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ORBIFOLD JACOBIAN ALGEBRAS FOR INVERTIBLE POLYNOMIALS

ALEXEY BASALAEV, ATSUSHI TAKAHASHI, AND ELISABETH WERNER

Abstract. An important invariant of a polynomial f is its Jacobian algebra defined by its
partial derivatives. Let f be invariant with respect to the action of a finite group of diagonal

symmetries G. We axiomatically define an orbifold Jacobian Z/2Z-graded algebra for the pair

(f,G) and show its existence and uniqueness in the case, when f is an invertible polynomial.
In case when f defines an ADE singularity, we illustrate its geometric meaning.

1. Introduction

Let f = f(x) = f(x1, . . . , xN ) ∈ C[x1, . . . , xN ] be a polynomial such that the Jacobian algebra
Jac(f) := C[x1, . . . , xN ]/(∂f/∂x1, . . . , ∂f/∂xN ) of f is a finite dimensional C-algebra. In this
paper, we shall give axioms which should characterize a generalization of the Jacobian algebra
Jac(f) of f for the pair (f,G) where G is a finite abelian group acting diagonally on variables
which respects f .

Such a pair (f,G), often called a Landau-Ginzburg orbifold, has been studied intensively by
many mathematicians and physicists working in mirror symmetry for more than twenty years
since it yields important, interesting and unexpected geometric information. In particular, the
so-called orbifold construction of a mirror manifold from a Calabi-Yau hypersurface is very
important.

Certain works towards the definition of the Frobenius algebras associated to the pair (f,G)
were also done previously by R. Kaufmann and M. Krawitz. In [K03], R. Kaufmann proposes
a general construction of the orbifolded Frobenius superalgebra of (f,G). In order to build
such a Z/2Z-graded algebra, one should make a certain non-unique choice called the “choice
of a two cocycle”. A different choice of this cocycle gives indeed a different product structure.
This construction was later used by Kaufmann in [K06] for mirror symmetry purposes from
the point of view of physics. In [Kr], M. Krawitz proposes a very special construction of a
commutative (not a Z/2Z-graded) algebra, for the pair (f,G). Later enhanced in [FJJS] this
definition was used to set up mirror symmetry on the level of Frobenius algebras. However,
the crucial part of it remained the particularly fixed product that could only be well-defined
for weighted-homogeneous polynomials. There is also no explanation why a particular product
structure is chosen.

Mirror symmetry on the level of Frobenius algebras is a first step towards the mirror isomor-
phism of Frobenius manifolds where the key role is played by the so-called primitive form. From
the point of view of mirror symmetry, the algebras we consider here are those on the complex
geometry side, the so-called B-model side. The major advantage of our work comparing to that
of Kaufmann and Krawitz is that our construction works as a starting point for the mirror sym-
metry on the level of Frobenius manifolds having the notion of a primitive form (cf. [S1, S2, ST])
in the definition (cf. the role of ζ in Definition 16). The second important point is the following.
In both Kaufmann and Krawitz constructions, one predefines the product either by the defini-
tion or by the special choice of a two cocycle. In our axiomatization, we do not do this and
hence we are able to study our algebras even for non-weighted homogeneous polynomials. We
hope to address this question later. The last but not least is that our algebra inherits a natural
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Z/2Z-grading from the Hodge theory associated to (f,G). This Z/2Z-grading appears only in
an abstract way in the definition of Kaufmann and was not considered at all by Krawitz.

Let us comment in detail on the first point. It is well-known that Jac(f) has a structure of
a Frobenius algebra (see [AGV85]). Namely, by a choice of a nowhere vanishing holomorphic
N -form, there is an isomorphism Jac(f) ∼= Ωf := ΩN (CN )/(df ∧ΩN−1(CN )). It is on Ωf , where
a natural or canonical non-degenerate symmetric bilinear form, called the residue pairing, exists.
As a result, the above isomorphism equips Jac(f) with an induced bilinear form. Therefore,
even if the group G is trivial, it is important to consider a pair (Jac(f),Ωf ). This pair can
also be considered as an example of a pair (HH•(C), HH•(C)), consisting of the Hochschild
cohomology and the Hochschild homology of a suitable dg- or A∞-category, which has a rich
algebraic structure.

In this paper, we shall first introduce a G-twisted version of the vector space Ωf , which
is denoted by Ω′

f,G. This is a Z/2Z-graded vector space, which also has a G-grading, with
a natural non-degenerate bilinear form called the orbifold residue pairing, a natural general-
ization of the residue pairing on Ωf . Then, the G-twisted version of the Jacobian algebra,
denoted by Jac′(f,G), will be introduced axiomatically as a part of the structure of the pair
(Jac′(f,G),Ω′

f,G) in the way it is in the classical situation when the group G is trivial. As

a result, the algebra Jac′(f,G) inherits many structures, defined naturally on Ω′
f,G, such as a

Z/2Z-grading, a G-grading, equivariance with respect to automorphisms of the pair (f,G), the
orbifold residue pairing and so on. Our axiomatization of a G-twisted Jacobian algebra lists a
minimum conditions to be satisfied, in particular, we do not prescribe the product structure.

The expected Jacobian algebra Jac(f,G) for the pair (f,G), which we shall call the orbifold
Jacobian algebra of (f,G), will be given as the G-invariant subalgebra of the G-twisted version
Jac′(f,G). However, it is not clear in general whether such an algebra as Jac′(f,G) exists or
not. Even if it exists it may not be unique.

The main result of this paper is the existence and the uniqueness of the G-twisted Jacobian
algebra Jac′(f,G) for an invertible polynomial f with a subgroup G of the maximal abelian
symmetry group Gf (Theorem 22). Namely, it is uniquely determined up to isomorphism by
our axiomatization. Moreover, we show that if G is a subgroup of SL(N ;C) then the orbifold
Jacobian algebra Jac(f,G) has a structure of a Z/2Z-graded commutative Frobenius algebra.

Another interesting result of ours (Theorem 64) concerns the case when f is an invertible
polynomial giving a singularity of ADE-type and G is a subgroup of Gf∩SL(N ;C). We show that
in this case our orbifold Jacobian algebra Jac(f,G) is isomorphic to the usual Jacobian algebra

This result complies with the results of [ET13a], where concerning a crepant resolution Ĉ3/G of

C3/G, it is shown that the geometry of vanishing cycles for a holomorphic map f̂ : Ĉ3/G −→ C
associated to f is equivalent to the one for the polynomial f . Therefore, our orbifold Jacobian
algebra is not only natural from the view point of algebra but also from the view point of
geometry.

Remark 1. After the the current paper was put on arXiv, the certain progress was made in
understanding the orbifold Jacobian algebra. In particular, based on the results of the current
paper, it was shown in [BT] that for f invertible the algebra Jac(f,G) is isomorphic to the
Hochschild cohomology of the category of G–equivariant matrix factorizations of f . Moreover,
some applications to the more classical problems of singularity theory were found in [BTW2].
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2. Preliminaries

Definition 2. Let n be a non-negative integer and f = f(x) = f(x1, . . . , xn) ∈ C[x1, . . . , xn] a
polynomial.

(i) The Jacobian algebra Jac(f) of f is the C-algebra defined as

Jac(f) = C[x1, . . . , xn]
/(

∂f
∂x1

, . . . , ∂f
∂xn

)
. (2.1)

If Jac(f) is a finite-dimensional C-algebra, then set µf := dimC Jac(f) and call it the
Milnor number of f . In particular, if n = 0 then Jac(f) = C and µf = 1.

(ii) The Hessian of f is defined as

hess(f) := det

(
∂2f

∂xi∂xj

)
i,j=1,...,n

. (2.2)

In particular, if n = 0 then hess(f) = 1.

Throughout this paper, we denote by N a positive integer and by

f = f(x) = f(x1, . . . , xN ) ∈ C[x1, . . . , xN ]

a polynomial such that the Jacobian algebra of f is a finite-dimensional C-algebra, unless oth-
erwise stated.

Let Ωp(CN ) be the C-module of regular p-forms on CN . Consider the C-module

Ωf := ΩN (CN )/(df ∧ ΩN−1(CN )). (2.3)

Note that Ωf is naturally a free Jac(f)-module of rank one, namely, by choosing a nowhere
vanishing N -form ω̃ ∈ ΩN (CN ) we have the following isomorphism

Jac(f)
∼=−→ Ωf , [ϕ(x)] 7→ [ϕ(x)]ω := [ϕ(x)ω̃], (2.4)

where ω := [ω̃] is the residue class of ω̃ in Ωf .

Remark 3. Such a class ω ∈ Ωf giving the isomorphism (2.4) is a non-zero constant multiple
of the residue class of dx1 ∧ · · · ∧ dxN .

Proposition 4 (cf. Section I.5.11 [AGV85]). Define a C-bilinear form Jf : Ωf ⊗C Ωf −→ C as

Jf (ω1, ω2) := ResCN

ϕ(x)ψ(x)dx1 ∧ · · · ∧ dxN
∂f

∂x1
. . .

∂f

∂xN

 , (2.5)

where ω1 = [ϕ(x)dx1 ∧ · · · ∧ dxN ] and ω2 = [ψ(x)dx1 ∧ · · · ∧ dxN ]. Then, the bilinear form Jf
on Ωf is non-degenerate. Moreover, for ϕ(x) ∈ C[x1, . . . , xN ],

Jf ([ϕ(x)dx1 ∧ · · · ∧ dxN ], [hess(f)dx1 ∧ · · · ∧ dxN ]) ̸= 0 (2.6)

if and only if ϕ(0) ̸= 0. In particular, we have

Jf ([dx1 ∧ · · · ∧ dxN ], [hess(f)dx1 ∧ · · · ∧ dxN ]) = µf . (2.7)

Under the isomorphism (2.4), the residue pairing endows the Jacobian algebra Jac(f) with a
structure of a Frobenius algebra.

Definition 5. An associative C-algebra (A, ◦) is called Frobenius if there is a non-degenerate
bilinear form η : A⊗A→ C such that η (X ◦ Y, Z) = η (X,Y ◦ Z) for X,Y, Z ∈ A.
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Definition 6. The group of maximal diagonal symmetries of f is defined as

Gf :=
{
(λ1, . . . , λN ) ∈ (C∗)N | f(λ1x1, . . . , λNxN ) = f(x1, . . . , xN )} . (2.8)

We shall always identify Gf with the subgroup of diagonal matrices of GL(N ;C). Set

GSL
f := Gf ∩ SL(N ;C). (2.9)

Remark 7. For a finite subgroup G ⊆ Gf , the pair (f,G) is often called a Landau-Ginzburg
orbifold.

From now on, we shall denote by G a finite subgroup of Gf unless otherwise stated. In what

follows, define also e [α] := exp(2π
√
−1α). The group G acts naturally on CN and each element

g ∈ G has a unique expression of the form

g = diag
(
e
[a1
r

]
, . . . , e

[aN
r

])
with 0 ≤ ai < r, (2.10)

where r is the order of g. We use the notation (a1/r, . . . , aN/r) or
1
r (a1, . . . , aN ) for the element

g. The age of g, which is introduced in [IR, V], is defined as the rational number

age(g) :=
1

r

N∑
i=1

ai. (2.11)

Note that if g ∈ GSL
f then age(g) ∈ Z.

For each g ∈ G, we denote by Fix(g) := {x ∈ CN | g · x = x} the fixed locus of g, by
Ng := dimC Fix(g) its dimension and by fg := f |Fix(g) the restriction of f to the fixed locus of

g. Note that since G acts diagonally on CN , Fix(g) is a linear subspace of CN .

Proposition 8 (cf. Proposition 5 in [ET13b]). For each g ∈ G, we have a natural surjective
C-algebra homomorphism Jac(f) −→ Jac(fg). In particular, the Jacobian algebra Jac(fg) is
also finite dimensional.

Proof. We may assume that Fix(g) = {x ∈ CN | xNg+1 = · · · = xN = 0} by a suitable
renumbering of indices. Since f is invariant under G, g · xi ̸= xi for i = Ng + 1, . . . , N and

∂f
∂xNg+1

, . . . , ∂f
∂xN

form a regular sequence, we have(
∂f

∂xNg+1
, . . . ,

∂f

∂xN

)
⊂
(
xNg+1, . . . , xN

)
.

Therefore, we have a natural surjective C-algebra homomorphism

Jac(f) = C[x1, . . . , xN ]
/(

∂f
∂x1

, . . . , ∂f
∂xN

)
−→ C[x1, . . . , xN ]

/(
∂f
∂x1

, . . . , ∂f
∂xNg

, xNg+1, . . . , xN

)
= C[x1, . . . , xNg

]
/(

∂fg

∂x1
, . . . , ∂fg

∂xNg

)
= Jac(fg).

□

Corollary 9. For each g ∈ G, Ωfg is naturally equipped with a structure of Jac(f)-module.

Proof. Since Ωfg is a free Jac(fg)-module of rank one (cf. (2.4)), the surjective C-algebra
homomorphism Jac(f) −→ Jac(fg) yields the statement. □

3. Orbifold Jacobian algebras

In order to introduce an orbifold Jacobian algebra of the pair (f,G), we first define axiomat-
ically a G-twisted Jacobian algebra of f .



96 ALEXEY BASALAEV, ATSUSHI TAKAHASHI, AND ELISABETH WERNER

3.1. Setup.

Definition 10. Define a Z/2Z-graded C-module Ω′
f,G =

(
Ω′

f,G

)
0
⊕
(
Ω′

f,G

)
1
, i ∈ Z/2Z, by(

Ω′
f,G

)
0
:=

⊕
g∈G

N−Ng≡0 (mod 2)

Ω′
f,g,

(
Ω′

f,G

)
1
:=

⊕
g∈G

N−Ng≡1 (mod 2)

Ω′
f,g, (3.1a)

Ω′
f,g := Ωfg . (3.1b)

Here, for each g ∈ G with Fix(g) = {0},

Ωfg = Ω0({0})/(dfg ∧ Ω−1({0})) = Ω0({0}) (3.1c)

is the C-module of rank one consisting of constant functions on {0}.

Since the group G acts on each Ωfg by the pull-back of forms via its action on Fix(g), we can
define the following Z/2Z-graded C-module.

Definition 11. Define a Z/2Z-graded C-module Ωf,G as the G-invariant part of Ω′
f,G,

Ωf,G =
(
Ω′

f,G

)G
. (3.2)

That is, Ωf,G = (Ωf,G)0 ⊕ (Ωf,G)1, i ∈ Z/2Z, is given by

(Ωf,G)0 :=
⊕
g∈G

N−Ng≡0 (mod 2)

Ωf,g, (Ωf,G)1 :=
⊕
g∈G

N−Ng≡1 (mod 2)

Ωf,g, (3.3a)

Ωf,g := (Ωfg )
G
. (3.3b)

Definition 12. Define a non-degenerate C-bilinear form Jf,G : Ω′
f,G ⊗C Ω′

f,G −→ C, called the
orbifold residue pairing, by

Jf,G :=
⊕
g∈G

Jf,g, (3.4a)

where Jf,g is a perfect C-bilinear form Jf,g : Ω′
f,g ⊗C Ω′

f,g−1 −→ C defined by

Jf,g (ω1, ω2) := (−1)N−Ng · e
[
−1

2
age(g)

]
· |G| · ResFix(g)

ϕψdxi1 ∧ · · · ∧ dxiNg

∂fg

∂xi1
. . .

∂fg

∂xiNg

 (3.4b)

for ω1 = [ϕdxi1 ∧ · · · ∧ dxiNg
] ∈ Ω′

f,g and ω2 = [ψdxi1 ∧ · · · ∧ dxiNg
] ∈ Ω′

f,g−1 , where xi1 , . . . , xiNg

are coordinates of Fix(g). For each g ∈ G with Fix(g) = {0}, we define

Jf,g
(
1g, 1g−1

)
:= (−1)N · e

[
−1

2
age(g)

]
· |G|, (3.4c)

where 1g ∈ Ω′
f,g and 1g−1 ∈ Ω′

f,g−1 denote the constant functions on {0} whose values are 1.

Proposition 13. The C-bilinear form Jf,G is G-twisted Z/2Z-graded symmetric in the sense
that

Jf,G(ω1, ω2) = (−1)N−Ng · e [−age(g)] · Jf,G(ω2, ω1) (3.5)

for ω1 ∈ Ω′
f,g and ω2 ∈ Ω′

f,g−1 .
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Proof. Let the notations be as in Definition 12. Since Fix(g) = Fix(g−1), fg = fg
−1

and
age(g) + age(g−1) = N −Ng, we have

Jf,G(ω1, ω2) = Jf,g (ω1, ω2)

= e

[
−1

2
age(g) +

1

2
age(g−1)

]
· Jf,g−1 (ω2, ω1)

= (−1)N−Ng · e [−age(g)] · Jf,G (ω2, ω1) .

□

For a C-algebra R, denote by AutC-alg(R) the group of all C-algebra automorphisms of R.
Note that G is naturally identified with a subgroup of AutC-alg(C[x1, . . . , xN ]).

Definition 14. Define the group Aut(f,G) of automorphisms of (f,G) as

Aut(f,G) := {φ ∈ AutC-alg(C[x1, . . . , xN ]) | φ(f) = f, φ ◦ g ◦ φ−1 ∈ G for all g ∈ G}.

It is obvious that G is naturally identified with a subgroup of Aut(f,G). Note that a C-
algebra automorphism φ ∈ AutC-alg(C[x1, . . . , xN ]) is G-equivariant if and only if φ◦g ◦φ−1 = g
for all g ∈ G.

Remark 15. Let C[x1, . . . , xN ] ∗ G be the skew group ring which is a C-vector space
C[x1, . . . , xN ] ⊗C C[G] with a product defined as (ϕ1 ⊗ g1)(ϕ2 ⊗ g2) = (ϕ1g1(ϕ2)) ⊗ g1g2 for
any ϕ1, ϕ2 ∈ C[x1, . . . , xN ] and g1, g2 ∈ G. Then the group Aut(f,G) can be regarded as the
subgroup of all φ′ ∈ AutC-alg(C[x1, . . . , xN ]∗G) such that φ′(f⊗ id) = f⊗ id. For φ ∈ Aut(f,G),
the correspondence element in AutC-alg(C[x1, . . . , xN ]∗G) is given by ϕ⊗g 7→ φ(ϕ)⊗(φ◦g◦φ−1).

An element φ ∈ Aut(f,G) regarded as a bi-regular map on CN maps Fix(φ ◦ g ◦ φ−1) to
Fix(g) for each g ∈ G. Hence, the group Aut(f,G) acts naturally on Ω′

f,G by

Ω′
f,g −→ Ω′

f,φ◦g◦φ−1 , ω 7→ φ∗|Fix(g)ω, (3.6)

where φ∗|Fix(g) denotes the restriction of the pullback φ∗ of differential forms to Fix(g). In order
to simplify the notation, for each φ ∈ Aut(f,G), we shall denote by φ∗ the action of φ on Ω′

f,G.

It also follows that Aut(f,G) acts naturally on Ωf,G.

3.2. Axioms.

Definition 16. A G-twisted Jacobian algebra of f is a Z/2Z-graded C-algebra

Jac′(f,G) = Jac′(f,G)0 ⊕ Jac′(f,G)1,

i ∈ Z/2Z, satisfying the following axioms:

(i) For each g ∈ G, there is a C-module Jac′(f, g) isomorphic to Ω′
f,g as a C-module

satisfying the following conditions:
(a) For the identity id of G,

Jac′(f, id) = Jac(f). (3.7)

(b) We have

Jac′(f,G)0 =
⊕
g∈G

N−Ng≡0 (mod 2)

Jac′(f, g), (3.8a)

Jac′(f,G)1 =
⊕
g∈G

N−Ng≡1 (mod 2)

Jac′(f, g). (3.8b)
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(ii) The Z/2Z-graded C-algebra structure ◦ on Jac′(f,G) satisfies

Jac′(f, g) ◦ Jac′(f, h) ⊂ Jac′(f, gh), g, h ∈ G, (3.9)

and the C-subalgebra Jac′(f, id) of Jac′(f,G) coincides with the C-algebra Jac(f).
(iii) The Z/2Z-graded C-algebra Jac′(f,G) is such that the C-module Ω′

f,G has a structure

of a Jac′(f,G)-module

⊢: Jac′(f,G)⊗ Ω′
f,G −→ Ω′

f,G, X ⊗ ω 7→ X ⊢ ω, (3.10)

satisfying the following conditions:
(a) For any g, h ∈ G we have

Jac′(f, g) ⊢ Ω′
f,h ⊂ Ω′

f,gh, (3.11)

and the Jac′(f, id)–module structure on Ω′
f,g coincides with the Jac(f)-module

structure on Ωfg given by Corollary 9.
(b) By choosing a nowhere vanishing N -form, we have the following isomorphism

Jac′(f,G)
∼=−→ Ω′

f,G, X 7→ X ⊢ ζ, (3.12)

where ζ is the residue class in Ω′
f,id = Ωf of the N -form. Namely, Ω′

f,G is a free

Jac′(f,G)-module of rank one.
(iv) There is an induce action of Aut(f,G) on Jac′(f,G) given by

φ∗(X) ⊢ φ∗(ζ) := φ∗(X ⊢ ζ), φ ∈ Aut(f,G), X ∈ Jac′(f,G), (3.13)

where ζ is an element in Ω′
f,id giving the isomorphism in axiom (iiib). The algebra

structure of Jac′(f,G) satisfies the following conditions:
(a) It is Aut(f,G)-invariant, namely,

φ∗(X) ◦ φ∗(Y ) = φ∗(X ◦ Y ), φ ∈ Aut(f,G), X, Y ∈ Jac′(f,G). (3.14)

(b) It is G-twisted Z/2Z-graded commutative, namely, for any g, h ∈ G and
X ∈ Jac′(f, g), Y ∈ Jac′(f, h), we have

X ◦ Y = (−1)X·Y g∗(Y ) ◦X, (3.15)

where X = N −Ng and Y = N −Nh are the Z/2Z-grading of X and Y , and g∗ is
the induced action of g considered as an element of Aut(f,G).

(v) For any g, h ∈ G and X ∈ Jac′(f, g), ω ∈ Ω′
f,h, ω

′ ∈ Ω′
f,G, we have

Jf,G(X ⊢ ω, ω′) = (−1)X·ωJf,G
(
ω, ((h−1)∗X) ⊢ ω′) , (3.16)

where X = N −Ng and ω = N −Nh are the Z/2Z-grading of X and ω, and (h−1)∗ is
the induced action of h−1 considered as an element of Aut(f,G).

(vi) Let G′ be a finite subgroup of Gf such that G ⊆ G′. Fix a nowhere vanishing N -form
and denote by ζ its residue class in Ω′

f,id. By axiom (iiib) for G,G′, fix the isomorphisms
given by ζ;

Jac′(f,G)
∼=−→ Ω′

f,G, X 7→ X ⊢ ζ, (3.17)

Jac′(f,G′)
∼=−→ Ω′

f,G′ , X ′ 7→ X ′ ⊢ ζ. (3.18)

Then, the injective map Ω′
f,G −→ Ω′

f,G′ induced by the identity maps Ω′
f,g −→ Ω′

f,g,

g ∈ G yields an injective map of the Z/2Z-graded C-modules Jac′(f,G) → Jac′(f,G′),
which is an algebra-homomorphism.
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3.3. Comments on the axioms. Such a class ζ ∈ Ω′
f,id giving the isomorphism in axiom (iiib)

is a non-zero constant multiple of the residue class of dx1 ∧ · · · ∧ dxN . It follows that the
Aut(f,G)-action on Jac′(f,G) does not depend on the choice of ζ. In particular, the Aut(f,G)-
action on Jac′(f, id) = Jac(f) is nothing but the usual one which is induced by the natural
Aut(f,G)-action on C[x1, . . . , xN ]. For different choices of ζ we get isomorphic algebras.

Axioms (iva), (ivb) and (v) are naturally expected by keeping the skew group ring
C[x1, . . . , xN ] ∗G in mind (see also Remark 15). Indeed, our axioms are motivated by some in-
tuitive properties of the “Jacobian algebra of f in the non-commutative ring C[x1, . . . , xN ] ∗G”.
Axiom (ivb) can also be found in [K03] under the name of “Ramond algebra for Jacobian Frobe-
nius algebras”, while the others seem to be new.

We have not used the commutativity of G in the axioms in Definition 16 except for the last
one (vi). Instead of Gf there, by the use of the largest subgroup Gf,nc of GL(N ;C) respecting
f whose restriction fg to Fix(g) gives a finite dimensional Jacobian algebra Jac(fg) for all
g ∈ Gf,nc, the definition can naturally be extended to the non-abelian case, namely, the case
when G is a subgroup of Gf,nc.

3.4. Conjecture and the definition. We shall denote the residue class of 1 ∈ C[x1, . . . , xN ]
in Jac′(f, id) = Jac(f) by vid; this is the unit with respect to the product structure ◦ since by
axiom (v) we have

Jf,G((X ◦ vid) ⊢ ζ, ω) = Jf,G(X ⊢ (vid ⊢ ζ), ω) = Jf,G(X ⊢ ζ, ω) (3.19)

for all X ∈ Jac′(f,G), ω ∈ Ω′
f,G and ζ ∈ Ωf,id giving the isomorphism (3.12). Note also that

φ∗(vid) = vid for all φ ∈ Aut(f,G) since φ∗(vid) ⊢ φ∗(ζ) = φ∗(vid ⊢ ζ) = φ∗(ζ) = vid ⊢ φ∗(ζ).
In particular, vid is G-invariant.

By the isomorphism (3.12), it follows from (3.6) that

φ∗(Jac′(f, g)) = Jac′(f, φ ◦ g ◦ φ−1), φ ∈ Aut(f,G). (3.20)

In particular, g∗(Jac′(f, h)) = Jac′(f, ghg−1) for g, h ∈ G. Now, G is a commutative group,
we have g∗(Jac′(f, h)) = Jac′(f, h). Since the product structure ◦ is also G-invariant by ax-
iom (iva) it follows that the G-invariant subspace of Jac′(f,G) has a structure of a Z/2Z-graded
commutative algebra, which is Z/2Z-graded commutative due to axiom (ivb).

A priori there might not be a unique Z/2Z-graded C-algebra satisfying the axioms in Defini-
tion 16, nevertheless we expect the following

Conjecture 17. Let the notations be as above.

(a) A G-twisted Jacobian algebra Jac′(f,G) of f should exist.

(b) The subalgebra
(
Jac′(f,G)

)G
should be uniquely determined by (f,G) up to isomor-

phism.

Definition 18. Suppose that Conjecture 17 holds for the pair (f,G). The Z/2Z-graded com-
mutative algebra

Jac(f,G) :=
(
Jac′(f,G)

)G
(3.21)

is called the orbifold Jacobian algebra of (f,G).

In Theorem 22 we prove Conjecture 17 (actually a stronger statement than it), for a large
class of polynomials f — so–called invertible polynomials and any symmetry group G of it.

Under the isomorphism in axiom (iiib), it follows from axiom (v) that the non-degenerate G-
twisted Z/2Z-graded symmetric C-bilinear form Jf,G on Ω′

f,G equips Jac′(f,G) with the structure

of Z/2Z-graded Frobenius algebra. If G is a subgroup of GSL
f , then age(g) ∈ Z for all g ∈ G, the

residue class ζ is G-invariant and the pairing Jf,G induces a Z/2Z-graded symmetric pairing on
Ωf,G due to the G-twisted Z/2Z-graded commutativity (Proposition 13). Therefore, it follows
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easily that Jac(f,G) for G ⊆ GSL
f is equipped with a structure of Z/2Z-graded commutative

Frobenius algebra, which will be of our main interest.

4. Orbifold Jacobian algebras for invertible polynomials

4.1. Invertible polynomials. A polynomial f ∈ C[x1, . . . , xN ] is called a weighted homoge-
neous polynomial if there are positive integers w1, . . . , wN and d such that

f(λw1x1, . . . , λ
wNxN ) = λdf(x1, . . . , xN ) (4.1)

for all λ ∈ C∗. We call (w1, . . . , wN ; d) a system of weights of f . A weighted homogeneous
polynomial f is called non-degenerate if it has at most an isolated critical point at the origin in
CN , equivalently, if the Jacobian algebra Jac(f) of f is finite-dimensional.

Definition 19. A weighted homogeneous polynomial f ∈ C[x1, . . . , xN ] is called invertible if
the following conditions are satisfied.

(i) The number of variables (= N) coincides with the number of monomials in the polyno-
mial f , namely,

f(x1, . . . , xN ) =

N∑
i=1

ci

N∏
j=1

x
Eij

j (4.2)

for some coefficients ci ∈ C∗ and non-negative integers Eij for i, j = 1, . . . , N .
(ii) The matrix E := (Eij) is invertible over Q.

(iii) The polynomial f and the Berglund–Hübsch transpose f̃ of f defined by

f̃(x1, . . . , xN ) :=

N∑
i=1

ci

N∏
j=1

x
Eji

j (4.3)

are non-degenerate.

Definition 20. Let f(x1, . . . , xN ) =
∑N

i=1 ci
∏N

j=1 x
Eij

j be an invertible polynomial. Define
rational numbers q1, . . . , qN by the unique solution of the equation

E

 q1
...
qN

 =

1
...
1

 . (4.4)

Namely, set qi := wi/d, i = 1, . . . , N , for the system of weights (w1, . . . , wN ; d).

If f(x1, . . . , xN ) is an invertible polynomial, then we have

Gf =

(λ1, . . . , λN ) ∈ (C∗)N

∣∣∣∣∣∣
N∏
j=1

λ
E1j

j = · · · =
N∏
j=1

λ
ENj

j = 1

 , (4.5)

and hence Gf is a finite group. It is easy to see that Gf contains an element g0 := (q1, . . . , qN ).
It is important to note the following

Proposition 21. The group GSL
f = Gf ∩ SL(N ;C) is a proper subgroup of Gf .

Proof. Let f̃ be the Berglund–Hübsch transpose of f . It is known by [ET11] and [Kr] (see also
Proposition 2 in [EG-ZT]) that

GSL
f

∼= Hom(Gf̃/⟨(q̃1, . . . , q̃N )⟩,C∗) ⊊ Hom(Gf̃ ,C
∗) ∼= Gf ,

where (q̃1, . . . , q̃N ) is the unique solution of the equation (q̃1, . . . , q̃N )E = (1, . . . , 1). □

The following is our first theorem of this paper.
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Theorem 22. Let f be an invertible polynomial and G a subgroup of Gf . There exists a
unique G-twisted Jacobian algebra Jac′(f,G) of f up to isomorphism. Namely, it is uniquely
characterized by the axioms in Definition 16.

In particular, the orbifold Jacobian algebra Jac(f,G) of (f,G) exists.

In the subsequent subsections, we first prepare some notation, and then prove the uniqueness,
and finally prove the existence.

4.2. Notations. Let f(x1, . . . , xN ) =
∑N

i=1 ci
∏N

j=1 x
Eij

j be an invertible polynomial. With-
out loss of generality one may assume that ci = 1 for i = 1, . . . , N by rescaling the vari-
ables. According to [KS], an invertible polynomial f can be written as a Thom–Sebastiani sum
f = f1 ⊕ · · · ⊕ fp of invertible polynomials (in groups of different variables) fν , ν = 1, . . . , p of
the following types:

(i) xa1
1 x2 + xa2

2 x3 + · · ·+ x
am−1

m−1 xm + xam
m (chain type; m ≥ 1);

(ii) xa1
1 x2 + xa2

2 x3 + · · ·+ x
am−1

m−1 xm + xam
m x1 (loop type; m ≥ 2).

Remark 23. In [KS] the authors distinguished also polynomials of the so called Fermat type:
xa1
1 , which is regarded as a chain type polynomial with m = 1 in this paper.

We shall use the monomial basis of the Jacobian algebra Jac(fν)

Proposition 24 (cf. [Kreu]). For an invertible polynomial

fν = xa1
1 x2 + xa2

2 x3 + · · ·+ x
am−1

m−1 xm + xam
m

of chain type with m ≥ 1, the Jacobian algebra Jac(fν) has a monomial basis consisting of all

the monomials xk1
1 · · ·xkm

m such that

1) 0 ≤ ki ≤ ai − 1,
2) if

ki =

{
ai − 1 for all odd i, i ≤ 2s− 1,

0 for all even i, i ≤ 2s− 1,

then k2s = 0.

For an invertible polynomial fν = xa1
1 x2 + xa2

2 x3 + · · ·+ x
am−1

m−1 xm + xam
m x1 of loop type with

m ≥ 2, the Jacobian algebra Jac(fν) has a monomial basis consisting of all the monomials

xk1
1 · · ·xkm

m with 0 ≤ ki ≤ ai − 1.

Let Ig := {i1, . . . , iNg
} be a subset of {1, . . . , N} such that Fix(g) = {x ∈ CN | xj = 0, j /∈ Ig}.

In particular, Iid = {1, . . . , N}. Denote by Icg the complement of Ig in Iid.
In what follows, we are mostly interested in special pairs of elements of Gf .

Definition 25. Let f = f(x1, . . . , xN ) be an invertible polynomial.

(i) An ordered pair (g, h) of elements of Gf is called spanning if

Ig ∪ Ih ∪ Igh = {1, . . . , N}. (4.6)

(ii) For a spanning pair (g, h) of elements of Gf , define Ig,h := Icg ∩ Ich.
(iii) For a spanning pair (g, h) of elements of Gf , there always exist g1, g2, h1, h2 ∈ Gf such

that g = g1g2 and h = h1h2 with g2h2 = id and Ig1,h1 = ∅. The tuple (g1, g2, h1, h2) is
called the factorization of (g, h).

Remark 26. For a spanning pair (g, h) of elements of Gf , up to a reordering of the variables,
we have

g =(0, . . . , 0, α1, . . . , αp, β1, . . . , βq)

h =(γ1, . . . , γr, 0, . . . , 0, 1− β1, . . . , 1− βq),
(4.7)
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for some rational numbers 0 < αi, βi, γi < 1 and integers p, q, r such that 0 ≤ r ≤ Ng and
Ng + p + q = r + Nh + q = N . In this presentation, we have Ig ∩ Ih = {ir+1, . . . , iN−q−p},
Ig,h = {iN−q+1, . . . , iN} and

g1 =(0, . . . , 0, α1, . . . , αp, 0, . . . , 0),

g2 =(0, . . . , 0, 0, . . . , 0, β1, . . . , βq),

h1 =(γ1, . . . , γr, 0, . . . , 0, 0, . . . , 0),

h2 =(0, . . . , 0, 0, . . . , 0, 1− β1, . . . , 1− βq).

We introduce one of most important objects in this paper.

Definition 27. Let f = f(x1, . . . , xN ) be an invertible polynomial. For each spanning pair
(g, h) of elements of Gf , define a polynomial Hg,h ∈ C[x1, . . . , xN ] by

Hg,h :=

m̃g,h det
(

∂2f
∂xi∂xj

)
i,j∈Ig,h

if Ig,h ̸= ∅

1 if Ig,h = ∅
, (4.8)

where m̃g,h ∈ C∗ is the constant uniquely determined by the following equation in Jac(fgh)

1

µfg∩h

[hess(fg∩h)Hg,h] =
1

µfgh

[hess(fgh)], (4.9)

where fg∩h is an invertible polynomial given by the restriction f |Fix(g)∩Fix(h) of f to the locus
Fix(g) ∩ Fix(h).

Remark 28. The polynomial Hg,h is a non-zero constant multiple of the determinant of a minor
of the Hessian matrix of f(x1, . . . , xN ). Since Ig ∩ Ih ⊆ Igh and Ig,h ⊆ Igh, hess(f

g∩h) and Hg,h

define elements of Jac(fgh).

Remark 29. Let (g, h) be a spanning pair of elements of Gf . Suppose that Fix(g) = {0}. Then
h = g−1. It is easy to check that Hg,h = 1

µf
[hess(f)] by the explanation of m̃g,h below. Recall

also Definition 2 that if Fix(g) ∩ Fix(h) = {0} then µfg∩h = 1 and hess(fg∩h) = 1.

We explain the existence and the uniqueness of m̃g,h in Definition 27. Suppose that
f = f1 ⊕ · · · ⊕ fp is a Thom–Sebastiani sum such that each fν = fν(xi1 , . . . , xim), ν = 1, . . . , p
is either of chain type or loop type. Set Iν := {i1, . . . , im} ⊆ {1, . . . , N} for each ν. Then
Jac(f) = Jac(f1)⊗ · · · ⊗ Jac(fp) and

det

(
∂2f

∂xi∂xj

)
i,j∈Iid

=

p∏
ν=1

det

(
∂2fν
∂xi∂xj

)
i,j∈Iν

. (4.10)

For each g ∈ Gf and fν as above the following holds:

• If fν is of the chain type fν = xa1
i1
xi2 + · · · + x

am−1

im−1
xim + xam

im
, then there exists l,

0 ≤ l ≤ m such that {i1, . . . , il} ⊆ Icg and {il+1, . . . , im} ⊆ Ig.
• If fν is of loop type, then Iν ⊆ Ig or Iν ⊆ Icg .

We classify the possible cases of Ig,h.

Lemma 30. Let (g, h) be a spanning pair of elements of Gf . Suppose that f = f1 ⊕ · · · ⊕ fp
is a Thom–Sebastiani sum such that each fν , ν = 1, . . . , p is either of chain type or loop type.
Then, for each fν = fν(xi1 , . . . , xim), the either one of the following holds:

(i) fν is of chain type and, for some 0 ≤ l ≤ m,
(a) {i1, . . . , im} ⊆ Ig, {i1, . . . , il} ⊆ Ich and {il+1, . . . , im} ⊆ Ih,
(a’) {i1, . . . , im} ⊆ Ih, {i1, . . . , il} ⊆ Icg and {il+1, . . . , im} ⊆ Ig,
(b) {i1, . . . , il} ⊆ Ig,h and {il+1, . . . , im} ⊆ Ig ∩ Ih.
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(ii) fν is of loop type and
(a) {i1, . . . , im} ⊆ Ig ∩ Ih,
(b) {i1, . . . , im} ⊆ Ig ∩ Ich,
(b’) {i1, . . . , im} ⊆ Icg ∩ Ih,
(c) {i1, . . . , im} ⊆ Ig,h.

Proof. It is straightforward from the explicit form of an invertible polynomial of each type and
the group action on it. □

Obviously, only polynomials fν satisfying Iν ∩ Ig,h ̸= ∅ contribute non-trivially to Hg,h. Such
an fν satisfies the either one of the following two by Lemma 30:

(a) Iν = {i1, . . . , im} ⊆ Ig,h.
(b) fν is of the chain type and, for some 0 ≤ l ≤ m− 1,

{i1, . . . , il} ⊆ Ig,h and {il+1, . . . , im} ⊆ Ig ∩ Ih.

Set Γa := {ν | fν satisfies (a)} and Γb := {ν | fν satisfies (b)}. Since Igh = Ig,h ∪ (Ig ∩ Ih), we
have

fgh =
⊕

νa∈Γa

fνa
⊕
⊕
νb∈Γb

fνb
⊕

⊕
ν s.t.

Iν⊆Ig∩Ih

fν , (4.11)

where ⊕ denotes a Thom-Sebastiani sum and hence

Jac(fgh) =
⊗

νa∈Γa

Jac(fνa)⊗
⊗
νb∈Γb

Jac(fνb
)⊗

⊗
ν s.t.

Iν⊆Ig∩Ih

Jac(fν). (4.12)

Consider the factorization

det

(
∂2f

∂xi∂xj

)
i,j∈Ig,h

=
∏

νa∈Γa

H̃(νa)
a ·

∏
νb∈Γb

H̃
(νb)
b , (4.13)

where

H̃(νa)
a := det

(
∂2fνa

∂xi∂xj

)
i,j∈Iνa

, H̃
(νb)
b := det

(
∂2fνb

∂xi∂xj

)
i,j∈Iνb∩Ig,h

. (4.14)

Suppose for simplicity that fνb
= xa1

1 x2 + · · · + x
am−1

m−1 xm + xam
m with Iνb

∩ Ig,h = {1, . . . , l}.
By a direct calculation, we have the following equalities in Jac(fνb

);[
H̃

(νb)
b

]
=

(
l∏

i=1

ai

)
·

 l∑
j=1

(−1)l−j

j∏
i=1

ai

[xa1−2
1 xa2−1

2 · · ·xal−1
l xl+1

]
, (4.15a)

[
hess(fνb

|Fix(g)∩Fix(h))
]
=

(
m∏

i=l+1

ai

)
·

 m∑
j=l

(−1)m−j

j∏
i=l+1

ai

[xal+1−2
l+1 x

al+2−1
l+2 · · ·xam−1

m

]
,

(4.15b)

[hess(fνb
)] =

(
m∏
i=1

ai

)
·

 m∑
j=0

(−1)m−j

j∏
i=1

ai

[xa1−2
1 xa2−1

2 · · ·xam−1
m

]
. (4.15c)

Note that

µfνb
=

m∑
j=0

(−1)m−j

j∏
i=1

ai, µfνb |Fix(g)∩Fix(h)
=

m∑
j=l

(−1)m−j

j∏
i=l+1

ai. (4.16)

Hence, it is straightforward to see the existence and the uniqueness of m̃g,h.

Proposition 31. Let f = f(x1, . . . , xN ) be an invertible polynomial. For each spanning pair
(g, h) of elements of Gf , the following holds:
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(i) The class of Hg,h is non-zero in Jac(fgh).
(ii) If Ig,h = ∅, then [Hg,g−1Hh,h−1 ] = [Hgh,(gh)−1 ] in Jac(f).

(iii) For any j ∈ Ig,h, the class of xjHg,h is zero in Jac(fgh).

Proof. Let the notations be as above. We may assume that Ig,h ̸= ∅ since if Ig,h = ∅ the
statements are trivially true. The part (i) is almost clear by the equation (4.9) since [hess(fgh)]
is non-zero. The part (ii) follows from the normalization of Hg,h by the equation (4.9) in view
of the equations (4.15).

To prove part (iii), first note that there is ν, 1 ≤ ν ≤ p such that j ∈ Iν for some fν satisfying
either one of (a) or (b) above. Due to the factorization of Jac(fgh), it is enough to show that

[xjH̃
(ν)
a ] = 0 if ν ∈ Γa and [xjH̃

(ν)
b ] = 0 if ν ∈ Γb. Since the first case is almost clear, suppose

that fν ∈ Γb, Iν = {1, . . . ,m} and Iν ∩ Ig,h = {1, . . . , l}. Recall again that [H̃
(ν)
b ] is a non-

zero constant multiple of [xa1−2
1 xa2−1

2 . . . xal−1
l xl+1]. It is easy to calculate by induction that

[xa1−1
1 x2] = 0 and [x

aj

j xj+1] = 0 in Jac(fν) for j = 2, . . . , l. Therefore, we have [xjH̃
(ν)
b ] = 0 in

Jac(fν) for j = 1, . . . , l (see also the description of the monomial basis in Proposition 24). This
completes the part (iii) of the proposition. □

Proposition 32. Let f = f(x1, . . . , xN ) be an invertible polynomial. For each spanning pair
(g, h) of elements of Gf , we have

(N −Ng) + (N −Nh) ≡ (N −Ngh) (mod 2). (4.17)

Moreover, if Ig,h = ∅ then (N −Ng) + (N −Nh) = (N −Ngh).

Proof. First of all, note that N −Ng = |Icg | — the number of elements in the set Icg . Therefore,
the following equalities yield the statement:

N −Ng = |Icg\Ig,h|+ |Ig,h|, N −Nh = |Ich\Ig,h|+ |Ig,h|,
N −Ngh = |Icgh| = |Icg\Ig,h|+ |Ich\Ig,h|.

□

For each g ∈ Gf , the set Ig ⊆ {1, . . . , N} and its complement Icg will often be regarded as a
subsequence of (1, . . . , N):

Ig = (i1, . . . , iNg
), i1 < · · · < iNg

, Icg = (j1, . . . , jN−Ng
), j1 < · · · < jN−Ng

. (4.18)

Definition 33. Let g1, . . . , gk be elements of Gf such that Igi,gj = ∅ if i ̸= j.

(i) Denote by Icg1 ⊔ Icg2 the sequence given by adding the sequence Icg2 at the end of the

sequence Icg1 . Define inductively Icg1 ⊔ · · · ⊔ Icgk by
(
Icg1 ⊔ · · · ⊔ Icgk−1

)
⊔ Icgk . Obviously,

as a set, Icg1 ⊔ · · · ⊔ Icgk = Icg1...gk .
(ii) Let σg1,...,gk be the permutation which turns the sequence Icg1 ⊔· · ·⊔Icgk to the sequence

Icg1...gk . Define ε̃g1,...,gk as the signature sgn(σg1,...,gk) of the permutation σg1,...,gk .

It is straightforward from the definition that

ε̃g,id = 1 = ε̃id,g, g ∈ Gf , (4.19a)

ε̃g,h = (−1)(N−Ng)(N−Nh)ε̃h,g, g, h ∈ Gf , Ig,h = ∅, (4.19b)

ε̃g,g′ ε̃gg′,g′′ = ε̃g,g′,g′′ = ε̃g,g′g′′ ε̃g′,g′′ , g, g′, g′′ ∈ Gf , Ig,g′ = Ig′,g′′ = Ig,g′′ = ∅.(4.19c)

4.3. Uniqueness. Throughout this subsection, f = f(x1, . . . , xN ) denotes an invertible poly-
nomial. In this subsection, we shall show that for any G ⊆ Gf the axioms in Definition 16
determine uniquely Jac′(f,G) up to isomorphism. We only have to show that for g, h ∈ G the
product ◦ : Jac′(f, g) ⊗C Jac′(f, h) −→ Jac′(f, gh) is uniquely determined up to rescaling of
generators of Jac(fg)-modules Jac′(f, g).
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Take a nowhere vanishing N -form dx1 ∧ · · · ∧ dxN and set ζ := [dx1 ∧ · · · ∧ dxN ] ∈ Ωf . For
each subgroup G ⊆ Gf , fix an isomorphism in axiom (iii)

⊢: Jac′(f,G)
∼=−→ Ω′

f,G, X 7→ X ⊢ ζ, (4.20)

where ζ is considered as an element in Ω′
f,id = Ωf (recall Definition 10). Fix also a map

α : Gf −→ C∗, g 7→ αg, (4.21)

such that αid = 1 and

αgαg−1 = (−1)
1
2 (N−Ng)(N−Ng+1), g ∈ Gf . (4.22)

Such a map α always exists since for each g we may choose αg as

αg = e

[
1

8
(N −Ng)(N −Ng + 1)

]
. (4.23)

For each g ∈ G, let vg be an element of Jac′(f, g), such that

vg ⊢ ζ = αgωg, (4.24)

where ωg ∈ Ω′
f,g is the residue class of ω̃g ∈ ΩNg (Fix(g)) and

ω̃g :=

{
dxi1 ∧ · · · ∧ dxiNg

if Ig = (i1, . . . , iNg ), i1 < · · · < iNg

1g if Ig = ∅
. (4.25)

Obviously, we have ωid = ζ.

Remark 34. It might not be necessary to distinguish ζ and ωid, however, we regard ζ as a
“primitive form” (cf. [S1, S2, ST]) at the origin of the base space of the “properly-defined
deformation space” of the pair (f,G) while we hold ωid as just a Jac′(f, id)-basis of Ω′

f,id.

By axiom (i), we have Jac′(f, id) = Jac(f). Therefore, vid = [1] and, by axioms (ii)
and (iiia), vid ◦ vg = vg ◦ vid = vg. Axiom (iiia) implies that for all Y ∈ Jac′(f, g) there exists
X ∈ Jac′(f, id) = Jac(f) represented by a polynomial in {xi}i∈Ig such that Y = X ◦ vg. For any
X ∈ Jac′(f, id), we shall often write X ◦ vg as X|Fix(g)vg where X|Fix(g) is the image of X under
the map Jac(f) −→ Jac(fg).

Proposition 35. For a pair (g, h) of elements of G which is not spanning, we have

vg ◦ vh = 0 ∈ Jac′(f,G).

Proof. Denote by [γ′g,h(x)] the element of Jac(fgh) satisfying vg ◦ vh = [γ′g,h(x)]vgh. Suppose
that f = f1⊕· · ·⊕fp is a Thom–Sebastiani sum such that each fν , ν = 1, . . . , p is either of chain
type or loop type. Without loss of generality, we may assume the coordinate xk, k /∈ Ig∪Ih∪Igh
to be a variable of the polynomial f1. Consider the following two cases;

(a) f1 = xa1
1 x2 + xa2

2 x3 + · · ·+ x
am−1

m−1 xm + xam
m is of chain type.

(b) f1 = xa1
1 x2 + xa2

2 x3 + · · ·+ x
am−1

m−1 xm + xam
m x1 is of loop type.

Case (a): First, note that 1 /∈ Ig ∪ Ih ∪ Igh. Consider ( 1
a1
, 0 . . . , 0) ∈ Aut(f1, G) and extend it

naturally to the element φ ∈ Aut(f,G). Since 1 /∈ Ig ∪ Ih ∪ Igh, we have φ∗(vg′) = e
[
− 1

a1

]
vg′

for g′ ∈ {g, h, gh}. Axiom (iva) yields φ∗([γ′g,h(x)]) = e
[
− 1

a1

]
[γ′g,h(x)]. On the other hand, we

have φ∗([γ′g,h(x)]) = [γ′g,h(x)] since 1 /∈ Igh. Hence, [γ′g,h(x)] = 0.

Case (b): First, note that 1, . . . ,m /∈ Ig ∪ Ih ∪ Igh. Choose an element of Gf1\GSL
f1
, which

exists due to Proposition 21, and extend it naturally to the element φ ∈ Aut(f,G). There
exists a complex number λφ ̸= 1, the determinant of φ regarded as an element of GL(N ;C),
such that φ∗(vg′) = λ−1

φ vg′ for g′ ∈ {g, h, gh} since 1, . . . ,m /∈ Ig ∪ Ih ∪ Igh. Axiom iva
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yields φ∗([γ′g,h(x)]) = λ−1
φ [γ′g,h(x)]. On the other hand, we have φ∗([γ′g,h(x)]) = [γ′g,h(x)] since

1, . . . ,m /∈ Igh. Hence, [γ′g,h(x)] = 0. □

We consider the product vg ◦ vh for a spanning pair (g, h).

Proposition 36. For each spanning pair (g, h) of elements of G, there exists cg,h ∈ C such that

vg ◦ vh = cg,h[Hg,h]vgh. (4.26)

Moreover, cg,h does not depend on the choice of the subgroup G of Gf containing g, h.

Proof. We only need to show the first statement since the second one follows from it together
with axiom (vi), the definition of vg in (4.24) and the independence of Hg,h from a particular
choice of G. Based on Lemma 30, we study which variable in fν can appear in the product
structure.

Lemma 37. Let the notation and the cases be as in Lemma 30 above. There is a polynomial
γg,h(x) ∈ C[x1, . . . , xN ] which doesn’t depend on xi1 , . . . , xim such that the one of the following
holds:

(i) (a) vg ◦ vh = [γg,h(x)]vgh.

(b) vg ◦ vh =


[
γg,h(x) ·

(
x
ai1−2
i1

x
ai2−1
i2

· · ·xaim−1
im

)]
vgh if l = m[

γg,h(x) ·
(
x
ai1−2
i1

x
ai2−1
i2

· · ·xail
−1

il
xil+1

)]
vgh if l < m

,

(ii) (a) vg ◦ vh = [γg,h(x)]vgh.
(b) vg ◦ vh = [γg,h(x)]vgh.

(c) vg ◦ vh =
[
γg,h(x) ·

(
x
ai1−1
i1

x
ai2−1
i2

· · ·xaim−1
im

)]
vgh.

Here, we denote by [γg,h(x)] the class of γg,h(x) in Jac(fgh).

Proof. (i): We may assume fν = xa1
1 x2 + xa2

2 x3 + · · · + xam
m . For each r = 1, . . . ,m, there is a

unique element φr ∈ Aut(fν , G) such that φr(xi) = xi for all i = r+1, . . . ,m, which is explicitly
given by

φr(xr) := e

[
1

ar

]
xr,

φr(xi) := e

[
1

ai

(
1− 1

ai+1

(
1− · · · − 1

ar−1

(
1− 1

ar

)))]
xi, 1 ≤ i < r.

Denote also by φp its natural extension to Aut(f,G) and by λφr
∈ C∗ the determinant of φr

regarded as an element of GL(N ;C).
(a) For each r = 1, . . . ,m, we have φ∗

r(vg) = vg, φ
∗
r(vh) = λ−1

φr
vh and φ∗

r(vgh) = λ−1
φr
vgh.

Suppose that a polynomial γg,h(x) ∈ C[x1, . . . , xN ] satisfies vg ◦ vh = [γg,h(x)]vgh. By
axiom (iva), we obtain

[φ∗
r(γg,h(x))]vgh = λφr

φ∗
r([γg,h(x)]vgh) = λφr

φ∗
r(vg ◦ vh)

= λφr
φ∗
r(vg) ◦ φ∗

r(vh) = vg ◦ vh = [γg,h(x)]vgh,

and hence φ∗
r([γg,h(x)]) = [γg,h(x)] in Jac(fgh). In view of the above action of φr and

Proposition 24, the polynomial γg,h(x) can be chosen so that it does not depend on xi,
i = 1, . . . ,m.

(b) For each r = 1, . . . ,m, we have φ∗
r(vg) = λ−1

φr
vg, φ

∗
r(vh) = λ−1

φr
vh and φ∗

r(vgh) = vgh.
Suppose that a polynomial γ′g,h(x) ∈ C[x1, . . . , xN ] satisfies vg ◦ vh = [γ′g,h(x)]vgh. By

axiom (iva), we obtain

[φ∗
r(γ

′
g,h(x))]vgh = φ∗

r([γ
′
g,h(x)]vgh) = φ∗

r(vg ◦ vh)
= φ∗

r(vg) ◦ φ∗
r(vh) = λ−2

φr
(vg ◦ vh) = λ−2

φr
[γ′g,h(x)]vgh,
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and hence [φ∗
r(γ

′
g,h(x))] = λ−2

φr
[γ′g,h(x)] in Jac(fgh). In view of the above action of

φr and Proposition 24, the polynomial γ′g,h(x) can be chosen so that it is divisible by

xa1−2
1 xa2−1

2 · · ·xam−1
m if l = m and by xa1−2

1 xa2−1
2 · · ·xal−1

l xl+1 if l < m.

(ii): We may assume fν = xa1
1 x2+x

a2
2 x3+ · · ·+xam

m x1. For each element φ ∈ Gfν regarded as
an element of Aut(fν , G), denote also by φ its natural extension to Aut(f,G). Let λφ ∈ C∗ be
the determinant of φ regarded as an element of GL(N ;C). Note that if φ ̸= id then φ(xi) ̸= xi
for all i = 1, . . . ,m.

(a) For all φ ∈ Gfν , we have φ∗(vg) = vg, φ
∗(vh) = vh and φ∗(vgh) = vgh. Suppose that a

polynomial γg,h(x) ∈ C[x1, . . . , xN ] satisfies vg ◦ vh = [γg,h(x)]vgh. By axiom (iva), we
obtain

[φ∗(γg,h(x))]vgh = φ∗(γg,h(x)vgh) = φ∗(vg ◦ vh)
= φ∗(vg) ◦ φ∗(vh) = vg ◦ vh = [γg,h(x)]vgh,

and hence [φ∗(γg,h(x))] = [γg,h(x)] in Jac(fgh). In view of Proposition 24, the polyno-
mial γg,h(x) can be chosen so that it does not depend on xi, i = 1, . . . ,m.

(b) Suppose that a polynomial γg,h(x) ∈ C[x1, . . . , xN ] satisfies vg ◦vh = [γg,h(x)]vgh. Since
1, . . . ,m do not belong to Ig ∩ Ih nor Ig,h, it is obvious that the polynomial γg,h(x) can
be chosen so that it does not depend on xi, i = 1, . . . ,m.

(c) For all φ ∈ Gfν , we have φ∗(vg) = λ−1
φ vg, φ

∗(vh) = λ−1
φ vh and φ∗(vgh) = vgh. Sup-

pose that a polynomial γ′g,h(x) ∈ C[x1, . . . , xN ] satisfies vg ◦ vh = [γ′g,h(x)]vgh. By

axiom (iva), we obtain

[φ∗(γ′g,h(x))]vgh = φ∗(γ′g,h(x)vgh) = φ∗(vg ◦ vh)
= φ∗(vg) ◦ φ∗(vh) = λ−2

φ (vg ◦ vh) = λ−2
φ [γ′g,h(x)]vgh,

and hence [φ∗(γ′g,h(x))] = λ−2
φ [γ′g,h(x)] in Jac(fgh). In view of Proposition 24, the

polynomial γ′g,h(x) can be chosen so that it is divisible by xa1−1
1 xa2−1

2 · · ·xam−1
m .

□

Now the first statement of the proposition is a direct consequence of Lemma 37, since Hg,h

is a constant multiple of the product of the monomials in the round brackets there. We have
finished the proof of the proposition. □

By Proposition 36, we may assume that G = Gf . We give some properties of cg,h.

Lemma 38. For each g ∈ Gf , we have

cg,g−1 = (−1)
1
2 (N−Ng)(N−Ng−1) · e

[
−1

2
age(g)

]
. (4.27)

Proof. We have

1

µfg

Jf,g([hess(f
g)]vg ⊢ ζ, vg−1 ⊢ ζ) =

αgαg−1

µfg

Jf,g([hess(f
g)]ωg, ωg−1)

= (−1)
1
2 (N−Ng)(N−Ng−1) · e

[
−1

2
age(g)

]
· |G|.
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On the other hand, by axiom (v) and normalization (4.9) of Hg,h, we have

1

µfg

Jf,g([hess(f
g)]vg ⊢ ζ, vg−1 ⊢ ζ) = 1

µfg

Jf,id(ωid, [hess(f
g)]vg ◦ vg−1 ⊢ ζ)

=
1

µfg

Jf,id(ωid, cg,g−1 [hess(fg)Hg,g−1 ]ωid)

=
cg,g−1

µf
Jf,id(ωid, [hess(f)]ωid)

= cg,g−1 |G|.
□

Lemma 39. For each pair (g, h) of elements of Gf such that Ig,h = ∅, we have

cg,hch−1,g−1 = (−1)(N−Ng)(N−Nh). (4.28)

In particular it follows that cg,h ̸= 0.

Remark 40. If Ig,h = ∅ for a pair (g, h) of elements of Gf , it is spanning.

Proof. We have

vg ◦ (vh ◦ vh−1) ◦ vg−1

= (−1)
1
2 (N−Ng)(N−Ng−1)+ 1

2 (N−Nh)(N−Nh−1) · e
[
−1

2
age(g)− 1

2
age(h)

]
[g∗(Hh,h−1)Hg,g−1 ]vid,

(vg ◦ vh) ◦ (vh−1 ◦ vg−1)

=(−1)
1
2 (N−Ngh)(N−Ngh−1)e

[
−1

2
age(gh)

]
cg,hch−1,g−1 [Hgh,(gh)−1 ]vid.

The proposition follows from the facts that the product ◦ is associative, g∗(Hh,h−1) = Hh,h−1

since Ig,h = ∅, [Hg,g−1Hh,h−1 ] = [Hgh,(gh)−1 ] in Jac(f), age(g)+age(h) = age(gh) since Ig,h = ∅,
and (N −Ng) + (N −Nh) ≡ (N −Ngh) (mod 2) by Proposition 32. □

Corollary 41. Let (g, h) be a spanning pair of elements of Gf with the factorization (g1, g2, h1, h2).
The complex numbers cg1,h2

, cg2,h1
and cg1,h1

are non-zero.

Proof. It follows from the fact that Ig1,h2 = ∅, Ig2,h1 = ∅ and Ig1,h1 = ∅. □

Proposition 42. Let (g, h) be a spanning pair of elements of Gf with the factorization
(g1, g2, h1, h2). We have

cg,h = (−1)
1
2 (N−Ng2

)(N−Ng2
−1) · e

[
−1

2
age(g2)

]
· cg1,h1

cg1,g2ch2,h1

. (4.29)

In particular, cg,h ̸= 0.

Proof. We have

vg1 ◦ (vg2 ◦ vh2
) ◦ vh1

= (−1)
1
2 (N−Ng2

)(N−Ng2
−1) · e

[
−1

2
age(g2)

]
· vg1 ◦ [Hg2,g

−1
2

]vid ◦ vh1

= (−1)
1
2 (N−Ng2 )(N−Ng2−1) · e

[
−1

2
age(g2)

]
· cg1,h1

[Hg2,g
−1
2

]vgh.

On the other hand, we get:

(vg1 ◦ vg2) ◦ (vh2
◦ vh1

) = cg1,g2eg1g2 ◦ ch2,h1
vh1h2

= cg1,g2ch2,h1
cg,h[Hg,h]vgh.

Note that Hg,h = Hg2,g
−1
2

= Hh2,h
−1
2

by the definition of the factorization (g1, g2, h1, h2). By

Corollary 41, we know that cg1,g2 and ch2,h1 are non-zero, which gives the statement. □
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Hence, by this proposition, we only have to determine cg,h for all pairs (g, h) of elements of
Gf such that Ig,h = ∅.

Suppose that f = f1 ⊕ · · · ⊕ fp is a Thom–Sebastiani sum such that each fν , ν = 1, . . . , p is
either of chain type or loop type. Then, we have a natural isomorphism Gf

∼= Gf1 × · · · ×Gfp .
Therefore, it follows that each g ∈ Gf has the unique expression g = g1 · · · gp such that gi ∈ Gfi

for all i = 1, . . . , p, hence Igi,gj = ∅ if i ̸= j and Icg = Icg1 ∪ · · · ∪ Icgp . Under this notation, define

ṽg by

ṽg := ε̃g1,...,gpvg1 ◦ · · · ◦ vgp . (4.30)

Obviously, ṽg is a non-zero constant multiple of vg for all g ∈ Gf . It is also easy to see that ṽg
does not depend on the choice of ordering in the Thom–Sebastiani sum and that for a pair (g, h)
of elements of Gf with Ig,h = ∅ we have

ṽg ◦ ṽh =
1

ε̃g,h
ṽgh. (4.31)

Proposition 43. For each g ∈ G, we have

ṽg ◦ ṽg−1 = (−1)
1
2 (N−Ng)(N−Ng−1) · e

[
−1

2
age(g)

]
· [Hg,g−1 ]ṽid. (4.32)

Proof. There is an inductive presentation of ṽg given by

ṽg =

{
vg1 if g = g1,

ε̃g1...gi,gi+1
ṽg1...gi ◦ vgi+1

if g = g1 . . . gigi+1, i = 1, . . . , p− 1.

The statement follows by induction from the following calculation:

ṽg ◦ ṽg−1 = (ε̃g1...gi,gi+1
ṽg1...gi ◦ vgi+1

) ◦ (ε̃g−1
1 ...g−1

i ,g−1
i+1
ṽg−1

1 ...g−1
i

◦ vg−1
i+1

)

= (−1)
(N−N

g
−1
1 ...g

−1
i

)(N−Ngi+1
)
· (ṽg1...gi ◦ ṽg−1

1 ...g−1
i

) ◦ (vgi+1
◦ vg−1

i+1
)

= (−1)(N−Ng1...gi
)(N−Ngi+1

)+ 1
2 (N−Ng1...gi

)(N−Ng1...gi
−1)+ 1

2 (N−Ngi+1
)(N−Ngi+1

−1)

· e
[
−1

2
age(g1 . . . gi)−

1

2
age(gi+1)

]
· [Hg1...gi,g

−1
1 ...g−1

i
Hgi+1,g

−1
i+1

]ṽid

= (−1)
1
2 (N−Ng)(N−Ng−1) · e

[
−1

2
age(g)

]
· [Hg,g−1 ]ṽid.

□

This proposition says that by replacing the map α : Gf −→ C∗. to the suitable one we have
a new basis {ṽg}g∈Gf

instead of {vg}g∈Gf
. To summarize, we finally obtain the following

Corollary 44. Let (g, h) be a spanning pair of elements of Gf with the factorization (g1, g2, h1, h2).
We have

ṽg ◦ ṽh = (−1)
1
2 (N−Ng2

)(N−Ng2
−1) · e

[
−1

2
age(g2)

]
· ε̃g1,g2 ε̃h2,h1

ε̃g1,h1

[Hg,h]ṽgh. (4.33)

In particular, for any subgroup G of Gf , if a G-twisted Jacobian algebra of f exists, then it is
uniquely determined by the axioms in Definition 16 up to isomorphism.

4.4. Existence. In this subsection, we prove the existence of a G-twisted Jacobian algebra of
f . We first show this when G = Gf .

Definition 45. Define a Z/2Z-graded C-module A′ = A′
0
⊕ A′

1
as follows: for each g ∈ Gf ,

consider a free Jac(fg)-module A′
g of rank one generated by a formal letter vg,

A′
g = Jac(fg)vg. (4.34a)
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and set
A′

0
:=

⊕
g∈Gf

N−Ng≡0 (mod 2)

A′
g, and A′

1
:=

⊕
g∈Gf

N−Ng≡1 (mod 2)

A′
g. (4.34b)

By definition, axiom (i) trivially holds for A′.

Definition 46. For a spanning pair (g, h) of elements of Gf with the factorization (g1, g2, h1, h2),
set

cg,h := (−1)
1
2 (N−Ng2

)(N−Ng2
−1) · e

[
−1

2
age(g2)

]
· ε̃g1,g2 ε̃h2,h1

ε̃g1,h1

. (4.35)

It is also easy to see that

cg,id = 1 = cid,g, g ∈ Gf , (4.36a)

cg,g−1 = (−1)
1
2 (N−Ng)(N−Ng−1) · e

[
− 1

2age(g)
]
, g ∈ Gf , (4.36b)

cg,h = ε̃−1
g,h, g, h ∈ Gf , Ig,h = ∅. (4.36c)

Definition 47. For each g, h ∈ Gf , define an element of A′
gh by

vg ◦ vh :=

{
cg,h [Hg,h] vgh if the pair (g, h) is spanning

0 otherwise
. (4.37)

It is clear that vid ◦ vg = vg = vg ◦ vid since Iid,g = Ig,id = ∅ and hence [Hid,g] = [Hg,id] = 1.

Proposition 48. For a spanning pair (g, h) of elements of Gf which has the factorization
(g1, g2, h1, h2), we have

cg,h = (−1)(N−Ng)(N−Nh) · e [−age(g2)] · ch,g. (4.38)

Hence, we have
vg ◦ vh = (−1)(N−Ng)(N−Nh) · (e [−age(g2)] vh ◦ vg) . (4.39)

Proof. We have

cg,h =(−1)
1
2 (N−Ng2

)(N−Ng2
−1) · e

[
−1

2
age(g2)

]
· ε̃g1,g2 ε̃h2,h1

ε̃g1,h1

=(−1)(N−Ng1
)(N−Ng2

)+(N−Nh1
)(N−Nh2

)−(N−Ng1
)(N−Nh1

)+(N−Ng2
) · e [−age(g2)]

· (−1)
1
2 (N−Nh2

)(N−Nh2
−1) · e

[
−1

2
age(h2)

]
· ε̃h1,h2 ε̃g2,g1

ε̃h1,g1

=(−1)(N−Ng)(N−Nh) · e [−age(g2)] · ch,g,

where we used that h2 = g−1
2 , N −Ng2 = age(g2) + age(h2) and Proposition 32. □

Proposition 49. For each g, g′, g′′ ∈ Gf , we have

(vg ◦ vg′) ◦ vg′′ = vg ◦ (vg′ ◦ vg′′). (4.40)

Proof. First, we show the following

Lemma 50. For g, g′, g′′ ∈ Gf , suppose that (g, g′) and (gg′, g′′) are spanning pairs with
Ig,g′ ⊆ Ig′′ .

(i) There exist g1, g2, g3, g
′
1, g

′
2, g

′
3, g

′′
1 , g

′′
2 , g

′′
3 ∈ Gf such that

g = g1g2g3, g
′ = g′1g

′
2g

′
3, g

′′ = g′′1 g
′′
2 g

′′
3 , g′1g

′′
1 = id, g2g

′′
2 = id, g3g

′
3 = id, (4.41)

and (g1g2, g3, g
′
1g

′
2, g

′
3) is the factorization of (g, g′) and (g1g

′
2, g2g

′
1, g

′′
3 , g

′′
1 g

′′
2 ) is the fac-

torization of (gg′, g′′).
(ii) The pairs (g′, g′′) and (g, g′g′′) are spanning such that Ig′,g′′ ⊆ Ig.
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Proof. (i) Similarly to the presentation of (4.7), the elements g, g′, g′′ satisfying the conditions
can be expressed, in the multiplicative form, as follows:

g = g1 · g2 · id · id · g3 · id
g′ = id · id · g′1 · g′2 · g′3 · id
g′′ = id · g′′2 · g′′1 · id · id · g′′3

. (4.42)

(ii) By the above presentation, it is easy to see that (g, g′) and (gg′, g′′) are spanning pairs.
It follows from g′1g

′′
1 = id that Ig′,g′′ ⊆ Ig. □

Lemma 51. The LHS of (4.40) is non-zero if and only if the RHS of (4.40) is non-zero.

Proof. By Proposition 31 (iii), the LHS of (4.40) is non-zero only if both pairs (g, g′) and
(gg′, g′′) are spanning and Ig,g′ ⊆ Ig′′ and the RHS of (4.40) is non-zero only if both pairs
(g, g′g′′) and (g′, g′′) are spanning and Ig′,g′′ ⊆ Ig. Lemma 50 together with Proposition 48
yields the statement. □

Lemma 52. Let the notations be as above. We have

Hg,g′ = Hg3,g′
3
, Hgg′,g′′ = Hg2g′

1,g
′′
2 g′′

1
, Hg,g′g′′ = Hg2g3,g′′

2 g′
3
, Hg′,g′′ = Hg′

1,g
′′
1
, (4.43)

and hence [Hg,g′Hgg′,g′′ ] = [Hg,g′g′′Hg′,g′′ ] in Jac(fgg
′g′′

).

Proof. The first statement follows from the definition of Hg,h and the second one does from
Proposition 31 (ii). □

Therefore, we only have to show the following

Lemma 53. Let the notations be as above. we have

cg,g′cgg′,g′′ = cg,g′g′′cg′,g′′ . (4.44)

Proof. It follows from the definition (4.35) that

cg,g′ = (−1)
1
2 (N−Ng3

)(N−Ng3
−1) · e

[
−1

2
age(g3)

]
·
ε̃g1g2,g3 ε̃g′

3,g
′
1g

′
2

ε̃g1g2,g′
1g

′
2

,

cgg′,g′′ = (−1)
1
2 (N−Ng2g′1

)(N−Ng2g′1
−1) · e

[
−1

2
age(g2g

′
1)

]
·
ε̃g1g′

2,g2g
′
1
ε̃g′′

2 g′′
1 ,g′′

3

ε̃g1g′
2,g

′′
3

,

cg,g′g′′ = (−1)
1
2 (N−Ng2g3

)(N−Ng2g3
−1) · e

[
−1

2
age(g2g3)

]
·
ε̃g1,g2g3 ε̃g′

2g
′
3,g

′′
2 g′′

3

ε̃g1,g′
2g

′′
3

,

cg′,g′′ = (−1)
1
2 (N−Ng′1

)(N−Ng′1
−1) · e

[
−1

2
age(g′1)

]
·
ε̃g′

2g
′
3,g

′
1
ε̃g′′

1 ,g′′
2 g′′

3

ε̃g′
2g

′
3,g

′′
2 g′′

3

.
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Since all Icgi , I
c
g′
i
and Icg′′

i
are mutually disjoint, we get

cg,g′cgg′,g′′ =(−1)
1
2 (N−Ng3 )(N−Ng3−1)+ 1

2 (N−Ng2g′1
)(N−Ng2g′1

−1)

· e
[
−1

2
age(g3)−

1

2
age(g2g

′
1)

]
·
ε̃g1g2,g3 ε̃g′

3,g
′
1g

′
2

ε̃g1g2,g′
1g

′
2

ε̃g1g′
2,g2g

′
1
ε̃g′′

2 g′′
1 ,g′′

3

ε̃g1g′
2,g

′′
3

=(−1)
1
2 (N−Ng3 )(N−Ng3−1)+ 1

2 (N−Ng2+N−Ng′1
)(N−Ng2+N−Ng′1

−1)

· e
[
−1

2
age(g3)−

1

2
age(g2)−

1

2
age(g′1)

]
·
ε̃g1,g2 ε̃g1,g2,g3 ε̃g′

3,g
′
1,g

′
2
ε̃g′

1,g
′
2
ε̃g1,g′

2
ε̃g1,g′

2,g
′
1,g2

ε̃g′
1,g2

ε̃g′′
1 ,g′′

2
ε̃g′′

1 ,g′′
2 ,g′′

3

ε̃g1,g2 ε̃g1,g2,g′
1,g

′
2
ε̃g′

1,g
′
2
ε̃g1,g′

2
ε̃g1,g′

2,g
′′
3

=(−1)
1
2

(
(N−Ng3

)2−(N−Ng3
)+(N−Ng2

)2−(N−Ng2
)+(N−Ng′1

)2−(N−Ng′1
)+2(N−Ng2

)(N−Ng′1
)
)

· e
[
−1

2
age(g3)−

1

2
age(g2)−

1

2
age(g′1)

]
·
ε̃g1,g2,g3 ε̃g′

3,g
′
1,g

′
2
ε̃g1,g′

2,g
′
1,g2

ε̃g′
1,g2

ε̃g′′
1 ,g′′

2
ε̃g′′

1 ,g′′
2 ,g′′

3

ε̃g1,g2,g′
1,g

′
2
ε̃g1,g′

2,g
′′
3

,

and

cg,g′g′′cg′,g′′ =(−1)
1
2 (N−Ng2g3

)(N−Ng2g3
−1)+ 1

2 (N−Ng′1
)(N−Ng′1

−1)

· e
[
−1

2
age(g2g3)−

1

2
age(g′1)

]
·
ε̃g1,g2g3 ε̃g′′

2 g′
3,g

′
2g

′′
3

ε̃g1,g′
2g

′′
3

ε̃g′
2g

′
3,g

′
1
ε̃g′′

1 ,g′′
2 g′′

3

ε̃g′
2g

′
3,g

′′
2 g′′

3

=(−1)
1
2 (N−Ng2

+N−Ng3
)(N−Ng2

+N−Ng3
−1)+ 1

2 (N−Ng′1
)(N−Ng′1

−1)

· e
[
−1

2
age(g3)−

1

2
age(g2)−

1

2
age(g′1)

]
·
ε̃g1,g2,g3 ε̃g2,g3 ε̃g′′

2 ,g′
3
ε̃g′′

2 ,g′
3,g

′
2,g

′′
3
ε̃g′

2,g
′′
3
ε̃g′

2,g
′
3
ε̃g′

2,g
′
3,g

′
1
ε̃g′′

1 ,g′′
2 ,g′′

3
ε̃g′′

2 ,g′′
3

ε̃g1,g′
2,g

′′
3
ε̃g′

2,g
′′
3
ε̃g′

2,g
′
3
ε̃g′

2,g
′
3,g

′′
2 ,g′′

3
ε̃g′′

2 ,g′′
3

=(−1)
1
2

(
(N−Ng3 )

2−(N−Ng3 )+(N−Ng2 )
2−(N−Ng2 )+(N−Ng′1

)2−(N−Ng′1
)+2(N−Ng2 )(N−Ng3 )

)

· e
[
−1

2
age(g3)−

1

2
age(g2)−

1

2
age(g′1)

]
·
ε̃g1,g2,g3 ε̃g2,g3 ε̃g′′

2 ,g′
3
ε̃g′′

2 ,g′
3,g

′
2,g

′′
3
ε̃g′

2,g
′
3,g

′
1
ε̃g′′

1 ,g′′
2 ,g′′

3

ε̃g1,g′
2,g

′′
3
ε̃g′

2,g
′
3,g

′′
2 ,g′′

3

.

Therefore, we only have to show that

(−1)
(N−Ng2 )(N−Ng′1

) ·
ε̃g1,g2,g3 ε̃g′

3,g
′
1,g

′
2
ε̃g1,g′

2,g
′
1,g2

ε̃g′
1,g2

ε̃g′′
1 ,g′′

2
ε̃g′′

1 ,g′′
2 ,g′′

3

ε̃g1,g2,g′
1,g

′
2
ε̃g1,g′

2,g
′′
3

= (−1)(N−Ng2
)(N−Ng3

) ·
ε̃g1,g2,g3 ε̃g2,g3 ε̃g′′

2 ,g′
3
ε̃g′′

2 ,g′
3,g

′
2,g

′′
3
ε̃g′

2,g
′
3,g

′
1
ε̃g′′

1 ,g′′
2 ,g′′

3

ε̃g1,g′
2,g

′′
3
ε̃g′

2,g
′
3,g

′′
2 ,g′′

3

.

Since g′1g
′′
1 = id, g2g

′′
2 = id and g3g

′
3 = id, we have Icg′

1
= Icg′′

1
, Icg2 = Icg′′

2
and Icg3 = Icg′

3
. We also

have that ε̃2• = 1 for any expression •. Hence, the problem is reduced to show the following
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equation:

(−1)
(N−Ng2

)(N−Ng′1
) ·
ε̃g1,g2,g3 ε̃g3,g′

1,g
′
2
ε̃g1,g′

2,g
′
1,g2

ε̃g′
1,g2,g

′′
3

ε̃g1,g2,g′
1,g

′
2
ε̃g1,g′

2,g
′′
3

= (−1)(N−Ng2
)(N−Ng3

) ·
ε̃g1,g2,g3 ε̃g2,g3,g′

2,g
′′
3
ε̃g′

2,g3,g
′
1
ε̃g′

1,g2,g
′′
3

ε̃g1,g′
2,g

′′
3
ε̃g′

2,g3,g2,g
′′
3

.

Recall also that ε̃• is the signature of a permutation σ• based on the expression • (see Defini-
tion 33), and hence we get a suitable sign by interchanging two indexes, for example,

ε̃g3,g′
1,g

′
2
= (−1)

(N−Ng′1
)(N−Ng′2

)
ε̃g3,g′

2,g
′
1
.

The LHS of the above equation is given by

(−1)
(N−Ng2

)(N−Ng′1
) ·
ε̃g1,g2,g3 ε̃g3,g′

1,g
′
2
ε̃g1,g′

2,g
′
1,g2

ε̃g′
1,g2,g

′′
3

ε̃g1,g2,g′
1,g

′
2
ε̃g1,g′

2,g
′′
3

= (−1)
(N−Ng2

)(N−Ng′1
) ·
ε̃g1,g2,g3(−1)

(N−Ng′1
)(N−Ng′2

)
ε̃g3,g′

2,g
′
1
ε̃g′

1,g2,g
′′
3

ε̃g1,g′
2,g

′′
3

·
(−1)

(N−Ng2
)(N−Ng′1

)+(N−Ng2
)(N−Ng′2

)+(N−Ng′2
)(N−Ng′1

)
ε̃g1,g2,g′

1,g
′
2

ε̃g1,g2,g′
1,g

′
2

= (−1)
(N−Ng2 )(N−Ng′2

) ·
ε̃g1,g2,g3 ε̃g3,g′

2,g
′
1
ε̃g′

1,g2,g
′′
3

ε̃g1,g′
2,g

′′
3

,

while the RHS is given by

(−1)(N−Ng2
)(N−Ng3

) ·
ε̃g1,g2,g3 ε̃g2,g3,g′

2,g
′′
3
ε̃g′

2,g3,g
′
1
ε̃g′

1,g2,g
′′
3

ε̃g1,g′
2,g

′′
3
ε̃g′

2,g3,g2,g
′′
3

= (−1)(N−Ng2 )(N−Ng3 ) ·
ε̃g1,g2,g3(−1)

(N−Ng′2
)(N−Ng3

)
ε̃g3,g′

2,g
′
1
ε̃g′

1,g2,g
′′
3

ε̃g1,g′
2,g

′′
3

·
(−1)

(N−Ng2
)(N−Ng3

)+(N−Ng2
)(N−Ng′2

)+(N−Ng′2
)(N−Ng3 )ε̃g′

2,g3,g2,g
′′
3

ε̃g′
2,g3,g2,g

′′
3

= (−1)
(N−Ng2

)(N−Ng′2
) ·
ε̃g1,g2,g3 ε̃g3,g′

2,g
′
1
ε̃g′

1,g2,g
′′
3

ε̃g1,g′
2,g

′′
3

,

which coincides with the LHS. □

We have finished the proof of the proposition. □

Now, it is possible to equip A′ with a structure of Z/2Z-graded C-algebra.

Definition 54. Define a C-bilinear map ◦ : A′ ⊗C A′ −→ A′ by setting, for each g, h ∈ Gf and
ϕ(x), ψ(x) ∈ C[x1, . . . , xN ],

([ϕ(x)]vg) ◦ ([ψ(x)]vh) := cg,h [ϕ(x)ψ(x)Hg,h] vgh. (4.45)

It is easy to see that the map ◦ is well-defined by Proposition 31 (iii).

Proposition 55. The map ◦ equips A′ with a structure of Z/2Z-graded C-algebra with the
identity vid, which satisfies axiom (ii).

Proof. The associativity of the product follows from Proposition 49. It is obvious by Proposi-
tion 32 that A′

i
◦ A′

j
⊂ A′

i+j
for all i, j ∈ Z/2Z. It is also clear by the definition of the map ◦

above that the natural surjective maps Jac(f) −→ Jac(fg), g ∈ Gf equip A′ with a structure of
Jac(f)-module, which coincides with the product map ◦ : A′

id ⊗C A′
g −→ A′

g. □
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Take a nowhere vanishing N -form dx1 ∧ · · · ∧ dxN and set ζ := [dx1 ∧ · · · ∧ dxN ] ∈ Ωf . For
each g ∈ Gf , let ωg ∈ Ω′

f,g be the residue class of ω̃g ∈ ΩNg (Fix(g)) where

ω̃g :=

{
dxi1 ∧ · · · ∧ dxiNg

if Ig = (i1, . . . , iNg ), i1 < · · · < iNg

1g if Ig = ∅
. (4.46)

Obviously, we have ωid = ζ.

Definition 56. Define a C-bilinear map ⊢: A′⊗CΩ
′
f,Gf

−→ Ω′
f,Gf

by setting, for each g, h ∈ Gf

and ϕ(x), ψ(x) ∈ C[x1, . . . , xN ],

([ϕ(x)]vg) ⊢ ([ψ(x)]ωh) :=
αghcg,h
αh

[ϕ(x)ψ(x)Hg,h]ωgh, (4.47)

where α : G −→ C∗, g 7→ αg is a map given by

αg := e

[
1

8
(N −Ng)(N −Ng + 1)

]
. (4.48)

Remark 57. The map α : G −→ C∗ satisfies αid = 1 and

αgαg−1 = (−1)
1
2 (N−Ng)(N−Ng+1), g ∈ Gf . (4.49)

The map ⊢ induces an isomorphism ⊢ ζ : A′ −→ Ω′
f,Gf

of Z/2Z-graded C-modules:

⊢ ζ : A′
g −→ Ω′

f,g, [ϕ(x)]vg 7→ [ϕ(x)]vg ⊢ ζ = αg[ϕ(x)]ωg, (4.50)

Note that for each g, h ∈ Gf and ϕ(x), ψ(x) ∈ C[x1, . . . , xN ] we have

([ϕ(x)]vg) ⊢ ([ψ(x)]ωh) = (([ϕ(x)]vg) ◦ ([ψ(x)]vh)) ⊢ ζ, (4.51)

by which we obtain the following

Proposition 58. The map ⊢: A′ ⊗C Ω′
f,Gf

−→ Ω′
f,Gf

satisfies axiom (iii) in Definition 16.

On A′ we have the action of φ ∈ Aut(f,G) induced by the isomorphism ⊢ ζ : A′ −→ Ω′
f,Gf

,

which is denoted by φ∗. We also use the notation of (3.6).

Proposition 59. Axiom (iv) is satisfied by A′, namely, axioms (iva) and (ivb) hold.

Proof. Let (g, h) be a spanning pair of elements of Gf with the factorization (g1, g2, h1, h2) and φ
an element of Aut(f,G). For simplicity, set g′ := φ◦g◦φ−1, h′ := φ◦h◦φ−1, g′i := φ◦gi◦φ−1 and
h′i := φ◦hi ◦φ−1 for i = 1, 2. Note that the pair (g′, h′) is a spanning pair with the factorization
(g′1, g

′
2, h

′
1, h

′
2) since φ is a C-algebra automorphism of C[x1, . . . , xN ], which induces a bi-regular

map φ : (Fix(g′i)) −→ Fix(gi). It also follows that there exist λφ, λφgi
, λφhi

∈ C∗, i = 1, 2 such
that

φ∗(ω̃id) = λφω̃id, φ∗(ω̃gi) = λφgi
ω̃g′

i
, φ∗(ω̃hi) = λφhi

ω̃h′
i
, i = 1, 2,

(see (4.46) for the definition of ω̃g) and that, by (4.48), αg′ = αg, αh′ = αh, αg′
i
= αgi and

αh′
i
= αhi for i = 1, 2.

For each ϕ(x) ∈ C[x1, . . . , xN ], we have

φ∗([ϕ(x)]vg) = [φ∗ϕ(x)]φ∗(vg),

since

φ∗([ϕ(x)]vg) ⊢ φ∗(ζ) = φ∗([ϕ(x)]vg ⊢ ζ) = φ∗(αg[ϕ(x)]ωg)

= αg[φ
∗ϕ(x)]φ∗(ωg) =

αg

αg′
([φ∗ϕ(x)]φ∗(vg)) ⊢ φ∗(ζ) = ([φ∗ϕ(x)]φ∗(vg)) ⊢ φ∗(ζ).

Therefore, we only need to show that φ∗(vg) ◦ φ∗(vh) = φ∗(vg ◦ vh).
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It easily follows that

φ∗(vid) = vid, φ∗(vgi) =
λφgi

λφ
vg′

i
, φ∗(vhi

) =
λφhi

λφ
vh′

i
, i = 1, 2,

since φ∗(vid) ⊢ φ∗(ζ) = φ∗(vid ⊢ ζ) = φ∗(ζ) and

(λφgi
vg′

i
) ⊢ ζ = λφgi

αg′
i
ωg′

i
= φ∗(αgiωgi) = φ∗(vgi) ⊢ φ∗(ζ) = (λφφ

∗(vgi)) ⊢ ζ,
(λφhi

vh′
i
) ⊢ ζ = λφhi

αh′
i
ωh′

i
= φ∗(αhi

ωhi
) = φ∗(vhi

) ⊢ φ∗(ζ) = (λφφ
∗(vhi

)) ⊢ ζ.

Lemma 60. We have

φ∗(ωg) =
λφg1

λφg2

λφ
· ε̃g1,g2
ε̃g′

1,g
′
2

· ωg′ , φ∗(ωh) =
λφh1

λφh2

λφ
· ε̃h1,h2

ε̃h′
1,h

′
2

· ωh′ , (4.52)

which implies

φ∗(vg) =
λφg1

λφg2

λ2φ
·
ε̃g′

1,g
′
2

ε̃g1,g2
· vg′ , φ∗(vh) =

λφh1
λφh2

λ2φ
·
ε̃h′

1,h
′
2

ε̃h1,h2

· vh′ . (4.53)

Proof. Let TCN be the tangent sheaf on CN . For each g′′ ∈ Gf , define a poly-vector field

θ̃g′′ ∈ Γ
(
CN ,∧N−Ng′′TCN

)
by

θ̃g′′ :=


∂

∂xj1
∧ · · · ∧ ∂

∂xjN−N
g′′

if Icg′′ = (j1, . . . , jN−Ng′′ ), j1 < · · · < jN−Ng′′

1 if Icg′′ = ∅
.

Since we have φ∗(ω̃id) = λφω̃id and φ∗(ω̃gi) = λφgi
ω̃g′

i
for i = 1, 2, the poly-vector field θ̃gi

transforms under φ as

θ̃gi 7→
λφgi

λφ
· ε̃gi
ε̃g′

i

· θ̃g′
i
, i = 1, 2,

where ε̃gi is the signature of the permutation Iid −→ Icgi ⊔ Igi and ε̃g′
i
is the signature of the

permutation Iid −→ Icg′
i
⊔ Ig′

i
. Suppose that φ∗(ωg) = λφg

ωg′ for some λφg
∈ C∗ and let ε̃g

be the signature of the permutation Iid −→ Icg ⊔ Ig and ε̃g′ be signature of the permutation

Iid −→ Icg′ ⊔ Ig′ . Then, θ̃g transforms under φ as

θ̃g 7→
λφg

λφ
· ε̃g
ε̃g′

· θ̃g′ ,

Note that θ̃g = ε̃g1,g2 θ̃g1 ∧ θ̃g2 and θ̃g′ = ε̃g′
1,g

′
2
θ̃g′

1
∧ θ̃g′

2
. Hence, we have

λφg

λφ
·
ε̃g ε̃g′

1,g
′
2

ε̃g′ ε̃g1,g2
=
λφg1

λφg2

λ2φ
· ε̃g1 ε̃g2
ε̃g′

1
ε̃g′

2

.

Therefore, the statement is reduced to show that

ε̃g1 ε̃g2
ε̃g

=
ε̃g′

1
ε̃g′

2

ε̃g′
.

However, by calculating the number of elements less than j in the sequences Icg1 , I
c
g2 and Icg

for each element j in Icg1 or Icg2 , it turns out that the LHS of the above equation is equal to

(−1)(N−Ng1
)(N−Ng2

). Similarly, the RHS is equal to (−1)
(N−Ng′1

)(N−Ng′2
)
. They coincide since

we have Ng1 = Ng′
1
and Ng2 = Ng′

2
. □

Lemma 61. We have

[φ∗Hg,h] =
λ2φg2

λ2φ
[Hg′,h′ ]. (4.54)
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Proof. Recall Definition 27, where Hg,h is defined as a non-zero constant multiple of

det

(
∂2f

∂xi∂xj

)
i,j∈Ig,h

.

Now, Ig,h = Icg2 = Ich2
, Ig′,h′ = Icg′

2
= Ich′

2
. This is nothing but the transformation rule of the

determinant under the automorphism φ. □

Since g2h2 = id and g′2h
′
2 = id by definition of the factorizations,

Ng2 = Nh2
= Nh′

2
= Ng′

2
, λφg2

= λφh2
,

where we identify ωh2
with ωg2 under Ωf,h2

= Ωf,g2 and ωh′
2
with ωg′

2
under Ωf,h′

2
= Ωf,g′

2
. By

the above lemma, it follows that

φ∗(vg) ◦ φ∗(vh)

=
λφg1

λφg2
λφh1

λφh2

λ4φ
· ε̃g1,g2
ε̃g′

1,g
′
2

· ε̃h1,h2

ε̃h′
1,h

′
2

· vg′ ◦ vh′

=
λφg1

λφg2
λφh1

λφh2

λ4φ
· ε̃g1,g2
ε̃g′

1,g
′
2

· ε̃h1,h2

ε̃h′
1,h

′
2

· (−1)
1
2 (N−Ng′2

)(N−Ng′2
−1) · e

[
−1

2
age(g′2)

]
·
ε̃g′

1,g
′
2
ε̃h′

2,h
′
1

ε̃g′
1,h

′
1

· [Hg′,h′ ] vg′h′

= (−1)
1
2 (N−Ng2

)(N−Ng2
−1) · e

[
−1

2
age(g2)

]
· ε̃g1,g2 ε̃h2,h1

ε̃g1,h1

·

(
λ2φg2

λ2φ
[Hg′,h′ ]

)(
λφg1

λφh1

λ2φ
· ε̃g1,h1

ε̃g′
1,h

′
1

vg′h′

)
= cg,h [φ

∗Hg,h]φ
∗(vgh) = φ∗(vg ◦ vh),

where we also used that

ε̃h1,h2 = (−1)(N−Nh1
)(N−Nh2

)ε̃h2,h1 , ε̃h′
1,h

′
2
= (−1)

(N−Nh′
1
)(N−Nh′

2
)
ε̃h′

2,h
′
1
.

Hence, we proved the algebra structure ◦ of A′ is Aut(f,G)-invariant.
The G-twisted Z/2Z-graded commutativity, axiom (ivb), is a direct consequence of Proposi-

tion 48 since Hg,h = Hh,g and g∗(vh) = e[−age(g2)] · vh which follows from the calculation

g∗(vh) ⊢ ζ = g∗(vh) ⊢ (e [−age(g)] g∗(ζ)) = e [−age(g)] · g∗(αhωh)

= e [−age(g2)] · (αhωh) = (e[−age(g2)] · vh) ⊢ ζ.

We have finished the proof of the proposition. □

We show the invariance of the bilinear form Jf,G with respect to the product structure of A′.
We use the notation in Definition 27.

Proposition 62. For a spanning pair (g, h) of elements of Gf , we have

Jf,gh

(
vg ⊢ ωh,

[
1

µfg∩h

hess(fg∩h)

]
ω(gh)−1

)
= (−1)(N−Ng)(N−Nh)Jf,h

(
ωh,

(
(h−1)∗vg

)
⊢
([

1

µfg∩h

hess(fg∩h)

]
ω(gh)−1

))
. (4.55)

As a consequence, the algebra A′ satisfies axiom (v).
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Proof. Let (g1, g2, h1, h2) be the factorization of the spanning pair (g, h). The LHS of the
equation (4.55) is calculated as

Jf,gh

(
vg ⊢ ωh,

[
1

µfg∩h

hess(fg∩h)

]
ω(gh)−1

)
=

1

αh
· Jf,gh

(
(vg ◦ vh) ⊢ ζ,

[
1

µfg∩h

hess(fg∩h)

]
ω(gh)−1

)
=
αghcg,h
αh

· Jf,gh
(
ωgh,

[
1

µfg∩h

hess(fg∩h)Hg,h

]
ω(gh)−1

)
=
αgh

αh
· (−1)

1
2 (N−Ng2 )(N−Ng2−1) · e

[
−1

2
age(g2)

]
· ε̃g1,g2 ε̃h2,h1

ε̃g1,h1

· (−1)N−Ngh · e
[
−1

2
age(gh)

]
· |G|

=
αgh

αh
· (−1)

1
2 (N−Ng2

)(N−Ng2
−1)+(N−Ngh)

· e
[
−1

2
age(g1)−

1

2
age(h1)−

1

2
age(g2)

]
· ε̃g1,g2 ε̃h2,h1

ε̃g1,h1

· |G|.

On the other hand, the RHS of the equation (4.55) is calculated as

(−1)(N−Ng)(N−Nh) · Jf,h
(
ωh,

(
(h−1)∗vg

)
⊢
([

1

µfg∩h

hess(fg∩h)

]
ω(gh)−1

))
=

1

α(gh)−1

(−1)(N−Ng)(N−Nh) · e
[
−age(h−1

2 )
]

· Jf,h
(
ωh,

([
1

µfg∩h

hess(fg∩h)

]
vg ◦ v(gh)−1

)
⊢ ζ
)

=
αh−1cg,(gh)−1

α(gh)−1

(−1)(N−Ng)(N−Nh) · e [−age(g2)] · Jf,h
(
ωh,

[
1

µfg∩h

hess(fg∩h)

]
⊢ ωh−1

)
=

αh−1

α(gh)−1

(−1)(N−Ng)(N−Nh)+
1
2 (N−Ng1 )(N−Ng1−1) · e

[
−1

2
age(g1)− age(g2)

]
·
ε̃g2,g1 ε̃g−1

1 ,h1

ε̃g2,h1

· (−1)N−Nh · e
[
−1

2
age(h)

]
· |G|

=
αh−1

α(gh)−1

(−1)(N−Ng+1)(N−Nh)+
1
2 (N−Ng1

)(N−Ng1
−1)−(N−Ng2

)+(N−Ng1
)(N−Ng2

)

· e
[
−1

2
age(g1)−

1

2
age(h1)−

1

2
age(g2)

]
· ε̃g1,g2 ε̃h2,h1

ε̃g1,h1

· |G|,

where we used that ε̃−1

g−1
2 ,h1

= ε̃g−1
2 ,h1

= ε̃h2,h1 and ε̃g−1
1 ,h1

= ε̃g1,h1 = ε̃−1
g1,h1

. We have

αghα(gh)−1 = (−1)
1
2 (N−Ngh)(N−Ngh+1) and αhαh−1 = (−1)

1
2 (N−Nh)(N−Nh+1) by (4.49). Hence,

it follows from a direct calculation by the use of

N −Ng = (N −Ng1) + (N −Ng2), N −Nh = (N −Nh1
) + (N −Nh2

),

N −Ngh = N −Ng1g2 = (N −Ng1) + (N −Nh1), Ng2 = Nh2 ,
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(cf. Proposition 32) that

1

2
(N −Ngh)(N −Ngh + 1) +

1

2
(N −Ng2)(N −Ng2 − 1) + (N −Ngh)

− 1

2
(N −Nh)(N −Nh + 1) + (N −Ng + 1)(N −Nh)

+
1

2
(N −Ng1)(N −Ng1 − 1)− (N −Ng2) + (N −Ng1)(N −Ng2)

≡ 0 (mod 2),

which gives the equation (4.55)
For X ∈ A′

g, ω ∈ Ω′
f,h, ω

′ ∈ Ω′
f,G, Jf,G(X ⊢ ω, ω′) is non-zero only if ω′ ∈ Ω′

f,(gh)−1 and the

pair (g, h) is a spanning pair. Note that Ig ∪ Ih∪ Igh = Iid if and only if Ih∪ I(gh)−1 ∪ Ig−1 = Iid,

which means the pair (g, h) is a spanning pair if and only if the pair (h, (gh)−1) is so. Therefore,
Jf,G(X ⊢ ω, ω′) is non-zero if and only if Jf,G(ω, (h

−1)∗X ⊢ ω′) is so. It follows that the
axiom (v) can be reduced to the equation (4.55). □

The last axiom (vi) is trivially satisfied for A′. Therefore, we have shown the existence of a
Gf -twisted Jacobian algebra of f .

Moreover, it is easy to see the following

Proposition 63. For each subgroup G ⊆ Gf , there exists a G-twisted Jacobian algebra of f .

Proof. Consider the subspace A′
G of A′ defined by

A′
G :=

⊕
g∈G

A′
g,

the restriction of the product structure map ◦ : A′⊗CA′ −→ A′ to A′
G⊗CA′

G and the restriction
of the A′-module structure map ⊢: A′ ⊗C Ω′

f,Gf
−→ A′ to A′

G ⊗C Ω′
F,G. By the construction of

these structures on A′, it is almost obvious that they satisfy all the axioms in Definition 16. □

We have finished the proof of Theorem 22.

5. Orbifold Jacobian algebras for ADE orbifolds

The classification of invertible polynomials in three variables giving ADE singularities and
the subgroups of their maximal diagonal symmetries preserving the holomorphic volume form is
given in Table 1 below (see also [ET13a] Section 8 Table 3).

As it is explained in Section 8 in [ET13a], one can describe explicitly the geometry of van-

ishing cycles for the holomorphic map f̂ : Ĉ3/G −→ C. Here, Ĉ3/G is a crepant resolution

of C3/G and f̂ is the convolution of the resolution map Ĉ3/G −→ C3/G and the induced one

f : C3/G −→ C. Note that Ĉ3/G is covered by some charts all isomorphic to C3. When
G respects one coordinate we only need to look at the resolutions of C2 given in [BaeKn].
For G ∼= Z/2Z acting (zi, zj) 7→ (−zi,−zj), we have C3/G ∼= C × {z2 = xy} ⊂ C4 by
x = z2i , y = z2j , z = zizj and we have the two charts C3 → C4;

(t, u, v) 7→ (t, u, uv2, uv) and (t, u, v) 7→ (t, u2v, v, uv).

For G ∼= Z/3Z =
〈
1
3 (1, 2, 0)

〉
, we have C3/G ∼= C× {z3 = xy} ⊂ C4 by

x = z31 , y = z32 , z = z1z2

and we have the three charts C3 → C4;

(t, u, v) 7→ (t, u, u2v3, uv) , (t, u, v) 7→ (t, u2v, uv2, uv) and (t, u, v) 7→ (t, u3v2, v, uv).

We shall calculate the restriction of f̂ on each chart based on the classification in Table 1.
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Type f(x1, x2, x3) Gf ∩ SL(3;C) Singularity Type

I z2k+1
1 + z22 + z23 , k ≥ 1

〈
1
2
(0, 1, 1)

〉
A2k

z2k1 + z22 + z23 , k ≥ 1
〈
1
2
(0, 1, 1), 1

2
(1, 0, 1)

〉
A2k−1

z31 + z32 + z23
〈
1
3
(1, 2, 0)

〉
D4

z41 + z32 + z23
〈
1
2
(1, 0, 1)

〉
E6

z51 + z32 + z23 {1} E8

II z21 + z22 + z2z
2k
3 , k ≥ 1

〈
1
2
(1, 0, 1)

〉
A4k−1

z21 + z22 + z2z
2k+1
3 , k ≥ 1

〈
1
2
(0, 1, 1)

〉
A4k+1

z21 + zk−1
2 + z2z

2
3 , k ≥ 4

〈
1
2
(1, 0, 1)

〉
Dk

z31 + z22 + z2z
2
3 {1} E6

z21 + z32 + z2z
3
3 {1} E7

III z21 + z3z
2
2 + z2z

k+1
3 , k ≥ 1 {1} D2k+2

IV zk1 + z1z2 + z2z
l
3, k, l ≥ 2 {1} Akl−1

z21 + z1z
k
2 + z2z

2
3 , k ≥ 2 {1} D2k+1

V z1z2 + zk2 z3 + zl3z1, k, l ≥ 1 {1} Akl

Table 1. Classification of invertible polynomials giving ADE singularities and the

groups of their diagonal symmetries preserving the holomorphic volume form.

1. For the pair

f := zk+1
1 + z22 + z23 (k ≥ 1), G :=

〈
1

2
(0, 1, 1)

〉
, (5.1)

we have in the two charts

f̂(t, u, v) = tk+1 + u+ uv2 and f̂(t, u, v) = tk+1 + u2v + v. (5.2)

Critical points of f̂ are on the intersection of two charts.
2. For the pair

f := z2k1 + z22 + z23 (k ≥ 1), G :=

〈
1

2
(1, 0, 1)

〉
, (5.3)

we have in the two charts

f̂(t, u, v) = t2 + uk + uv2 and f̂(t, u, v) = t2 + u2kvk + v. (5.4)

Critical points of f̂ are on the first chart.
3. For k ≥ 1, set

f := z2k1 + z22 + z23 (k ≥ 1), G :=

〈
1

2
(0, 1, 1),

1

2
(1, 0, 1)

〉
. (5.5)

Here, since the resulution is not unique, we take A-Hilb C3 of [CR] where A = Z/2Z × Z/2Z.
We have C3/G ∼= C× {z3 = wxy} ⊂ C4 by w = z21 , x = z22 , y = z23 , z = z1z2z3 and we have four
charts C3 → C4;

(t, u, v) 7→ (t, u, tuv2, tuv) , (t, u, v) 7→ (t, tu2v, v, tuv) ,

(t, u, v) 7→ (t2uv, u, v, tuv) and (t, u, v) 7→ (tu, uv, tv, tuv).

Then we have in the four charts

f̂(t, u, v) = tk + u+ tuv2 , f̂(t, u, v) = tk + tu2v + v, (5.6a)

f̂(t, u, v) = t2kukvk + u+ v and f̂(t, u, v) = tkuk + uv + tv. (5.6b)

Critical points of f̂ are on the fourth chart.
4. For the pair

f := z31 + z32 + z23 , G :=

〈
1

3
(1, 2, 0)

〉
, (5.7)
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we have in the three charts

f̂(t, u, v) = t2 + u+ u2v3, f̂(t, u, v) = t2 + u2v + uv2 and f̂(t, u, v) = t2 + u3v2 + v. (5.8)

Critical points of f̂ are on the second chart.
5. For the pair

f := z41 + z32 + z23 , G :=

〈
1

2
(1, 0, 1)

〉
, (5.9)

we have in the two charts

f̂(t, u, v) = t3 + u2 + uv2 and f̂(t, u, v) = t3 + u4v2 + v. (5.10)

Critical points of f̂ are on the first chart.
6. For the pair

f := z21 + z22 + z2z
2k
3 (k ≥ 1), G :=

〈
1

2
(1, 0, 1)

〉
, (5.11)

we have in the two charts

f̂(t, u, v) = t2 + tukv2k + u and f̂(t, u, v) = t2 + tvk + vu2. (5.12)

Critical points of f̂ are on the second chart.
7. For the pair

f := z21 + z22 + z2z
2k+1
3 (k ≥ 1), G :=

〈
1

2
(0, 1, 1)

〉
, (5.13)

we have in the two charts

f̂(t, u, v) = t2 + u+ uk+1v2k+1 and f̂(t, u, v) = t2 + vu2 + uvk+1. (5.14)

Critical points of f̂ are on the second chart.
8. For the pair

f := z21 + zk−1
2 + z2z

2
3 (k ≥ 4), G :=

〈
1

2
(1, 0, 1)

〉
, (5.15)

we have in the two charts

f̂(t, u, v) = tk−1 + tuv2 + u and f̂(t, u, v) = tk−1 + tv + vu2. (5.16)

Critical points of f̂ are on the second chart.

To summarize, we observed that critical points of the map f̂ are contained in one chart

isomorphic to C3. The restriction of f̂ to the chart is given by f defined in Table 2.

f(x1, x2, x3) G f(y1, y2, y3)

1. zk+1
1 + z22 + z23 , k ≥ 1

〈
1
2
(0, 1, 1)

〉
yk+1
1 + y2 + y2y

2
3

2. z2k1 + z22 + z23 , k ≥ 1
〈
1
2
(1, 0, 1)

〉
y2
1 + yk

2 + y2y
2
3

3. z2k1 + z22 + z23 , k ≥ 1
〈
1
2
(0, 1, 1), 1

2
(1, 0, 1)

〉
yk
1y

k
2 + y1y3 + y2y3

4. z31 + z32 + z23
〈
1
3
(1, 2, 0)

〉
y2
1 + y3y

2
2 + y2y

2
3

5. z41 + z32 + z23
〈
1
2
(1, 0, 1)

〉
y3
1 + y2

2 + y2y
2
3

6. z21 + z22 + z2z
2k
3 , k ≥ 1

〈
1
2
(1, 0, 1)

〉
y2
1 + y1y

k
2 + y2y

2
3

7. z21 + z22 + z2z
2k+1
3 , k ≥ 1

〈
1
2
(0, 1, 1)

〉
y2
1 + y3y

2
2 + y2y

k+1
3

8. z21 + zk−1
2 + z2z

2
3 , k ≥ 4

〈
1
2
(1, 0, 1)

〉
yk−1
1 + y1y2 + y2y

2
3

Table 2. (f,G) ∼= (f, {1})

Therefore, concerning the geometry of vanishing cycles, the pair (f,G) is equivalent to the
pair (f, {1}). Then, it is quite natural to expect that the orbifold Jacobian algebra Jac(f,G)
of (f,G) is isomorphic to the one Jac(f, {1}) of the pair (f, {1}), the usual Jacobian algebra
Jac(f) of f , which is the following
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Theorem 64. There is an isomorphism of Frobenius algebras

Jac(f,G) ∼= Jac(f, {1}) (5.17)

for all f and f in Table 2.

Proof. We shall give a proof of this theorem based on the classification in Table 2. Let the
notation be as in Section 4. For each g ∈ G let Kg be the maximal subgroup of G fixing Fix(g).
Define eg ∈ Jac(f,G) by eg := 1

|Kg|vg, which is more natural element than vg.

1. For k ≥ 1, set

f := zk+1
1 + z22 + z23 , G := ⟨g⟩ , g :=

1

2
(0, 1, 1), (5.18)

f := yk+1
1 + y2 + y2y

2
3 . (5.19)

The Jacobian algebra Jac(f, {1}) and the bilinear form Jf,{1} on Ωf,{1} can be calculated as

Jac(f, {1}) = C[z1, z2, z3]
/(

(k + 1)zk1 , 2z2, 2z3
) ∼=

〈
[1], [z1], . . . , [z1]

k−1
〉
C , (5.20)

Jf,{1}
(
[dz1 ∧ dz2 ∧ dz3], [zk−1

1 dz1 ∧ dz2 ∧ dz3]
)
=

1

4(k + 1)
. (5.21)

As a C-module, the orbifold Jacobian algebra Jac(f,G) is of the following form:

Jac(f,G) ∼=
〈
eid, [z1], . . . , [z1]

k−1
〉
C ⊕

〈
eg, [z1]eg, . . . , [z1]

k−1eg
〉
C . (5.22)

Note that dimC Jac(f,G) = 2k. The bilinear form Jf,G on Ωf,G can be calculated as

Jf,id
(
eid ⊢ ζ, [z1]k−1 ⊢ ζ

)
= Jf,id

(
[dz1 ∧ dz2 ∧ dz3], [zk−1

1 dz1 ∧ dz2 ∧ dz3]
)

(5.23a)

= 2 · 1

4(k + 1)
=

1

2(k + 1)
, (5.23b)

Jf,g
(
eg ⊢ ζ, [z1]k−1eg ⊢ ζ

)
=

1

4
Jf,g

(
[dz1], [z

k−1
1 dz1]

)
(5.23c)

=
1

4
· (−1) · 2 · 1

k + 1
= − 1

2(k + 1)
, (5.23d)

which imply the following relations in the orbifold Jacobian algebra Jac(f,G) :

[z1]
k = 0, e2g = −eid. (5.24)

On the other hand, the Jacobian algebra Jac(f, {1}) is given by

Jac(f, {1}) = C[y1, y2, y3]
/(

(k + 1)yk1 , 1 + y23 , 2y2y3
)

(5.25)

∼= C[y1, y3]
/(
yk1 , y

2
3 + 1

)
. (5.26)

Note that dimC Jac(f, {1}) = 2k. Therefore, we have an algebra isomorphism

Jac(f, {1})
∼=−→ Jac(f,G), [y1] 7→ [z1], [y3] 7→ eg, (5.27)

which is, moreover, an isomorphism of Frobenius algebras since we have

Jf,{1}
(
[dy1 ∧ dy2 ∧ dy3], [yk−1

1 dy1 ∧ dy2 ∧ dy3]
)
=

1

2(k + 1)
. (5.28)

2. For k ≥ 1, set

f := z2k1 + z22 + z23 , G := ⟨g⟩ , g :=
1

2
(1, 0, 1), (5.29)

f := y21 + yk2 + y2y
2
3 . (5.30)

The Jacobian algebra Jac(f, {1}) and the bilinear form Jf,{1} on Ωf,{1} can be calculated as

Jac(f, {1}) = C[z1, z2, z3]
/(

2kz2k−1
1 , 2z2, 2z3

) ∼=
〈
[1], [z1], . . . , [z1]

2k−2
〉
C , (5.31)

Jf,{1}
(
[dz1 ∧ dz2 ∧ dz3], [z2k−2

1 dz1 ∧ dz2 ∧ dz3]
)
=

1

8k
. (5.32)
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As a C-module, the orbifold Jacobian algebra Jac(f,G) is of the following form:

Jac(f,G) ∼=
〈
eid, [z

2
1 ], . . . , [z

2
1 ]

k−1
〉
C ⊕ ⟨eg⟩C . (5.33)

Note that dimC Jac(f,G) = k + 1. The bilinear form Jf,G on Ωf,G can be calculated as

Jf,id
(
eid ⊢ ζ, [z21 ]k−1 ⊢ ζ

)
= Jf,id

(
[dz1 ∧ dz2 ∧ dz3], [z2k−2

1 dz1 ∧ dz2 ∧ dz3]
)

(5.34a)

= 2 · 1

8k
=

1

4k
, (5.34b)

Jf,g (eg ⊢ ζ, eg ⊢ ζ) =
1

4
Jf,g ([dz2], [dz2]) (5.34c)

=
1

4
· (−1) · 2 · 1

2
= −1

4
, (5.34d)

which imply the following relations in the orbifold Jacobian algebra Jac(f,G) :

[z21 ] ◦ eg = 0, e2g = −k[z21 ]k−1. (5.35)

On the other hand, the Jacobian algebra Jac(f, {1}) is given by

Jac(f, {1}) = C[y1, y2, y3]
/(

2y1, ky
k−1
2 + y23 , 2y2y3

)
(5.36)

∼= C[y2, y3]
/(
kyk−1

2 + y23 , y2y3
)
. (5.37)

Note that dimC Jac(f, {1}) = k + 1. Therefore, we have an algebra isomorphism

Jac(f, {1})
∼=−→ Jac(f,G), [y2] 7→ [z21 ], [y3] 7→ eg, (5.38)

which is, moreover, an isomorphism of Frobenius algebras since we have

Jf,{1}
(
[dy1 ∧ dy2 ∧ dy3], [yk−1

2 dy1 ∧ dy2 ∧ dy3]
)
=

1

4k
. (5.39)

3. For k ≥ 1, set

f := z2k1 + z22 + z23 , G := ⟨g, h⟩ , g :=
1

2
(0, 1, 1), h :=

1

2
(1, 0, 1), (5.40)

f := yk1y
k
2 + y1y3 + y2y3. (5.41)

The Jacobian algebra Jac(f, {1}) and the bilinear form Jf,{1} on Ωf,{1} can be calculated as

Jac(f, {1}) = C[z1, z2, z3]
/(

2kz2k−1
1 , 2z2, 2z3

) ∼=
〈
[1], [z1], . . . , [z1]

2k−2
〉
C , (5.42)

Jf,{1}
(
[dz1 ∧ dz2 ∧ dz3], [z2k−2

1 dz1 ∧ dz2 ∧ dz3]
)
=

1

8k
. (5.43)

As a C-module, the orbifold Jacobian algebra Jac(f,G) is of the following form:

Jac(f,G) ∼=
〈
eid, [z

2
1 ], . . . , [z

2
1 ]

k−1
〉
C ⊕

〈
e′g, [z

2
1 ]e

′
g, . . . , [z

2
1 ]

k−2e′g
〉
C , (5.44)

where e′g := [z1]eg since Jac(f, h) = {0} and Jac(f, gh) = {0}.
Note that dimC Jac(f,G) = 2k − 1.

The bilinear form Jf,G on Ωf,G can be calculated as

Jf,id
(
eid ⊢ ζ, [z21 ]k−1 ⊢ ζ

)
= Jf,id

(
[dz1 ∧ dz2 ∧ dz3], [z2k−2

1 dz1 ∧ dz2 ∧ dz3]
)

(5.45a)

= 4 · 1

8k
=

1

2k
, (5.45b)

Jf,g
(
e′g ⊢ ζ, [z21 ]k−2e′g ⊢ ζ

)
=

1

4
Jf,g

(
[z1dz1], [z

2k−3
1 dz1]

)
(5.45c)

=
1

4
· (−1) · 4 · 1

2k
= − 1

2k
, (5.45d)

which imply the following relations in the orbifold Jacobian algebra Jac(f,G) :

[z21 ]
k−1 ◦ e′g = 0, (e′g)

2 = −[z21 ]. (5.46)
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On the other hand, the Jacobian algebra Jac(f, {1}) is given by

Jac(f, {1}) = C[y1, y2, y3]
/(
kyk−1

1 yk2 + y3, ky
k
1y

k−1
2 + y3, y1 + y2

)
. (5.47)

Note that dimC Jac(f, {1}) = 2k − 1. Therefore, we have an algebra isomorphism

Jac(f, {1})
∼=−→ Jac(f,G), [y1y2] 7→ [z21 ], [y1] 7→ e′g, (5.48)

which is, moreover, an isomorphism of Frobenius algebras since we have

Jf,{1}
(
[dy1 ∧ dy2 ∧ dy3], [yk−1

1 yk−1
2 dy1 ∧ dy2 ∧ dy3]

)
=

1

2k
. (5.49)

4. Set

f := z31 + z32 + z23 , G := ⟨g⟩ , g :=
1

3
(1, 2, 0), (5.50)

f := y21 + y3y
2
2 + y2y

2
3 . (5.51)

The Jacobian algebra Jac(f, {1}) and the bilinear form Jf,{1} on Ωf,{1} can be calculated as

Jac(f, {1}) ∼= C[z1, z2, z3]
/(

3z21 , 3z
2
2 , 2z3

) ∼= ⟨[1], [z1], [z2], [z1z2]⟩C , (5.52)

Jf,{1} ([dz1 ∧ dz2 ∧ dz3], [z1z2dz1 ∧ dz2 ∧ dz3]) =
1

18
. (5.53)

As a C-module, the orbifold Jacobian algebra Jac(f,G) is of the following form:

Jac(f,G) ∼= ⟨eid, [z1z2]⟩C ⊕
〈
eg, eg−1

〉
C . (5.54)

Note that dimC Jac(f,G) = 4. The bilinear form Jf,G on Ωf,G can be calculated as

Jf,id (eid ⊢ ζ, [z1z2] ⊢ ζ) = Jf,id ([dz1 ∧ dz2 ∧ dz3], [z1z2dz1 ∧ dz2 ∧ dz3]) (5.55a)

= 3 · 1

18
=

1

6
, (5.55b)

Jf,g
(
eg ⊢ ζ, eg−1 ⊢ ζ

)
=

1

9
Jf,g ([dz3], [dz3]) (5.55c)

=
1

9
· (−1) · 3 · 1

2
= −1

6
, (5.55d)

which imply the following relations in the orbifold Jacobian algebra Jac(f,G) :

e2g = 0, e2g−1 = 0, eg ◦ eg−1 = −[z1z2]. (5.56)

On the other hand, the Jacobian algebra Jac(f, {1}) is given by

Jac(f, {1}) = C[y1, y2, y3]
/(

2y1, 2y3y2 + y23 , y
2
2 + 2y2y3

)
(5.57)

∼= C[y2, y3]
/(

2y3y2 + y23 , y
2
2 + 2y2y3

)
. (5.58)

Note that dimC Jac(f, {1}) = 4. Therefore, we have an algebra isomorphism

Jac(f, {1})
∼=−→ Jac(f,G),

[y2] 7→ e
2π

√
−1

3 eg + e
4π

√
−1

3 eg−1 , [y3] 7→ e
4π

√
−1

3 eg + e
2π

√
−1

3 eg−1 , (5.59)

which is, moreover, an isomorphism of Frobenius algebras since we have

Jf,{1} ([dy1 ∧ dy2 ∧ dy3], [y2y3dy1 ∧ dy2 ∧ dy3]) =
1

6
. (5.60)

5. Set

f := z41 + z32 + z23 , G := ⟨g⟩ , g :=
1

2
(1, 0, 1), (5.61)

f := y31 + y22 + y2y
2
3 . (5.62)

The Jacobian algebra Jac(f, {1}) and the bilinear form Jf,{1} on Ωf,{1} can be calculated as

Jac(f, {1}) = C[z1, z2, z3]
/(

4z31 , 3z
2
2 , 2z3

) ∼=
〈
[1], [z1], [z2], [z

2
1 ], [z1z2], [z

2
1z2]

〉
C , (5.63)
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Jf,{1}
(
[dz1 ∧ dz2 ∧ dz3], [z21z2dz1 ∧ dz2 ∧ dz3]

)
=

1

24
. (5.64)

As a C-module, the orbifold Jacobian algebra Jac(f,G) is of the following form:

Jac(f,G) ∼=
〈
eid, [z2], [z

2
1 ], [z

2
1z2]

〉
C ⊕ ⟨eg, [z2]eg⟩C . (5.65)

Note that dimC Jac(f,G) = 6. The bilinear form Jf,G on Ωf,G can be calculated as

Jf,id
(
eid ⊢ ζ, [z21z2] ⊢ ζ

)
= Jf,id

(
[dz1 ∧ dz2 ∧ dz3], [z21z2dz1 ∧ dz2 ∧ dz3]

)
(5.66a)

= 2 · 1

24
=

1

12
, (5.66b)

Jf,g (eg ⊢ ζ, [z2]eg ⊢ ζ) =
1

4
Jf,g ([dz2], [z2dz2]) (5.66c)

=
1

4
· (−1) · 2 · 1

3
= −1

6
, (5.66d)

which imply the following relations in the orbifold Jacobian algebra Jac(f,G) :

[z2]
2 = 0, [z21 ] ◦ eg = 0, e2g = −2[z21 ]. (5.67)

On the other hand, the Jacobian algebra Jac(f, {1}) is given by

Jac(f, {1}) = C[y1, y2, y3]
/(

3y21 , 2y2 + y23 , 2y2y3
)
. (5.68)

Note that dimC Jac(f, {1}) = 6. Therefore, we have an algebra isomorphism

Jac(f, {1})
∼=−→ Jac(f,G), [y1] 7→ [z2], [y2] 7→ [z21 ], [y3] 7→ eg, (5.69)

which is, moreover, an isomorphism of Frobenius algebras since we have

Jf,{1} ([dy1 ∧ dy2 ∧ dy3], [y1y2dy1 ∧ dy2 ∧ dy3]) =
1

12
. (5.70)

6. For k ≥ 1, set

f := z21 + z22 + z2z
2k
3 , G := ⟨g⟩ , g :=

1

2
(1, 0, 1), (5.71)

f := y21 + y1y
k
2 + y2y

2
3 . (5.72)

The Jacobian algebra Jac(f, {1}) and the bilinear form Jf,{1} on Ωf,{1} can be calculated as

Jac(f, {1}) = C[z1, z2, z3]
/(

2z1, 2z2 + z2k3 , 2kz2z
2k−1
3

)
(5.73)

∼=
〈
[1], [z3], . . . , [z3]

2k−1, [z2], [z2z3], . . . , [z2z
2k−2
3 ]

〉
C , (5.74)

Jf,{1}
(
[dz1 ∧ dz2 ∧ dz3], [z2z2k−2

3 dz1 ∧ dz2 ∧ dz3]
)
=

1

8k
. (5.75)

As a C-module, the orbifold Jacobian algebra Jac(f,G) is of the following form:

Jac(f,G) ∼=
〈
eid, [z

2
3 ], . . . , [z

2
3 ]

k−1, [z2], [z2] · [z23 ], . . . , [z2] · [z23 ]k−1
〉
C ⊕ ⟨eg⟩C . (5.76)

Note that dimC Jac(f,G) = 2k + 1. The bilinear form Jf,G on Ωf,G can be calculated as

Jf,id

(
eid ⊢ ζ, [z2] · [z23 ]k−1 ⊢ ζ

)
= Jf,id

(
[dz1 ∧ dz2 ∧ dz3], [z2z

2k−2
3 dz1 ∧ dz2 ∧ dz3]

)
(5.77a)

= 2 · 1

8k
=

1

4k
, (5.77b)

Jf,g (eg ⊢ ζ, eg ⊢ ζ) =
1

4
Jf,g ([dz2], [dz2]) (5.77c)

=
1

4
· (−1) · 2 · 1

2
= −1

4
, (5.77d)

which imply the following relations in the orbifold Jacobian algebra Jac(f,G) :

2[z2] + [z23 ]
k = 0, [z23 ] ◦ eg = 0, e2g = −k[z2] · [z23 ]k−1. (5.78)
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On the other hand, the Jacobian algebra Jac(f, {1}) is given by

Jac(f, {1}) = C[y1, y2, y3]
/(

2y1 + yk
2 , ky1y

k−1
2 + y2

3 , 2y2y3
)
. (5.79)

Note that dimC Jac(f, {1}) = 2k + 1. Therefore, we have an algebra isomorphism

Jac(f, {1})
∼=−→ Jac(f,G), [y1] 7→ [z2], [y2] 7→ [z23 ], [y3] 7→ eg, (5.80)

which is, moreover, an isomorphism of Frobenius algebras since we have

Jf,{1}

(
[dy1 ∧ dy2 ∧ dy3], [y1y

k−1
2 dy1 ∧ dy2 ∧ dy3]

)
=

1

4k
. (5.81)

7. For k ≥ 1, set

f := z21 + z22 + z2z
2k+1
3 , G := ⟨g⟩ , g :=

1

2
(0, 1, 1), (5.82)

f := y2
1 + y3y

2
2 + y2y

k+1
3 . (5.83)

The Jacobian algebra Jac(f, {1}) and the bilinear form Jf,{1} on Ωf,{1} can be calculated as

Jac(f, {1}) = C[z1, z2, z3]
/(

2z1, 2z2 + z2k+1
3 , (2k + 1)z2z

2k
3

)
(5.84)

∼=
〈
[1], [z3], . . . , [z3]

2k, [z2], [z2z3], . . . , [z2z
2k−1
3 ]

〉
C
, (5.85)

Jf,{1}

(
[dz1 ∧ dz2 ∧ dz3], [z2z

2k−1
3 dz1 ∧ dz2 ∧ dz3]

)
=

1

4(2k + 1)
. (5.86)

As a C-module, the orbifold Jacobian algebra Jac(f,G) is of the following form:

Jac(f,G) ∼=
〈
eid, [z

2
3 ], . . . , [z

2
3 ]

k, [z2z3], [z2z3] · [z23 ], . . . , [z2z3] · [z23 ]k−1
〉
C
⊕ ⟨eg⟩C . (5.87)

Note that dimC Jac(f,G) = 2(k + 1). The bilinear form Jf,G on Ωf,G can be calculated as

Jf,id

(
eid ⊢ ζ, [z2z3] · [z23 ]k−1 ⊢ ζ

)
= Jf,id

(
[dz1 ∧ dz2 ∧ dz3], [z2z

2k−1
3 dz1 ∧ dz2 ∧ dz3]

)
(5.88a)

= 2 · 1

4(2k + 1)
=

1

2(2k + 1)
, (5.88b)

Jf,g (eg ⊢ ζ, eg ⊢ ζ) =
1

4
Jf,g ([dz1], [dz1]) (5.88c)

=
1

4
· (−1) · 2 · 1

2
= −1

4
, (5.88d)

which imply the following relations in the orbifold Jacobian algebra Jac(f,G) :

2[z2z3] + [z23 ]
k+1 = 0, [z23 ] ◦ eg = 0, e2g = −2k + 1

2
[z2z3][z

2
3 ]

k−1. (5.89)

On the other hand, the Jacobian algebra Jac(f, {1}) is given by

Jac(f, {1}) = C[y1, y2, y3]
/(

2y1, 2y3y2 + yk+1
3 , y2

2 + (k + 1)y2y
k
3

)
(5.90)

∼= C[y2, y3]
/(

2y3y2 + yk+1
3 , y2

2 + (k + 1)y2y
k
3

)
. (5.91)

Note that dimC Jac(f, {1}) = 2(k + 1). Therefore, we have an algebra isomorphism

Jac(f, {1})
∼=−→ Jac(f,G), [y2] 7→ eg − 1

2
[z23 ]

k, [y3] 7→ [z23 ], (5.92)

which is, moreover, an isomorphism of Frobenius algebras since we have

Jf,{1}

(
[dy1 ∧ dy2 ∧ dy3], [y2y

k
3dy1 ∧ dy2 ∧ dy3]

)
=

1

2(2k + 1)
. (5.93)

8. For k ≥ 4, set

f := z21 + zk−1
2 + z2z

2
3 , G := ⟨g⟩ , g :=

1

2
(1, 0, 1), (5.94)

f := yk−1
1 + y1y2 + y2y

2
3 . (5.95)
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The Jacobian algebra Jac(f, {1}) and the bilinear form Jf,{1} on Ωf,{1} can be calculated as

Jac(f, {1}) = C[z1, z2, z3]
/(

2z1, (k − 1)zk−2
2 + z23 , 2z2z3

)
(5.96)

∼=
〈
[1], [z2], . . . , [z2]

k−2, [z3]
〉
C
, (5.97)

Jf,{1}

(
[dz1 ∧ dz2 ∧ dz3], [z

k−2
2 dz1 ∧ dz2 ∧ dz3]

)
=

1

4(k − 1)
. (5.98)

As a C-module, the orbifold Jacobian algebra Jac(f,G) is of the following form:

Jac(f,G) ∼=
〈
eid, [z2], . . . , [z2]

k−2
〉
C
⊕

〈
eg, [z2]eg, . . . , [z2]

k−3eg
〉
C
. (5.99)

Note that dimC Jac(f,G) = 2k − 3. The bilinear form Jf,G on Ωf,G can be calculated as

Jf,id

(
eid ⊢ ζ, [z2]

k−2 ⊢ ζ
)

= Jf,id

(
[dz1 ∧ dz2 ∧ dz3], [z

k−2
2 dz1 ∧ dz2 ∧ dz3]

)
(5.100a)

= 2 · 1

4(k − 1)
=

1

2(k − 1)
, (5.100b)

Jf,g

(
eg ⊢ ζ, [z2]

k−3eg ⊢ ζ
)

=
1

4
Jf,g

(
[dz2], [z

k−3
2 dz2]

)
(5.100c)

=
1

4
· (−1) · 2 · 1

k − 1
= − 1

2(k − 1)
, (5.100d)

which imply the following relations in the orbifold Jacobian algebra Jac(f,G) :

[z2]
k−2 ◦ eg = 0, e2g = −[z2]. (5.101)

On the other hand, the Jacobian algebra Jac(f, {1}) is given by

Jac(f, {1}) = C[y1, y2, y3]
/(

(k − 1)yk−2
1 + y2, y1 + y2

3 , 2y2y3
)
. (5.102)

Note that dimC Jac(f, {1}) = 2k − 3. Therefore, we have an algebra isomorphism

Jac(f, {1})
∼=−→ Jac(f,G), [y1] 7→ [z2], [y2] 7→ −(k − 1)[z2]

k−2, [y3] 7→ eg, (5.103)

which is, moreover, an isomorphism of Frobenius algebras since we have

Jf,{1}

(
[dy1 ∧ dy2 ∧ dy3], [y

k−2
1 dy1 ∧ dy2 ∧ dy3]

)
=

1

2(k − 1)
. (5.104)

We finished the proof of Theorem 64. □
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