ◦ ω̄ ◦ h−1 ∼A0 jrω′ ∼A0 ω′ ∼A0 ω, which shows that ω is sufficient.

�
Lemma 2.2. ω satisfies (I) ⇔ jrω′ satisfies (I).

Proof. Assume that ω satisfies (I) and that jrω′ does not satisfy (I). By Proposition 1.4, jrω′

has a Cr realization ω̃ with a sequence of singular points converging to 0, all topologically
different from folds. Then ω = jr(k−1 ◦ ω̃ ◦ h) has a realization which has a sequence of singular
points converging to 0, all of which are topologically different from folds. This contradicts the
assumption that ω satisfies (I).

Let ω2 = jrω′. Then ω = jr(k−1 ◦ω′ ◦h) = jr(k−1 ◦ω2 ◦h), and hence, the other implication
follows from the first implication. �
Lemma 2.3. Let z and z′ in E[r](2, 2) be such that z′ = k ◦ z ◦h−1 for some germs at the origin
of origin-preserving Cr diffeomorphisms h and k . For each ϵ, ρ > 0, there are ϵ′, ρ′ > 0 such
that h(Hϵ′,ρ′(z)) ⊂ Hϵ,ρ(z′).

Proof. It is enough to show that ∥p∥ ∼ ∥h(p)∥ and dz(p) ∼ dz′(h(p)). An application of Taylor’s
formula gives ∥p∥ ∼ ∥h(p)∥. We also have

dz(p) = inf{∥Dz(p)v∥ | ∥v∥ = 1} (by (3.11) in [2])

∼ inf{∥D(k ◦ z)(p)v∥ | ∥v∥ = 1}
∼ inf{∥Dz′(h(p))v∥ | ∥v∥ = 1}
= dz′(h(p)),

and the lemma follows. �
Lemma 2.4. Suppose z and z′ in E[r](2, 2) are such that jrz(0) = jrz′(0). Let ϵ, ρ > 0. Then
there are ϵ′, ρ′ > 0 such that

Hϵ′,ρ′(z′) ⊂ Hϵ,ρ(z).

Proof. Assume that z and z′ satisfy the premises of the lemma. Let z̃ = z−z′. Then jr z̃(0) = 0,
and hence, ∥Dz̃(p)∥ = o(∥p∥r−1). Using this, we see that

dz(p) = inf{∥Dz(p)v∥ | ∥v∥ = 1} ≤ inf{∥Dz′(p)v∥ + ∥Dz̃(p)v∥ | ∥v∥ = 1}

≤ inf{∥Dz′(p)v∥ | ∥v∥ = 1} + sup{∥Dz̃(p)v∥ | ∥v∥ = 1} = dz′(p) + o(∥p∥r−1).

The lemma follows. �
Lemma 2.5. For every sequence (pn) of points converging to 0 such that d(j1ω(pn), Σ) =
o(∥pn∥r−1), there is a subsequence (pn(k)) of (pn) and a Cr realization ωp of ω such that pn(k) ∈
Σ(ωp) for every k.

Proof. Let (pn) be as in the lemma. Choose pn(k) such that
∥∥pn(k+1)

∥∥ < 1
2

∥∥pn(k)

∥∥. For every
k, let Mk be a matrix such that ∥Mk∥ = d(j1ω(pn(k)), Σ) and Dω(pn(k)) + Mk is singular. Let
Q be the r-th order Taylor field defined on K = {0} ∪ (∪k{pn(k)}) with values in R2 given by
Q1(p) = Mk for p = pn(k) and Q = 0 otherwise. It is clear that Q is a Whitney field. Let h be a
Cr extension of Q. Then jrh(0) = 0. Let ωp = ω + h. It is clear that ωp satisfies the conditions
in the lemma. �
Lemma 2.6. (I) and (II) hold for ω ⇔ (I) and (II) hold for jrω′.
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Proof. Assume that (I) holds and (II) fails for ω. By Lemma 2.2, (I) holds for jrω′ as well. We
proceed to show that (II) fails for jrω′. Since (II) fails for ω, there are sequences (pn) and (qn)
of points converging to 0 such that

d(j1ω(pn), Σ) = o(∥pn∥r−1) and d(j1ω(qn), Σ) = o(∥qn∥r−1)

and
∥ω(pn) − ω(qn)∥ = o(∥pn∥r−1 + ∥qn∥r−1) ∥pn − qn∥

and pn and qn belong to different components of Hϵ̃,ρ̃(ω). Since h and k are germs of diffeo-
morphisms, an application of Taylor’s formula shows that ∥h(p)∥ ∼ ∥k(p)∥ ∼ ∥p∥ for all p close
to 0. Furthermore, since h and k are diffeomorphisms, the definition of differentiability gives
∥h(p) − h(q)∥ ∼ ∥k(p) − k(q)∥ ∼ ∥p − q∥ for p, q close to 0. Furthermore, jrω′ = ω′ + ω̃ where
jrω̃(0) = 0 and hence, ∥ω̃(p)∥ = o(∥p∥r) and ∥Dω̃(p)∥ = o(∥p∥r−1). Using this and the Mean
Value Theorem, we get

∥jrω′(h(pn)) − jrω′(h(qn))∥
≤ ∥k ◦ ω(pn) − k ◦ ω(qn)∥ + ∥ω̃(h(pn)) − ω̃(h(qn))∥
. ∥ω(pn) − ω(qn)∥ + sup

t∈[0,1]

∥Dω̃(th(pn) + (1 − t)h(qn))∥ ∥h(pn) − h(qn)∥

= o(∥pn∥r−1 + ∥qn∥r−1) ∥pn − qn∥ + o(∥h(pn)∥r−1 + ∥h(qn)∥r−1) ∥h(pn) − h(qn)∥

= o(∥h(pn)∥r−1 + ∥h(qn)∥r−1) ∥h(pn) − h(qn)∥ .

By Lemma 2.5 there are subsequences (pn(k)) and (qn(k)) of (pn) and (qn) and Cr realizations
ωp and ωq of ω such that for each k, pn(k) ∈ Σ(ωp) and qn(k) ∈ Σ(ωq). Hence, for each of the
sequences (h(pn(k))) and (h(qn(k))), there are Cr realizations of jr(ω′) having singular points
along the sequence. It follows that, given small positive ϵ and ρ, then eventually the sequences
(h(pn(k))) and (h(qn(k))) are in Hϵ,ρ(jrω′).

We need to show that for small ϵ, ρ, eventually the sequences (h(pn(k))) and (h(qn(k))) lie
in different components of Hϵ,ρ(jrω′). To this end, use Lemma 2.3 to pick ϵ′, ρ′ so small that
h−1(Hϵ′,ρ′(ω′)) ⊂ Hϵ̃,ρ̃(ω) where ϵ̃ and ρ̃ are as above, i.e. such that (pn) and (qn) lie in different
components of Hϵ̃,ρ̃(ω). Then use Lemma 2.4 to pick ϵ, ρ such that Hϵ,ρ(jrω′) ⊂ Hϵ′,ρ′(ω′). As-
sume that there are subsequences (h(pn(k(l)))) and (h(qn(k(l)))) which lie in the same component
of Hϵ,ρ(jrω′). Since h−1 is a homeomorphism, the component of Hϵ,ρ(jrω′) containing (h(pn))
and (h(qn)) is mapped by h−1 into one component of Hϵ̃,ρ̃(ω). This contradicts the assumption
that (pn) and (qn) lie in different components of Hϵ̃,ρ̃(ω). Hence, (II) fails for jrω′.

To finish the proof, observe that ω = jr(k−1 ◦ jrω′ ◦ h), and hence the other implication
follows from the first. �

2.2.  Lojasiewicz inequality (I) for rank 1 jets. When ω is in standard form, we have a
particularly convenient version of inequality (I).

Lemma 2.7. Let ω(x, y) = (x, f(x, y)) be an r-jet in standard form. Then (I) holds for ω if
and only if (i) of Theorem 1.7 holds for ω.

Proof. To prove that (I) implies (i), notice that

(L,H) = (1, 0, fx, 0, 0, 0, 0, fxx, fxy, 0)(p) ∈ Γ

for all p, and hence, if (I) holds, then

|fy(p)| + |fyy(p)| ∥p∥ = ∥Lω(p) − L∥ + ∥Hω(p) − H∥ ∥p∥ ≥ C ∥p∥r−1
.
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Conversely, if (I) fails, then there are a sequence (pn) in R2 converging to 0 and a sequence
(Ln, Hn) ∈ Γ such that

∥Lω(pn) − Ln∥ + ∥Hω(pn) − Hn∥ ∥pn∥ = o(∥pn∥r−1).

Let (Ln,Hn) = (an, . . . , dn, en, . . . , jn) ∈ R10. We get that an = 1 − o(∥pn∥r−1) and bn =
o(∥pn∥r−1). Also, since Ln is singular, dn = cnbn/an = o(∥pn∥r−1), which implies |fy(pn)| =
o(∥pn∥r−1). We have Hω(pn) = (0, 0, 0, fxx, fxy, fyy)(pn). Thus we also have en, fn, gn =
o(∥pn∥r−2). Furthermore, from the definition of Γ, we get that

an(anjn − bnin − cngn + dnfn) + bn(−anin + bnhn + cnfn − dnen) = 0.

It follows that jn = o(∥pn∥r−2) and hence, |fyy(pn)| = o(∥pn∥r−2). This shows that (i) fails. �

Lemma 2.8. Let a be a real number and let Φ be the diffeomorphism Φ(x, y) = (Φ1(x, y), Φ2(x, y)) =
(x, ax + y). Let ω ∈ Jr(2, 2) be in standard form. Then ωΦ = ω ◦ Φ−1 is an r-jet in standard
form and ω satisfies (i) and (ii) if and only if ωΦ satisfies (i) and (ii).

Proof. The first assertion is clear from the form of Φ. For the second assertion, assume that
ω satisfies (i) but not (ii). Lemma 2.2 and Lemma 2.7 imply that ω ◦ Φ−1 satisfies (i). Since
ω does not satisfy (ii), there are distinct components Ci and Cj of Σ(ω) \ {0} and sequences
pn = (xn, yn) ∈ Ci and qn = (xn, vn) ∈ Cj , both converging to 0 and such that

|f(pn) − f(qn)| = o(∥pn∥r−1 + ∥qn∥r−1)|yn − vn|.

From the definition of Φ, it is clear that ωΦ(x, y) = (x, fΦ(x, y)) is in standard form. Furthermore,
Φ(Ci) and Φ(Cj) are different components of Σ(ωΦ) and

|fΦ(Φ(pn)) − fΦ(Φ(qn))| = |f(pn) − f(qn)| = o(∥pn∥r−1 + ∥qn∥r−1)|yn − vn|

= o(∥Φ(pn)∥r−1 + ∥Φ(qn)∥r−1)|Φ2(pn) − Φ2(qn)|,

and hence (ii) fails for ωΦ.
Observe that Φ−1(x, y) = (x,−ax + y), and hence the other implication follows directly from

the argument above. �

Lemma 2.9. Let ω be an r-jet which satisfies (I), and let ω′ be a Cr map germ with ω ∼Ar ω′.
Then (II’) holds for ω if and only if (II’) holds for jrω′.

Proposition 2.10. If ω is an r-jet in standard form satisfying (i), then (ii) and (II’) are
equivalent for ω.

The proofs of Lemma 2.9 and Proposition 2.10 will be postponed until Section 4.

Proof that Theorem 1.7 ⇒ Theorem 1.10. Assume that Theorem 1.7 is true. Assume now that
(I) and (II’) hold for an r-jet ω ∈ Jr(2, 2) of rank 1. By Lemma 2.2, Lemma 2.7, Lemma
2.9 and Proposition 2.10, we may choose Cr coordinates transforming ω to the standard form
ω̄(x, y) = (x, f(x, y)) such that (i) and (ii) hold for jrω̄. By Theorem 1.7, jrω̄ is A0-sufficient.
Lemma 2.1 implies that ω is A0-sufficient.

Conversely, if (I) fails for ω, then, by Lemma 2.2 and Lemma 2.7, (i) fails for jrω̄ and hence,
jrω̄ is not sufficient by Theorem 1.7. By Lemma 2.1, ω is not sufficient. If (I) holds and (II’) fails
for ω, then (II’) fails for jrω̄ by Lemma 2.9. By Proposition 2.10, (ii) fails for jrω̄. Theorem 1.7
shows that jrω̄ is not A0-sufficient, and hence, by Lemma 2.1 again, ω is not A0-sufficient. �
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3. Hornshaped neighbourhoods

3.1. Consequences of inequality (i). Let ω(x, y) = (x, f(x, y)) be an r-jet of rank 1 in
standard form for which (I), or equivalently (i) holds. By Lemma 2.8, we may choose coordinates
such that no branch of Σ(ω) is tangent to the x-axis. Let

H̃ϵ,ρ = {p : |fy(p)| ≤ ϵ ∥p∥r−1
, 0 < ∥p∥ ≤ ρ}.

Recall from (3.3) in [2] that

dω(p) = d(j1ω(p), Σ) ∼ |Jω(p)|
∥Dω(p)∥

∼ |fy(p)|.

It follows that for every ϵ > 0 there are ϵ1, ϵ2, ϵ3 > 0 such that

Hϵ1,ρ(ω) ⊆ H̃ϵ2,ρ(ω) ⊆ Hϵ,ρ(ω) ⊆ H̃ϵ3,ρ(ω).

Lemma 3.1. Proposition 1.1 holds when we replace Hϵ,ρ by H̃ϵ,ρ.

Proof. Let
S = {(x, y)|∇fy(x, y) · (y,−x) = 0}.

The proof of Proposition 1.1 in [2] applies to H̃ϵ,ρ(ω) once we have shown that

(3.1)
∣∣(fy|S)(p)

∣∣ & ∥p∥r−1
.

This corresponds to Lemma 3.1 in [2]. Let

D = {p ∈ S : |fy(p)| ≤ |fy(q)| for all q ∈ S with ∥p∥ = ∥q∥ ̸= 0}.

An application of the Tarski-Seidenberg Theorem shows that D is semialgbraic. Assume that
(3.1) does not hold. Then 0 ∈ D and the Curve Selection Lemma implies that we can find an
analytic curve γ = (γ1, γ2) : [0, δ) → R2 with γ(0) = 0, γ(0, δ) ⊂ D and |fy(γ(t))| = o(∥γ(t)∥r−1).
Assume that ∥γ(t)∥ ∼ ts and |fy(γ(t))| ∼ td. Then d

s > r − 1. Also, ∥γ′(t)∥ ∼ ts−1 and∣∣∣∣∇fy(γ(t)) · γ′(t)
∥γ′(t)∥

∣∣∣∣ ∼ td−s.

Let v(t) = (γ2(t),−γ1(t))/ ∥γ(t)∥ and w(t) = γ′(t)/ ∥γ′(t)∥. Then v(t) ·w(t) → 0 as t → 0+. Let
e2(t) = ∂

∂y ◦ γ(t). Then e2(t) = a(t)v(t) + b(t)w(t) where |a(t)| < 2 and |b(t)| < 2. Using that
γ(t) ∈ S, it follows that

|fyy(γ(t))| = |∇fy(γ(t)) · e2(t)| . td−s = o(∥γ(t)∥r−2),

and hence (i) fails along γ, contrary to our assumptions. Therefore (3.1) must hold and the rest
of the proof goes as the proof of Proposition 1.1 in [2]. �

In the rest of the article, when we consider jets in standard form, we will only talk about H̃ϵ,ρ

and by abuse of notation, it will be denoted by Hϵ,ρ. Lemma 3.1 gives very specific geometric
information about Hϵ,ρ. The situation for ϵ < ϵ0 and ρ < ρ0 is illustrated in Figure 1.

For the proof of Theorem 1.7 we need information about Hϵ,ρ of more quantitative character.
This section and the next contain the results we need.

Lemma 3.2. There is a δ > 0 and a neighbourhood U of 0 such that

{(x, y) ∈ R2 | |x| ≤ δ|y|r−1} ∩ Σ(ω) ∩ U \ {0} = ∅.
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y

Components of Σ(ω)

x

Components of Hϵ,ρ(ω)

B(0, ρ)

Figure 1. The figure shows 6 different components of Hϵ,ρ. The branches of
Σ(ω) are contained in different components of Hϵ,ρ.

Proof. Assume that the lemma is false. Then there is a branch of Σ(ω) parametrized by an
analytic curve α(t) = (α1(t), α2(t)) with α(0) = 0 and such that α1(t) = o(|α2(t)|r−1). Let
m = O(α1(t)), n = O(α2(t)). Then m > n(r − 1). We compute

(3.2) 0 =
d

dt
fy(α(t)) = ∇fy(α(t)) · α′(t) = fyx(α(t))α′

1(t) + fyy(α(t))α′
2(t).

By (i),
|fyy(α(t))α′

2(t)| & ∥α(t)∥r−2
tn−1 ∼ tn(r−2)+n−1 = tn(r−1)−1.

By continuity of fyx at 0, we have that O(fyx(α(t))α′
1(t)) ≥ m − 1 > n(r − 1) − 1. It follows

that (3.2) cannot hold, and this contradiction proves the lemma. �

Lemma 3.3. If ϵ and t are small enough, then (0, t) /∈ Hϵ,ρ.

Proof. It is enough to check that the order in t of fy(0, t) is not greater than r− 1. Assume that
O(fy(0, t)) > r − 1. We have

d

dt
fy(0, t) = fyy(0, t),

and our assumption implies that O(fyy(0, t)) > r − 2. This contradicts (i). �

3.2. Newton-Puiseux roots of Jω. The real polynomial Jω = fy has a Newton-Puiseux
factorisation of the form

fy(x, y) = u(x, y) · xE ·
p∏

i=1

[y − βi(x)]
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where u ∈ C{x, y} is a unit, E ≥ 0 and each βi is a formal fractional power series in x with
complex coefficients. We may assume that O(βi) > 0 for all i. Furthermore, all of the fractions
occuring as exponents in these formal fractional power series have a common denominator N .
This means that for each i, the formal fractional power series obtained by substituting tN for x
is an ordinary formal power series in t. This factorization is a purely algebraic rewriting of the
original polynomial, but since the product is a holomorphic function, each of the power series
βi(tN ) are in fact convergent power series, and hence, they are holomorphic functions of t for
small t. We call the βi convergent fractional power series.

Lemma 3.3 implies that E = 0, and we also assume that O(βi) ≤ 1 for each i. This can
always be obtained by composition of ω with a diffeomorphism of the type in Lemma 2.8.

Lemma 3.4. For each branch C of ω contained in the first quadrant of R2 there is a uniquely
determined index i with 1 ≤ i ≤ p such that t 7→ (tN , βi(tN )), t > 0, is a parametrization of C.

Proof. Let C be a branch of ω contained in the first quadrant of R2. The Curve Selection Lemma
gives an analytic parametrization γ(t) of C for t > 0. By a change of parameter if necessary, we
may assume that γ(t) = (tM ·N , γ̃(tN )). Now,

fy(γ(t)) = u(γ(t)) ·
p∏

i=1

[γ̃(tN ) − βi(tM ·N )] ≡ 0.

This is an equality between analytic functions, and hence, for some i, γ̃(tN ) ≡ βi(tM ·N ). It
only remains to show that βi = βj ⇒ i = j. If there are i ̸= j such that βi = βj , then
fyy(tN , βi(tN )) = fy(tN , βi(tN )) = 0, and this contradicts (i). �

For real x > 0, we may think of the βi as complex valued functions of x. By Lemma
3.4, each branch of ω in the first quadrant is a part of the graph of one of these functions
βi(x). Any such fractional power series βi can have only real coefficients, for we may write
βi(x) = Re βi(x) + IIm βi(x) where I is the imaginary unit and both terms on the right side
are convergent fractional power series of x. If Im βi ̸= 0, then Im βi(x) ̸= 0 for small x, and
this cannot be the case. We may assume that β1, β2, . . . , βs correspond to the components
of Σ(ω) \ {0} in the first quadrant and that β1(x) < β2(x) < . . . < βs(x) for small x. The
corresponding components will be denoted by C1, C2, . . . , Cs.

In our factorisation of fy, we have in effect solved the equation fy(x, y) = 0 in terms of
x. We might equally well have solved the same equation in terms of y and obtained another
factorisation

fy(x, y) = u′(x, y) · yF ·
q∏

i=1

[x − β∗
i (y)]

where u′ ∈ C{x, y} is a unit, F ≥ 0 and each β∗
i is a convergent fractional power series in y

with O(β∗
i ) ≥ 0. As before, we may assume that y 7→ (β∗

i (y), y), y > 0 is a parametrization of
Ci for i = 1, . . . , s. For (x, y) ∈ Ci, (x, βi(x)) = (β∗

i (y), y), and hence, both βi ◦ β∗
i and β∗

i ◦ βi

are the identity maps. In our case, F = 0 and O(β∗
i ) ≥ 1 for i = 1, . . . s because O(βi) ≤ 1 for

i = 1, . . . , s.
We will call the βi the x-roots of fy and the β∗

i the y-roots of fy.
Notice that if γ ̸= 0 is a convergent real fractional power series in x for which the exponents

in the powers of x in the terms of γ have a common denominator N and the term of lowest order
has positive coefficient, then γ(tN ) = g(t) for some real analytic function g(t) = tmh(t) where
h is real analytic and h(0) > 0. Then s = t(h(t))

1
m is a real analytic change of parameter near

t = 0, and t = k(s) for some real analytic function k. We have (tN , g(t)) = (k(s)N , sm). Thus,
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if we set γ∗(y) = k(y
1
m )N , then we get a fractional power series γ∗ such that γ∗ ◦ γ = γ ◦ γ∗ is

the identity map.

Lemma 3.5. Let β be a convergent fractional power series with real coefficients. Let c be the
coefficient of the lowest-order term of β. Assume that c > 0. Then O(β) · O(β∗) = 1 and the
coefficient of the lowest-order term of β∗ is c−

1
O(β) .

Proof. Let d be the coefficient of the lowest-order term of β∗. Since β and β∗ are both convergent
fractional power series, y = β◦β∗(y) = cdO(β)yO(β)·O(β∗)+terms of higher order. The conclusion
follows immediately from this. �
Lemma 3.6. Let βi be one of the x-roots of fy, and let β∗

j be a y-root of fy. Let a ∈ Q+

and let t ∈ R and let γs(x) = βi(x) + sxa + α(x) and let σ∗
t (y) = β∗

j (y) + tya + α(y), where α
is a convergent fractional power series with O(α) > a. Then there are finite sets S(i, a) ⊂ R
and T (j, a) ⊂ R, independent of α such that 0 ∈ S(i, a) ∩ T (j, a) and Ox(fy(x, γs(x)) and
Oy(fy(σ∗

t (y), y) are constant numbers A and B, respectively, for all s /∈ S(i, a) and t /∈ T (j, a).
If s ∈ S(i, a), then Ox(fy(x, γs(x)) > A, and if t ∈ T (j, a), then Oy(fy(σ∗

t (y), y)) > B.

Proof. We prove only the part of the lemma concerning the x-roots, since the other part is
completely analogous. From the factorisation above we get

fy(x, γs(x)) = u(x, γs(x)) · (sxa + α(x)) ·
∏
j ̸=i

[γs(x) − βj(x)].

The coefficient of the term of lowest order in this fractional power series is a nonzero polynomial
in s. Let S(i, a) be the set of real zeros of this polynomial. It is clear by definition that s = 0
has to be a root of this polynomial. �
Definition 3.7. Let βi be an x-root of fy and let β∗

j be a y-root of fy.
We say that a fractional power series γ is an a-perturbation of βi if γ(x) = βi(x) + sxa + α(x)

and α is a convergent fractional power series with O(α) > a. We say that γ is a generic
a-perturbation of βi if s /∈ S(i, a) and either a ̸= O(βi) or O(γ) = O(βi).

We say that a fractional power series σ∗ is an a-perturbation of β∗
j if σ∗(y) = β∗

j (y)+tya+α(y)
and α is a convergent fractional power series with O(α) > a. We say that σ∗ is a generic a-
perturbation of β∗

j if t /∈ T (j, a) and either a ̸= O(β∗
j ) or O(σ∗) = O(β∗

j ).

Lemma 3.8. Let a = O(βj) and let γ be a generic a-perturbation of βj. Then γ∗ is a generic
1
a -perturbation of β∗

j .

Proof. Assume βj(x) = cxa + β(x) where O(β) > a. Let γs(x) = βj(x) + sxa + α(x). Then
γ(x) = γs̃(x) for some s̃ /∈ S(j, a). Since γ is a generic a-perturbation of βj , s̃ ̸= −c. Therefore
γ(x) = (c + s̃)xa + β(x) + α(x) is of order a. It follows that

β∗
j (y) =

1
c1/a

y1/a + β̄(y)

and
γ∗(y) =

1
(c + s̃)1/a

y1/a + ᾱ(y).

Since S(j, a) is finite and s̃ /∈ S(j, a), γs(x) is generic for s in some small interval I containing s̃
and such that −c /∈ I. Therefore, Ox(fy(x, γs(x))) is constant for s ∈ I, and hence,

Oy(fy(γ∗
s (y), y)) =

1
a
Ox(fy(x, γs(x)))

is constant for s ∈ I. Since T (j, 1
a ) is finite , this means that 1/(c + s̃)1/a /∈ T (j, 1

a ). It follows
that γ∗(y) is a generic 1

a -perturbation of β∗
j . �
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3.3. Width of Hϵ,ρ(ω). To obtain the necessary estimates of the next section, it is of great
importance to know more about how large Hϵ,ρ(ω) is and, in some sense, how well separated the
components of Hϵ,ρ(ω) are.

For every j = 1, . . . , s−1, the map y 7→ |fy(x, y)| has a local maximum γj(x) ∈ (βj(x), βj+1(x)).
The γj(x) have to lie in the open intervals because, by (i), |fyy(p)| > 0 for all p ∈ Σ(ω) \ {0}.
The functions γj have to be Newton-Puiseux roots of fyy, and are therefore convergent fractional
power series in x with real coefficients.

For a convergent real fractional power series β, we denote by G(β) the set {(x, β(x))|x > 0}
and by G∗(β∗) the set {(β∗(y), y)|y > 0}.

Lemma 3.9. If i > j, a = O(βi −βj) and O(βi) = O(βj), then for every generic a-perturbation
β of βi and βj, there are ϵ > 0, ρ > 0 such that G(β) ∩ Hϵ,ρ(ω) = ∅.

Proof. There is a root γ of fyy with βj(x) < γ(x) < βi(x). Since O(βi) = O(βj), γ has to be an a-
perturbation of βi and βj .  Lojasiewicz inequality (i) implies that |fy(x, γ(x))| & ∥(x, γ(x))∥r−1.
Since β is a generic a-perturbation, it follows that O(fy(x, β(x))) ≤ O(fy(x, γ(x))). We also
have O(β) = O(βi) = O(βj) = O(γ), and hence, ∥(x, γ(x))∥ ∼ ∥(x, β(x))∥. Altogether this
shows that |fy(x, β(x))| & ∥(x, β(x))∥r−1, and the conclusion follows. �

Lemma 3.10. Let b = O(β∗
i ), and let β∗ be a generic b-perturbation of β∗

i . Then, for small
enough ϵ, ρ > 0, G∗(β∗) ∩ Hϵ,ρ(ω) = ∅.

Proof. The fractional power series γ∗(y) = 0 is a b-perturbation of β∗
i , and from Lemma 3.3

we know that |fy(γ∗(y), y)| & ∥(γ∗(y), y)∥r−1. Since β∗ is a generic b-perturbation of β∗
i ,

Oy(fy(β∗(y), y)) ≤ Oy(fy(γ∗(y), y)), and since we also have ∥(β∗(y), y)∥ ∼ ∥(γ∗(y), y)∥ ∼ y,
the lemma follows. �

Lemma 3.11. Let a = O(βi), and let β be a generic a-perturbation of βi. Then there are
ϵ > 0, ρ > 0 such that G(β) ∩ Hϵ,ρ(ω) = ∅.

Proof. Using Lemma 3.8, we see that β∗ is a generic 1
a -perturbation of β∗

i , and by Lemma 3.10,
for small ϵ > 0, ρ > 0 we have G∗(β∗) ∩ Hϵ,ρ(ω) = G(β) ∩ Hϵ,ρ(ω) = ∅. �

Lemma 3.12. Let ϵn, ρn be sequences of real numbers such that ϵn → 0 and ρn → 0 and let
pn = (xn, yn) and qn = (un, vn) be in Hϵn,ρn(ω). If un < 0 < xn, then

∥ω(pn) − ω(qn)∥ & ∥pn∥r−1 + ∥qn∥r−1
.

Proof. We claim that xn & ∥pn∥r−1 and |un| & ∥qn∥r−1. Any branch of Σ(ω) may be parametrized
by some convergent fractional power series β(x) which by Lemma 3.2 must satisfy O(β) ≥ 1

r−1 .
By Lemma 3.11 there is a generic O(βs)-perturbation β̃ of βs such that β̃(x) > βs(x). By Lemma

3.2, O(β̃) = O(βs) ≥ 1
r−1 and this shows that yn < β̃(xn) < δx

1
r−1
n for some δ > 0. Consider

ωΦ = ω ◦ Φ where Φ(x, y) = (x,−y). From Lemma 2.8 we know that (i) holds for ωΦ, and
it is clear that Hϵ,ρ(ω) = Hϵ,ρ(ωΦ). It is also obvious that the branches of Σ(ωΦ) in the first
quadrant correspond to the branches of Σ(ω) in the fourth quadrant. A similar analysis of ωΦ

as the above analysis of ω will show that −δx
1

r−1
n < yn. This shows that xn & ∥pn∥r−1. Let

Ψ(x, y) = (−x, y). A similar analysis of ω ◦ Ψ shows that |un| & ∥qn∥r−1. Altogether we get

∥ω(pn) − ω(qn)∥ ≥ |xn − un| & ∥pn∥r−1 + ∥qn∥r−1
.

�



A0-SUFFICIENCY OF PLANE-TO-PLANE JETS OF RANK 1 101

3.4. Preliminary estimates. The proof of Theorem 1.7 depends on a number of estimates.
The actual proofs of those estimates are a bit lengthy and quite delicate, so we include them
here in a separate section.

3.4.1. The first quadrant. For i = 1, . . . , s, let Hi
ϵ,ρ(ω) be the component of Hϵ,ρ(ω) containing

G(βi) ∩ Hϵ,ρ(ω). Let ϵn, ϵ̃n, ρn and ρ̃n be sequences of positive real numbers converging to 0.
Let 1 ≤ j < i ≤ s and let pn = (xn, yn) ∈ Hi

ϵn,ρn
(ω) and qn = (un, vn) ∈ Hj

ϵn,ρn
(ω) be two

sequences. We assume that (II) fails along these sequences, that is,

(3.3) ∥ω(pn) − ω(qn)∥ = o(∥pn∥r−1 + ∥qn∥r−1) ∥pn − qn∥ .

Let p̃n = (xn, ỹn) ∈ Hi
ϵ̃n,ρ̃n

(ω) and q̃n = (un, ṽn) ∈ Hj
ϵ̃n,ρ̃n

(ω). We want to see that

∥ω(p̃n) − ω(q̃n)∥ = o(∥p̃n∥r−1 + ∥q̃n∥r−1) ∥p̃n − q̃n∥ .

To this end we need to show that

(1) ∥p̃n∥ = ∥pn∥ + o(∥pn∥)
(2) ∥q̃n∥ = ∥qn∥ + o(∥qn∥)
(3) ∥pn − qn∥ = ∥p̃n − q̃n∥ + o(∥pn − qn∥)
(4) ∥pn − p̃n∥ = o(∥pn − qn∥)
(5) ∥qn − q̃n∥ = o(∥pn − qn∥).

We have assumed that βi(x) > βj(x). Let δ > 0 be a small number. We claim that there are
generic O(βi − βj)-perturbations β

i
and βi of βi and generic a-perturbations β

j
and βj of βj

where a = O(βi − βj) if O(βi) = O(βj) and a = O(βj) if O(βj) > O(βi), such that for small x,

(3.4) β
j
(x) < βj(x) < βj(x) < β

i
(x) < βi(x) < βi(x),

(3.5) βj(x) − β
j
(x) < δ(β

i
(x) − βj(x))

and

(3.6) βi(x) − β
i
(x) < δ(β

i
(x) − βj(x)).

To justify the claim, assume first that O(βi) = O(βj) and let γt(x) = tβi(x) + (1 − t)βj(x).
Let

βi(x) = γ1+ϵ(x)

β
i
(x) = γ1−ϵ(x)

βj(x) = γϵ(x)

β
j
(x) = γ−ϵ(x).

All these fractional power series are generic O(βi − βj) perturbations of βi and βj for all but
finitely many choices of ϵ. We compute

βi − β
i

= βj − β
j

=
2ϵ

1 − 2ϵ
(β

i
− βj).

The claim follows in this case if we choose ϵ < min{1
4 , δ

4}. If O(βi) < O(βj), then we choose βi

and β
i

as before, but we choose

βj(x) = (1 + ϵ)βj(x)

β
j
(x) = (1 − ϵ)βj(x).
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Again, for all but finitely many ϵ, these fractional power series are generic O(βj)-perturbations
of βj and we compute

βi − β
i

= 2ϵ(βi − βj)

βj − β
j

= 2ϵβj

β
i
− βj = (1 − ϵ)βi − βj .

Since O(βi) < O(βj), βj(x) < 1
2βi(x) for small x. So for small x,

βi(x) − β
i
(x) <

2ϵ
1
2 − ϵ

(β
i
(x) − βj(x))

βj(x) − β
j
(x) <

2ϵ
1
2 − ϵ

(β
i
(x) − βj(x))

and the claim follows from choosing ϵ < min{1
4 , δ

8}.

Lemma 3.13. There are ϵ > 0 and ρ > 0 such that Hi
ϵ,ρ ∪ Hj

ϵ,ρ ⊂ {(x, y) | β
i
(x) < y <

βi(x) or β
j
(x) < y < βj(x)}.

Proof. It is enough to check that

(G(β
j
) ∪ G(βj) ∪ G(β

i
) ∪ G(βi)) ∩ (Hi

ϵ,ρ ∪ Hj
ϵ,ρ) = ∅.

This follows directly from Lemma 3.9 and Lemma 3.11. �

Estimates (1) and (2) above can be shown by the same argument. To show (1), let δ > 0 be
arbitrary and notice that by Lemma 3.13 and (3.5), there is an N such that | ∥pn∥ − ∥p̃n∥ | ≤
| ∥pn − p̃n∥ | = |yn − ỹn| < |βi(xn) − β

i
(xn)| ≤ δ(β

i
(xn) − βj(xn)) < δβ

i
(xn) < δyn for all

n > N . Estimate (1) follows since ∥pn∥ ∼ yn. To justify (3), (4) and (5) we introduce a pair
of new sequences which help clarify the geometry of the situation. Let ϵ and ρ be given by
Lemma 3.13. Let n be so large that ϵn and ϵ̃n are less than ϵ and ρn and ρ̃n are less than ρ.
Let p̄n = (un, β

i
(un)) and q̄n = (xn, βj(xn)). One possible configuration of these sequences is

illustrated in Figure 2.
We have

∥p̃n − q̃n∥ ≥ ∥pn − qn∥ − ∥pn − p̃n∥ − ∥qn − q̃n∥
≥ ∥pn − qn∥ − δ ∥pn − q̄n∥ − δ ∥qn − p̄n∥ .

We consider the cases xn > un and xn ≤ un separately. If xn > un, then both ∥pn − q̄n∥ and
∥p̄n − qn∥ are less than or equal to ∥pn − qn∥. In this case, ∥p̃n − q̃n∥ ≥ (1 − 2δ) ∥pn − qn∥.

Next is the case xn ≤ un. If there is a K > 0 such that
qn − q̄n

∥qn − q̄n∥
· (1, 0) > K,

then ∥qn − q̄n∥ < |xn − un|/K = o(∥pn − qn∥). The last inequality follows from (3.3). If
qn − q̄n

∥qn − q̄n∥
· (1, 0) → 0 as n → ∞,

then we may assume that either vn < βj(xn) for all n or that vn > βj(xn) for all n by passing to
a subsequence. If vn ≤ βj(xn), then ∥pn − q̄n∥ ≤ ∥pn − qn∥. Now, assume that vn > βj(xn). In
this case, O(βj) < 1. To see this, let θn be the angle between qn−q̄n and (1, 0). If O(βj) = 1, then
| tan θn| ≤ 2βj

′
(xn) < 2M for a bound M on βj

′
. It follows that cos θn is bounded away from 0,

and that (qn− q̄n) ·(1, 0)/ ∥qn − q̄n∥ does not converge to 0, contrary to our current assumptions.
Therefore O(βj) < 1. Lemma 3.2 also implies that β∗

k(y) & yr−1 for k = i, j. This implies
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βi

βi

p̃n p̄n

βj

βjqn
q̄n

q̃n

pn

Figure 2. Example of a possible configuration of points when xn < un.

that βk(x) . x1/(r−1) and β′
k(x) . x−(r−2)/(r−1) for k = i, j. Since O(βj) = O(βj), similar

inequalities must hold for β
∗
j and βj as well. We also claim that ∥qn∥ / ∥pn∥ is bounded. Assume

this is not the case. Then, by passing to a subsequence, we may assume that ∥pn∥ = o(∥qn∥) for
large n. Then yn = o(vn) for large n, but by Lemma 3.2 again, this implies

|xn − un| > |βi
∗(yn) − βj

∗
(vn)| > |βj

∗
(yn) − βj

∗
(vn)| & vr−1

n ∼ ∥qn∥r−1

which is false, because, since (II) fails,

|xn − un| = o(∥pn∥r−1 + ∥qn∥r−1) ∥pn − qn∥ .

This proves the claim. Using these observations, we see that

∥qn − q̄n∥ ≤ |xn − un|(β
′
j(xn) + 1)

. |xn − un|
1

x
r−2
r−1
n

(since O(β
′
j) = O(β′

j) ≥ − r−2
r−1 )

. |xn − un|
1

∥pn∥r−2 (since ∥pn∥ ∼ yn ∼ βi(xn) . x
1

r−1
n )

=
o(∥pn∥r−1 + ∥qn∥r−1) ∥pn − qn∥

∥pn∥r−2 (by (3.3))

= o(∥pn − qn∥). (since ∥qn∥ / ∥pn∥ is bounded)
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We conclude that

∥pn − q̄n∥ ≤ ∥pn − qn∥ + ∥qn − q̄n∥ = ∥pn − qn∥ + o(∥pn − qn∥).

Completely analogous arguments show that ∥qn − p̄n∥ ≤ ∥pn − qn∥ + o(∥pn − qn∥). Altogether
we have

∥p̃n − q̃n∥ ≥ ∥pn − qn∥ − δ ∥pn − q̄n∥ − δ ∥qn − p̄n∥ ≥ (1 − 3δ) ∥pn − qn∥ .

To finish the justification of (3), let δk be a sequence of positive real numbers converging to 0. By
the above, for each k there is a natural number N(k) such that ∥p̃n − q̃n∥ ≥ (1− 3δk) ∥pn − qn∥
when n > N(k). Since δk → 0, (3) follows. To justify (4), notice that there is a natural number
M(k) such that ∥pn − p̃n∥ < δk ∥pn − q̄n∥ ≤ δk(∥pn − qn∥+o(∥pn − qn∥)) when n > M(k). This
clearly implies (4), and (5) follows by similar arguments.

3.4.2. The other quadrants. Let Φ(x, y) = (x,−y) and let ωΦ = ω ◦ Φ. By Lemma 2.2 and
Lemma 2.7, (i) holds for ωΦ. Hence, we may parametrize the components of Σ(ωΦ) in the first
quadrant by Newton-Puiseux roots βΦ,i, i = 1, . . . , sΦ and the analysis of Section 3.4.1 holds for
ωΦ as well.

The fractional power series −βΦ,i, i = 1, . . . , sΦ parametrize the components of Σ(ω) contained
in the fourth quadrant, and also, Hϵ,ρ(ωΦ) = Φ(Hϵ,ρ(ω)). Hence, if we instead of βi and βj

consider −βΦ,i and −βΦ,j in the discussion of Section 3.4.1, we get the same estimates (1)-(5). If
we instead of βi and βj consider −βΦ,i and βj , we also obtain (1)-(5) after a minor modification
of the justification of (3)-(5). In the latter case the corresponding branches of Σ(ω) have different
tangent directions.

To study Hϵ,ρ(ω) in the second and third quadrant, let Ψ(x, y) = (−x, y), and study the
r-jet ωΨ = ω ◦ Ψ. The components of Hϵ,ρ(ωΨ) contained in the first and fourth quadrant
can be studied in the manner explained above, and since Hϵ,ρ(ωΨ) = Ψ(Hϵ,ρ(ω)), this gives
the estimates (1)-(5) when we consider parametrizations of components of Σ(ω) in the second
and/or third quadrant instead of βi and βj .

Since, by Lemma 3.12, (II) only fails along pairs of sequences on the same side of the y-axis,
this establishes our estimates in all possible cases.

4. Relations between the  Lojasiewicz inequalities

Le ω be an r-jet of rank 1 such that (I) holds. Let {Ci} be the components of Σ(ω) \ {0}.
Recall the second Lojasiewicz inequality of Theorem 1.10:

There is a constant C > 0 and a neighbourhood U of 0 such that if p ∈ Ci ∩ U and q ∈ Cj ∩ U
for some i ̸= j, then

(II’) ∥ω(p) − ω(q)∥ ≥ C(∥p∥r−1 + ∥q∥r−1) ∥p − q∥

Proposition 4.1. If ω is of rank 1 and in standard form, then (II) holds for ω iff (II’) holds.

Proof. (II) ⇒ (II’) is obvious, (II’) being a weakening of (II). We assume ω(x, y) = (x, f(x, y))
and proceed to show that (II’) ⇒ (II). If (II) fails, then there are i ̸= j and sequences ϵn

and ρn of positive real numbers converging to 0 and sequences pn = (xn, yn) ∈ Hi
ϵn,ρn

and
qn = (un, vn) ∈ Hj

ϵn,ρn
. Then we have fy(pn) = o(∥pn∥r−1), fy(qn) = o(∥qn∥r−1) and

(4.1) ∥ω(pn) − ω(qn)∥ = o(∥pn∥r−1 + ∥qn∥r−1) ∥pn − qn∥ .
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Let p̃n and q̃n be the points on Ci and Cj having the same x-component as pn and qn respectively.
These points exist by Lemma 3.2. By the estimates (3)-(5) of the previous section we have

(4.2) ∥pn − qn∥ ∼ ∥p̃n − q̃n∥

and

(4.3) ∥pn − p̃n∥ = o(∥pn − qn∥)

and

(4.4) ∥qn − q̃n∥ = o(∥pn − qn∥).

As remarked in Section 3.4.2, (1)-(5) hold regardless of whether (pn) and (qn) are in the same
quadrant or not. By (1) and (2), ∥pn∥ ∼ ∥p̃n∥ and ∥qn∥ ∼ ∥q̃n∥. Let ϵ < ϵ0 where ϵ0 is given
by Proposition 1.1. Assume that n is so large that ϵn < ϵ. Then pn, p̃n ∈ Hi

ϵ and since Hi
ϵ

is semialgebraic and connected, the line segment between pn and p̃n must be contained in Hi
ϵ.

If bn is a sequence such that for every n, bn lies on the line segment between pn and p̃n or
on the line segment between qn and q̃n, then ∥bn∥ ∼ ∥pn∥ or ∥bn∥ ∼ ∥qn∥, and since (I), and
therefore (i) holds, we must have |fyy(xn, y)| > 0 on the open line segment between pn and p̃n.
It follows that |fy(bn)| < |fy(pn)| = o(∥pn∥r−1) = o(∥bn∥r−1). In a similar fashion we obtain
similar inequalities for points on the line segment between qn and q̃n. Now, using the Mean Value
Theorem, we can find cn on the line segment between pn and p̃n and dn on the line segment
between qn and q̃n such that

∥ω(p̃n) − ω(q̃n)∥ ≤ ∥ω(p̃n) − ω(pn)∥ + ∥ω(pn) − ω(qn)∥
+ ∥ω(qn) − ω(q̃n)∥

= |fy(cn)| ∥p̃n − pn∥ + o(∥pn∥r−1 + ∥qn∥r−1) ∥pn − qn∥
+ |fy(dn)| ∥qn − q̃n∥

= o(∥pn∥r−1)o(∥pn − qn∥) + o(∥pn∥r−1 + ∥qn∥r−1) ∥pn − qn∥

+ o(∥qn∥r−1)o(∥pn − qn∥)

= o(∥p̃n∥r−1 + ∥q̃n∥r−1) ∥p̃n − q̃n∥ .

This shows that (II’) fails. �

Lemma 4.2 (=Lemma 2.9). Let ω be an r-jet which satisfies (I), and let ω′ be a Cr map germ
with ω ∼Ar ω′. Then (II’) holds for ω if and only if (II’) holds for jrω′.

Proof. Let ω be an r-jet, h and k Cr-diffeomorphisms of neighbourhoods of 0 and ω′ = k◦ω◦h−1.
We may assume that ω is in standard form. Assume that (I) holds for ω and that (II’), and
hence (II), fails for ω along sequences in Hi and Hj which are different components of Hϵ,ρ(ω).
Let Ci and Cj be the branches of Σ(ω) corresponding to Hi and Hj respectively. From the proof
of Lemma 2.6 we know that in a small neighbourhood of 0, h(Ci) and h(Cj) are in different
components of Hϵ,ρ(jrω′). Let C ′

i and C ′
j denote the components of Σ(jrω′) contained in the

same components of Hϵ,ρ(jrω′) as h(Ci) and h(Cj) respectively. Since h−1(C ′
i) and h−1(C ′

j)
belong to the singular set of k−1 ◦ jrω′ ◦ h, which is a Cr realization of ω, h−1(C ′

i) and h−1(C ′
j)

belong to Hi
ϵ,ρ(ω) and Hj

ϵ,ρ(ω) for every small ϵ. It now follows from the proof of Proposition
4.1 that (II) fails for ω along sequences in h−1(C ′

i) and h−1(C ′
j). Then it follows from the proof

of Lemma 2.6 again that (II) fails for jrω′ along sequences in C ′
i and C ′

j . This shows that (II’)
fails for jrω′ and finishes the proof of the lemma. �
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Proposition 4.3 (=Proposition 2.10). If ω is in standard form and satisfies (i), then (II’) and
(ii) are equivalent.

Proof. (II’)⇒ (ii) is obvious, (ii) being a weakening of (II’). Assume that ω is in standard form
and satisfies (i), but not (II’). Since (i) is satisfied, Lemma 3.12 implies that (II’) fails along
sequences on the same side of the y-axis. Assume they are in the 1st or 4th quadrant. Note that
Lemma 3.4 also holds for singular branches in the 4th quadrant, and by arguments similar to
the arguments in Section 3.4.2, we may parametrize the branches of Σ(ω) in the 4th quadrant
by convergent fractional power series. Let now βi, i = 1, . . . , S be parametrizations of the S
branches of Σ(ω) in these quadrants. Then there are i ̸= j and sequences pn = (xn, yn) and
qn = (un, vn) both converging to 0 such that pn ∈ G(βi), qn ∈ G(βj) and

∥ω(pn) − ω(qn)∥ = o(∥pn∥r−1 + ∥qn∥r−1) ∥pn − qn∥ .

We may assume that xn > un > 0 Let ṽn = βj(xn). Then q̃n = (xn, ṽn) ∈ G(βj). Let β(t) =
(β1(t), β2(t)) be the parametrization of G(βj) by arclength with β(0) = 0 and β(t) ∈ G(βj) for
t > 0. Assume that (un, vn) = β(tun) and (xn, ṽn) = β(txn). Then there are parameter values
cn and dn between tun and txn such that

∥ω(un, vn) − ω(xn, ṽn)∥ = ∥ω(β(tun)) − ω(β(txn))∥

=
∥∥∥∥( β1(tun) − β1(txn)

Df(β(cn)) · β′(cn)(tun − txn)

)∥∥∥∥
=
∥∥∥∥( d

dtβ
1(dn)

fx(β(cn)) d
dtβ

1(cn)

)∥∥∥∥ |tun − txn | (since fy(β(t)) ≡ 0)

. max
{∣∣∣∣ d

dt
β1(cn)

∣∣∣∣ , ∣∣∣∣ d

dt
β1(dn)

∣∣∣∣} |tun − txn |.

If O(βj) = 1, then t ∼ ∥β(t)∥ ∼ |β1(t)|, and in that case,

∥ω(un, vn) − ω(xn, ṽn)∥ . |xn − un|.
If O(βj) < 1, then ∣∣∣∣ d

dt
β1(cn)

∣∣∣∣ ∼
∣∣∣∣∣ d

dtβ
1(cn)

d
dtβ

2(cn)

∣∣∣∣∣ ,
since β is parametrised by arclength. Since we have assumed that xn > un, we have txn

> tun
.

Then ∣∣∣∣∣ d
dtβ

1(cn)
d
dtβ

2(cn)

∣∣∣∣∣ < |β′
j(xn)|−1.

Now, since O(βj) < 1, there is a small ϵ > 0 such that |βj(x)| is a concave function on [0, ϵ).
This implies that for large enough n,

|β′
j(xn)| <

∣∣∣∣ vn − ṽn

xn − un

∣∣∣∣ < |βj(xn)|
|xn|

.

But since βj is a fractional power series in x, |βj(xn)| ∼ |xn||β′
j(xn)|. Thus

|β′
j(xn)| ∼

∣∣∣∣ vn − ṽn

xn − un

∣∣∣∣ ,
and hence, ∣∣∣∣ d

dt
β1(cn)(tun − txn)

∣∣∣∣ . ∣∣∣∣xn − un

vn − ṽn

∣∣∣∣ |vn − ṽn| = |xn − un|.
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The same holds if we replace cn with dn. In any case,

∥ω(un, vn) − ω(xn, ṽn)∥ . |xn − un| = o(∥pn∥r−1 + ∥qn∥r−1) ∥pn − qn∥ .

Using this we get
∥ω(pn) − ω(q̃n)∥ ≤ ∥ω(pn) − ω(qn)∥ + ∥ω(qn) − ω(q̃n)∥

= o(∥pn∥r−1 + ∥qn∥r−1) ∥pn − qn∥

= o(∥pn∥r−1 + ∥q̃n∥r−1) ∥pn − q̃n∥ ,

which means that (ii) fails to hold. The last equality needs some justification. Notice that
un < xn implies that ∥qn∥ < ∥q̃n∥. We also have to show that ∥pn − qn∥ . ∥pn − q̃n∥. We claim
that un = xn +o(xn). If not, then |xn−un| = xn−un ∼ xn. By Lemma 3.2, xn & ∥pn∥r−1. This
implies that |xn−un| & ∥pn∥r−1 which contradicts the failure of (II’). Therefore, we may assume
that un = xn + o(xn). This gives |βj(un)| ∼ |βj(xn)| and hence, ∥qn∥ ∼ ∥q̃n∥. Assume that
∥qn∥ = o(∥pn∥). In this case, ∥q̃n∥ = o(∥pn∥) and it follows that ∥pn∥ ∼ ∥pn − qn∥ ∼ ∥pn − q̃n∥.
Assume now that ∥pn∥ . ∥qn∥. We have

∥pn − qn∥ ≤ ∥pn − q̃n∥ + |βj(xn) − βj(un)| + |xn − un|.
Using that |βj(xn) − βj(un)| ≤ (|β′

j(xn)| + |β′
j(un)|)|xn − un|, we get

∥pn − qn∥ ≤ ∥pn − q̃n∥ + (|β′
j(xn)| + |β′

j(un)| + 1)|xn − un|.

As in the justification of (3) in Section 3.4.1, Lemma 3.2 implies that |β′
j(xn)| . x

− r−2
r−1

n .
1/ ∥q̃n∥r−2 ∼ 1/ ∥qn∥r−2 and similarly, |β′

j(un)| . 1/ ∥qn∥r−2. Now we have

∥pn − qn∥ ≤ ∥pn − q̃n∥ + (1 +
2

∥qn∥r−2 )|xn − un|

= ∥pn − q̃n∥ + (1 +
2

∥qn∥r−2 )o(∥pn∥r−1 + ∥qn∥r−1) ∥pn − qn∥

= ∥pn − q̃n∥ + o(∥pn − qn∥).

The last equality follows from the assumption that ∥pn∥ . ∥qn∥. This completes the proof of
Proposition 4.3. �
Proof of Proposition 1.9. This is a direct consequence of Proposition 4.1 and Proposition 4.3. �

5. Construction of Whitney field and proof of Theorem 1.7

This section deals with the construction of a Whitney field which leads to the proof of the only
if part of Theorem 1.7. Let ω(x, y) = (x, f(x, y)) be an r-jet of rank 1 in standard form having
no branches of its singular set tangent to the x-axis. Assume that (i) holds and (ii) fails for ω.
We only consider the case when (ii) fails along sequences in the first quadrant. Then there are
sequences pn = (xn, yn) ∈ Ci and qn = (xn, vn) ∈ Cj such that ∥pn∥ → 0, ∥qn∥ → 0 and

|f(pn) − f(qn)| = o(∥pn∥r−1 + ∥qn∥r−1)|yn − vn|.
In this case, ∥pn∥ ∼ yn and ∥qn∥ ∼ vn. We assume that yn > vn and that ∥pn − qn∥ =
o(∥pn∥ + ∥qn∥) and thus, ∥pn∥ ∼ ∥qn∥.

Lemma 5.1. There are sequences of real positive numbers ϵ̃n and ρ̃n converging to 0 and se-
quences p̃n = (xn, ỹn) ∈ Hi

ϵ̃n,ρ̃n
and q̃n = (xn, ṽn) ∈ Hj

ϵ̃n,ρ̃n
such that

fy(xn, ỹn) = fy(xn, ṽn) =
f(xn, ỹn) − f(xn, ṽn)

ỹn − ṽn
= o(∥p̃n∥r−1 + ∥q̃n∥r−1).
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ỹnṽn y

f(xn, ·)

Figure 3. Illustration of the geometric idea behind Lemma 5.1.

The points ỹn and ṽn are chosen such that we obtain the geometric situation illustrated in
Figure 3.

Proof of Lemma 5.1. If there are subsequences (pnk
) and (qnk

) of (pn) and (qn) respectively such
that f(xnk

, ynk
) = f(xnk

, vnk
), then, since fy(xn, yn) = fy(xn, vn) = 0, we may take ỹn = yn

and ṽn = vn. If there are no such subsequences, let pn(t) = (xn, yn + t) and qn(s) = (xn, vn + s).
Recall that we have assumed that (pn) and (qn) are in the first quadrant. We have also assumed
that yn > vn, and hence, yn + t > vn + s and ∥pn(t)∥ > ∥qn(s)∥ for small s and t. In particular,
∥pn(t)∥ > ∥qn(s)∥ when pn(t) ∈ Hi

ϵ,ρ and qn(s) ∈ Hj
ϵ,ρ. Since (i) holds, there is a constant C > 0

such that
|fy(p)| + |fyy(p)| ∥p∥ ≥ C ∥p∥r−1

for all p in a neighbourhood B(0, ρ) of 0. Let ϵ < C and as always, assume that ϵ < ϵ0 where
ϵ0 is chosen such that the conclusion of Lemma 3.1 holds. Since fyy(p) ̸= 0 for all p ∈ Hϵ,ρ, the
restriction of the function u 7→ fy(p + (0, u)) to any component of the set {u|p + (0, u) ∈ Hϵ,ρ}
is injective. Assume that ρ is large enough to ensure that

sup{∥pn(t)∥ | pn(t) ∈ Hi
ϵ,ρ} < ρ.

Since ∥pn(t)∥ > ∥qn(s)∥, {fy(qn(s)) | qn(s) ∈ Hj
ϵ,ρ} ⊂ {fy(pn(t)) | pn(t) ∈ Hi

ϵ,ρ}. In fact, both
these sets are intervals. Using that fyy(p) ̸= 0 for all p ∈ Hϵ,ρ together with the definition of the
Hϵ,ρ and the assumption on ρ, we see that there are real numbers s1, s2, t1, t2 such that

{fy(qn(s)) | qn(s) ∈ Hj
ϵ,ρ} = [−ϵ ∥qn(s1)∥r−1

, ϵ ∥qn(s2)∥r−1]

and
{fy(pn(t)) | pn(t) ∈ Hi

ϵ,ρ} = [−ϵ ∥pn(t1)∥r−1
, ϵ ∥pn(t2)∥r−1].
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It follows that when qn(s) ∈ Hj
ϵ,ρ, the equation fy(qn(s)) = fy(pn(t)) has a unique solution

t = h(s) with pn(t) ∈ Hi
ϵ,ρ.

Let F : R2 → R be given by F (s, t) = fy(pn(t)) − fy(qn(s)). We have

∂F

∂t
(s, t) = fyy(pn(t)) ̸= 0

when pn(t) ∈ Hϵ,ρ. The function h(s) above satisfies F (s, h(s)) = 0, and by the Implicit Function
Theorem, h is a smooth function.

Define the function G by

G(s) =
f(pn(h(s))) − f(qn(s))

pn(h(s)) − qn(s)
− fy(qn(s)).

Clearly G is continuous near s = 0. Let ϵn be defined by

(5.1) |f(pn) − f(qn)| = ϵn(∥pn∥r−1 + ∥qn∥r−1)|yn − vn|.
Note that ϵn > 0 and that ϵn → 0 as n → ∞. For constants K and indices n such that |K|ϵn < ϵ,
let S(K, n) ∈ {s | qn(s) ∈ Hj

ϵ,ρ} be defined by

fy(qn(S(K, n))) = Kϵn ∥qn(S(K, n))∥r−1
.

This definition is unambiguous because fyy ̸= 0 in Hϵ,ρ. There are eight cases to consider, one
for each possible value of

Sign(ω) =
(

f(pn) − f(qn)
|f(pn) − f(qn)|

,
fyy(pn)
|fyy(pn)|

,
fyy(qn)
|fyy(qn)|

)
∈ {−1, 1}3.

The denominators in the definition of Sign(ω) cause no problems, because fyy(p) ̸= 0 when
fy(p) = 0 as a consequence of (i). Suppose Sign(ω) = (−1,−1,−1). This situation is illustrated
in Figure 3. Since h(0) = 0, G(0) < 0. Let S = S(K,n) for some fixed K < 0 and assume that
G(S) < 0. Notice that necessarily, S > 0. There is a sequence ρn converging to 0 such that
pn(h(S)) ∈ Hi

|K|ϵn,ρn
and qn(S) ∈ Hj

|K|ϵn,ρn
. We get

f(pn(h(S))) − f(qn(S)) < fy(qn(S))(yn + h(S) − vn − S) < 0.

By our assumption that ∥pn − qn∥ = o(∥pn∥ + ∥qn∥), we have ∥pn∥ = ∥qn∥ + o(∥qn∥). By the
estimates (1)-(3) of Section 3, |yn + h(S) − vn − S| = |yn − vn| + o(|yn − vn|), ∥pn(h(S))∥ =
∥pn∥ + o(∥pn∥) and ∥qn(S)∥ = ∥qn∥ + o(∥qn∥). This gives

|f(pn(h(S))) − f(qn(S))| >
|K|
4

ϵn(∥pn∥r−1 + ∥qn∥r−1)|yn − vn|.

Let 0 < δ < 1
4 . By estimates (4) and (5) of Section 3, ∥pn(h(S)) − pn∥ = o(|yn − vn|) and

∥qn(S) − qn∥ = o(|yn−vn|). Furthermore, since fyy ̸= 0 in Hϵ,ρ, the maximum of
∣∣fy|pnpn(h(S))

∣∣
is |fy(pn(h(S)))| and the maximum of

∣∣fy|qnqn(S)
∣∣ is |fy(qn(S))|. Using this and our assumption

that ∥pn∥ = ∥qn∥ + o(∥qn∥), we get

|f(pn) − f(qn)| ≥ |f(pn(h(S))) − f(qn(S))| − |f(pn(h(S))) − f(pn)| − |f(qn(S)) − f(qn)|

≥ |f(pn(h(S))) − f(qn(S))| − |K|ϵn ∥qn(S)∥r−1 (∥pn(h(S)) − pn∥ + ∥qn(S) − qn∥)

≥ |f(pn(h(S))) − f(qn(S))| − |K|ϵnδ(∥qn∥r−1 + ∥pn∥r−1)|yn − vn|

≥ |K|
4

ϵn(1 − 4δ)(∥pn∥r−1 + ∥qn∥r−1)|yn − vn|.

When n is large, we may take |K| > 4/(1−4δ) and this contradicts (5.1), and hence, G(S(K,n)) >
0. By the Intermediate Value Theorem, there is a sequence (sn) with 0 < sn < S(K, n) such
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that G(sn) ≡ 0. The proof is finished in this case by choosing ϵ̃n = |K|ϵn, ỹn = yn + h(sn) and
ṽn = vn + sn.

All the other seven cases are checked by essentially the same argument. It is just a matter of
keeping track of the signs and the directions of the inequalities, so the details are left out. �

Let p̃n = (xn, ỹn) and q̃n = (xn, ṽn) be the sequences given by Lemma 5.1. We may assume
that for all n, ∥p̃n+1∥ < 1

2 ∥q̃n∥. Remember that we have also assumed that ∥p̃n∥ ≥ ∥q̃n∥ and
∥p̃n − q̃n∥ = o(∥p̃n∥). Let K = {0} ∪

∪
n{p̃n, q̃n}. We define an r-th order Taylor field Q on K

with values in R by

Qm(p) =


f(q̃n) − f(p̃n), p = p̃n, m = (0, 0);
− f(p̃n)−f(q̃n)

ỹn−ṽn
, p = p̃n, q̃n, m = (0, 1);

0 otherwise.

Lemma 5.2. Q is a Whitney field.

Proof. Let X = (x, y). We have to show that for all p, q ∈ K, m ∈ N2,

(RqQ)m(p) = Qm(p) − ∂|m|

∂Xm

(∑
α

(
1
α!

Qα(q)(X − q)α)

)∣∣∣∣∣
X=p

= o(∥p − q∥r−|m|).

There are a number of cases to consider, each of which is straightforward. In any of the cases
(p, q) = (p̃n, q̃n) or (p, q) = (q̃n, p̃n), the definition of Q gives us that (RqQ)m(p) = 0 =
o(∥p − q∥r−|m|) for m = (0, 0) and m = (0, 1). In the remaining combinations, ∥p − q∥ >
1
2max{∥p∥ , ∥q∥} and (RqQ)m(p) = o((max{∥p∥ , ∥q∥})r−|m|) for m = (0, 0) and m = (0, 1).
Since (RqQ)m(p) ≡ 0 when m = (1, 0) or |m| > 1, it follows that Q is a Whitney field. �
Proof of Theorem 1.7. Assume first that (i) and (ii) hold for ω of rank 1 in standard form
ω(x, y) = (x, f(x, y)). By Lemma 2.7 and Proposition 1.9, (I) and (II) holds for ω as well. Then
we may use Theorem 1.3 to conclude that ω is A0-sufficient.

Now, suppose that (i) fails for ω. By Lemma 2.7, (I) also fails for ω, and by Theorem 1.3, ω
is not A0-sufficient.

Finally, suppose that (i) holds and (ii) fails for ω. Then there are distinct components Ci and
Cj of Σ(ω) and sequences pn = (xn, yn) ∈ Ci and qn = (xn, vn) ∈ Cj such that

|f(pn) − f(qn)| = o(∥pn∥r−1 + ∥qn∥r−1)|yn − vn|.
By passing to a subsequence, we may also assume that ∥pn∥ ≥ ∥qn∥ and ∥pn+1∥ < 1

2 ∥qn∥ for
all n. If there are subsequences (pnk

) and (qnk
) of (pn) and (qn), respectively, with

∥pnk
− qnk

∥ ∼ max{∥pnk
∥ , ∥qnk

∥},
then it is easy to see that the Taylor field

Qm
1 (p) =

{
f(qnk

) − f(pnk
), p = pnk

, m = (0, 0);
0, otherwise

is a Whitney field. By Whitney’s Extension Theorem ([3]), we may extend Q1 by a Cr map
h1 defined in a neighbourhood of 0. By construction of Q1, jrh1(0) = 0, and hence, ω + h1

is a Cr realization of ω. However, pnk
and qnk

are singular points of ω + h1 for every n, and
(ω+h1)(pnk

) = (ω+h1)(qnk
). This gives sequences of singular double points of ω+h1 converging

to 0, and it is shown in [2] that a sufficient jet cannot have any such representative. Thus, ω is
not A0-sufficient.
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If there are no subsequences as above, then we may assume that ∥pn − qn∥ = o(∥pn∥+ ∥qn∥).
By Lemma 2.1, Lemma 2.6, Lemma 2.8 and Proposition 1.9, we may assume that pn and qn are in
the first quadrant and that ∥pn∥ ∼ yn and ∥qn∥ ∼ vn. In this situation, we can find the sequences
(p̃n) and (q̃n) of Lemma 5.1 and construct the Whitney field Q of Lemma 5.2. By Whitney’s
Extension Theorem again, we may extend Q by a Cr map h defined in a neighbourhood of 0.
By construction of Q, jrh(0) = 0, and hence, ω + h is a Cr realization of ω. Again, p̃n and q̃n

are singular points of ω + h for every n, and (ω + h)(p̃n) = (ω + h)(q̃n). This gives sequences of
singular double points of ω + h converging to 0, and hence, ω is not A0-sufficient. The proof is
finished. �

6. Examples

Example 6.1 (Example 1 of [2] revised). Let r > 3 and let ω(x, y) = (x, f(x, y)) = (x, xy +yr).
Since ω is given in standard form, we can apply Theorem 1.7 to prove that ω is A0-sufficient in
E[r](2, 2). We have fy(x, y) = x + ryr−1 and fyy(x, y) = r(r − 1)yr−2.

Assume that (i) does not hold for ω. Then there is a sequence pn = (xn, yn) converging to 0
such that

|fy(pn)| + |fyy(pn)| ∥pn∥ = o(∥pn∥r−1).

Thus, |fy(pn)| = |xn + ryr−1
n | = o(∥(xn, yn)∥r−1) and this implies that |xn| ∼ |yn|r−1 and

∥pn∥ ∼ |yn|. But then fyy(pn) ≥ ∥pn∥r−2, which contradicts that (i) fails. This proves that ω
satisfies (i).

If r is even, then ω has one branch on each side of the y-axis, and (ii) is trivially satisfied.
Assume that r is odd. Then Σ(ω) = {(x, y)|x = −ryr−1}. Let p = (−ryr−1, y) and q =
(−ryr−1,−y). Then ∥p − q∥ ∼ ∥p∥ = ∥q∥ ∼ |y| and we get

|f(p) − f(q)| = |2ryr + 2yr| & (∥p∥r−1 + ∥q∥r−1)|y|.
This shows that (ii) holds, and by Theorem 1.7, ω is sufficient as claimed.

Example 6.2. Let a > b > c > 0 and let ω(x, y) = (x, f(x, y)) in J7(2, 2) be such that
fy(x, y) = (x − ay2)(x − by2)(x − cy2). Let

F (x, y) = x − y − 1
3

(a + b + c)(x3 − y3) +
1
5

(ab + ac + bc)(x5 − y5) − 1
7
abc(x7 − y7).

We claim that ω is A0-sufficient in E[7](2, 2) if 0 /∈ {F (a− 1
2 , b−

1
2 ), F (a− 1

2 , c−
1
2 ), F (b−

1
2 , c−

1
2 )}.

This means that we need to verify (i) and (ii) of Theorem 1.7 for ω with r = 7.
Assume that (i) fails. Then there is a sequence pn = (xn, yn) converging to 0 such that

|fy(pn)| + |fyy(pn)| ∥pn∥ = o(∥pn∥6).

From the expression for fy we conclude that (i) can only fail along the sequence if xn = dy2
n+o(y2

n)
for some d ∈ {a, b, c}. We also have

fyy(x, y) = −2(a + b + c)x2y + 4(ab + ac + bc)xy3 − 6abcy5.

Suppose xn = ay2
n + o(y2

n). Then ∥pn∥ ∼ |yn| and

fyy(pn) = −[2a2(a + b + c) − 4a(ab + ac + bc) + 6abc]y5
n + o(y5

n).

But fyy(pn) = o(y5
n) since (i) fails, and hence,

2a2(a + b + c) − 4a(ab + ac + bc) + 6abc = 0.

Since a ̸= 0, this implies the equation

(6.1) (a − b)(a − c) = 0
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which cannot hold since a > b > c. The same argument applies when xn = by2
n + o(y2

n) and
when xn = cy2

n + o(y2
n) and gives equations

(b − c)(b − a) = 0

and
(c − a)(c − b) = 0.

None of these two equations can have a solution with a > b > c. Altogether this shows that (i)
holds for ω when r = 7.

To verify (ii), notice that for s, t > 0,∣∣∣∣f(x,

√
x

s
) − f(x,

√
x

t
)
∣∣∣∣ = x

7
2 |F (s−

1
2 , t−

1
2 )|.

This proves that (ii) holds with r = 7, since we have assumed that

0 /∈ {F (a− 1
2 , b−

1
2 ), F (a− 1

2 , c−
1
2 ), F (b−

1
2 , c−

1
2 )}.
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APPARENT CONTOURS OF STABLE MAPS INTO THE SPHERE

TAISHI FUKUDA AND TAKAHIRO YAMAMOTO

Abstract. For a stable map ϕ : M → S2 of a closed and connected surface into the sphere,
let c(ϕ) and n(ϕ) denote the numbers of cusps and nodes respectively. In this paper, for each
integer i ≥ 1, in the given homotopy class with i fold curve components, we will determine
the minimal number c + n.

1. Introduction

Let M be a closed and connected surface and N a connected surface. Let ϕ : M → N be a
C∞ map. Define the set of singular points of ϕ as

S(ϕ) = {p ∈ M | rank dϕp < 2}.

We call ϕ(S(ϕ)) the apparent contour (or contour for short) of ϕ and denote it by γ(ϕ).
A C∞ map ϕ : M → N is said to be stable if it satisfies the following two properties.

(1) The map germ at each p ∈ M is C∞ right-left equivalent to one of the map germs at
0 ∈ R

2 below;
(a, x) 7→ (a, x): p is a regular point,
(a, x) 7→ (a, x2): p is a fold point,
(a, x) 7→ (a, x3 + ax): p is a cusp point.

Hence, S(ϕ) is a finite disjoint union of circles.
(2) For each q ∈ γ(ϕ), the map germ (ϕ|S(ϕ), ϕ

−1(q) ∩ S(ϕ)) is right-left equivalent to one
of the three multi-germs as depicted in Figure 1.

According to a classical result of Whitney [8], stable maps form an open everywhere dense set in
the space of all C∞ maps M → N . Thus, for a C∞ map M → N , there is a stable map M → N
homotopic to the C∞ map.

In this paper, we consider stable maps with singular points. When ϕ is stable, S(ϕ) is called
the fold curve of ϕ, and the numbers of cusps, fold curve components and nodes on γ(ϕ) are
denoted by c(ϕ), i(ϕ) and n(ϕ) respectively.

An oriented closed surface of genus g is denoted by Σg. The 2-dimensional sphere and the
plane are denoted by S2 and R

2 respectively.
Let ϕ0 : M → S2 be a C∞ map and ϕ : M → S2 be a stable map which is homotopic to ϕ0

and whose contour consists of i components. Then, call γ(ϕ) an i-minimal contour of ϕ0 if the
number c+n for γ(ϕ) is the smallest among the contours of stable maps which are homotopic to
ϕ0 and whose contours consist of i components. A 1-minimal contour, which is called a minimal

contour in [4], of a C∞ map M → R
2 was studied by Pignoni [4]. A 1-minimal contour of a

C∞ map M → S2 was studied by Demoto [1], Kamenosono and the second author [2]. They
obtained the following result:

Date: June 20, 2011.
2000 Mathematics Subject Classification. Primary: 57R45; Secondary: 57N13.
Key words and phrases. Stable map, cusp, node, minimal contour, genus, mapping degree.
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Fold NodeCusp

q qq

Figure 1. The multi-germs of ϕ|S(ϕ)

Theorem 1.1 ([1], [2]). Let d ≥ 0 and f : Σg → S2 be a degree d stable map whose contour
consists of one component. The contour γ(f) is 1-minimal if and only if the pair (c, n) for γ(f)
is one of the items below:

(c, n) =





(2d, 0) if g = 0,

(2(d − 1), 4) or (2d + 2, 0) if g = 1 and for each d ≥ 1,

(2, 4) or (6, 0) if (d, g) = (1, 2),

(2(d − g), 2g + 2) if d ≥ g > 1,

(2, d + g + 1) if d ≤ g and g 6≡ d (mod 2), (d, g) 6= (1, 2),

(0, d + g + 2) if d ≤ g and g ≡ d (mod 2), (d, g) 6= (1, 1).

On the other hand, the second author [9] introduced and studied a (c, i, n)-minimal contour
of a C∞ map Σg → S2: The apparent contour of a stable map ϕ : M → S2 is a (c, i, n)-minimal
contour of a C∞ map ϕ0 : M → S2 if the triple (c(ϕ), i(ϕ), n(ϕ)) is the smallest with respect to
the lexicographic order among the stable maps homotopic to ϕ0. Furthermore, he introduced
some lemmas concerning apparent contours of stable maps M → S2 whose contours consist of
some components.

In this paper, we will study an i-minimal contour of a C∞ map Σg → S2 for each i ≥ 2.
Note that, for each number i ≥ 1, there is a C∞ map Σg → S2 whose contour consists of i
components.

Recall that by virtue of Hopf’s theorem (see [3] for example), two C∞ maps Σg → S2 are
homotopic if and only if their degrees coincide. Thus, the homotopy class of stable maps Σg → S2

of degree d is represented by the pair (d, g).
The main theorem of this paper is the following.

Theorem 1.2. Let f : Σg → S2 be a degree d stable map whose contour consists of i components.
Then, the contour γ(f) is i-minimal if and only if the pair (c, n) for γ(f) is one of the items
below:

g = 0:

(c, n) =





(0-i) (2(|d| − i + 1), 0) if 1 ≤ i ≤ |d| + 1,

(0-ii) (2, 0) if i ≥ |d| + 2, i ≡ d (mod 2),

(0-iii) (0, 0) if i ≥ |d| + 2, i 6≡ d (mod 2),

g = 1:

(c, n) =





(1-i) (2(|d| − i), 4) or (2(|d| − i) + 4, 0) if 1 ≤ i ≤ |d|,

(1-ii) (2, 2) if (d, i) = (0, 1),

(1-iii) (2, 0) if i ≥ |d| + 1, i 6≡ d (mod 2) except (d, i) = (0, 1),

(1-iv) (0, 0) if i ≥ |d| + 1, i ≡ d (mod 2),
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g = 2:

(c, n) =





(2-i) (2(|d| − i − 1), 6) if 1 ≤ i ≤ |d| − 1,

(2-ii) (2, 4) or (6, 0) if i = |d|,

(2-iii) (0, 4) if i = |d| + 1,

(2-iv) (2, 2) if (d, i) = (0, 2),

(2-v) (2, 0) if i ≥ |d| + 2, i ≡ d (mod 2) except (d, i) = (0, 2),

(2-vi) (0, 0) if i ≥ |d| + 2, i 6≡ d (mod 2),

g ≥ 3:

(c, n) =





(g-i) (2(|d| − g − i + 1), 2 + 2g) if 1 ≤ i ≤ |d| − g + 1,

(g-ii) (2, |d| + g − i + 2) if |d| − g + 2 ≤ i < |d| + g − 1 and d + g ≡ i (mod 2),

(g-iii) (0, |d| + g − i + 3) if |d| − g + 2 ≤ i ≤ |d| + g − 1 and d + g 6≡ i (mod 2),

(g-iv) (2, 2) if (d, i) = (0, g),

(g-v) (2, 0) if i ≥ |d| + g, i ≡ d + g (mod 2) except (d, i) = (0, g),

(g-vi) (0, 0) if i ≥ |d| + g, i 6≡ d + g (mod 2).

Theorem 1.2 yields the following corollaries.

Corollary 1.3. Let f : Σg → S2 be a degree d stable map whose contour consists of i compo-
nents. Then, the contour γ(f) is i-minimal if and only if the number c + n for γ(f) is one of the
items below:

g = 0:

c + n =





2(|d| − i + 1) if 1 ≤ i ≤ |d| + 1,

2 if i ≥ |d| + 2, i ≡ d (mod 2),

0 if i ≥ |d| + 2, i 6≡ d (mod 2).

g ≥ 1:

c + n =






2(|d| − i + 2) if 1 ≤ i ≤ |d| − g + 1,

|d| + g − i + 4 if |d| − g + 2 ≤ i < |d| + g − 1 and d + g ≡ i (mod 2),

|d| + g − i + 3 if |d| − g + 2 ≤ i ≤ |d| + g − 1 and d + g 6≡ i (mod 2),

4 if (d, i) = (0, g),

2 if i ≥ |d| + g, i ≡ d + g (mod 2) except (d, i) = (0, g),

0 if i ≥ |d| + g, i 6≡ d + g (mod 2),

Corollary 1.4. (1) For each i, any i-minimal contour of a C∞ between S2 has no node.
(2) For each i, the number of nodes on any i-minimal contour of a C∞ map Σg → S2 is an

even number.

We remark that the number of cusps on each stable map Σg → S2 is an even number, see [6]
for details.

Note that for each d and i, there is a degree d stable map Σg → S2 whose contour consists of
i components and whose contour has odd number of nodes.

This paper is organized as follows: In §2, we introduce some notions concerning the apparent
contour of a stable map between surfaces. In §3, some stable maps Σg → S2 are described. In
§4, Theorem 1.2 is proved. In §5, we consider the case of a stable map which has no cusps. In
§6, some problems are posed.
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Throughout this paper, all surfaces are connected and of class C∞, and all maps are of class
C∞. The symbols d, g ≥ 0, i ≥ 1 denote integers unless stated otherwise.

The authors would like to express their gratitude to Osamu Saeki for helpful comments and
constant encouragement. The authors also thank the referee for useful comments which improved
this paper. The second author also expresses special thanks to Akiko Neriugawa for useful advice
on English grammar and for encouraging support.

2. Preliminaries

In the following, we describe some notions concerning the apparent contour of a stable map
M → S2 of a closed surface which is not necessary orientable.

Let M be a closed surface and ϕ : M → S2 a stable map with singular points. Let S(ϕ) =
S1 ∪ · · · ∪ Sℓ be the decomposition of S(ϕ) into the connected components and set γi = ϕ(Si)
(i = 1, . . . , ℓ). Then, γ(ϕ) = γ1 ∪ · · · ∪ γℓ. Denote by n1(ϕ) the total number of self-intersection
points of γi (i = 1, . . . , ℓ) and n2(ϕ) the total of the number of points γi ∩ γj for all i and j with
i 6= j. Note that n2(ϕ) is an even number and that n(ϕ) = n1(ϕ) + n2(ϕ). Let m(ϕ) be the
smallest number of elements in the set ϕ−1(y), where y ∈ S2 runs over all regular values of ϕ.
Fix a regular value ∞ such that ϕ−1(∞) consists of m(ϕ) points. For each γi, denote by Ui the
component of S2 \ γi which contains ∞. Note that ∂Ui ⊂ γi.

Orient γi so that at each fold point image, the surface is “folded to the left”. More precisely,
for a point y ∈ γi which is not a cusp or a node of γi, choose a normal vector v of γi at y such
that ϕ−1(y′) contains more elements than ϕ−1(y), where y′ is a regular value of ϕ close to y in
the direction of v. Let τ be a tangent vector of γi at y with respect to the above orientation
of γi. Then, orient S2 by the ordered pair (τ, v). It is easy to see that this gives a well-defined
orientation of S2.

Definition 2.1. A point y ∈ ∂Ui \{cusps, nodes} is said to be positive if the normal orientation
v at y points toward Ui. Otherwise, it is said to be negative.

A component γi is said to be positive if all points of ∂Ui\{cusps, nodes} are positive; otherwise,
γi is said to be negative. The numbers of positive and negative components are denoted by i+

and i− respectively. Note that there is at least one negative component unless S(ϕ) = ∅.

Definition 2.2. A point y ∈ ∂Ui \ {cusps, nodes} is called an admissible starting point if

(1) y is a positive point of a positive component γi or
(2) y is a negative point of a negative component γi.

Note that for each i, there always exists an admissible starting point in γi.

Definition 2.3. Let y ∈ γi be an admissible starting point. Suppose that Q ∈ γi is a node,
and let α : [0, 1] → γi be a parameterization consistent with the orientation which is singular
only when the image is a cusp such that α−1(y) = {0, 1}. Then, there are two numbers t1 < t2
satisfying α(t1) = α(t2) = Q.

We say that Q is positive if the orientation of S2 at Q defined by the ordered pair (α′(t1), α
′(t2))

coincides with that of S2 at Q; negative, otherwise. See Figure 2 for details.

The numbers of positive and negative nodes on γi are denoted by N+
i and N−

i respectively.
The definition of a positive (or negative) node of γi depends on the choice of an admissible
starting point y. However, it is known that the algebraic number N+

i −N−

i does not depend on

the choice of y, see [7] for details. Thus, the algebraic number N+ − N− =
∑k

i=1(N
+
i − N−

i ) is
well defined. Note that nodes arising from γi ∩ γj (i 6= j) play no role in the computation.

Then, the following formula was obtained in [2].
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yy

ϕϕ

A positive node A negative node

Figure 2. A positive node and a negative node.

Proposition 2.4 ([2]). For a stable map ϕ : M → S2 of a closed surface of genus g, we have

(2.1) g = ε(M)

[
(N+ − N−) +

c(ϕ)

2
+ (1 + i+ − i−) − m(ϕ)

]

where ε(M) is equal to 1 if M is orientable and 2 if M is not orientable.

The second author has obtained an extension of the formula (2.1) to a stable map M → Σh

(h ≥ 1) whose contour consists of one component that will be published in the forthcoming
paper [10].

In the following, we assume γi∩γj = ∅ for all i 6= j. Denote by U∞ ⊂ S2\γ(ϕ) the component
which contains ∞. Denote by γ1 the component of γ(ϕ) which contains ∂U∞. Note that γ1 is a
negative component of ϕ. Then, the following lemmas and corollary were obtained in [9].

Lemma 2.5. If γ1 has a node, then it has a negative node.

Lemma 2.6. If a positive component γi has a node, then it has a positive node.

Corollary 2.7. If the number of negative components of γ(ϕ) is equal to one and γ(ϕ) has a
node, then it has a negative node.

3. Stable maps Σg → S2

In this section, we introduce some stable maps Σg → S2 which we employ the following
sections. In the following, the symbol fa,b,c denote the degree a stable map of Σb into S2 having
c connected components of singular set.

For each g ≥ 0, define a degree zero stable map f0,g,g+1 : Σg → S2 by f0,g,g+1 = ι ◦ pg, where
pg : Σg → R

2 is defined by Figure 3 and ι is the inclusion ι : R
2 →֒ R

2 ∪ {∞} = S2. Then, the
triple (c, n, i) for γ(f0,g,g+1) is equal to (0, 0, g + 1).

The following lemma can be easily proven as illustrated in Figure 4.

Lemma 3.1. Let f : Σg → S2 be a degree d stable map. Then, there is a degree d sta-

ble map f̃ : Σg → S2 whose triple (c, n, i) is equal to (c(f), n(f), i(f) + 2) such that γ(f̃) =
γ(f)

∐
S1

∐
S1.
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= Σg

gpg

⊂ R
2

γ(pg)

Figure 3. The contour γ(pg)

⊂ Σg⊂ Σg

γ(f)
γ(f)

γ(f̃)

S(f̃) ⊃

f f̃

Figure 4. Proof of Lemma 3.1.

Modify slightly

Figure 5. Making a pleat

By applying Lemma 3.1 inductively to f0,g,g+1 , we obtain the degree zero stable map
f0,g,i : Σg → S2 whose triple (c, n, i) is equal to (0, 0, i) for each pair (g, i) which satisfies i ≥ g+1
and i ≡ g + 1 (mod 2).

By making a pleat to f0,g,i (see Figure 5 for details), we obtain a degree zero stable map
f0,g,i+1 : Σg → S2 whose triple (c, n, i) is equal to (2, 0, i + 1).

For each odd number g, by attaching (g − 1) handles vertically (see Figure 6 for details) to a
degree zero stable map T 2 → S2 whose contour is in Figure 7(a) with ℓ1 = 0, we obtain a degree
zero stable map f0,g,g : Σg → S2 whose contour is in Figure 7(a) with ℓ1 = (g − 1). Similarly,
for each even number g ≥ 2, by attaching (g − 2) handles vertically to a degree zero stable
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Attaching a handleAttaching a handle

vertically horizontally

Figure 6. Attaching a handle

ℓ1 ℓ2

(a) (b)

Figure 7. The contours γ(f0,g,g) (g is odd), and γ(f0,g,g−1) (g is even)

T 2 T 2#T 2 T 2#(T 2#T 2)
f0,1,1 f0,3,1

Figure 8. Attaching a pair of handles to f0,1,1

map Σ2 → S2 whose contour is in Figure 7(b) with ℓ2 = 0, we obtain a degree zero stable map
f0,g,g−1 : Σg → S2 whose contour is in Figure 7(b) with ℓ2 = (g − 2). Remark that the degree
zero stable maps f0,1,1 and f0,2,1 were obtained in [2].

For each g ≥ 1, by attaching a pair of handles, attaching a handle vertically first and attaching
a handle horizontally, see Figure 6 for details, second, see Figure 8 for example, or by attaching a
handle vertically inductively to the degree zero stable map Σg → S2 whose contour is 1-minimal,
the degree zero stable map is in Theorem 1.1, we obtain a degree zero stable map f0,g,i : Σg → S2
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S2

g

g

Σg

γ(f1,g,g+1)

Figure 9. The stable map f1,g,g+1

whose contour consists of i components and whose pair (c, n) is equal to

(c, n) =

{
(2, g − i + 2) if 1 ≤ i ≤ g and i ≡ g (mod 2),

(0, g − i + 3) if 1 ≤ i ≤ g and i 6≡ g (mod 2).

Thus, we obtain the following maps.

Proposition 3.2. For each i ≥ 1 and g ≥ 0, there is a degree zero stable map f0,g,i : Σg → S2

whose contour consists of i components and whose pair (c, n) is one of the items below:

(c, n) =






(a) (2, g − i + 2) if 1 ≤ i ≤ g and i ≡ g (mod 2),

(b) (0, g − i + 3) if 1 ≤ i ≤ g and i 6≡ g (mod 2),

(c) (2, 0) if i ≥ g + 1 and i ≡ g (mod 2),

(d) (0, 0) if i ≥ g + 1 and i 6≡ g (mod 2).

For a sufficiently large sphere whose center is the origin of R
3, make a pleat. Then, by

attaching g handles to the sphere, we obtain a Σg as in Figure 9. Then, define the map
f1,g,g+1 : Σg → S2 by π|Σg

, where π : R
3 \ {0} → S2 defined by π(x) = x/|x|. Thus, we

obtain the following Lemma.

Proposition 3.3. The map f1,g,g+1 : Σg → S2 is a degree one stable map whose triple (c, n, i)
is equal to (2, 0, g + 1).

4. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. Note that for a C∞ map Σg → S2 of degree d, by
changing the orientation of Σg, we obtain a C∞ map Σg → S2 of degree −d. In the following,
we assume d ≥ 0.

Proof of Theorem 1.2. The contour γ(f0,g,i), the degree zero stable map f0,g,i in Proposition 3.2(d),
is trivially i-minimal.

The following lemma can be easily proven as illustrated in Figure 10 where (Σg)− denotes the
closure of the set of regular points whose neighborhoods are orientation reversed by the map.

Lemma 4.1. Let f : Σg → S2 be a degree d stable map having a singular point. Then, there
is a degree d + 1 stable map f ′ : Σg → S2 such that γ(f ′) = γ(f)

∐
S1. The triple (c, n, i) for

γ(f ′) is equal to (c(f), n(f), i(f) + 1).
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⊂ (Σg)−⊂ (Σg)−

γ(f) γ(f)

γ(f ′)

f f ′

⊂ S(f ′)

Figure 10. Proof of Lemma 4.1

Thus, the contour of the map Σg → S2 which is obtained by applying Lemma 4.1 inductively
to the degree zero stable map f0,g,i in Proposition 3.2(d) is trivially i-minimal. The cases (0-iii),
(1-iv), (2-vi) and (g-vi) of Theorem 1.2 are proved.

We introduce the following lemma.

Lemma 4.2. Let f : Σg → S2 be a degree d stable map whose contour consists of i components.
If the number d + g + i is even, then γ(f) has at least two cusps.

Proof. To prove this Lemma, apply a result of Quine [5]: for a stable map f : M → N between
oriented surfaces, we have

χ(M) − 2χ(M−) +
∑

qk:cusp

sign(qk) = (deg f)(χ(N)),

where M− denotes the closure of the set of regular points whose neighborhoods are orientation
reversed by f , and sign(qk) = ±1 the sign of a cusp qk, see [5] for definition.

Apply our situation to the Quine’s formula:

(4.1)
∑

qk:cusp

sign(qk) = 2(d + g − 1 + χ((Σg)−)).

Note that χ((Σg)−) ≡ i (mod 2). Then, it follows immediately. �

Lemma 4.2 shows that the following:

Proposition 4.3. (1) The contour of the degree zero stable map f0,g,i in Proposition 3.2(c)
is i-minimal.

(2) The contour of the degree one stable map f1,g,g+1 in Proposition 3.3, is (g + 1)-minimal
for each g ≥ 1.

Thus, the contours of the maps Σg → S2 which are obtained by applying Lemma 4.1 induc-
tively to f0,g,i in Proposition 3.2(c) and f1,g,g+1 in Proposition 3.3 are i-minimal. The cases
(0-ii), (1-iii), (2-v) and (g-v) of Theorem 1.2 are proved.

We prove the remaining cases of Theorem 1.2.
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4.1. The case of g = 0. Let us consider the case (0-i) of Theorem 1.2. For a fixed d ≥ 0 and
each i ≤ d + 1, the formula (4.1) shows that the contour of a degree d stable map between S2

whose contour consists of i components has at least 2(d − i + 1) cusps. This shows that the
contour of a degree d + 1 stable map between S2 which obtained by applying Lemma 4.1 to
a degree d stable map between S2 whose contour is 1-minimal is 2-minimal. By applying this
inductively, the case (0-i) of Theorem 1.2 is proved.

4.2. The case of g = 1. Note that the case (1-ii) is contained in Thorem 1.1. Let us consider
the case (1-i) of Theorem 1.2. The formula (2.1) for a degree d stable map Σg → S2 whose
contour consists of i components induces the following equality:

m(f) + g + 2i− = (N+ − N−) +
c

2
+ (1 + i)

Thus, by i− ≥ 1 and m(f) ≥ d, we obtain the following inequality for the stable map

(4.2) d + g + 1 ≤ (N+ − N−) +
c

2
+ i.

Note that the formula (2.1) for a degree d + 1 stable map Σg → S2 whose contour consists of
i + 1 components induces the inequality (4.2).

Let us consider the case that d = i = 1. Then, the formula (4.2) shows

(4.3) 2 ≤ (N+ − N−) +
c

2
.

If the contour has a node, by Lemma 2.5, then c + n ≥ 4. Otherwise, then c ≥ 4. On the other
hand, in the case that d = i = 2, the formula (4.2) also induces inequality (4.3). Then, by the
similarly argument as the above, the number c + n of the contour of a degree two stable map
T 2 → S2 whose contour consists of two components is greater than or equal to four. Thus, the
contour of the degree two stable map T 2 → S2 which is obtained by applying Lemma 4.1 to by
the degree one stable map T 2 → S2 whose contour is 1-minimal is 2-minimal.

In general, we obtain the following proposition.

Proposition 4.4. Let f be a degree d stable map Σg → S2 whose contour consists of i compo-
nents and f ′ be a degree d + 1 stable map obtained by applying Lemma 4.1 to f . If the contour
γ(f) is i-minimal and the number c + n for γ(f) is the smallest with respect to the inequality
induced by (4.2), then γ(f ′) is (i + 1)-minimal.

Remark 4.5. The degree one stable map f ′ : T 2 → S2 obtained by applying Lemma 4.1 to a
degree zero f : T 2 → S2 whose contour is 1-minimal is not 2-minimal. The number c+n of γ(f)
is equal to four. The number c + n of a 2-minimal contour of a degree one C∞ map Σg → S2 is
two, see Proposition 4.3(2).

Note that for each d ≥ 1, the number c + n of a degree d stable map T 2 → S2 whose
contour is 1-minimal is the minimal with respect to the inequality induced by (4.2), see [2] for
details. Hence, the case (1-i) of Theorem 1.2 can be proven inductively by using Theorem 1.1
and Proposition 4.4.

4.3. The case of g ≥ 2. Let us consider the cases (2-iv) and (g-iv). Let f : Σg → S2 be a
degree zero stable map whose contour consists of g components. Note that Lemma 4.2 shows
the contour γ(f) has at least two cusps. We divide this case into the following cases (i) and (ii).

(i) n2(f) = 0: Assume (i+, i−) for γ(f) is equal to (g − 1, 1). Then, by the formula (2.1), we
have 1 + m(f) − c/2 = (N+ − N−). Thus, we have

(4.4) n1(f) = 1 + m(f) + 2N− −
c

2
.
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If γ(f) has a node, then by the inequality (4.4) and Corollary 2.7,

(4.5) c + n = c + n1(f) ≥ c +
(
1 + m(f) + 2N− −

c

2

)
≥ 1 + 2 + 1 = 4.

Note that there is no degree zero stable map f : Σg → S2 with m(f) = 0 whose pair (c, n) is
equal to (2, 0) by the geometrical meaning of cusps. Thus, if γ(f) has no node, then m(f) ≥ 2.
Then, by (4.4), we have

(4.6) c + n ≥ 2(1 + m(f)) ≥ 6.

Assume (i+, i−) for γ(f) is equal to (g − λ, λ), where λ = 2, . . . , g + d. Then, by the for-
mula (2.1), we have 3 − c/2 ≤ (N+ − N−). Thus, we have

n1(f) ≥ 3 + 2N− −
c

2
≥ 3 −

c

2
.

Therefore, we have

(4.7) c + n = c + n1(f) ≥ c +
(
3 −

c

2

)
≥ 3 + 1 = 4.

(ii) n2(f) 6= 0: Put (i+, i−) for γ(f) is equal to (g − λ, λ), where λ = 1, . . . , g. Then, by the
formula (2.1), we have 1 − c/2 ≤ (N+ − N−). Thus,

n1(f) ≥ 1 −
c

2
.

Therefore, we have

(4.8) c + n = c + n1(f) + n2(f) ≥ c +
(
1 −

c

2

)
+ 2 ≥ 1 + 1 + 2 = 4.

The inequalities (4.5), (4.6), (4.7) and (4.8) shows that the pair (c, n) of a g-minimal contour
of a degree zero stable map Σg → S2 is equal to (2, 2).

Thus, the contour γ(f0,g,g), f0,g,g is in Proposition 3.2(a) with i = g, is g-minimal for each
number g ≥ 2.

By the similar argument as the cases (2-iv) and (g-iv), we can prove the contour γ(f0,g,i),
f0,g,i is in Proposition 3.2(a) and (b), is i-minimal. The contours of the stable maps Σg → S2

which are obtained by applying Lemma 4.1 inductively to the stable maps in Proposition 3.2(a),
(b) and Theorem 1.1 with (d, g) = (1, 2) are also i-minimal. We omit the proof here. The cases
(2-ii), (2-iii), (g-ii) and (g-iii) are proved.

Note that for each d ≥ 0, the number c + n of a degree d stable map Σg → S2 whose contour
is 1-minimal is the minimal with respect to the inequality induced by (4.2), see [2] for details.
Hence, the cases (2-i) and (g-i) of Theorem 1.2 can be proven inductively by using Theorem 1.1
and Proposition 4.4.

This completes the proof of Theorem 1.2. �

5. fold map case

Let M be a connected and closed surface, and N be a connected surface. A stable map
f : M → N which has no cusp is called a fold map.

Let ϕ0 : M → S2 be a C∞ map and ϕ : M → S2 be a fold map which is homotopic to ϕ0

and whose contour consists of i components. Then, call the contour γ(ϕ) a regular i-minimal

contour of ϕ0 if the number c+n for γ(ϕ) is the smallest among the contours of fold maps which
are homotopic to ϕ0 and whose contours consist of i components.

Note that by Lemma 4.2 if d + g + i is even, then there is no degree d fold map Σg → S2

whose contour consists of i components.
Then, as a corollary of Theorem 1.2, we obtain the following.
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Theorem 5.1. Assume d + g + i be an odd number. Let f : Σg → S2 be a degree d fold map
whose contour consists of i components. Then, γ(f) is a regular i-minimal contour if and only
if the number of nodes n for γ(f) is one of the items below:

g = 0:

n = 0 if i ≥ |d| + 1 and i 6≡ d (mod 2)

g ≥ 1:

n =





2 + 2g if i = |d| − g + 1,

|d| + g − i + 3 if |d| − g + 2 ≤ i ≤ |d| + g − 1 and i 6≡ d + g (mod 2),

0 if i ≥ |d| + g, i 6≡ |d| + g (mod 2).

6. Problems

In this section, we pose some problems with respect to the apparent contour of a stable map
M → N between surfaces.

Kamenosono and the second author studied a 1-minimal contour of a C∞ map F → S2 of a
non-orientable surface. Then, there are the following problems.

Problem 6.1. Study an i-minimal contour and a regular i-minimal contour of a C∞ map
F → S2 of a non-orientable closed surface into the sphere for each i ≥ 2.

Let ϕ0 : M → N be a C∞ map between surfaces and ϕ : M → N a stable map which is
homotopic to ϕ0 and whose contour consists of i components. Then, the contour γ(f) is an i-
essential contour if the pair (c, n) is the smallest with respect to the lexicographic order, among
the stable maps M → N which are homotopic to ϕ0 and whose contour consists of i components.
Then, Theorem 1.2 yields the following Theorem.

Theorem 6.2. Let f : Σg → S2 be a degree d stable map whose contour consists of i components.
Then, γ(f) is i-essential if and only if the pair (c, n) for γ(f) is one of the items below:

(c, n) =

{
(2|d| − i, 4) if g = 1 and 1 ≤ i ≤ |d|,

(2, 4) if g = 2 and i = |d|.

In the other case, the pair (c, n) is of an i-minimal contour.

Corollary 6.3. Let f0 : Σg → S2 be a C∞ map whose contour consists of i components. An
i-essential contour of f0 is an i-minimal contour of f0.

Note that for a C∞ map h0 : RP 2 → S2 of modulo two degree one, a 1-minimal (or 1-essential)
contour of h0 is not 1-essential (resp. 1-minimal), see [2] for details. Thus, we pose the following
problem.

Problem 6.4. Study the i-essential contours of C∞ maps from non-orientable surfaces into S2.
Then, compare an i-minimal contour of h0 and an i-essential contour of h0.
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ASYMMETRY IN SINGULARITIES OF TANGENT SURFACES IN

CONTACT-CONE LEGENDRE-NULL DUALITY

GOO ISHIKAWA, YOSHINORI MACHIDA, AND MASATOMO TAKAHASHI

Abstract. We give the generic classification on singularities of tangent surfaces to Legendre

curves and to null curves by using the contact-cone duality between the contact 3-sphere and
the Lagrange-Grassmannian with cone structure of a symplectic 4-space. As a consequence,

we observe that the symmetry on the lists of such singularities is breaking for the contact-cone

duality, compared with the ordinary projective duality.

1. Introduction

Let V = (V,Ω) be a real symplectic vector space of dimension 4 with a symplectic form Ω.

We consider the Lagrange flag manifold F = FLag
1,2 (V ) consisting of pairs (`, L) of lines ` and

Lagrange planes L in V containing `. Then there are natural projections π1 : F → P (V ) to the
projective 3-space and π2 : F → LG(V ) to the Grassmannian of Lagrange planes in V :

P (V )
π1←− F π2−→ LG(V ).

Note that dimF = 4,dimP (V ) = dim LG(V ) = 3 and both π1 and π2 are fibrations with S1 as
fibers.

There exist the projective Engel structure on F , the projective contact structure on P (V )
and the projective indefinite conformal structure on LG(V ) of signature (1, 2), such that both
π1-fibers and π2-fibers are projective lines in F , and that each π1-fiber (resp. π2-fiber) projects
to a projective line in LG(V ) (resp. P (V )) by π2 (resp. by π1). We give precise coordinate
charts on F , P (V ) and LG(V ) in §3. A projective Legendre line through ` ∈ P (V ) is given by
π1(π−12 (L)) for some L ∈ LG(V ). On the other hand, a null (lightlike) line through L ∈ LG(V )
is given by π2(π−11 (`)) for some ` ∈ P (V ).

Let f : I → F be an integral curve to the Engel structure of F from an open interval I. Then
π1 ◦ f : I → P (V ) is a Legendre curve and π2 ◦ f : I → LG(V ) is a null curve for the null cone
field on LG(V ).

For a curve c : I →M in a 3-dimensional space M with a projective structure, its tangent sur-
face (or, tangent developable) is defined as the ruled surface by the tangent lines ([15],[16],[18],[10],[11]).

An associated variety to a curve in P (V ) (resp. LG(V )) is the subset of LG(V ) (resp. P (V ))
consisting of L ∈ LG(V ) (resp. ` ∈ P (V )) corresponding to a Legendre line (resp. a null line)
which intersects with the curve (cf. [8]). Then we see that the associated variety to π1 ◦ f (resp.
π2 ◦ f) is the tangent surface to π2 ◦ f (resp. π1 ◦ f) if π2 ◦ f (resp. π1 ◦ f) is an immersion. In
fact it is given by π2(π−11 (π1(f(I))) (resp. π1(π−12 (π2(f(I)))), see §2.

Key words: tangent developable, null curve, Legendre curve, Lagrangian-Grassmannian, projective structure,
Engel structure.
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Then the main purpose of this paper is to prove the following result:

Theorem 1.1. For a generic Engel integral curve f : I → F from an open interval I to the
Lagrange flag manifold F in C∞ topology, we have that, for any t0 ∈ I, the pair of singularities
of tangent surfaces to π1 ◦ f and to π2 ◦ f is given by one of the following three cases:

I : (cuspidal edge, cuspidal edge),
II : (Mond surface, swallowtail),
III : (generic folded pleat, Shcherbak surface).

In fact, there exists a residual subset R in the space C∞E (I,F) of Engel integral curves with
C∞-topology, such that any f ∈ R enjoys the properties stated in Theorem 1.1. The usage of
the C∞ topology on an open interval is essential for our classification, see Remark 4.3.

The singularities appeared in Theorem 1.1 have the following parametric normal forms re-
spectively, see Figure 1: A cuspidal edge (resp. Mond surface, swallowtail, generic folded pleat,
Shcherbak surface) is locally diffeomorphic to the germ of parametrized surface (R2, 0)→ (R3, 0)
explicitly given by

cuspidal edge : (x, t) 7→ (x, − 1
2 t

2 + xt, 1
3 t

3 − 1
2xt

2),

Mond surface : (x, t) 7→ (x, − 1
3 t

3 + 1
2xt

2, 1
4 t

4 − 1
3xt

3),

swallowtail : (x, t) 7→ (x, 1
6 t

3 − xt, − 1
4 t

4 + xt2),

generic folded pleat : (x, t) 7→ (x, − 1
6 t

3 + xt− 1
8 t

4 + 1
2xt

2,

1
20 t

5 − 1
6xt

3 + 1
24 t

6 − 1
8xt

4),

Shcherbak surface : (x, t) 7→ (x, 1
3 t

3 − 1
2xt

2, − 1
5 t

5 + 1
4xt

4).

the cuspidal edge
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the Mond surface the swallowtail

the generic folded pleat the Shcherbak surface

Figure 1.

The above normal forms of singularities are written in the projective coordinates which are
given in §3 and therefore they look different from, for example, those given in [10], [11]. Mond
surfaces are called also cuspidal beaks and they appear as singularities on wave-fronts of codi-
mension one, see for instance [1], [3].

Singularities of the tangent developable to a curve of type (2, 3, 5) was called folded pleats in
[12]. It was known that the local differential classes of folded pleats are not unique [10] while the
local homeomorphism class of them is unique [11]. Any folded pleat is locally homeomorphic to
the plane and it has singular locus along the original curve. In this paper, we show the folded
pleat singularities form exactly two classes of local diffeomorphism equivalence and the folded
pleat singularities arising from generic Engel integral curves have a unique diffeomorphism class,
see §6. We call it the generic folded pleat.

The generic appearance of Shcherbak surfaces is observed in the classification of lightlike
developables in Minkowski 3-space earlier in [6]. However the meaning of genericity of null
curves in [6] is different from that of our paper.

In the context of the ordinary projective duality, the role of projective space and that of dual
projective space are completely equal. Therefore the lists of singularities must be symmetric
because of the symmetry on the underlying geometric structures. Compared with it, the contact-
cone Legendre-null duality is naturally supposed to be asymmetric for the list of singularities
on tangent surfaces, because of the asymmetry on the underlying geometric structures, see
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Proposition 5.1. As we see clearly in Theorem 1.1, the list of singularities is never symmetric in
fact.

The singularities of tangent surfaces to null curves are regarded as singularities of “null sur-
faces” in the Lagrange-Grassmannian LG(V ). A surface in LG(V ) is called a null surface, if it
is tangent to the null-cone CL at any point L of the surface. Typical examples of null surfaces
in the Lagrange-Grassmannian LG(V ) are given by Schubert varieties SL = {L′ ∈ LG(V ) |
L ∩ L′ 6= {0}} (L ∈ LG(V )) and tangent surfaces to null curves. (Schubert varieties are called
trains in [19]). They are associated varieties to Legendre curves in Gr(1, V ). In fact any null
surface in LG(V ) is locally a part of the associated variety to a Legendre curve in Gr(1, V ), see
Proposition 2.3.

The double fibration treated in this paper is a prototype of various constructions appeared
in twistor theory, where one geometric structure is related to another geometric structure via
a double fibration. In our case, one is the contact structure and another is the conformal (or
cone) structure. Moreover tangent surfaces and associated varieties to Legendre curves and to
null curves turn out to be important objects in the geometric study of differential equations. For
instance, the contact space P (V ) (resp. the Engel space F) is regarded as the compactification
of 1-jet space J1(R,R) = R3 (resp. J2(R,R) = R4), and tangent surfaces to Legendre curves
appear naturally in the study on certain type of third order ordinary differential equations.
Further, LG(V ) can be identified with the compactification of J0(R2,R) = R3 and tangent
surfaces to null curves appear as the first order partial differential equations called eikonal
equations. See [7] as a related work. Furthermore, if we regard LG(V ) as the compactification of
the space of second derivatives (the space of 2 by 2 symmetric matrices), then tangent surfaces
to null curves appear as second order partial differential equations associated with Lagrange
cone fields. The cuspidal edge singularities of tangent surfaces were appeared in E. Cartan’s
classical work (see [13]). Therefore it is an interesting open problem to study the differential
equations corresponding to the complicated generic singularities of tangent varieties, which we
have classified in this paper, beyond the Cartan’s case.

In §2, we introduce the Lagrange flag manifold and explain the duality between the projective
contact 3-space and the Lagrange-Grassmannian of a symplectic 4-space. Mainly we provide
the descriptions for the oriented case. Those for the non-oriented case can be obtained easily
by just taking coverings or by the exactly same manner. In §3, we provide the exact projective
coordinates of the Lagrange flag manifold, the contact 3-sphere and the Lagrange-Grassmannian,
which are suitable to obtain normal forms of tangent surfaces. In §4, we formulate the transver-
sality theorem in our case and prove it. It is necessary to make the meaning of the “generic”
Engel integral curves clear. In §5, we introduce the notion of types for curves in a space with
a projective structure and give the codimension formula and the duality formula for the set
of Engel integral jets which have given types under the projections. In §6, we determine the
diffeomorphism class of “generic” folded pleats and finally we give the proof of the main theorem.

2. The contact-cone Legendre-null duality

We explain the contact-cone, or, Legendre-null duality via the Lagrange flag manifold.

Let (V 4,Ω) be a symplectic 4-dimensional real vector space with a symplectic form Ω. See [3]

on the symplectic geometry. Consider the oriented Lagrange flag manifold F̃ = F̃Lag
1,2 (V ) which

consists of pairs (`, L) of oriented lines ` and oriented Lagrange planes L containing ` in V :

F̃ = {(`, L) | ` ⊂ L ⊂ V, dim(`) = 1, dim(L) = 2, Ω|L = 0, `, L are oriented}.



130 GOO ISHIKAWA, YOSHINORI MACHIDA, AND MASATOMO TAKAHASHI

Note that F̃ ∼= U(2) ∼= S1 × S3 via any isomorphism V 4 ∼= C2 with the standard Hermitian

form, see [2], [9]. Note that F̃ covers F in degree 4.

There are natural projections π1 : F̃ → G̃r(1, V ) ∼= U(2)/U(1) ∼= S3 and π2 : F̃ → L̃G(V ) ∼=
U(2)/SO(2) ∼= S1 × S2. Here G̃r(1, V ) is the Grassmannian of oriented lines through 0 in V ,

the double cover of the projective 3-space P (V ), and L̃G(V ) is the Grassmannian of oriented
Lagrange planes through 0 in V , the double cover of LG(V ).

A point (`, L) ∈ F̃ defines an oriented projective line [L] ⊂ G̃r(1, V ) through ` ∈ G̃r(1, V ), as

well as an oriented line [[L]] = T`[L] ∼= L/` in the tangent space T`G̃r(1, V ).

The contact distribution D ⊂ T G̃r(1, V ) at ` ∈ G̃r(1, V ) is obtained by

D` = [[`s]] ⊂ T`G̃r(1, V ),

where `s = {v ∈ V |Ω(v, w) = 0 for any w ∈ `}. For (`, L) ∈ F̃ , we have [[L]] ⊂ D`. The

canonical (or tautological) sub-bundle E ⊂ T F̃ over F̃ is defined by

E(`,L) = {v ∈ T(`,L)F̃ | π1∗v ∈ [[L]]}.

Then E is an Engel distribution over F̃ . In fact F̃ is identified with the manifold of oriented

tangent lines in D, and E is obtained as the prolongation of the contact structure on G̃r(1, V ) ∼=
S3 ([5]). Moreover, we have E(`,L) = T(`,L)π

−1
1 (`)⊕ T(`,L)π−12 (L).

The natural structure on L̃G(V ) is not given by a vector sub-bundle of T L̃G(V ) but by a

cone-bundle C ⊂ T L̃G(V ) which is defined as follows: For each L ∈ L̃G(V ), we consider the
Schubert variety

SL = {L′ ∈ L̃G(V ) | L′ ∩ L 6= {0}} = π2(π−11 (π1(π−12 (L)))).

Then the cone CL ⊂ TLL̃G(V ) is defined as the tangent cone of SL at L. We regard the flag

manifold F̃ as the oriented projective bundle P̃D = (D − Z)/R>0, where Z is the zero-section,

for the contact structure D ⊂ T G̃r(1, V ) as well as P̃C, the set of oriented lines in C, for the

cone structure C ⊂ T L̃G(V ).

Note that, for any ` ∈ G̃r(1, V ), π1(π−12 (π2(π−11 (`)))) ⊂ G̃r(1, V ) is the projective plane which

is associated to `s ⊂ V and its tangent cone coincides with the contact plane D` ⊂ T`G̃r(1, V ).

Moreover, note that for the Engel structure E ⊂ T F̃ , we can write as

E(`,L) = T(`,L)π
−1
1 (`)⊕ T(`,L)π−12 (L)

= T(`,L)(π
−1
2 (π2(π−11 (`)))) = T(`,L)(π

−1
1 (π1(π−12 (L)))).

Let E2 = E + [E,E] be the derived system from the Engel structure E. Then E2 is a

sub-bundle of T F̃ of rank 3 and E2 = π−11∗ (D) ([5]). Moreover, we have the following lemma.

Lemma 2.1. Let v ∈ T(`,L)F̃ for (`, L) ∈ F̃ . Then v ∈ (E2)(`,L) if and only if π2∗(v) ∈
(TL[`])⊥ ⊂ TL(L̃G(V )). Here (TL[`])⊥ means the pseudo-orthogonal space to TL[`] (the tangent
line at L of the null line [`] determined by `) for the conformal structure defined by the null-cone
field C.

The proof is given in §3 by using a local coordinate.
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A C∞ map f : I → (F̃ , E) is called an Engel integral curve if f∗(TI) ⊂ E(⊂ T F̃). A C∞

map g : I → (G̃r(1, V ), D) is called a Legendre curve if g∗(TI) ⊂ D(⊂ T G̃r(1, V )). A C∞ map

h : I → (L̃G(V ), C) is called a null curve if h∗(TI) ⊂ C(⊂ T L̃G(V )).

Lemma 2.2. For any Engel integral curve f , the projection π1 ◦ f by π1 is a Legendre curve
and the projection π2 ◦ f by π2 is a null curve.

Proof : We have (π1 ◦ f)∗(TtI) ⊆ (π1)∗(Ef(t)) ⊆ D(π1◦f)(t) and

(π2 ◦ f)∗(TtI) ⊆ (π2)∗(Ef(t))
= (π2)∗(Tf(t)(π

−1
2 (π2(π−11 (π1(f(t)))))

= T(π2◦f)(t)(π2(π−11 (π1(f(t))))) ⊆ C(π2◦f)(t).

2

There are natural classes of embedded Legendre curves in G̃r(1, V ) and embedded null curves

in L̃G(V ). Let L ∈ L̃G(V ). Then π1(π−12 (L)) is a Legendre curve and is called a Legendre

straight line or simply a Legendre line associated to L. Let ` ∈ G̃r(1, V ). Then π2(π−11 (`)) is a
null curve and is called a null straight line or simply a null line associated to `. In fact we will

give a projective structure on F̃ (resp. G̃r(1, V ), L̃G(V )) in §3. Then Legendre lines π1(π−12 (L)),
null lines π2(π−11 (`)) and also π−12 (L), π−11 (`) are actually “lines” for those projective structures.
Same definitions are applied to F (non-oriented case).

Proposition 2.3. Let N ⊂ F̃ be a null surface (see Introduction for the definition). Then
locally (in a neighbourhood of any point of N), N is contained in the associated variety to a

Legendre curve in G̃r(1, V ).

Proof : Let N be a null surface in L̃G(V ). Then N has the null direction field CL∩TLN (L ∈ N)

which lifts to a surface Ñ ⊂ F̃ via π2. (If the direction field CL∩TLN (L ∈ N) is not orientable,

then π2|Ñ : Ñ → N is a double covering.) Then Ñ is an integral surface to E2 = π−11∗ (D). In

fact, for any x̃ ∈ Ñ ,

π2∗(Tx̃Ñ) = Tπ2(x̃)N

is pseudo-orthogonal to the null direction Cπ2(x̃) ∩ Tπ2(x̃)N , which is equal to π2∗((E
2)x̃) by

Lemma 2.1. Since Ker(π2∗) ⊂ E, we have

Tx̃Ñ ⊂ (E2)x̃ + Ex̃ = (E2)x̃.

Now π1|Ñ is an integral mapping to the contact distribution D. Therefore the rank of π1|Ñ is at

most one, while at least one, hence the rank is identically one. Thus Ñ is foliated by π1-fibers.

Take the local image γ of Ñ by π1. Then γ is a Legendre curve and, locally, Ñ ⊂ π−11 (γ).
Therefore we have N ⊂ π2(π−11 (γ)), the associated variety to γ. 2

Remark 2.4. The associated variety in G̃r(1, V ) to a null curve in L̃G(V ) is characterized, in
its smooth part, as a surface foliated by Legendre straight lines which lifts to an integral surface
to the 3-dimensional cone field

π−12∗ (C) = {v ∈ T F̃ | π2∗(v) ∈ C}

on F̃ . Typical examples are provided by tangent surfaces to Legendre curves and the “great
spheres” given by

G̃r(1, `s) = π1(π−12 (π2(π−11 (`)))) ⊂ G̃r(1, V ), (` ∈ G̃r(1, V )).



132 GOO ISHIKAWA, YOSHINORI MACHIDA, AND MASATOMO TAKAHASHI

Thus naturally we are treating integral surfaces to derived systems E2 = π−11∗ (D) or to π−12∗ (C)

on the flag manifold F̃ .

3. Projective Engel structure on the flag manifolds

We introduce systems of coordinates of F̃ which define the projective Engel structure on F̃ .
For projective structures, see [17] for instance.

Recall that (V,Ω) is a symplectic vector space of dimension 4 and F̃ the oriented Lagrange
flag manifold consisting pairs (`, L) of oriented lines ` and oriented Lagrangian planes L ⊃ `.

Fix (`0, L0) ∈ F̃ . Then the flag
`0 ⊂ L0 ⊂ ` s0 ⊂ V

is induced. Recall that ` s0 denotes the skew-orthogonal space to `0 for Ω. We give a chart on
the open subset

U = {(`, L) ∈ F̃ | L ∩ L0 = {0}, ` ∩ ` s0 = {0}}.
Fix (`1, L1) ∈ U . Then we have the canonical direct sum decomposition

V = `1 ⊕ (L1 ∩ ` s0 )⊕ `0 ⊕ (L0 ∩ ` s1 ).

Take a basis (e1, e2, f1, f2) of V such that

e1 ∈ `1, e2 ∈ L1 ∩ ` s0 , f1 ∈ `0, f2 ∈ L0 ∩ ` s1 ,
and that

Ω(e1, f1) = 1, Ω(e2, f1) = 0, Ω(e1, f2) = 0, Ω(e2, f2) = 1.

Let (`, L) ∈ U . Since L ∩ L0 = {0}, there exists the unique basis g1, g2 of L of form

g1 = e1 + xf1 + yf2, g2 = e2 + yf1 + zf2,

where x, y, z ∈ R. Since ` ∩ ` s0 = {0}, there exists the unique basis h of ` of form h = g1 + λg2,
where λ ∈ R. Then

h = e1 + λe2 + (x+ λy)f1 + (y + λz)f2.

Thus we have a chart (λ, x, y, z) : U → R4. Then the Engel structure E on F̃ is described as
follows: A curve f(t) = (λ(t), x(t), y(t), z(t)) in U through (`, L) = (λ, x, y, z) at t = 0 defines a

vector in E(`,L) if and only if the velocity vector
df

dt
|t=0 ∈ L. The condition is equivalent to that

0
λ′

(x+ λy)′

(y + λz)′

 = p


1
0
x
y

+ q


0
1
y
z


for some p, q ∈ R. Then p = 0 and q = λ′. Therefore we have

(x+ λy)′ = λ′y, (y + λz)′ = λ′z.

Thus E is defined by the differential system

dx+ λdy = 0, dy + λdz = 0,

via the chart (λ, x, y, z).

In particular, any Engel integral curve f(t) = (λ(t), x(t), y(t), z(t)) in U ⊂ F̃ is given by

x(t) =

∫
λ(t)2z′(t)dt, y(t) = −

∫
λ(t)z′(t)dt.

from any C∞ functions λ(t), z(t).
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We describe the Engel structure E and its square E2 in terms of frames (vector fields) on

the coordinate neighbourhood U ⊂ F̃ introduced above. Moreover we give the coordinate
expression of the cone field C and the conformal indefinite metric uniquely defined from C

on the coordinate neighbourhood of L̃G(V ). Then we show the geometric interpretation of
π2∗(E(`,L)) and π2∗(E

2
(`,L)) for any (`, L) ∈ U , which shows Lemma 2.1.

Let (`, L) ∈ F̃ . We fix an (`0, L0) ∈ F̃ satisfying L ∩ L0 = {0}, ` ∩ `s0 = {0}, and, setting

(`1, L1) = (`, L), we consider the local coordinate system (λ, x, y, z) of F̃ centered at (`, L) as
above.

The local frame of E ⊂ T F̃ is given by

Λ =
∂

∂λ
, X = λ2

∂

∂x
− λ ∂

∂y
+

∂

∂z
,

under the coordinates λ, x, y, z. The square E2 is spanned by Λ, X and Y = 2λ ∂
∂x −

∂
∂y . In

terms of co-frame, E2 is given by the 1-form

dx+ 2λdy + λ2dz = (dx+ λdy) + λ(dy + λdz) = 0.

The condition that a Lagrange plane 〈e1 +xf1 +yf2, e2 +yf1 +zf2〉R belongs to the Schubert
variety SL is given by

SL : xz − y2 = 0.

The tangent cone CL at L of SL is given by

CL : ξζ − η2 = 0.

for v = ξ ∂
∂x +η ∂

∂y +ζ ∂
∂z ∈ TLL̃G(V ). Using symmetric tensors, C is defined by dxdz−(dy)2 = 0.

The induced conformal metric g on L̃G(V ) is given by the bilinear form on TLL̃G(V ) defined by

g(v1, v2) =
1

2
(ξ1ζ2 + ξ2ζ1)− η1η2,

for vi = ξi
∂
∂x + ηi

∂
∂y + ζi

∂
∂z (i = 1, 2).

The projection π2∗(E
2
(`,L)) of the derived E2

(`,L) is given by the plane

ξ + 2λη + λ2ζ = 0,

in TLL̃G(V ) for a fixed λ. Regarding λ as a parameter, we have one-parameter family of planes,
which envelopes CL. The projection π2∗(E(`,L)) = TL[`] of E(`,L) itself is given by the line

ξ + λη = 0, η + λζ = 0,

while the null-vector v = π2∗X = λ2 ∂
∂x − λ

∂
∂y + ∂

∂z provides the direction of the null straight

line [`].

Proof of Lemma 2.1: Note that π2∗((E
2)(`,L)) is spanned by v and u = 2λ ∂

∂x −
∂
∂y and that

g(v, u) = 0. Therefore, by counting the dimension, we see that π2∗((E
2)(`,L)) coincides with the

pseudo-orthogonal space to TL[`]. 2

Remark 3.1. The contact structure D on G̃r(1, V ) is expressed by

D : dµ = νdλ− λdν,

under the local coordinates λ, µ = x+ λy and ν = y + λz of G̃r(1, V ).
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Remark 3.2. Let J1(R,R) be the projective contact manifold with coordinates t, u, p and the
contact structure D0 : du − pdt = 0. Then the projective contact structure (S3, D) is not
isomorphic to (J1(R,R), D0) as projective contact structures locally. In fact, there are just two
Legendre straight lines through a given point (t0, u0, p0) in J1(R,R):

(s+ x0, p0s+ y0, p0), (x0, y0, s+ p0),

up to right equivalence, s being the parameter of straight line. On the other hand, on (S3, D),
there exists a Legendre straight line though any point with any direction of D in S3.

Let J2(R,R) be the projective Engel manifold with coordinates t, u, p, q and the Engel struc-

ture E0 : du−pdt = 0, dp−qdt = 0. Then the projective Engel structure (F̃ , E) with coordinates
λ, x, y, z is not isomorphic to (J2(R,R), E0) as projective Engel structures locally. In fact, there
is just one Engel integral straight line (t0, u0, p0, s + q0) through a given point (t0, u0, p0, q0) in

J2(R,R), if q0 6= 0. On the other hand, on (F̃ , E), there exist exactly two Engel straight lines,

the π1-fiber and the π2-fiber, through any given point of F̃ .

For the projective coordinate neighbourhood U , there exists the explicit diffeomorphism be-
tween (U,E|U ) and (J2(R,R), E0) of Engel manifolds, given by

(λ, x, y, z) 7→ (t, u, p, q) = (λ, 1
2{(x+ λy) + λ(y + λz)}, y + λz, z),

(t, u, p, q) 7→ (λ, x, y, z) = (t, 2u− 2tp+ t2q, p− tq, q),
the “Engel-Legendre transformation”.

Remark 3.3. For any p0 = (λ0, x0, y0, z0) ∈ R4, there is a linear Engel transformation T :
(R4, p0)→ (R4, 0) defined by

T (λ, x, y, z) = (λ− λ0, x+ 2λ0y + λ20z − x0 − 2λ0y0 − λ20z0, y + λ0z − y0 − λ0z0, z − z0).

4. Engel integral jet space and transversality

We introduce the jet-spaces of Engel integral curves.

Let I be an open interval. In the jet-space Jr(I, F̃) we consider the Engel integral jet-space:

JrE(I, F̃) = {jrf(t0) | t0 ∈ I, f : (R, t0)→ F̃ is Engel integral}.

Lemma 4.1. JrE(I, F̃) is a subbundle of Jr(I, F̃) for the projection Π : Jr(I, F̃) → I × F̃ of
codimension 2r.

Proof : By Remark 3.3, it is sufficient to show that

JrE(1, 4) = {jrf(0) | f : (R, 0)→ (R4, 0) is Engel integral}

is a submanifold of Jr(1, 4) of codimension 2r. To show it, define the mapping Φ : Jr(1, 4) →
Λr−11 × Λr−11

∼= R2r by

Φ(jr(λ, x, y, z)(0)) = (jr−1(dx+ λdy)(0), jr−1(dy + λdz)(0)).

Here Λr−11 denotes the (r − 1)-jet space of 1-forms on (R, 0). Then Φ is a submersion. In
fact any deformation (B1(t, s), B2(t, s)) with parameter s of the pair (b1(t), b2(t)) = (x′(t) +
λ(t)y′(t), y′(t) + λ(t)z′(t)) is lifted to (λ(t), x(t, s), y(t, s), z(t)) by setting

x(t, s) =

∫
{λ(t)2z′(t) +B1(t, s)}dt, y(t, s) =

∫
{−λ(t)z′(t) +B2(t, s)}dt,
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x(0, s) = 0, y(0, s) = 0. Therefore Φ−1(0) = JrE(1, 4) is a submanifold of Jr(1, 4) of codimension
2r. 2

Proposition 4.2. (Engel transversality theorem on open intervals) Let Q ⊂ JrE(I, F̃) be a

submanifold. Then any Engel integral curve f : I → F̃ is approximated in C∞-topology by an

Engel integral curve f ′ : I → F̃ for which jrf ′ : I → JrE(I, F̃) is transverse to Q.

Proof : For any open sub-interval V ⊂ I and for any coordinate neighbourhood U ⊂ F̃ introduced
in §3, we define a diffeomorphism

ϕ = ϕ(V,U) : JrE(V,U)→ V × U × Jr(1, 2)

by ϕ(jrf(t0)) = (t0, f(t0), jr((λ, z) ◦ T ◦ f(t+ t0))(0)), using the linear Engel transformation T
with T (f(t0)) = 0.

Now let f : I → F̃ be an Engel integral curve. Suppose, as a special case, f(I) is in some
projective coordinate neighbourhood U introduced in §3. Then, by the ordinary transversality
theorem, (λ, z)-components of f are perturbed so that, for a perturbed f ′, ϕ ◦ jrf ′ is transverse
to ϕ(Q ∩ JrE(I, U)) ⊂ I × U × Jr(1, 2). Then jrf ′ is transverse to Q.

In general case, there is a strictly increasing sequence {ti}i∈Z of points in I such that
f([ti, ti+1]) is contained in some projective coordinate neighbourhood Ui. We set Ki = [ti, ti+1]
and take open intervals Wi ⊃ Ki such that also f(Wi) ⊂ Ui and that Wi ∩Wj = ∅ if |i− j| ≥ 2.

First we perturb f over W0 into an Engel integral curve f0 : W0 → F̃ such that jrf0 is
transverse to Q over W0. In fact, similarly as in the special case, by the ordinary transversality
theorem via ϕ = ϕ(W0,U0), (λ, z)-components of f |W0

are perturbed so that, for the perturbed
f0, ϕ ◦ jrf0 is transverse to ϕ(Q ∩ JrE(W0, U0)) ⊂ W0 × U0 × Jr(1, 2). Then jrf0 is transverse
to Q over W0.

Second we perturb f over W0 ∪W1 into an Engel integral curve f1 : W0 ∪W1 → F̃ such that
jrf1 is transverse to Q and f1|K0

= f0|K0
. This is achieved, under the coordinates on U1, by

x(t) =

∫ t

t1

λ(t)2z′(t)dt+ x(t1), y(t) = −
∫ t

t1

λ(t)z′(t)dt+ y(t1),

perturbing λ(t), z(t) over W1 just outside of K0 ∩W1 and setting f1(t1) = f0(t1).

Third we perturb f over W0 ∪W1 ∪W2 into an Engel integral curve f2 : W0 ∪W1 ∪W2 → F̃
such that jrf2 is transverse to Q and f2|K0∪K1 = f1|K0∪K1 . Thus, by continuing this procedure,

we have a perturbation f ′ : ∪0≤iWi → F̃ of f such that jrf ′ is transverse to Q.

Finally we perturb f backward to an Engel integral curve f ′′ : I = ∪i∈ZWi → F̃ such that
jrf ′′ is transverse to Q, by perturbing λ(t), z(t) and using, for i ≤ 0,

x(t) = −
∫ ti

t

λ(t)2z′(t)dt+ x(ti), y(t) =

∫ ti

t

λ(t)z′(t)dt+ y(ti).

Note that, on any compact K ⊂ ∪i∈ZWi, the perturbation is achieved just by a finite number
of steps. Therefore we can take transversal perturbations of f to Q which are arbitrarily small
in C∞ topology. 2

Remark 4.3. The transversality theorem does not hold for Engel integral curves by pertur-
bations with compact supports (or for Engel integral curves on closed interval by perturbations
with fixed ends). In fact it is known that the abnormal (singular) curves for Engel structures are
rigid and have no essential perturbations with fixed ends ([5]).
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5. Codimension formula, duality, and generic Engel integral curves

For the local coordinates (λ, x, y, z) of F̃ introduced in §3, the double fibration

G̃r(1, V )
π1←− F̃ π2−→ L̃G(V )

are given by
π1(λ, x, y, z) = (λ, x+ λy, y + λz), π2(λ, x, y, z) = (x, y, z).

Let c : I → M3 be a C∞ curve in a 3-space with a projective structure. We say that c is of
finite type at t = t0 ∈ I if there exists a local projective coordinates (x1, x2, x3) of M centred at
c(t0) such that

x1 ◦ c(t) = ta1 +O(ta1+1), x2 ◦ c(t) = ta2 +O(ta2+1), x3 ◦ c(t) = ta3 +O(ta3+1),

for some increasing sequence of positive integers 1 ≤ a1 < a2 < a3. Then (a1, a2, a3) is uniquely
determined from the projective class of the germ of c at t = t0, and we say that c is of type
(a1, a2, a3) at t = t0. If we consider the Wronski matrices

Wi(t) =

 x′1(t) x′′1(t) · · · x
(i)
1 (t)

x′2(t) x′′2(t) · · · x
(i)
2 (t)

x′3(t) x′′3(t) · · · x
(i)
3 (t)

 , i = 1, 2, . . . ,

then we have

a1 = min{i | rank Wi(t0) = 1}, a2 = min{i | rank Wi(t0) = 2},

a3 = min{i | rank Wi(t0) = 3}.

Let A = (a1, a2, a3) and B = (b1, b2, b3) be increasing sequences of positive integers, 1 ≤ a1 <
a2 < a3, 1 ≤ b1 < b2 < b3. We set, for a sufficiently large r,

Σπ1,A = {jrf(t0) ∈ JrE(I, F̃) | π1 ◦ f : I → G̃r(1, V ) is of type A},

Σπ2,B = {jrf(t0) ∈ JrE(I, F̃) | π2 ◦ f : I → L̃G(V ) is of type B}.
Proposition 5.1.
(1) Codimension formula for π1:
We have, for r ≥ a3, Σπ1,A 6= ∅ if and only if a3 = a1+a2. Then we have Σπ1,A is a submanifold

of JrE(I, F̃) of codimension a2 − 2.

(2) Codimension formula for π2:
We have, for r ≥ b3, Σπ2,B 6= ∅ if and only if b3 = 2b2−b1. Then we have Σπ2,B is a submanifold

of JrE(I, F̃) of codimension b2 − 2.

(3) The duality formula:

Let f : I → F̃ be an Engel integral curve of finite type. Then the type A of π1 ◦ f and the type
B of π2 ◦ f are related by

(b1, b2, b3) = (a2 − a1, a2, a3), (a1, a2, a3) = (b2 − b1, b2, b3).

Proof : Let f : (R, 0)→ (R4, 0), f(t) = (λ(t), x(t), y(t), z(t)) be an Engel integral curve-germ. If
λ(t) or z(t) is infinitely flat at t = 0, then both x(t) and y(t) are infinitely flat at t = 0 by the
Engel condition. Then both π1 ◦ f and π2 ◦ f are not of finite type. Now let u = ordλ(t) <
∞, v = ordz(t) <∞. Here ordϕ(t) denotes the order of a function ϕ(t) at t = 0. Then

ordy(t) = ordλ(t) + ordz(t) = u+ v ordx(t) = ordλ(t) + ordy(t) = 2u+ v.



ASYMMETRY IN SINGULARITIES OF TANGENT SURFACES 137

Since
(x+ λy)′(t) = y(t)λ′(t), (y + λz)′(t) = z(t)λ′(t),

we have
ord(x(t) + λ(t)y(t)) = 2u+ v, ord(y(t) + λ(t)z(t)) = u+ v.

Suppose the type of π1 ◦ f at t = 0 is A = (a1, a2, a3). Then we have a1 = u, a2 = u+ v, a3 =
2u + v. This is realized for some u, v ≥ 1 if and only if a3 = a1 + a2. Then the codimension of
Σπ1,A is given by u + v − 2 = a2 − 2. This shows (1). On the other hand, suppose the type of
π2 ◦ f at t = 0 is B = (b1, b2, b3). Then b1 = v, b2 = v+ u, b3 = v+ 2u. This is realized for some
v, u ≥ 1 if and only if b3 = 2b2−b1. Then the codimension of Σπ2,B is given by u+v−2 = b2−2.
This shows (2). Moreover b1 = v = a2 − a1, b2 = v + u = a2, b3 = v + 2u = a3. Thus we see (3).
2

Remark 5.2. The conditions ordλ(t) = u and ordz(t) = v give a submanifold of Jr(1, 2) of
codimension (u− 1) + (v − 1) = u+ v − 2.

Proposition 5.3. For any generic Engel integral curve f : I → F̃ and for any point t0 ∈ I, the

type of π1 ◦ f : I → G̃r(1, V ) is (1, 2, 3), (1, 3, 4) or (2, 3, 5). Moreover the type of π2 ◦ f : I →
L̃G(V ) is (1, 2, 3), (2, 3, 4) or (1, 3, 5) correspondingly.

Proof : For a sufficiently large r, we set

Σ = (∪a2≥4 Σπ1,A) ∪ (∪b2≥4 Σπ2,B) ⊂ JrE(I, F̃).

Then Σ is fibered over I × F̃ by a real algebraic set in JrE(1, 4) of codimension ≥ 2. In fact the
fiber of Σ is defined in Jr(1, 4) by the vanishing of some minors of the Wronski matrices for the
curves π1 ◦ f and π2 ◦ f . Note that Σ contains curve-jets jrf(t0) for which the type of π1 ◦ f
or π2 ◦ f at t0 is not determined by the jet jrf(t0). However they form a subset of codimension
≥ r − 2, which does not affect the codimension calculus.

Let R be the set of f ∈ C∞E (I, F̃) such that jrf : I → F̃ is transversal to all Σπ1,A with
a2 ≤ 3 and to all Σπ2,B with b2 ≤ 3 and moreover to (all strata of a stratification of) Σ. By

Proposition 4.2, R is dense in C∞E (I, F̃) for the C∞-topology. By Proposition 5.1, f ∈ R is
equivalent to that jrf is transversal to Σπ1,A with a2 = 3 and Σπ2,B with b2 = 3 at isolated

points in I and that jrf(I) ∩ Σ = ∅. Therefore R is residual in C∞E (I, F̃) for the C∞-topology.
Let f ∈ R and t0 ∈ I. Let A be the type of π1◦f and B the type of π2◦f . Then we have a2 ≤ 3.
So a1 ≤ 2. If a1 = 1, then (a1, a2, a3) = (1, 2, 3) or (1, 3, 4) by Propositions 5.1 (1). If a1 = 2,
then (a1, a2, a3) = (2, 3, 5). Then the rest is proved by the formula (b1, b2, b3) = (a2 − a1, a2, a3)
of Proposition 5.1 (3). 2

In particular we have:

Corollary 5.4. Generic Engel integral curves are immersions. In fact, for any generic Engel

integral curve f : I → F̃ , and for any point t0 ∈ I, either π1 ◦ f or π2 ◦ f is an immersion.

Remark 5.5. Under the ordinary projective duality of space curves, the duality formula between
a space curve and its projective dual curve is given by

(b1, b2, b3) = (a3 − a2, a3 − a1, a3), (a1, a2, a3) = (b3 − b2, b3 − b1, b3),

see [18]. Then the cuspidal edges, Mond surfaces and folded pleats are self-dual, the swallowtails
are dual to the folded umbrellas (the cuspidal cross-caps), and the Shcherbak surfaces are dual
to the butterflies as singularities of tangent surfaces, see the survey article [11].
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6. Normal forms on singularities of tangent surfaces

First we show the procedure to obtain normal forms of tangent surfaces to space curves in

P (V ) or in G̃r(1, V ). Then we give the differential classification of tangent surfaces to curves of
type (2, 3, 5) and prove all statements in Theorem 1.1.

Let f = (λ, x, y, z) : (R, 0)→ (R4, 0) be an Engel integral curve satisfying dx+ λdy = 0 and
dy + λdz = 0 (see §3).

For example, let λ = t, z = t. Then

y = − 1
2 t

2, x = 1
3 t

3, x+ λy = − 1
6 t

3, y + λz = 1
2 t

2.

Then
π1(f(t)) = (λ, x+ λy, y + λz) = (t,− 1

6 t
3, 12 t

2),

π2(f(t)) = (x, y, z) = (1
3 t

3,− 1
2 t

2, t).

The tangent surface in G̃r(1, V ) is parametrized by t

− 1
6 t

3

1
2 t

2

+ s

 1

− 1
2 t

2

t

 =

 t+ s

− 1
6 t

3 − 1
2st

2

1
2 t

2 + st

 .

Introducing a new parameter X = t+ s, we have the parametrization

(X, − 1
2 t

2 +Xt, 1
3 t

3 − 1
2Xt

2)

of the tangent surface in G̃r(1, V ) to a curve of type (1, 2, 3).

In general, the velocity vector of π1 ◦ f is given by

(λ′, (x+ λy)′, (y + λz)′) = λ′(1, y, z).

Therefore the parametrization of the tangent surface to π1 ◦ f is diffeomorphic to

(λ, y + λz, x+ λy) + s(1, z, y) = (λ+ s, y + (λ+ s)z, x+ (λ+ s)y).

If we set X = λ+ s, then we have the parametrization

(X, t) 7→ (X, y(t) +Xz(t), x(t) +Xy(t)).

Now for a given Engel integral curve, suppose that ordλ(t) = 2 and ordz(t) = 1 at t = 0.
Then after a re-parametrization of t, we may suppose that λ = 1

2 t
2 and z = at+ b

2 t
2 +O(t3) for

some a, b ∈ R, a 6= 0. Then we have the parametrization

x = a
20 t

5 + b
24 t

6 +O(t7), y = −a6 t
3 − b

8 t
4 +O(t5).

The parametrization of π1 ◦ f is given by

( 1
2 t

2, a
3 t

3 + b
8 t

4 +O(t5), − a
30 t

5 − b
48 t

6 +O(t7)).

We obtain the parametrization F : (R2, 0)→ (R3, 0), (X, t) 7→ (λ, µ, ν) of the tangent surface

in G̃r(1, V ) to the curve π1 ◦ f given in a form(
X, a(− 1

6 t
3 +Xt) + b(− 1

8 t
4 + 1

2Xt
2) + ψ(X, t),

a( 1
20 t

5 − 1
6Xt

3) + b( 1
24 t

6 − 1
8Xt

4) + ρ(X, t)
)
.

Here we give the natural weights w(X) = 2, w(t) = 1. Then the order of ψ (resp. ρ) is higher

than 4 (resp. 6) with respect to the given weights. Moreover, we have that ∂ψ
∂t is a multiple of

− 1
2 t

2 +X by some function, and that ∂ρ
∂t = − t

2

2
∂ψ
∂t .
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Proposition 6.1. If b 6= 0, then F is locally diffeomorphic to

(X, − 1
6 t

3 +Xt− 1
8 t

4 + 1
2Xt

2, 1
20 t

5 − 1
6Xt

3 + 1
24 t

6 − 1
8Xt

4).

If b = 0, then F is locally diffeomorphic to

(X, − 1
6 t

3 +Xt, 1
20 t

5 − 1
6Xt

3).

The two map-germs are not diffeomorphic to each other.

Remark 6.2. Let Σ′π1,(2,3,5)
be set of jets jrf(t0) such that π1 ◦ f is of type (2, 3, 5) at t0 and

z ◦ f(t+ t0) = f(t0) + at+ O(t3), for some a 6= 0, in a projective chart introduced in §3. Then
Σ′π1,(2,3,5)

has codimension ≥ 2. Therefore the Engel integral transversality theorem (Proposition

4.2) yields that generically we have b 6= 0.

Remark 6.3. The proof of Proposition 6.1 can be applied also to the differential classification
of singularities for tangent developables to curves of type (2, 3, 5): There exists exactly two
diffeomorphism classes as in Proposition 6.1.

To show Proposition 6.1, we follow the standard infinitesimal method of singularity theory
([14], [4], [20]). Because we treat a specialized class of map-germs, we need also an additional
algebraic method as in [10]. The proof goes similarly to that for the classification, for instance,
in case (1, 3, 5) of [10]. However, in our case (2, 3, 5), the terms next to the leading terms turn
to be regarded as well, and the proof must be modified accordingly.

Introducing an additional parameter s, we set

Fs(X, t) = T
(
X, a(− 1

6 t
3 +Xt) + b(− 1

8 t
4 + 1

2Xt
2) + sψ,

a( 1
20 t

5 − 1
6Xt

3) + b( 1
24 t

6 − 1
8Xt

4) + sρ
)
.

We are going to show that this family is trivialized under diffeomorphism equivalence (i.e. C∞-
right-left equivalence). Strictly we see that it is trivialized, preserving the tangent lines to the
base point.

Proposition 6.4. For any s0 ∈ R, we can solve the infinitesimal equation 0

ψ

ρ

 =

(
A

∂

∂X
+Bt

∂

∂t

)
Fs −

 C(Fs)

D(Fs)

E(Fs)


near (0, 0, s0), for some C∞ functions A = A(X, t, s), B = B(X, t, s) and C(λ, µ, ν), D(λ, µ, ν), E(λ, µ, ν)
satisfying that

A(0, 0, s) = 0, C(0, 0, 0) = D(0, 0, 0) = E(0, 0, 0) = 0.

Proof : The form of the vector field A ∂
∂X +Bt ∂∂t is essential to apply our algebraic method.

By the first row of the equation, necessarily we have A = C(Fs).

We set U = U(X, t) = a(− 1
6 t

3 +Xt) + b(− 1
8 t

4 + 1
2Xt

2). First we solve the equation of second
row:

(1) ψ = (C(Fs))
∂(U + sψ)

∂X
+Bt

∂(U + sψ)

∂t
−D(Fs).

Lemma 6.5. The equation (1) is solved for some B(X, t, s), C(λ, µ, ν), D(λ, µ, ν) with the con-
dition C(0, 0, 0) = 0, D(0, 0, 0) = 0.
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To show Lemma 6.5, we define, additionally, the map-germ

G : (R3, (0, 0, s0))→ (R3, (0, 0, s0))

by G(X, t, s) = (X,U(X, t) + sψ(X, t), s), and we denote by EX,t,s (resp. Eλ,µ,s) the algebra of
function-germ (R3, (0, 0, s0))→ R on the source (resp. target) of G and by mX,t,s (resp. mλ,µ,s)
its maximal ideal. Moreover we set, for ` = 0, 1, 2, . . . ,

m
(`)
X,t,s = {h ∈ EX,t,s | ord(h) ≥ `},

with respect to the weights w(t) = w(s) = 1, w(X) = 2. Note that ψ ∈ m
(5)
X,t,s.

We define the Eλ,µ,s-submodule, for r = 0, 1, 2, . . . ,

M (r) := G∗mλ,µ,s +
∂(U + sψ)

∂X
G∗mλ,µ,s + t

∂(U + sψ)

∂t
m

(r)
X,t,s

of EX,t,s via G∗ : Eλ,µ,s → EX,t,s.

Lemma 6.6. If ` ≥ 5, then m
(`)
X,t,s ⊂M (`−3).

Proof : In fact, using the initial part of U , we obtain that, if ` ≥ 5, then

m
(`)
X,t,s ⊂M

(`−3) + m
(`+1)
X,t,s .

For example, in the case ` = 5, we have t5 + 2Xt3 ≡ 0, Xt3 + 2X2t ≡ 0,− 1
6Xt

3 + X2t ≡ 0

modulo M (2) + m
(6)
X,t,s, which implies t5 ≡ Xt3 ≡ X2t ≡ 0.

Note that G is a finite map-germ, namely that EX,t,s is a finite Eλ,µ,s-module via G∗. Then,
for any ` and for a sufficiently large N , we have

m
(N)
X,t,s ⊂ G

∗mλ,µ,s ·m(`)
X,t,s.

Therefore we have

m
(`)
X,t,s ⊂M

(`−3) +G∗mλ,µ,s ·m(`)
X,t,s.

Since m
(`)
X,t,s is a finite Eλ,µ,s-module via G∗, we have m

(`)
X,t,s ⊂M (`−3) by Nakayama’s lemma. 2

Proof of Lemma 6.5: Since ψ ∈ m
(5)
X,t,s, Lemma 6.6 implies Lemma 6.5. 2

Since we can solve the infinitesimal equation for the first and second rows in Proposition 6.4,
we have a diffeomorphism germ σ : (R2, 0)→ (R2, 0) of form σ(X, t) = (σ1(X, t), tσ2(X, t)) and
a diffeomorphism germ τ : (R2, 0) → (R2, 0) such that τ ◦ (X,U + ψ) ◦ σ−1 = (X,U). This
construction is needed just to guarantee the properties of the following algebraic objects.

As in [10], we set, for k = 0, 1, 2, . . . ,

Hk :=

{
h ∈ tkEX,t,s

∣∣∣∣ ∂h∂t ∈ tk ∂U∂t EX,t,s
}

=

{
h ∈ tkEX,t,s

∣∣∣∣ ∂h∂t ∈ tk(−1

2
t2 +X)EX,t,s

}
.

Note that G∗Eλ,µ,s ∈ H0 and ρ ∈ H4. Also note that ∂U
∂t = (a+ bt)(− 1

2 t
2 +X).

We have a sequence of G∗Eλ,µ,s-modules:

EX,t,s ⊃ H0 ⊃ H1 ⊃ · · · ⊃ Hk ⊃ · · · .

Then we have
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Lemma 6.7. (Lemma 2.3 of [10]) Let a vector field of form ξ = A ∂
∂X + Bt ∂∂t satisfy A ∈ H0

and ξ(U + sψ) ∈ H0. Then, for any k ≥ 0 and for any h ∈ Hk, we have ξh ∈ Hk.

We set Uk =
∫ t
0
tk

k!
∂U
∂t dt. Then Uk ∈ Hk. Note that the leading term of the third component

of Fs is equal to −U2. Moreover Uk(0, t) is of order k + 3. Then we have

Lemma 6.8. (1) Hk is generated as G∗Eλ,µ,s-module by Uk, Uk+1, Uk+2, Uk+3.
(2) Hk is generated as G∗Eλ,µ,s-module by those elements generating the vector space tk+3Et/tk+7Et
over R via the inclusion i : (R, 0)→ (R3, (0, 0, s0)), i(t) = (0, t, s0).

Proof : The proof is achieved by applying the method used in the proof of Lemma 2.4 of [10], to
the case m = 3 and U = a(− 1

6 t
3 +Xt) + b(− 1

8 t
4 + 1

2Xt
2). Note that we need more generators in

(1) than in the case treated in [10], since U may not be taken to be quasi-homogeneous in our
case. 2

To complete the proof of Proposition 6.1, we modify the vector field ξ = A ∂
∂X + Bt ∂∂t and

D(Fs) such that also the equation of third row holds, for some E(Fs). Since ρ, ξ(−U2+sρ) ∈ H4,
it is sufficient, for the solvability of our infinitesimal equation, to find C1, B1, D1, E1 satisfying
that ξ = C1(G) ∂

∂X +B1t
∂
∂t satisfies that ξ(U + sψ)−D1(Fs) = 0, and that h = ξ(−U2 + sρ)−

E1(Fs) is of order 7, 8, 9, 10 when restricted to {X = 0, s = s0}, by Lemma 6.8.

Note that h10 := (−U2 + sρ)2 ∈ H4 is a composite function of Fs and that h10(0, t, s0) is of
order 10. In fact any order ≥ 10 is realizable by a composite function of Fs which belongs to
H4. Then we take it as E1(Fs) and set C1(G) = 0, B1 = 0, D1(G) = 0.

To produce elements of order 7, 8, 9, we use Lemma 6.6 again.

We choose c1, c2, c3, c4 ∈ R with c2 6= 0 such that the terms of weight 5 of

θ7 = c1X
2 ∂(U + sψ)

∂X
+ (c2t

3 + c3Xt)
∂(U + sψ)

∂t
+ c4X(U + sψ).

vanish and so that θ7 belongs to m
(6)
X,t,s ⊂M (3). Then we have, for some C2, B2, D2,

θ7 = C2(G)
∂(U + sψ)

∂X
+B2t

∂(U + sψ)

∂t
+D2(G)

with C2(0) = D2(0) = 0 and B2 ∈ m
(3)
X,t,s. We set

ξ2 = (c1X
2 − C2(G))

∂

∂X
+ (c2t

3 + c3Xt−B2t)
∂

∂t
,

and set h7 := ξ2(−U2 + sρ). Then we see that ξ2(U + sψ) − D′2(Fs) = 0 where D′2(Fs) =
c4X(U + sψ) − D2(G). Moreover we have h7 ∈ H4. By comparing orders, we see also that
h7(0, t, s0) is of order 7.

Similarly choose c1, c2, c3, c4 ∈ R with c2 6= 0 such that

θ8 = c1X(U + sψ)
∂(U + sψ)

∂X
+ (c2t

4 + c3Xt
2)
∂(U + sψ)

∂t
+ c4(U + sψ)2

belongs to m
(7)
X,t,s ⊂M (4). Then we have, for some C3, B3, D3,

θ8 = C3(G)
∂(U + sψ)

∂X
+B3t

∂(U + sψ)

∂t
+D3(G)

with C3(0) = D3(0) = 0 and B3 ∈ m
(4)
X,t,s. We set

ξ3 = (c1X(U + sψ)− C3(G))
∂

∂X
+ (c2t

4 + c3Xt
2 −B3t)

∂

∂t
,
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and set h8 := ξ3(−U2+sρ). Then ξ3(U+sψ)−D′3(Fs) = 0 where D′3(Fs) = c4(U+sψ)2−D3(G).
Moreover we have h8 ∈ H4 and h8(0, t, s0) is of order 8.

Lastly choose c1, c2, c3, c4, c5 with c1 6= 0 such that

θ9 = (c1t
5 + c2Xt

3 + c3X
2t)

∂(U + sψ)

∂t
+ c4X(−U2 + sρ) + c5X

2(U + sψ).

belongs to m
(8)
X,t,s ⊂M (5). Then we can write as

θ9 = C4(G)
∂(U + sψ)

∂X
+B4t

∂(U + sψ)

∂t
+D4(G),

for some C4, D4, B4 with C4(0) = D4(0) = 0 and B4 ∈ m
(5)
X,t,s. Then we set ξ4 = (c1t

5 + c2Xt
3 +

c3X
2t − B4)t ∂∂t and h9 := ξ4(−U2 + sρ). Then we see that ξ4(U + sψ) − D′4(Fs) = 0, where

D′4(G) = c4X(−U2 + sρ) + c5X
2(U + sψ)−D4(G). Moreover we have h9 ∈ H4 and h9(0, t, s0)

is of order 9.

By Lemma 6.8, we see that h7(0, t, s0), h8(0, t, s0), h9(0, t, s0), h10(0, t, s0) from a basis of
t7Et/t11Et and therefore 1, h7, h8, h9, h10 generate H4 as G∗Eλ,µ,s-module. Hence we have

ρ− ξ(−U2 + sρ) = A1(G) + (A2(G)ξ2 +A3(G)ξ3 +A4(G)ξ4)(−U2 + sρ)

+A5(G)(−U2 + sρ)2,

for some A1, A2, A3, A4, A5. We set ξ̃ = ξ +A2(G)ξ2 +A3(G)ξ3 +A4(G)ξ4, then we have

ρ = ξ̃(−U2 + sρ) +A1(G) +A5(G)(−U2 + sρ)2,

while

ψ = ξ̃(U + sψ)− (D(Fs) +A2(G)D′2(Fs) +A3(G)D′3(Fs) +A4(G)D′4(Fs)).

Thus we have solved the infinitesimal equation as required. This complete the proof of Propo-
sition 6.4. 2

Proof of Theorem 6.1: By Proposition 6.4, Fs is trivialized under the diffeomorphism equivalence.
Hence we have that F = F1 is diffeomorphic to F0 = Fa,b namely to(

X, a(− 1
6 t

3 +Xt) + b(− 1
8 t

4 + 1
2Xt

2), a( 1
20 t

5 − 1
6Xt

3) + b( 1
24 t

6 − 1
8Xt

4)
)
.

Then we easily see that Fa,b is diffeomorphic to F1,1 if b 6= 0 and to F1,0 if b = 0, by a linear
change of coordinates.

Finally F1,1 and F1,0 are not diffeomorphic. In fact, for F1,0, we see that the infinitesimal
equation  0

− 1
8 t

4 + 1
2Xt

2

1
24 t

6 − 1
8Xt

4

 =

(
A

∂

∂X
+B

∂

∂t

) X

− 1
6 t

3 +Xt
1
20 t

5 − 1
6Xt

3

−
 C(F )

D(F )

E(F )


has no solution. This complete the proof of Proposition 6.1. 2

Proof of Theorem 1.1: We combine Proposition 5.3 and the known results on singularities of
tangent surfaces (tangent developables) ([10], [11], [12]). It was proved that the tangent surface
to a curve of type (1, 2, 3) (resp. (1, 3, 4), (2, 3, 4), (1, 3, 5)) is locally diffeomorphic to the
cuspidal edge (resp. Mond surface, swallowtail, Shcherbak surface) respectively (Theorem 1 of
[10]). Moreover it is known that the local differential types (resp. the local topological type) of
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the tangent surface to a curve of type (2, 3, 5) are not unique (resp. is unique) ([10],[11]). Then
by above Proposition 6.1 and Remark 6.2, generically the local differential type is unique and
diffeomorphic to the generic folded pleat. Thus we complete the proof of Theorem 1.1. 2
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MILNOR FIBRATIONS AND THE THOM PROPERTY FOR MAPS fḡ

ANNE PICHON AND JOSÉ SEADE

Abstract. We prove that every map-germ fḡ : (Cn, 0)→(C, 0) with an isolated critical value

at 0 has the Thom afḡ-property. This extends Hironaka’s theorem for holomorphic mappings
to the case of map-germs fḡ and it implies that every such map-germ has a Milnor-Lê fibration

defined on a Milnor tube. One thus has a locally trivial fibration φ : Sε \K → S1 for every

sufficiently small sphere around 0, where K is the link of fḡ and in a neighbourhood of K the
projection map φ is given by fḡ/|fḡ|.

Introduction

Soon after J. Milnor published his book [14], there were several interesting articles about
Milnor fibrations for real singularities published by various people, as for instance by E. Looi-
jenga, P. T. Church and K. Lamotke, N. A’Campo, B. Perron, L. Kauffman and W. Neu-
mann, A. Jacquemard and others. More recently, there has been a new wave of interest in
the topic and a number of articles have been published by various authors (see for instance
[1, 2, 3, 5, 7, 13, 15, 17, 18, 19, 20, 22]).

Unlike the fibration theorem for complex singularities, which holds for every map-germ
(Cn, 0)→ (C, 0), in the real case one needs to impose stringent conditions to get a fibration on
a “Milnor tube”, or a fibration on a sphere, as in the holomorphic case.

In [18] we observed that Lê’s arguments in [10] for holomorphic mappings extend to every real
analytic map germ (Rn, 0)→ (Rp, 0), n > p, with an isolated critical value, provided it has the
Thom af -property and V := f−1(0) has dimension more than 0. Hence one has in that setting
a Milnor-Lê fibration:

f : N(ε, δ)→ Dδ \ {0} .
Here N(ε, δ) denotes a “solid Milnor tube”: it is the intersection f−1(Dδ \ {0}) ∩ Bε, where
Bε is a sufficiently small ball around 0 ∈ Rn and Dδ is a ball in Rp of radius small enough
with respect to ε. This was later completed in [5] (see also [7]), giving necessary and sufficient
conditions for one such map-germ to define a Milnor fibration on every small sphere around the
origin, with projection map f/|f |.

Then, an interesting problem is finding families of map germs (Rn, 0)→ (Rp, 0), n > p, having
an isolated critical value and the Thom property. This is even better when the given families
further have a rich geometry one can use in order to study the topology of the corresponding
Milnor fibrations (cf. [3]).

In this article we prove:

Theorem. Let f, g be holomorphic map germs (Cn, 0) → (C, 0) such that the map fḡ has an
isolated critical value at 0 ∈ C. Then fḡ has the Thom afḡ-property.

Subject Classification: 32S55, 32C05, 57Q45.
Keywords: Whitney stratifications, Thom af property, real singularities, Milnor fibrations.
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In fact our proof is of a local nature and therefore extends, with same proof, to the case of
holomorphic map-germs defined on a complex analytic variety X with an isolated singularity.
This result generalizes to higher dimensions the corresponding theorem in [18] for n = 2, and it
has the following corollaries:

Corollary 1. Let f, g be holomorphic map-germs defined on a complex analytic variety X with
an isolated singularity at a point 0, such that the germ fḡ has an isolated critical value at 0.
Then one has a locally trivial fibration

N(ε, δ)
f−→ Dδ \ {0} , ε� δ > 0 sufficiently small ,

where N(ε, δ) := [(fḡ)−1(Dδ \ {0}) ∩Bε] is a solid Milnor tube for fḡ.

Corollary 2. Let LX := X ∩ Sε be the link of X, V := (fḡ)
−1

(0) and LV := LX ∩ V be the
link of V . Then one has a locally trivial fibration,

φ : LX \ LV −→ S
1 ,

which restricted to LX ∩N(ε, δ) is the natural projection φ = fḡ
|fḡ| .

In fact we know from [18] that for n = 2 the projection map φ in Corollary 2 can be taken

to be fḡ
|fḡ| everywhere on LX \ LV , not only near the link of V . It would be interesting to know

whether or not this statement holds also in higher dimensions. By [5], this is equivalent to asking
whether all germs fḡ are d-regular (we refer to [5] for the definition); this is so when n = 2, by
[18] and [2].

We notice too that holomorphic map-germs actually have the stronger strict Thom wf -
property, by [16] and [4, Theorem 4.3.2], even for functions defined on spaces with non-isolated
singularities. We do not know whether or not these statements extend to map-germs fḡ in
general. Perhaps this can be proved using D. Massey’s work [13] about real analytic Milnor
fibrations and a  Lojasiewicz inequality.

The authors are grateful to Arnaud Bodin for several useful comments and joyful conversa-
tions.

1. The theorem

Let U be an open neighbourhood of the origin 0 in Rm and let X ⊂ U be a real analytic
variety of dimension n > 0 with an isolated singularity at 0. Let f̃ : (U, 0) → (Rk, 0) be a real

analytic map-germ which is generically a submersion, i.e., its Jacobian matrix Df̃ has rank k
on a dense open subset of U . We denote by f the restriction of f̃ to X. As usual, we say that
x ∈ X \{0} is a regular point of f if Dfx : TxX → Rk is surjective, otherwise x is a critical point.
A point y ∈ Rk is a regular value of f if there is no critical point in f−1(y); otherwise y is a
critical value. We say that f has an isolated critical value at 0 ∈ Rk if there is a neighbourhood
Dδ of 0 in Rk so that all points y ∈ Dδ \ {0} are regular values of f .

Now let U and X be as before, and let f̃ : (U, 0) → (Rk, 0) be a real analytic map-germ

such that f = f̃ |X has an isolated critical value at 0 ∈ Rk. We set V = f−1(0) = f̃−1(0) ∩X.
According to [9, 11], there exist Whitney stratifications of U adapted to X and V . Let (Vα)α∈A
be such an stratification.

Definition 1.1. The Whitney stratification (Vα)α∈A satisfies the Thom af -condition with re-

spect to f if for every pair of strata Sα, Sβ such that Sα ⊂ Sβ and Sα ⊂ V , one has that for
every sequence of points {xk} ∈ Sβ converging to a point x such that the sequence of tangent
spaces Txk

(f−1(f(xk)) ∩ Sβ) has a limit T , one has that T contains the tangent space of Sα at
x. We say that f has the Thom property if such an stratification exists.
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Notice that this condition is automatically satisfied for pairs of strata contained in V , since
in that case this regularity condition simply becomes Whitney’s (a)-regularity.

Thom’s property for complex analytic maps was proved by Hironaka in [9, Section 5 Corol-
lary 1] for all holomorphic maps into C defined on arbitrary complex analytic varieties. We
remark that the critical values of holomorphic maps are automatically isolated, while for real
analytic maps into R2 this is a hypothesis we need to impose. We refer to [18] for examples
of maps fḡ with isolated critical values, and also for examples with non-isolated critical values.
Hironaka’s theorem was an essential ingredient for Lê’s fibration theorem in [10]. The corre-
sponding statement was shown by Lê Dũng Tráng to be false in general for complex analytic
mappings into C2 (see Lê’s example, for instance in [21, p. 290]). Similarly, there are real
analytic map-germs into R2 which do not have the Thom Property. Here we prove:

Theorem 1.2. Let (X, 0) be a germ of an n-dimensional complex analytic set with an isolated
singularity and let f, g : (X, 0)→ (C, 0) be holomorphic map-germs such that fḡ has an isolated
critical value at 0 ∈ C. Then the real analytic germ fḡ has the Thom afḡ-property.

Proof. The proof is inspired by the proof of Pham’s theorem given in [8] (Theorem 1.2.1), which
concerned holomorphic germs of functions defined on complex analytic subsets of Cm.

We first prove the theorem in the case when the germ of X at 0 is smooth, i.e., X ∼= Cn.
Let U be an open neighbourhood of the origin 0 in Cn so that f, g : U → C represent the

germs f and g. We identify Cn+1 ∼= Cn × C and denote by (z1, . . . , zn+1) the coordinates in
Cn+1.

Let us denote by V the subset in Cn with equation fg = 0 and by Sing(fḡ) the critical locus
of fḡ. Since fḡ has an isolated critical value at 0, Sing(fḡ) is contained in V .

We need the following lemma:

Lemma 1.3. For each integer N ≥ 1 , let G = G(N) be the subset of U × C defined by the
equation

FN (z1, · · · zn+1 := (fḡ)(z1, . . . , zn)− zNn+1 = 0 .

Then the singular locus of G is contained in Sing(fḡ)× {0}.

Proof. This follows by a straightforward computation of the 2 × 2(n + 1) Jacobian matrix of
fḡ − zNn+1. �

Therefore, according to [24] (just as in [8, 1.2.4] for the real analytic case), there exists a
Whitney stratification σN of G such that G ∩ (Cn × {0}) = V × {0} is a union of strata and
such that G \ (V ×{0}) is the union of the strata having dimension 2n. We assume further that
0 is itself a stratum and that U is chosen small enough so that every other stratum contains 0
in its closure.

Let SN be the stratification induced by σN on V × {0}. Adapting the arguments of [8], we
will prove that for N sufficiently large, SN has the Thom condition with respect to fḡ. For
this we must show that given a sequence of points in Cn \ V which converges to a point x in a
stratum in SN , such that the corresponding sequence of spaces tangent to the fibers of fḡ has a
limit T , then T contains the tangent space at x of the corresponding stratum.

For this we will prove that whenever we have a sequence of points (xk) = (z
(k)
1 , . . . , z

(k)
n+1) in

G \ (V × {0}) such that:

(1) limk→∞ xk = x ∈ V × {0} , and

(2) if we set tk = (fḡ)(z
(k)
1 , . . . , z

(k)
n ), we have that the sequence of (2n−2)-planes Txk

(
(fḡ)−1(tk)×

{z(k)
n+1}

)
converges to a limit T ,
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then, if N is sufficiently large, the space T must contain the tangent space TxVα to the strata
Vα of SN containing x. It is clear that this will imply Theorem 1.2 since G ⊂ Cn+1 is a union
of fibers of fḡ.

We will prove this claim by contradiction. In other words, we assume that there is a sequence
(xk) as above, such that the limit T does not contain the tangent space TxVα, then we will show
that when N is large enough, we necessarily come to a contradiction.

Notice that we can assume that the sequence of 2n-planes Txk
G converges to a limit τ since

the Grassmanian of 2n-planes in the Euclidian space is a compact manifold.
For each k one has

Txk

(
(fḡ)−1(tk)× {z(k)

n+1}
)
⊂ Txk

G,

therefore T ⊂ τ and the intersection τ ∩(Cn×{0}) has real dimension at least 2n−2. Moreover,
as TxVα 6⊂ T , one gets TxVα 6= τ ∩Cn × {0}.

But, since σN satisfies Whitney’s condition (a), one has TxVα ⊂ τ . This implies that in fact
the intersection τ ∩ (Cn ×{0}) has real dimension at least 2n− 1. We will show that this is not
possible if N is sufficiently large.

According to [12], there exists an open neighbourhood of 0 in Cn and a real number θ,
0 < θ < 1, such that for each z = (z1, . . . , zn) ∈ Ω one has :

‖(gradf)(z)‖ ≥ |f(z)|θ and ‖(gradg)(z)‖ ≥ |g(z)|θ

The Jacobian matrix of the map fḡ − zNn+1 with respect to the coordinates

(z1, z̄1, z2, z̄2, · · · , zn+1, zn+1) in R2(n+1) is the 2× 2(n+ 1) matrix given in blocks by

D(fḡ)(z1, z̄1, . . . , zn+1, zn+1) =
(
M1 . . . Mi . . . Mn+1

)
,

where for each i = 1, . . . , n the block Mi is:

Mi =


∂(<(fḡ))
∂zi

∂(<(fḡ))
∂z̄i

∂(=(fḡ))
∂zi

∂(=(fḡ))
∂z̄i

 ,

and

Mn+1 = −N
2

 zN−1
n+1 zn+1

N−1

1
i z
N−1
n+1 − 1

i zn+1
N−1

 .

Then an easy computation leads to the following equation for the tangent space Txk
G at xk =

(z, zn+1) ∈ G (we omit the k in the coordinates in order to simplify the notations) :
n∑
i=1

(
∂f

∂zi
(z)ḡ(z)vi +

∂g

∂zi
(z)f̄(z)vi

)
−NzN−1

n+1 vn+1 = 0 .

We consider the 2n-vector appearing in the equation :

wk(z) =

(
∂f

∂z1
(z)ḡ(z),

∂g

∂z1
(z), . . . ,

∂f

∂zn
(z)ḡ(z),

∂g

∂zn
(z)

)
.

For simplicity we omit to write that the functions below are evaluated at (z). We have:(
‖wk‖

N |zn+1|N−1

)2

=
|ḡ|2

∑n
i=1

∣∣ ∂f
∂zi

∣∣2 + |f̄ |2
∑n
i=1

∣∣ ∂g
∂zi

∣∣2
N2|fḡ|2 N−1

N

=
|ḡ|2‖gradf‖2 + |f̄ |2‖gradg‖2

N2|fḡ|2 N−1
N

.

Thus, (
‖wk‖

N |zn+1|N−1

)2

=
(|ḡ||f̄ |θ)2 + (|f̄ ||ḡ|θ)2

N2|fḡ|2 N−1
N

≥ 2

N2
|fḡ|θ−

N−1
N .
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When N is sufficiently large, i.e., θ − N−1
N < 0, one has :

lim
k→∞

‖wk‖
N |zn+1|N−1

= +∞ .

Therefore the normalized limit of the vector (wk,−N(z
(k)
n+1)N−1) when k → ∞, is a vector

contained in Cn × {0}. Then the 2n-plane τ contains the complex line {0} × C ⊂ Cn × C.
This contradicts the fact that τ ∩ Cn × {0} has dimension at least 2n − 1. Thus, if we set

tk = (fḡ)(z
(k)
1 , . . . , z

(k)
n ), then every sequence of (2n− 2)-planes Txk

(
(fḡ)−1(tk)× {z(k)

n+1}
)

that
converges to a limit T contains the tangent space TxVα to the strata Vα of SN containing x.
This completes the proof of the theorem when X is smooth at 0.

When X ↪→ Cm has an isolated singularity at the origin, we take a Whitney stratification
of a neighbourhood U of X in Cm adapted to X and to V := (fḡ)−1(0), and such that 0 is a
stratum. We choose U small enough such that any other stratum contains 0 in its closure. Now
we consider a sequence of points (xk) in X \ V converging to a point x ∈ V and such that there
is a limit T of the corresponding sequence of spaces tangent to the fibers. If x = 0, then there
is nothing to prove since T contains the space tangent to this 0-dimensional stratum. If x 6= 0,
then we consider a coordinate chart U1 for X around x and argue exactly as in the previous
case, when X was assumed to be smooth. �

We now look at the corollaries. We know, by Bertini-Sard’s theorem in [23], that there is
ε > 0 such that all spheres in Rm centered at 0 with radius ≤ ε meet transversally each stratum
in {fḡ = 0}. Since fḡ has Thom’s afḡ-property, by Theorem 1.2, we get that given ε > 0
as above, there exists δ > 0 sufficiently small with respect to ε such that all fibers (fḡ)−1(t)
with |t| ≤ δ are transversal to the link LX . As usual, following the proof of Ehresmann’s
fibration theorem (see for instance [14, 10, 18]), this implies that one has a locally trivial fibration

N(ε, δ)
f−→ Image(fḡ) ⊂ Dδ \ {0} , where N(ε, δ) := [(fḡ)−1(Dδ \ {0})] ∩ Bε is a solid Milnor

tube for fḡ. Thus to complete the proof of Corollary 1 we must show that the image of fḡ covers
all of Dδ \ {0}. This follows from the lemma below.

Lemma 1.4. Let X, f and g be as above, so that fḡ is not constant and it has an isolated critical
value at 0 = fḡ(0). Then the germ fḡ is locally surjective at 0.

Proof. If either f or g is constant, the statement in this lemma is a well-known property of
holomorphic mappings. So we assume none of these maps is constant, neither is constant the
map fḡ. We may further assume that f, g have no common factor, for otherwise we may divide
both map-germs by that common factor and this will not change the image of the map fḡ. We
claim that since f and g are both holomorphic, we have that the map-germ

(f, g) : Cn → C×C

is locally surjective for all n ≥ 2. That is, the image of every neighbourhood of 0 ∈ Cn covers a
neighbourhood of (0, 0) ∈ C ×C. In fact, for n = 2 the map germ (f, g) is a finite morphism,
which is a finite covering map with ramification locus the discriminant curve; so it is locally
surjective. When n ≥ 3 we may consider a generic complex 2-plane P in Cn which is transversal
to the fibers of (f, g) and apply the above arguments. Hence (f, ḡ) is locally surjective, and so
is fḡ. �

There are in [6] examples of analytic map-germs (Rn, 0)
h→ (R2, 0) with an isolated critical

value at 0 which are not surjective. The image of h misses a neighbourhood of an arc converging
to 0.
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The proof of Corollary 2 is just as that of Theorem 1.3 in [18], replacing the Milnor tube
[(fḡ)−1(∂Dδ)] ∩Bε by the solid Milnor tube [(fḡ)−1(Dδ \ {0})] ∩Bε, so we leave the details to
the reader. (Compare with the first part of the proof of Theorem 1 in [5]).
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