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ORBIFOLD JACOBIAN ALGEBRAS FOR INVERTIBLE POLYNOMIALS

ALEXEY BASALAEV, ATSUSHI TAKAHASHI, AND ELISABETH WERNER

ABSTRACT. An important invariant of a polynomial f is its Jacobian algebra defined by its
partial derivatives. Let f be invariant with respect to the action of a finite group of diagonal
symmetries G. We axiomatically define an orbifold Jacobian Z/2Z-graded algebra for the pair
(f,G) and show its existence and uniqueness in the case, when f is an invertible polynomial.
In case when f defines an ADE singularity, we illustrate its geometric meaning.

1. INTRODUCTION

Let f = f(x) = f(x1,...,2N) € C[xy,...,2N] be a polynomial such that the Jacobian algebra
Jac(f) := Clzy,...,zn]/(0f/0x1,...,0f/0xN) of f is a finite dimensional C-algebra. In this
paper, we shall give axioms which should characterize a generalization of the Jacobian algebra
Jac(f) of f for the pair (f,G) where G is a finite abelian group acting diagonally on variables
which respects f.

Such a pair (f,G), often called a Landau-Ginzburg orbifold, has been studied intensively by
many mathematicians and physicists working in mirror symmetry for more than twenty years
since it yields important, interesting and unexpected geometric information. In particular, the
so-called orbifold construction of a mirror manifold from a Calabi-Yau hypersurface is very
important.

Certain works towards the definition of the Frobenius algebras associated to the pair (f, G)
were also done previously by R. Kaufmann and M. Krawitz. In [K03], R. Kaufmann proposes
a general construction of the orbifolded Frobenius superalgebra of (f,G). In order to build
such a Z/2Z-graded algebra, one should make a certain non-unique choice called the “choice
of a two cocycle”. A different choice of this cocycle gives indeed a different product structure.
This construction was later used by Kaufmann in [K06] for mirror symmetry purposes from
the point of view of physics. In [Kr], M. Krawitz proposes a very special construction of a
commutative (not a Z/2Z-graded) algebra, for the pair (f,G). Later enhanced in [FJJS] this
definition was used to set up mirror symmetry on the level of Frobenius algebras. However,
the crucial part of it remained the particularly fixed product that could only be well-defined
for weighted-homogeneous polynomials. There is also no explanation why a particular product
structure is chosen.

Mirror symmetry on the level of Frobenius algebras is a first step towards the mirror isomor-
phism of Frobenius manifolds where the key role is played by the so-called primitive form. From
the point of view of mirror symmetry, the algebras we consider here are those on the complex
geometry side, the so-called B-model side. The major advantage of our work comparing to that
of Kaufmann and Krawitz is that our construction works as a starting point for the mirror sym-
metry on the level of Frobenius manifolds having the notion of a primitive form (cf. [S1, S2, ST])
in the definition (cf. the role of ¢ in Definition 16). The second important point is the following.
In both Kaufmann and Krawitz constructions, one predefines the product either by the defini-
tion or by the special choice of a two cocycle. In our axiomatization, we do not do this and
hence we are able to study our algebras even for non-weighted homogeneous polynomials. We
hope to address this question later. The last but not least is that our algebra inherits a natural
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Z/2Z-grading from the Hodge theory associated to (f,G). This Z/2Z-grading appears only in
an abstract way in the definition of Kaufmann and was not considered at all by Krawitz.

Let us comment in detail on the first point. It is well-known that Jac(f) has a structure of
a Frobenius algebra (see [AGV85]). Namely, by a choice of a nowhere vanishing holomorphic
N-form, there is an isomorphism Jac(f) = Q; := QN (CN) /(df AQN=L(CY)). It is on Q, where
a natural or canonical non-degenerate symmetric bilinear form, called the residue pairing, exists.
As a result, the above isomorphism equips Jac(f) with an induced bilinear form. Therefore,
even if the group G is trivial, it is important to consider a pair (Jac(f),Qy). This pair can
also be considered as an example of a pair (HH®*(C), HH,(C)), consisting of the Hochschild
cohomology and the Hochschild homology of a suitable dg- or A-category, which has a rich
algebraic structure.

In this paper, we shall first introduce a G-twisted version of the vector space €2y, which
is denoted by Q/f,G' This is a Z/2Z-graded vector space, which also has a G-grading, with
a natural non-degenerate bilinear form called the orbifold residue pairing, a natural general-
ization of the residue pairing on Q. Then, the G-twisted version of the Jacobian algebra,
denoted by Jac'(f,G), will be introduced axiomatically as a part of the structure of the pair
(Jac'(f, G),Q}’G) in the way it is in the classical situation when the group G is trivial. As
a result, the algebra Jac'(f, G) inherits many structures, defined naturally on Q’ﬁG, such as a
Z/2Z-grading, a G-grading, equivariance with respect to automorphisms of the pair (f,G), the
orbifold residue pairing and so on. Our axiomatization of a G-twisted Jacobian algebra lists a
minimum conditions to be satisfied, in particular, we do not prescribe the product structure.

The expected Jacobian algebra Jac(f, G) for the pair (f,G), which we shall call the orbifold
Jacobian algebra of (f,G), will be given as the G-invariant subalgebra of the G-twisted version
Jac'(f,G). However, it is not clear in general whether such an algebra as Jac'(f,G) exists or
not. Even if it exists it may not be unique.

The main result of this paper is the existence and the uniqueness of the G-twisted Jacobian
algebra Jac'(f,G) for an invertible polynomial f with a subgroup G of the maximal abelian
symmetry group Gy (Theorem 22). Namely, it is uniquely determined up to isomorphism by
our axiomatization. Moreover, we show that if G is a subgroup of SL(N;C) then the orbifold
Jacobian algebra Jac(f, G) has a structure of a Z/2Z-graded commutative Frobenius algebra.

Another interesting result of ours (Theorem 64) concerns the case when f is an invertible
polynomial giving a singularity of ADE-type and G is a subgroup of G yNSL(N;C). We show that
in this case our orbifold Jacobian algebra Jac(f, G) is isomorphic to the usual Jacobian algebra
This result complies with the results of [ET13a], where concerning a crepant resolution C/?’/\G of
C3/@, it is shown that the geometry of vanishing cycles for a holomorphic map f: @ — C
associated to f is equivalent to the one for the polynomial f. Therefore, our orbifold Jacobian

algebra is not only natural from the view point of algebra but also from the view point of
geometry.

Remark 1. After the the current paper was put on arXiv, the certain progress was made in
understanding the orbifold Jacobian algebra. In particular, based on the results of the current
paper, it was shown in [BT] that for f invertible the algebra Jac(f, &) is isomorphic to the
Hochschild cohomology of the category of G—equivariant matrix factorizations of f. Moreover,
some applications to the more classical problems of singularity theory were found in [BTW2].
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2. PRELIMINARIES
Definition 2. Let n be a non-negative integer and f = f(x) = f(z1,...,2n) € Clz1,...,24,] a
polynomial.
(i) The Jacobian algebra Jac(f) of f is the C-algebra defined as
Jac(f) = Cla1,... ,xn]/(af - ﬁ) : (2.1)

Ox1’ """ Oxp

If Jac(f) is a finite-dimensional C-algebra, then set py := dimc Jac(f) and call it the
Milnor number of f. In particular, if n = 0 then Jac(f) = C and py = 1.
(ii) The Hessian of f is defined as

92
hess(f) := det <5$iaf$j>i7j=1 i . (2.2)
In particular, if n = 0 then hess(f) = 1.
Throughout this paper, we denote by N a positive integer and by
f=fx)=f(z1,...,2n) € Clz1,...,2N]

a polynomial such that the Jacobian algebra of f is a finite-dimensional C-algebra, unless oth-
erwise stated.
Let QP(CV) be the C-module of regular p-forms on C. Consider the C-module

Q= QN (M) /(df AN (CN)). (2.3)

Note that Qy is naturally a free Jac(f)-module of rank one, namely, by choosing a nowhere
vanishing N-form @ € Q~(C") we have the following isomorphism

Jac(f) = Qy,  [@(x)] = [B(x)]w = [$(x)i], (2.4)
where w := [0] is the residue class of @ in Q.

Remark 3. Such a class w € Qf giving the isomorphism (2.4) is a non-zero constant multiple
of the residue class of dxq A --- Adzy.

Proposition 4 (cf. Section 1.5.11 [AGV85]). Define a C-bilinear form J; : Qf @c Qp — C as

¢(X)w(x)d$1 A---Ndxy
Jf (w1, ws) := Rescw of of , (2.5)

where w1 = [p(x)dz1 A -+ Adzy] and we = [YPp(x)dz1 A --- Adzy]. Then, the bilinear form Jy
on Qy is non-degenerate. Moreover, for ¢(x) € Clzq,...,znN],

Jr([p(x)dz1 A -+ Aday], [hess(f)dzi A--- Adan]) #0 (2.6)
if and only if $(0) # 0. In particular, we have
Ji([dxy A -~ Nday], [hess(f)dzy A--- ANday]) = py. (2.7)

Under the isomorphism (2.4), the residue pairing endows the Jacobian algebra Jac(f) with a
structure of a Frobenius algebra.

Definition 5. An associative C-algebra (A, o) is called Frobenius if there is a non-degenerate
bilinear form n: A® A — C such that n(X oY, Z) =n(X,Y o Z) for X,Y,Z € A.
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Definition 6. The group of maximal diagonal symmetries of f is defined as

Gy = {(M,..., AN) € (COV [ fF(Mz1,... . Avan) = f(z,...,2n) ]} (2.8)
We shall always identify G with the subgroup of diagonal matrices of GL(N;C). Set
G$" == Gy N SL(N;C). (2.9)

Remark 7. For a finite subgroup G C Gy, the pair (f, G) is often called a Landau-Ginzburg
orbifold.

From now on, we shall denote by G a finite subgroup of Gy unless otherwise stated. In what
follows, define also e [a] := exp(27v/—1a). The group G acts naturally on CV and each element
g € G has a unique expression of the form

g = diag (e [%},...,e{GTND with 0 < a; <7, (2.10)

where r is the order of g. We use the notation (ay/r,...,an/r) or %(al, ...,ay) for the element
g. The age of g, which is introduced in [IR, V], is defined as the rational number

| X
age(g) := ;Zai. (2.11)

Note that if g € G]ScL then age(g) € Z.

For each g € G, we denote by Fix(g) := {x € CV | g-x = x} the fixed locus of g, by
Ny := dimc Fix(g) its dimension and by f9 := f|pix(g) the restriction of f to the fixed locus of
g- Note that since G acts diagonally on CV, Fix(g) is a linear subspace of CV.

Proposition 8 (cf. Proposition 5 in [ET13b]). For each g € G, we have a natural surjective
C-algebra homomorphism Jac(f) — Jac(f9). In particular, the Jacobian algebra Jac(f9) is
also finite dimensional.

Proof. We may assume that Fix(g) = {x € C | any,41 = --- = oy = 0} by a suitable
renumbering of indices. Since f is invariant under G, g - x; # x; for i = Ny +1,..., N and
Bxi]; SPRRREE % form a regular sequence, we have
of af
<6-TNQ+17 7633]\/‘ ( Ng+1, ) N)

Therefore, we have a natural surjective C-algebra homomorphism

Jac(f) = C[$1»~-~,$N]/<3f B ﬁ)

8{131" ? DCEN

N (C[xl,...,xN]/<8f

of
3x1a"'7mamNg+1a"'axN>

= C[h,.--,l‘Ng}/(Bfg B afg):Jac(fg).

Oz’ """ Oz,

Corollary 9. For each g € G, Qyq is naturally equipped with a structure of Jac(f)-module.

Proof. Since Qs is a free Jac(f9)-module of rank one (cf. (2.4)), the surjective C-algebra
homomorphism Jac(f) — Jac(f9) yields the statement. O

3. ORBIFOLD JACOBIAN ALGEBRAS

In order to introduce an orbifold Jacobian algebra of the pair (f, G), we first define axiomat-
ically a G-twisted Jacobian algebra of f.
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3.1. Setup.

Definition 10. Define a Z/2Z-graded C-module Q) , = (Q}’G)6® <Qlf’G)T’ i € Z/2Z, by

( /f’G)ﬁ = @ T ( ;ﬂG)T:: @ T (3.1a)

geG geG
N—Nyz=0 (mod 2) N—-Ng=1 (mod 2)

I‘f’g = Qfg (31b)
Here, for each g € G with Fix(g) = {0},
Qg = Q°({0})/(df* AQ7H({0})) = Q°({0}) (3.1c)
is the C-module of rank one consisting of constant functions on {0}.

Since the group G acts on each Qs by the pull-back of forms via its action on Fix(g), we can
define the following Z/2Z-graded C-module.

Definition 11. Define a Z/2Z-graded C-module Q¢ ¢ as the G-invariant part of Q’ﬁg,

G
Qra=(Qg) . (3.2)
That is, Qpc = (U1,6)5 S (Qr.¢)1: @ € Z/2Z, is given by
(Qf.6)g = &P Qg Qpo)y:= &b Qfq, (3-3a)
geG geG
N—Nyz=0 (mod 2) N—Nyz=1 (mod 2)
Qpg = (Q74)C . (3.3b)

Definition 12. Define a non-degenerate C-bilinear form Jy g : Q}’G ®c Q’f,G — C, called the
orbifold residue pairing, by

Jf7G = @Jﬁg, (3.4&)
geG

where Jy 4 is a perfect C-bilinear form Jy 4 : O} ®c Q’ﬁg_l — C defined by

Qﬁd)dl‘“ A A dl‘iNg

1
Jf,g (W1, we) := (—1)N_N9 e {—2age(g)} - |G| - Respix(g) af9 of9 (3.4b)
Bazil o 81‘,‘2\,!7

for wy = [¢dwi, A~ Ndwiy, | € Uy ) and wy = [hdwi, A~ Ndwiy ] € Q) 1, where 2y, ... @iy,
are coordinates of Fix(g). For each g € G with Fix(g) = {0}, we define

I (1) = (1Y o |- Jaela)] (61 (3.40)

where 1, € @} and 1,-1 € @ _, denote the constant functions on {0} whose values are 1.

Proposition 13. The C-bilinear form J; g is G-twisted Z/27Z-graded symmetric in the sense
that
Jrc(wi,ws) = (=1)N"No . e[—age(g)] - J1.c(w2,wr) (3.5)

/ /
forwy € nyg and wy € nyg,l.
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Proof. Let the notations be as in Definition 12. Since Fix(g) = Fix(¢™!), f9 = f9 and
age(g) +age(g~') = N — Ny, we have

Jf7g(w1,w2) = Jf,g (wl,wg)

1 1
=e _gage(g) + Qage(gfl) g1 (w2, 1)

= (=)Mo - e[-age(g)] - Jr.c (wa,w1).
(]

For a C-algebra R, denote by Autc.aig(R) the group of all C-algebra automorphisms of R.
Note that G is naturally identified with a subgroup of Autc aig(Clz1,...,2N]).

Definition 14. Define the group Aut(f, G) of automorphisms of (f,G) as
Aut(f,G) == {p € Autcag(Cle,....an]) | ¢(f) = f, pogop ' € Glorallg € G}.
It is obvious that G is naturally identified with a subgroup of Aut(f,G). Note that a C-

algebra automorphism ¢ € Autc.alg(Clz1, ..., 2zn]) is G-equivariant if and only if pogop™ =g
for all g € G.
Remark 15. Let Clzy,...,zn] * G be the skew group ring which is a C-vector space

Clzy,...,xn] ®c C[G] with a product defined as (¢1 ® g1)(d2 ® g2) = (P191(¢2)) ® g1g2 for
any ¢1,¢2 € Clzy,...,zn] and g1,92 € G. Then the group Aut(f,G) can be regarded as the
subgroup of all ¢" € Autc.aig(Clz1, ..., zn]*G) such that ¢'(f®id) = f®id. For ¢ € Aut(f,G),
the correspondence element in Autc alg(Clz1, ..., 2n]*G) is given by ¢®@g — p(d)® (pogop™t).

An element ¢ € Aut(f,G) regarded as a bi-regular map on C¥ maps Fix(p o go p™1) to
Fix(g) for each g € G. Hence, the group Aut(f,G) acts naturally on Q/f’G by

/f,g — Q/f,gpogogpfla w = L)0*|Fix(g)(")7 (36)

where ¢*|pix(g) denotes the restriction of the pullback ¢* of differential forms to Fix(g). In order
to simplify the notation, for each ¢ € Aut(f, G), we shall denote by ¢* the action of ¢ on Q}’G.
It also follows that Aut(f,G) acts naturally on Qy .

3.2. Axioms.
Definition 16. A G-twisted Jacobian algebra of f is a Z/2Z-graded C-algebra
Jacd'(f,G) = Jac'(f,G)g @ Jac'(f, G)1,

i € 7./27, satisfying the following axioms:

(i) For each g € G, there is a C-module Jac'(f,g) isomorphic to Q’ﬁg as a C-module
satisfying the following conditions:
(a) For the identity id of G,

Jac'(f,id) = Jac(f). (3.7)
(b) We have
Jac'(f,G)g = @ Jac'(f,9), (3.8a)
geG
N—Nyz=0 (mod 2)
Jacd'(f,G)y = @ Jac'(f, g). (3.8b)

geqG
N—-Ny=1 (mod 2)
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(ii) The Z/2Z-graded C-algebra structure o on Jac'(f, G) satisfies
Jac'(f,g) o Jac(f,h) C Jac(f,gh), g,h € G, (3.9)

and the C-subalgebra Jac'(f,id) of Jac'(f, G) coincides with the C-algebra Jac(f).
(iii) The Z/2Z-graded C-algebra Jac'(f,G) is such that the C-module Q'  has a structure
of a Jac'(f, G)-module

FJad (f,G) @ Qg — Vg, XQw— XFw, (3.10)

satisfying the following conditions:
(a) For any g,h € G we have

Jac'(f,9) =y € Qg (3.11)

and the Jac'(f,id)-module structure on Qf; , coincides with the Jac(f)-module
structure on {2¢s given by Corollary 9.
(b) By choosing a nowhere vanishing N-form, we have the following isomorphism

Jad' (f,G) — Qg X = X F (3.12)

where ( is the residue class in Q}7id = Qy of the N-form. Namely, Q'f,G is a free

Jac'(f, G)-module of rank one.
(iv) There is an induce action of Aut(f,G) on Jac'(f,G) given by

(X)) F ") =" (X F (), ¢eAut(f,G), X € Jad'(f,Q), (3.13)

where ¢ is an element in 2 ;; giving the isomorphism in axiom (iiib). The algebra
structure of Jac'(f, G) satisfies the following conditions:
(a) It is Aut(f, G)-invariant, namely,

e (X)op"(Y)=¢*(X oY), ¢€Aut(f,G), X,Y € Jac'(f,G). (3.14)

(b) Tt is G-twisted Z/2Z-graded commutative, namely, for any g,h € G and
X € Jac'(f,g9), Y € Jac'(f,h), we have

XoY =(-1)XYg(Y)oX, (3.15)

where X = N — N, and Y = N — N}, are the Z/2Z-grading of X and Y, and g* is
the induced action of g considered as an element of Aut(f,G).
(v) For any g,h € G and X € Jac'(f,g), w € Qs W' € Qf o, we have

Jra(X Fw,w) = (D)X 6 (w, () X) F o), (3.16)

where X = N — N, and @ = N — N}, are the Z/2Z-grading of X and w, and (h=1)* is
the induced action of h~! considered as an element of Aut(f,G).

(vi) Let G’ be a finite subgroup of Gy such that G C G'. Fix a nowhere vanishing N-form
and denote by ( its residue class in Q’f’id. By axiom (iiib) for G, G, fix the isomorphisms
given by (;

Jad (f,G) = Qg X X, (3.17)
Jad' (f,G") =+ U, X' X' FC (3.18)

Then, the injective map Q% 5 — Q) o, induced by the identity maps €  — Q' |
g € G yields an injective map of the Z/2Z-graded C-modules Jac'(f, G) — Jac'(f,G'),
which is an algebra-homomorphism.
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3.3. Comments on the axioms. Such a class ¢ € Q'f’id giving the isomorphism in axiom (iiib)
is a non-zero constant multiple of the residue class of dxi A --- A dxyn. It follows that the
Aut(f, G)-action on Jac'(f, G) does not depend on the choice of (. In particular, the Aut(f, G)-
action on Jac'(f,id) = Jac(f) is nothing but the usual one which is induced by the natural
Aut(f, G)-action on Clz1,...,zyN]. For different choices of ( we get isomorphic algebras.

Axioms (iva), (ivb) and (v) are naturally expected by keeping the skew group ring
Clz1,...,2N] * G in mind (see also Remark 15). Indeed, our axioms are motivated by some in-
tuitive properties of the “Jacobian algebra of f in the non-commutative ring Clzy,...,zn]*G”.
Axiom (ivb) can also be found in [K03] under the name of “Ramond algebra for Jacobian Frobe-
nius algebras”, while the others seem to be new.

We have not used the commutativity of G in the axioms in Definition 16 except for the last
one (vi). Instead of Gy there, by the use of the largest subgroup Gy . of GL(N;C) respecting
f whose restriction f9 to Fix(g) gives a finite dimensional Jacobian algebra Jac(f?) for all
g € Gfne, the definition can naturally be extended to the non-abelian case, namely, the case
when G is a subgroup of G .

3.4. Conjecture and the definition. We shall denote the residue class of 1 € C[xy,...,zN]
in Jac'(f,id) = Jac(f) by viq; this is the unit with respect to the product structure o since by
axiom (v) we have

Jf,G((X © Uid) F va) = J.ﬂG(X = (Uid F C)aw) = JﬁG(X = C,W) (319)

for all X € Jac'(f,G), w € Q’ﬁG and ¢ € Qy;q giving the isomorphism (3.12). Note also that
¢*(via) = via for all p € Aut(f,G) since p*(via) F ¢*(¢) = ¢*(via = () = ¢*(¢) = via = ¢*(C)-
In particular, v;q is G-invariant.

By the isomorphism (3.12), it follows from (3.6) that

©*(Jac'(f,9)) = Jac' (f,pogop™t), ¢ <€ Aut(f,G). (3.20)

In particular, g*(Jac'(f,h)) = Jac'(f,ghg™') for g,h € G. Now, G is a commutative group,
we have g*(Jac’(f,h)) = Jac'(f,h). Since the product structure o is also G-invariant by ax-
iom (iva) it follows that the G-invariant subspace of Jac'(f, G) has a structure of a Z/2Z-graded
commutative algebra, which is Z/2Z-graded commutative due to axiom (ivbh).

A priori there might not be a unique Z/2Z-graded C-algebra satisfying the axioms in Defini-
tion 16, nevertheless we expect the following

Conjecture 17. Let the notations be as above.
(a) A G-twisted Jacobian algebra Jac'(f,G) of f should exist.

(b) The subalgebra (Jac'(f, G))G should be uniquely determined by (f,G) up to isomor-
phism.

Definition 18. Suppose that Conjecture 17 holds for the pair (f,G). The Z/27Z-graded com-
mutative algebra

Jac(f,G) := (Jac'(f,G))“ (3.21)
is called the orbifold Jacobian algebra of (f,G).

In Theorem 22 we prove Conjecture 17 (actually a stronger statement than it), for a large
class of polynomials f — so—called invertible polynomials and any symmetry group G of it.

Under the isomorphism in axiom (iiib), it follows from axiom (v) that the non-degenerate G-
twisted Z/2Z-graded symmetric C-bilinear form Jy,¢ on €} ; equips J ac’(f, G) with the structure
of Z/27Z-graded Frobenius algebra. If G is a subgroup of G]SCL, then age(g) € Z for all g € G, the
residue class ¢ is G-invariant and the pairing J; ¢ induces a Z/2Z-graded symmetric pairing on
Q¢ due to the G-twisted Z/2Z-graded commutativity (Proposition 13). Therefore, it follows
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easily that Jac(f,G) for G C G?L is equipped with a structure of Z/2Z-graded commutative
Frobenius algebra, which will be of our main interest.

4. ORBIFOLD JACOBIAN ALGEBRAS FOR INVERTIBLE POLYNOMIALS

4.1. Invertible polynomials. A polynomial f € Clxy,...,zx] is called a weighted homoge-
neous polynomial if there are positive integers wy, ..., wy and d such that
FO a1, XN ay) = X f (o, o) (4.1)

for all A € C*. We call (wy,...,wn;d) a system of weights of f. A weighted homogeneous
polynomial f is called non-degenerate if it has at most an isolated critical point at the origin in
C¥, equivalently, if the Jacobian algebra Jac(f) of f is finite-dimensional.

Definition 19. A weighted homogeneous polynomial f € Clxy,...,zn] is called invertible if
the following conditions are satisfied.

(i) The number of variables (= NN) coincides with the number of monomials in the polyno-
mial f, namely,

N N
f(m1,...,xN):Zcinj J (4.2)
i=1  j=1
for some coefficients ¢; € C* and non-negative integers F;; for 4,5 =1,...,N.

(i) The matrix E := (E;;) is invertible over Q.
(iii) The polynomial f and the Berglund—Hiibsch transpose f of f defined by

N N
flar,.an) =Y [« (4.3)
i=1  j=1

are non-degenerate.

Definition 20. Let f(x1,...,2n) = Zivzl ¢ vazl fo be an invertible polynomial. Define
rational numbers q1, ..., gx by the unique solution of the equation
Q1 1
El :|=1]:]- (4.4)
qn 1

Namely, set ¢; :== w;/d, i =1,..., N, for the system of weights (ws,...,wy;d).

If f(x1,...,2N) is an invertible polynomial, then we have
N N
Gr=1 (A, aw) € @V [ T[AT ==X =14, (4.5)
j=1 j=1
and hence Gy is a finite group. It is easy to see that Gy contains an element gy := (¢1,...,qn)-

It is important to note the following
Proposition 21. The group G?L = Gy NSL(N;C) is a proper subgroup of Gy.

Proof. Let f be the Berglund-Hiibsch transpose of f. It is known by [ET11] and [Kr] (see also
Proposition 2 in [EG-ZT]) that

G = Hom(G3/((@1,---,4n)),C*) & Hom(G7,C*) = Gy,
where (q1,...,qn) is the unique solution of the equation (¢1,...,qn)FE = (1,...,1). O

The following is our first theorem of this paper.
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Theorem 22. Let f be an invertible polynomial and G a subgroup of Gy. There exists a
unique G-twisted Jacobian algebra Jac'(f,G) of f up to isomorphism. Namely, it is uniquely
characterized by the axioms in Definition 16.

In particular, the orbifold Jacobian algebra Jac(f,G) of (f,G) exists.

In the subsequent subsections, we first prepare some notation, and then prove the uniqueness,
and finally prove the existence.

4.2. Notations. Let f(z1,...,25) = S0, ¢ vazl xfﬂ be an invertible polynomial. With-
out loss of generality one may assume that ¢; = 1 for ¢ = 1,..., N by rescaling the vari-
ables. According to [KS], an invertible polynomial f can be written as a Thom—Sebastiani sum
f=/fi® - & f, of invertible polynomials (in groups of different variables) f,, v =1,...,p of
the following types:

(i) z0'mo + 252w + - + Ty 7 Ty, + 2% (chain type; m > 1);
(i) 2§ e + 25223 + - + 2o T T + 2%y (loop type; m > 2).

Remark 23. In [KS] the authors distinguished also polynomials of the so called Fermat type:
x7*, which is regarded as a chain type polynomial with m = 1 in this paper.

We shall use the monomial basis of the Jacobian algebra Jac(f,)
Proposition 24 (cf. [Kreu)). For an invertible polynomial
fo=al'we + x3Px3 + -+ T T, + T

of chain type with m > 1, the Jacobian algebra Jac(f,) has a monomial basis consisting of all
the monomials ¥ - .. zFm such that

m
1) ngzigai—l,
2) if
b a; — 1 for all odd i, i <2s—1,
o 0 for all even i, 1 < 2s—1,
then kos = 0.

Am—1

For an invertible polynomial f, = x{'xs + x5%x3 + - + " 1 T + 2821 of loop type with
m > 2, the Jacobian algebra Jac(f,) has a monomial basis consisting of all the monomials
:E]fl ceeghmowith 0 <k < a; — 1.

Let Iy := {i1,...,in,} be asubset of {1,..., N} such that Fix(g) = {z € CV | 2; =0, ¢ I,}.
In particular, fig = {1,..., N}. Denote by I the complement of I, in 4.
In what follows, we are mostly interested in special pairs of elements of G.
Definition 25. Let f = f(x1,...,2x) be an invertible polynomial.
(i) An ordered pair (g, h) of elements of Gy is called spanning if

I,UIL, Ul ={1,...,N}. (4.6)

(ii) For a spanning pair (g,h) of elements of Gy, define I, , := I N Ij.

(iii) For a spanning pair (g, h) of elements of G, there always exist g1, g2, h1, he € Gy such
that ¢ = g1g2 and h = hihy with goho = id and I, ,, = 0. The tuple (g1, g2, b1, ho) is
called the factorization of (g, h).

Remark 26. For a spanning pair (g, ) of elements of G, up to a reordering of the variables,
we have

(03"'7030417"'7ap7ﬂ1;-'-35q)

g
4.7
h:(vlv"'afyrvo7"'707]-_617'”71_5(])7 ( )
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for some rational numbers 0 < a3, 8;,v; < 1 and integers p,q,r such that 0 < r < N, and
Ny+p+q =1+ Np+q = N. In this presentation, we have Iy N I, = {ir11,...,iN—g—p}s
Ig,h = {Z'N,q+1, . ,iN} and

g1 =(0,...,0,0q,...,0p,0,...,0),
g2 :(07"‘70707"'707ﬁ17"'75q)7
hl :(71,...,%,0,...,0,07...,0),

hy =(0,...,0,0,...,0,1—B1,...,1—f,).

We introduce one of most important objects in this paper.

Definition 27. Let f = f(z1,...,zx) be an invertible polynomial. For each spanning pair
(g,h) of elements of Gy, define a polynomial Hy ), € Clz1,...,zn] by

g det (5254 ) it I, #0

Hyp:=4{ " 02025 )i jel, n oh 7 7 (4.8)

1 if Ig7h = @

where my ;, € C* is the constant uniquely determined by the following equation in Jac(f9")
1
[hess(f9"™)H, 5] = [hess(f9")], (4.9)
Hfanh Hfan

where f97" is an invertible polynomial given by the restriction f |Pix(g)nFix(h) Of f to the locus

Fix(g) N Fix(h).

Remark 28. The polynomial Hy j is a non-zero constant multiple of the determinant of a minor
of the Hessian matrix of f(z1,...,2n). Since I, NI}, C Iy, and I, , C Iy, hess(f9") and H, 5,
define elements of Jac(f9").

Remark 29. Let (g, h) be a spanning pair of elements of G;. Suppose that Fix(g) = {0}. Then
h =gt It is easy to check that Hy ) = i[hess(f)] by the explanation of mg ; below. Recall

also Definition 2 that if Fix(g) N Fix(h) = {0} then i onn = 1 and hess(f9") = 1.
We explain the existence and the uniqueness of m,; in Definition 27. Suppose that
f=f® & fpis a Thom-Sebastiani sum such that each f, = f,(z;,...,z;,), v=1,...,p

is either of chain type or loop type. Set I, := {iy,...,im} C {1,...,N} for each v. Then
Jac(f) = Jac(f1) ® --- ® Jac(fp) and

o*f ) - < 9 fy )
det < = det . (4.10)
8l‘i8$j i,j€liq H 8$28$J ijel,

v=1

For each g € G and f, as above the following holds:
o If f, is of the chain type f, = af'®;, +--- + x?;":lll‘im + zi™, then there exists [,
0 <! < m such that {i1,...,4} C I§ and {i41, - im} C 1.
e If f, is of loop type, then I, C I, or I,, C I.
We classify the possible cases of I p.

Lemma 30. Let (g,h) be a spanning pair of elements of Gy. Suppose that f = f1®--- & fp
is a Thom-Sebastiani sum such that each f,, v = 1,...,p is either of chain type or loop type.
Then, for each f, = f,(x;,...,xz;, ), the either one of the following holds:
(i) fu is of chain type and, for some 0 <1 < m,
(a) {7;1, u ,im} - Ig, {7;1, SN ,il} - Iﬁ and {il+1, v ,im} - Ih,
@) {ir,- - yim} C In, {in, .- 0y C I and {ipg1, ..o im} C Iy,
(b) {i1,...,4} C Igpn and {31415y im} C IyN 1.
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(ii) f, is of loop type and
(a’) {ilv‘ .. 7Zm} - Ig ﬂ[h,
(b) {it..-rim} C IO IS,
() {i1, - vim} C I N I,
(C) {i17' <. 7Zm} g Ig,h-

Proof. 1t is straightforward from the explicit form of an invertible polynomial of each type and
the group action on it. O

Obviously, only polynomials f, satisfying I,, NI, ;, # () contribute non-trivially to H, j. Such
an f, satisfies the either one of the following two by Lemma 30:

(a) L, = {il, . ,im} g Ig,h-
(b) f, is of the chain type and, for some 0 <[ <m — 1,

{il,...,il}glgﬁh and {il+1,...,im}glgﬂlh.

Set T'y := {v | f, satisfies (a)} and I'y := {v | f, satisfies (b)}. Since Iy, = I, U (Ig N 1}), we

have
D oD e D 5 (4.11)
Ve €l vp€lp I,,Vg?gthlh

where @ denotes a Thom-Sebastiani sum and hence

Jac(fo") = ® Jac(f,,) ® ® Jac(fy,) ® ® Jac(fy). (4.12)

Ve €l vp €l v s.t.

I,CI NI,
Consider the factorization
02 ~ ~(y
det (a éf ) = I #&- ] &, (4.13)
Ti x‘j ivjeIg h ve€ly vpel'y
where ) )
~ (9 v, (v a v
HVe) .= det ( Ju, > ) H;S W)= det( Jun ) . (4.14)
6%895]- i.j€l,, 8.’1?181‘] z]EIVbﬂIg N
Suppose for simplicity that f,, = 2{'@2 + - + 2o ' @ + 2% with I, N I, = {1,...,1}.

By a direct calculation, we have the following equahtles in Jac( f,,b)

l

] - <H> S0 o) e et e e, )

j=1 i=1

m m 7
—J —2 1 —
[hebs(fub|F1x ﬁle(h))] = < ai) . Z(—l)m J H a; [x;lj:ll Z‘;:ljzz . x;lnm 1]’
%

=l+1 j=l i=l+1
(4.15Db)
m
[hess(fu, )] (Haz> . Z )y JHal [ S Lt (4.15¢)
§=0
Note that ] )
m . 7 m ) 7
Pfu, = Z(_l)m_j Hai’ P fuy Ipix(@)npix(ny = Z(_l)m_J H - (4.16)
§=0 i=1 j=l i=l+1
Hence, it is straightforward to see the existence and the uniqueness of my .
Proposition 31. Let f = f(x1,...,2N) be an invertible polynomial. For each spanning pair

(g,h) of elements of Gy, the following holds:
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(i) The class of Hy.p, is non-zero in Jac(fI").

(11) If Ig,h = (Z), then [Hg,g—th,h—l] = [th,(gh)—l] mn Jac(f)

iii) For any j € I, 1, the class of x;H, 1, is zero in Jac(fI").
g, itlg,

Proof. Let the notations be as above. We may assume that I, # 0 since if I, = 0 the
statements are trivially true. The part (i) is almost clear by the equation (4.9) since [hess(f9")]
is non-zero. The part (ii) follows from the normalization of H,j; by the equation (4.9) in view
of the equations (4.15).

To prove part (iii), first note that there is v, 1 < v < p such that j € I,, for some f, satisfying
either one of (a) or (b) above. Due to the factorization of Jac(f9"), it is enough to show that

[xjﬁéy)] =0ifv eI, and [xjﬁlgu)] = 0 if v € T'y. Since the first case is almost clear, suppose

that f, € Ty, I, = {1,...,m} and I, N I, = {1,...,1}. Recall again that [ﬁéy)} is a non-

zero constant multiple of [z 225>~ ... 2% 'z, 4], Tt is easy to calculate by induction that

(29" zy) = 0 and [x;l’ zj11] = 0 in Jac(f,) for j = 2,...,1. Therefore, we have [xjﬁéu)] =0in
Jac(f,) for j =1,...,1 (see also the description of the monomial basis in Proposition 24). This
completes the part (iii) of the proposition. O
Proposition 32. Let f = f(x1,...,zn) be an invertible polynomial. For each spanning pair
(g,h) of elements of Gy, we have

(N —Ng)+ (N —Np) = (N — Ngi) (mod 2). (4.17)

Moreover, if I, =0 then (N — Ny) + (N — Np) = (N — Ngp).
Proof. First of all, note that N — N, = |I$| — the number of elements in the set I{. Therefore,
the following equalities yield the statement:
N — Ny = ‘Igc\lg,h| + |Ig,h|v N — Ny = |I}CL\[g,h| + |Ig,h
N = Ngn = Ign| = UG\ g,n| + [T\ g n]-

O

For each g € Gy, the set I, C {1,..., N} and its complement I will often be regarded as a
subsequence of (1,...,N):
1 :(il,...,iNg), i1<~~'<iNg, I;:(jl,...,jN_Ng), j1<"'<jN_Ng. (4.18)
Definition 33. Let g1,..., gk be elements of Gy such that I, , = 0if i # j.
(i) Denote by I, o U 1g, the sequence given by adding the sequence ¢, at the end of the
sequence Ig . Define inductively Ig L---UI¢ by (Igl U---u ng_l) U I¢, . Obviously,
as aset, [; U---Ul; =17 .
(ii) Let og,,... g, be the permutation which turns the sequence Ig u---UIg to the sequence
Ig, g Define £, 4, as the signature sgn(oy, ... g,) of the permutation o, g, .
It is straightforward from the definition that
gg,id =1= gid,g, g € Gf, (4.19&)
Egh = (—1)<N—N-‘7)(N_N")e’:‘~h7g, g, he Gy, Iy = 0, (4.19Db)
C9.9Ca0 9" = Egg'.9" = Eg.99Cq9 99,9 €Gp, Iy =Ig g0 =Ig g =0.(4.19)
4.3. Uniqueness. Throughout this subsection, f = f(x1,...,2x) denotes an invertible poly-
nomial. In this subsection, we shall show that for any G C Gy the axioms in Definition 16
determine uniquely Jac’(f, G) up to isomorphism. We only have to show that for g,h € G the

product o : Jac'(f,g) ®c Jac'(f,h) — Jac'(f, gh) is uniquely determined up to rescaling of
generators of Jac(f?)-modules Jac'(f, g).
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Take a nowhere vanishing N-form dzq A --- Adxy and set ¢ := [dz1 A--- Aday] € Q. For
each subgroup G C Gy, fix an isomorphism in axiom (iii)

b Jad (f,G) — Qg X X F (4.20)
where ( is considered as an element in Q2 ;; = Qy (recall Definition 10). Fix also a map
a:Gy —C", g—ay, (4.21)
such that a;g = 1 and
agag = (—1)zV=NOW=Not1) - g e G (4.22)

Such a map « always exists since for each g we may choose a4 as
1
a9 =o | gV = NV - Ny 4 1) (423)

For each g € G, let vy be an element of Jac'(f, g), such that
vg F ¢ = agwy, (4.24)
where w, € Q) is the residue class of &, € QN4 (Fix(g)) and

5o dwiy Ao Ndagy if Ig = (i1, ..., in,), 11 < <'in, (4.25)
971, ifI, =0 ' '

Obviously, we have wijq = (.

Remark 34. It might not be necessary to distinguish ¢ and wiq, however, we regard ( as a
“primitive form” (cf. [S1, S2, ST]) at the origin of the base space of the “properly-defined
deformation space” of the pair (f, G) while we hold wiq as just a Jac'(f,id)-basis of Q}l 4

By axiom (i), we have Jac'(f,id) = Jac(f). Therefore, viq = [1] and, by axioms (ii)
and (iiia), viq 0 vy = vy 0 Vg = vy. Axiom (iila) implies that for all Y € Jac'(f,g) there exists
X € Jac'(f,id) = Jac(f) represented by a polynomial in {xi}ic1, such that Y = X ov,. For any
X € Jacd'(f,id), we shall often write X ov, as X |pix(g)vg Where X|pix(g) is the image of X under
the map Jac(f) — Jac(f9).

Proposition 35. For a pair (g,h) of elements of G which is not spanning, we have
vgovp =0 € Jacd'(f, G).

Proof. Denote by [v; ,(x)] the element of Jac(f9") satistying v, o vj, = [Vg.n(X)]vgn. Suppose
that f = f1®--- @ fp is a Thom-Sebastiani sum such that each f,, v =1,...,p is either of chain
type or loop type. Without loss of generality, we may assume the coordinate xy, k ¢ I,UI, Ul
to be a variable of the polynomial f;. Consider the following two cases;

(a) fr=al' o+ 25’234 + xgl’"jf Ty + a8 is of chain type.
(b) fi=a{'za+2Pes+ -+ 2, Ty + 2% xy s of loop type.
Case (a): First, note that 1 ¢ I, U I, UI,,. Consider (a—ll, 0...,0) € Aut(fy,G) and extend it

naturally to the element ¢ € Aut(f,G). Since 1 ¢ I, U I}, U Iy, we have ¢*(vy) = e [— 1 } Vg

ay
for ¢’ € {g,h, gh}. Axiom (iva) yields ¢*([7,(x)]) = e [faﬂ [, 4 (x)]. On the other hand, we

have ™ ([, (x)]) = [, (x)] since 1 & Igp,. Hence, [y, (x)] = 0.

Case (b): First, note that 1,...,m ¢ I, U I, UIy. Choose an element of Gfl\GS{J, which
exists due to Proposition 21, and extend it naturally to the element ¢ € Aut(f,G). There
exists a complex number A, # 1, the determinant of ¢ regarded as an element of GL(N;C),
such that ©*(vy) = A;'vg for ¢ € {g,h,gh} since 1,....,m ¢ I, U I, U I,. Axiom iva
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yields gp*([ L a(x)]) = [’yg »(x)]. On the other hand, we have ¢*([v; ,(x)]) = [v; ,(x)] since
1,...,m¢ Igh Hence, [’yg n(x)] = 0. O
We consider the product v, o vy, for a spanning pair (g, h).
Proposition 36. For each spanning pair (g, h) of elements of G, there exists c¢q 5, € C such that
Vg o vy = Cgn[Hg n|vgh- (4.26)
Moreover, cq,, does not depend on the choice of the subgroup G' of Gy containing g, h.

Proof. We only need to show the first statement since the second one follows from it together
with axiom (vi), the definition of vy in (4.24) and the independence of Hy ) from a particular
choice of G. Based on Lemma 30, we study which variable in f, can appear in the product
structure.

Lemma 37. Let the notation and the cases be as in Lemma 30 above. There is a polynomial

Yg.h(X) € Clz1,...,xN] which doesn’t depend on x;,,...,x;, such that the one of the following
holds:
(1) (a) vgovn = [vg,n(x)]vgh.
'79,h(x> . x:‘fl 721“;21'2*1 e x?;mfl)} Ugh ’Lf l —m
(b) Vg ©Uh = aig =2 ai;—1 a;, —1 . )
Vo (%) - (T3t w2y, xh“)} Vg if IL<m

9
(i) (a) vgovn = [vg,n(x)]vgn-
(b) Vg ©Vp = [’Yg,h(x)]vgh-
— a;; —1 a12—1 iy, —1
(€) vgovn = [rgn () - (5 T ale Tl ) g,
Here, we denote by [v,.1(x)] the class of v4.n(x) in Jac(f9").
Proof. (i): We may assume f, = {22 + x9%x3 + - - + 2%, For each r = 1,...,m, there is a
unique element ¢, € Aut(f,,G) such that ¢, (z;) = z; for all = r+1,...,m, which is explicitly
given by

or(xr) =€ [1] T,

1 1 1 1 .
go,,(aci)::e[(l— (1—-~-— (1—)))]xi,1§z<r.
aj Qi1 Ap_1 a,

Denote also by ¢, its natural extension to Aut(f,G) and by A, € C* the determinant of ¢,
regarded as an element of GL(N;C).

(a) For each r = 1,...,m, we have @}(vy) = vy, @i(vn) = A vp and @F(vgn) = A vgh.
Suppose that a polynormal Yg.h(X) € Clz1,...,2N] satlsﬁes Vg 0 Uy, = [Yg,h(X)]Vgn. By
axiom (iva), we obtain

[or (Ya.n (x))]vgn = Ap, @7 ([Vg.n (X)]vgn) = A, 7 (vg © vh)
= Ap, ¢ (vg) © @1 (vn) = vg 0 vh = [7g,1(X)]Vgn,

and hence @7 ([v4.n(X)]) = [v4.n(x)] in Jac(f9"). In view of the above action of ¢, and
Proposition 24, the polynomial v, 5(x) can be chosen so that it does not depend on x;,

t=1,....m
(b) For each 7 = 1,...,m, we have o (vy) = A vy, F(vn) = A, on and @ (vgn) = vgn.
Suppose that a polynomlal Yg.n(%X) € Clzy,..., xN] satisfies vg ovp = [y ,(X)]vgh. By

axiom (iva), we obtain
7 (Vg0 GNvgn = 7 (17,0 (X)]vgn) = @7 (vg © vn)
= 01 (vg) 0 @1 (vn) = A;7 (vg 0 vn) = AZ2 g 5 (X)]vgn,
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and hence [p} (v, ,(x))] = )\;3[7;7h(x)] in Jac(f9"). In view of the above action of
o, and Proposition 24, the polynomial '75’77 »(x) can be chosen so that it is divisible by

a1—2 a2—1 .

a1—2 (12—1
xl xz ..

cog8m=bif | = m and by z{' "z} .

—1 .
cxpt T Ty i L <m.

(ii): We may assume f, = 2{'zo+ 5223+ - +alr . For each element ¢ € Gy, regarded as
an element of Aut(f,,G), denote also by ¢ its natural extension to Aut(f,G). Let A, € C* be
the determinant of ¢ regarded as an element of GL(N;C). Note that if ¢ # id then ¢(z;) # x;
foralle=1,...,m.

(a) For all ¢ € Gy, , we have ¢*(vg) = vy, ¢*(vn) = v, and ©*(vgr) = vgn. Suppose that a
polynomial v, 5, (x) € Clz1,. ..,z n] satisfies vy 0 v, = [v4.1(X)]vgn. By axiom (iva), we
obtain

[#" (V9,0 (x))]ugn = 7 (Yg,n(x)vgn) = ¢ (vg © vn)

= ¢ (vg) 0 ™ (vn) = vg 0 v = [Yg,n(X)]Vgn,

and hence [p* (v44(x))] = [74.n(x)] in Jac(f9"). In view of Proposition 24, the polyno-

mial v, ,(x) can be chosen so that it does not depend on z;, i =1,...,m.

(b) Suppose that a polynomial v, ,(x) € Clz1, ...,z N] satisfies vgovy, = [V4,n(X)]vgn. Since
1,...,m do not belong to I, NI}, nor I, , it is obvious that the polynomial v, 5(x) can
be chosen so that it does not depend on x;, i =1,...,m.

(c) For all ¢ € Gy, we have ©*(vg) = A vy, ©*(vn) = A v, and ©*(vg) = vgr. Sup-
pose that a polynomial vy ,,(x) € Clz1,...,2n] satisfies vy 0 vy = [, ;(x)]vgn. By

axiom (iva), we obtain

[ (Vg1 N vgn = " (g, (X)vgn) = " (vg 0 va)

= ¢"(vg) © @™ (vn) = A;*(vg 0 vn) = A7, (X)]vgn,

and hence [p*(7, ,(%))] = A2[v,,(x)] in Jac(f9"). In view of Proposition 24, the

polynomial 7, ; (x) can be chosen so that it is divisible by gt

Ay —1

..l'm

d

Now the first statement of the proposition is a direct consequence of Lemma 37, since H p,
is a constant multiple of the product of the monomials in the round brackets there. We have
finished the proof of the proposition. O

By Proposition 36, we may assume that G = Gy. We give some properties of cg .

Lemma 38. For each g € Gy, we have

1
Cgg1 = (—1)FN-NDW=N;=1) o [2age(g)} . (4.27)
Proof. We have
1 g QgQg—1 g
u—ngf,g([hess(f Nvg ¢ vg-1H¢) = e Jg.g([hess(f7)]wg,wy-1)

1(N— “N.— 1
(_1)2(1\7 Ng)(N—N,g 1).e{_23ge(g)] G|



108 ALEXEY BASALAEV, ATSUSHI TAKAHASHI, AND ELISABETH WERNER

On the other hand, by axiom (v) and normalization (4.9) of Hy j, we have

1 1
—Jypg(hess(f9)]vg b ¢ vg-1 F () = —Jpia(wia, [hess(f9)]vg 0 vg—1 F ()
Ko Hfa
1
= —vaid(wid, Cg’g—l [hess(fg)Hg’gq}wid)
[ifs
Cq.g—1
= 29— Jtia(wia, [hess(f)]wia)
K
= Cg,g—l |G|
O
Lemma 39. For each pair (g,h) of elements of Gy such that I, =0, we have
cgncn g1 = (—1) NI N=Nu), (4.28)

In particular it follows that cg p # 0.
Remark 40. If I, ;, = 0 for a pair (g, h) of elements of Gy, it is spanning.
Proof. We have
Vg © (’Uh ] ’Uh—l) O Vg-1
1N N TVl (N N 1 1 N
= (M [ Sagelg) — Lagelt)] o (s -

(vg 0 vp) 0 (V-1 0 Vg-1)
1N N, 1
:(_1)§(N Ngn)(N—Ngp 1)e {_2age(gh)} Cg,hChfl)g—l[th,(gh)—l]’l]id.

The proposition follows from the facts that the product o is associative, g*(Hy, p-1) = Hp, -1
since Iy, = 0, [Hy ;—1 Hp 1] = [Hgh,(gny—1] in Jac(f), age(g) +age(h) = age(gh) since Iy, = 0,
and (N — Ny) + (N — Np) = (N — Nyp,) (mod 2) by Proposition 32. O

Corollary 41. Let (g, h) be a spanning pair of elements of Gy with the factorization (g1, g2, ha, he).
The complex numbers cg, h,, Cgy.hy GNA Cq, p, aTE MON-ZETO.

Proof. 1t follows from the fact that Iy, p, =0, Iy, n, =0 and Iy, p, = 0. O

Proposition 42. Let (g,h) be a spanning pair of elements of Gy with the factorization
(91,92, h1, ha). We have

1 1
Con = (—1)3(N"Noa) (N =Ngy =1) . g [_age(gz)} .Sl (4.29)
2 Cg1,92Cha,h1
In particular, cgn # 0.

Proof. We have

1
Vg, © (ng ° th) O Vh, = (_1)%(N—Ngz)(N_N92_1) e [_Qage(%)} “Vgr © [ng-ggl]vid O Uny

1n_ N 1
- (_1)2(N Ngy)(N=Ngy=1) | o [—Qage(gz)} 'Cgl,hl[ng,g,;l]vgw

On the other hand, we get:

(vgl ° 7)92) © (th © Uh1) = Cg1,92€g9192 © Cha,h1 Vhihs
= Cg1,95Cha,h1 Cg,h [Hg,n]Vgh-
Note that H,p = HgQ,ggl = Hh2,h;1 by the definition of the factorization (g1, g2, h1,h2). By

Corollary 41, we know that ¢4, 4, and cp, p, are non-zero, which gives the statement. O
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Hence, by this proposition, we only have to determine ¢, j for all pairs (g, h) of elements of
Gy such that I, = 0.

Suppose that f = f1 & --- @ f, is a Thom—Sebastiani sum such that each f,, v =1,...,pis
either of chain type or loop type. Then, we have a natural isomorphism Gy = Gy, x --- x Gy, .
Therefore, it follows that each g € G ¢ has the unique expression g = g; - - - g, such that g; € Gy,
foralli=1,...,p, hence I, ;. = () if 4 # 7 and Ig=15 U---U I;p. Under this notation, define
vg by

Vg := Egy,....gpVgy O+ O Vg, (4.30)
Obviously, 74 is a non-zero constant multiple of v, for all g € Gy. It is also easy to see that v,
does not depend on the choice of ordering in the Thom—Sebastiani sum and that for a pair (g, h)
of elements of Gy with I, ,, = () we have

- 1
Ug 0 Up, = =—Ugh.- (4.31)
€g,h
Proposition 43. For each g € G, we have
- 1 ~
g 0Tg1 = (—1)z(N=No)(N=Ny=1) . o [2age(g)} [Hy g1 10 (4.32)
Proof. There is an inductive presentation of v, given by
~ g if g=ug,
Vg =9 ~ . .
€g1...95,9i+1Vg1...g: © Vgiss if g=91...9i9i11, i1=1,...,p—1.

The statement follows by induction from the following calculation:

Vg 0 Vg1 = (€g...1,941 Vg1...gs © Vgisy) © (ngl_“gi—17g Ugt.gmt O Ug1 )

1111 91 9it1
(_1)(N7Nq1*1 )(N7N9i+1)
(_1)(N_N914-497;)(N_Ngqj+1)+%(N_N914~97‘,)(N_NQ1~-~97;_1)+%(N_N517‘,+1)(N_N9i+1 -1)

—1
-9;

’ (591.4..% © 5g;1_“gi—1) ° (’UQH»I ° v-‘];rll)

1 1 ~
-e —iage(gl ceagi) — Qage(gwl)} . [Hgl.”gi’gl—l.”gi—lHgi+17gi—+ll]vid

1 ~
= (DI N o [ Sagely)| - [y
U

This proposition says that by replacing the map a : Gy — C*. to the suitable one we have
a new basis {v, }4eq, instead of {vy}geq,;. To summarize, we finally obtain the following

Corollary 44. Let (g, h) be a spanning pair of elements of Gy with the factorization (g1, g2, ha, h2).
We have
-~ 1 €g1.92E] ~
Ty 0 = (—1) BV -Naa)(N-Npy 1) ¢ {_Zage(fh)}  SongaCha g (4.33)
g1,h1
In particular, for any subgroup G of Gy, if a G-twisted Jacobian algebra of f exists, then it is
uniquely determined by the axioms in Definition 16 up to isomorphism.

4.4. Existence. In this subsection, we prove the existence of a G-twisted Jacobian algebra of
f. We first show this when G = G.

Definition 45. Define a Z/2Z-graded C-module A" = A% & AL as follows: for each g € Gy,
consider a free Jac(f?)-module .A’g of rank one generated by a formal letter v,

Aj, = Jac(f9)u,. (4.34a)
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and set
A = @ A, and AT = @ A (4.34Db)
9€Gy g€Gy
N—Ny=0 (mod 2) N—Ny=1 (mod 2)

By definition, axiom (i) trivially holds for A’.

Definition 46. For a spanning pair (g, h) of elements of Gy with the factorization (g1, g2, h1, h2),
set

Cgp = (—1)2(N=Noa)(N=Ng, 1) g [—1age(gg)] - Llfzghz’hl. (4.35)
’ 2 €g1,h1
It is also easy to see that
Cgid =1 =3ia g, g € Gy, (4.36a)
Cgg-1 = (71)%(N7Ng)(N7N971) .e [f%age(g)] , g€ G’f, (4.36b)
Coh = Eyps g, he Gy, Iy =0.  (4.36¢)

Definition 47. For each g,h € Gy, define an element of A;h by

B, 0T i Cg.n [Hgn|Ugn if the Pair (g, h) is spanning . (4.37)
0 otherwise
It is clear that Tjq 0 U, = T, = ¥, 0 Viq since liq g = I,3a = 0 and hence [Hiq 4] = [Hy 4] = 1.

Proposition 48. For a spanning pair (g,h) of elements of Gy which has the factorization
(gng,hl,hQ)} we have
Cg = (1NN e [age(ga)] - Tng- (4.38)
Hence, we have
g 00, = (~1)N NN (e [—age(go)] Th 0 T) - (4.39)
Proof. We have
g =(—1)2 (VN )(N=Noy=1) o [—;age(gz)} S gahai

€g1,h1

:(_1)(N_N91)(N_N92)+(N_Nh1)(N_th)_(N_Nyl)(N_Nh1)+(N_N92) e [_age(gz)]

1 ~ ~
. (_1)%(N—N;L2)(N—Nn2—1) .e [—Zage(hz)} . m
5h1791

=(—1)W DTN e [—age(g2)] - Cng,
where we used that hy = g5 ', N — N, = age(ga) + age(hs) and Proposition 32. O
Proposition 49. For each g,¢',¢" € Gy, we have
(Tyg 0 Uy) 0Ty =Ty 0 (Vg 0Ty ). (4.40)
Proof. First, we show the following

Lemma 50. For g,¢',g" € Gy, suppose that (g,9') and (9q’,9") are spanning pairs with
Ig,g/ - Ig//.
(i) There exist g1, 92, 93,91, 9. 95. 91, 95, 95 € Gy such that
9= 919293, 9 = 919293, 9" = 919595, 191 =id,g295 =1id, gsgs =id, (4.41)
and (9192, 93, 9195, g5) 1s the factorization of (g,9’) and (9145, 9291, 95, g1 g5) is the fac-
torization of (99’,4").
(ii) The pairs (¢',¢") and (g,9'g") are spanning such that Iy g C 1.
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Proof. (i) Similarly to the presentation of (4.7), the elements g, ¢’, g" satisfying the conditions
can be expressed, in the multiplicative form, as follows:

g = o - g2 - id - id - g3 - id
g =1id - id - ¢ - g8 - g5 - id. (4.42)
g’ = id - g5 - g - id - id - g5

(ii) By the above presentation, it is easy to see that (g,¢’) and (g¢’,¢"”) are spanning pairs.
It follows from gjg{ = id that Iy g» C I,. O

Lemma 51. The LHS of (4.40) is non-zero if and only if the RHS of (4.40) is non-zero.

Proof. By Proposition 31 (iii), the LHS of (4.40) is non-zero only if both pairs (g,¢’) and
(99',g") are spanning and I, C I, and the RHS of (4.40) is non-zero only if both pairs
(9,9'9") and (¢’,¢") are spanning and Iy 4» C I,. Lemma 50 together with Proposition 48
yields the statement. (I

Lemma 52. Let the notations be as above. We have

Hy g = Hga,ggv Hgyg g = nggbg;’gi’v Hg g9 = nggmg;’gga Hgy g = Hngi’v (4-43)

and hence [Hy g Hygr o] = [Hy g1 Hyr gr] in Jac(f99°97).

Proof. The first statement follows from the definition of H,; and the second one does from
Proposition 31 (ii). O

Therefore, we only have to show the following

Lemma 53. Let the notations be as above. we have

Cg,9'Cqg’,9"" = Cg,9'g""Cg’,g"" - (4.44)

Proof. Tt follows from the definition (4.35) that

~ 9

By = (—1) BV Nag (N =Ngy =1) {_;age(gg)] . £9192.95%95.9195

€9192.9, 95
1 g / /5~ 111
_ L(N=N N—N,_ ,—1 1 915,929, €94 9¢ .9
Cygr g = (—1)7 T Noao) N Noneg )-e{age(gzg’l)} s
2 €g19%,9%
_ 1(N— — — 1 ggl gzgagg’gf 9595
Cg,9'g" = (_1)2(N Naza3) (N=Ngzg5=1) - e |:—Qag€(9293):| : — RS )
€g1,9595
1 N/ ’ /~// 1" 1
_ L(N=N_,}(N=N,, —1 1 €g%94.9, 97 .94 9!
g = (I ETRO T | Sagelyp)| - e,
Egbqt.g gl
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Since all 17,

I;{ and Ig{, are mutually disjoint, we get
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Cg,9'Cgq’,g" :(—1)%(N7N93)(N7N9371)+%(N7N9293)(N Nozop =1
I 1 1 g R g/’ ) g /7 /5 7 //7
‘e _iage(gg) _ Qage(g2g£):| . 9132 93%~93,9192 g1923291 95 91 g
L €9192,91 94 €9195.9%
:(_1)%(N—Ngg)(N—NQS—1)+%(N—N92+N—Ng/1)(N—Ng2+N—Ng/1—1)
[ 1 1 1
‘o jae(on) — gaselon) ~ o)

//E

591792591792703593,91,92591,92591,92591,92791,92591 92€97 gV gl g¥ ol

€g1,92E 01,92 97,95 691 .95 Eg1 .95 Eg1 95,94

(1) (VN0 P (V=N )+ (N=Nga ) = (N =Ny (N =N )= (N =N ) +2N =Ny (NN ;)

1
—-age(gs) —

! goselan) — yae(sh)]

2 2

€91,92,95%95,91,95%91,95.91,9291,925 97, oy Eay gy .94

€g1,92.9,,94E 91,9594

and

L(N=Nyy)(N=N,

— _ 71)+l
— 2 2
Cg,9'g"Cqr g =(—1)

9203 (N=N, ) (N=N, ~1)

1 1,
-€e _5356(9293) - iage(%) : =
L €g1,9595 ggég&gé’gg’
JEON =Ny 4N =Ny (V= Ny N =Ny =) § (N =Ny (N =Ny 1)

i 10 11

€g1,9295E g4 95,9595 59293,91591 .95 94

1 1 1
!
-e |—sage(gs) — sage(g2) — sage(g;)
72 2 2
) 591,92,93592,93592 ,93592 193792’93/592 95 592,93592,93’91591 293 95'592 295
591,9279”592 9&’592,93592,93’92 ,95’592 g%

:C_D%ONfN%)fUV%%Q+UV%%y*%N7Nm%HN7Nﬁf*UV%%Q+ﬂN7NmKN7N%D

1 1 1
~ goeelan) ~ qagelsn) - pouelst)|

€91,92,95%92,95%9 94594 95,9595 €95,95,91 C 91 .94 9%

591,9279”592793,92 .94

Therefore, we only have to show that

(1) (N=Ngy)(N=Ny) €91,92,93€44,91,95€91.95.97,92€ 9 ,92€ 97 .95 €a¥ .94 9%

€g1,92.91,95€ 91,9594

= (—1)N=Nog)(N=Ngj) . €91.92,98 92,9559 .94 €94 1949495 St 94,94 0t 9l 9
€91.94.94 05,9494 .94

: ! I 3 1/ 3 /

Since ¢1g7 = id, g295 = id and g3g5

have that

— 1 c __ C c __ C c __ C
= id, we have Ig,1 = Ig;'vIgQ = Ig;' and [g = Igé' We also

g2 = 1 for any expression e. Hence, the problem is reduced to show the following
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equation:

(_1)(N7N92)(N7N9’1) €91.92,95%93,91,95%91,95.91,9291,92,94

€91,92,91,95€91,9%,9%

€g1,95.95 €94,93,92,95

(—1)(N=Nap)(N=Nyg) . 591,gg,gsiga,gs,géﬁgé/ggé,93,9’1593,92’93/.
Recall also that €, is the signature of a permutation o, based on the expression e (see Defini-
tion 33), and hence we get a suitable sign by interchanging two indexes, for example,

(N=Ny ) (N=Ny ) ~

€gs,91.95 = (-1) 2 €g3,95,97

The LHS of the above equation is given by

(71)(1\1—Ng2 J(N=Ngr)  £91,92.95%93,91,9591,95.,91.92591 92,95

€91,92,9},95€ 91,9594
YNNG V=N

= (=)W No2) (N=Ngp) So1.9205 (71 ? ©93.93.91°91,92.94

€g1.,95,95
(_1)(N*Ngz)(N*Ng/l)+(N*N.qz)(N*Ngé)vL(N*Ngé)(N*Ng/l)g L
91:92,91,92

€g91,92,9},95

_ (_1)(N—Ngg)(N—Ngé) . €91,92,93€9s,95,91 €9} ,92,95

~ b
€91,95.9%

while the RHS is given by

(= 1) =Naz)(N=Nyg) . €91,92,93%92,93,94,95 €9%.,95,91 €9} 92,95

€g1,95.95 €94.,93,92,95
(N=Ny )(N—Nyy) = -
o2 €gs,95.9159}.92.9%

— (—1)(N=Nop)(N=Ng5) | €g1,92,95 (—1) -
€g1,9%.9%

N—=Ng,)(N=Ng3)+(N—=Ng,)(N=N, )+(N=N, ) (N=Ng;) ~
(71)( g2 ( 93) ( 92) _2) 2)( g3 5gé7g37g2,gé/

€g4.,93,92.95

(_1)(N7Ng2)(N7Ng/2) €91.92,95%93,95,91 591 92,94
~ )
€91,9%.9%

which coincides with the LHS. O
We have finished the proof of the proposition. O
Now, it is possible to equip A" with a structure of Z/2Z-graded C-algebra.

Definition 54. Define a C-bilinear map o : A’ ®c A" — A’ by setting, for each g,h € Gy and
¢(X)a QZJ(X) € (C[:L'la s axN]a

([()]Tg) o ([ ()Jwn) = Cg.n [d(X) 1 (%) Hg,n] Tgh- (4.45)
It is easy to see that the map o is well-defined by Proposition 31 (iii).

Proposition 55. The map o equips A’ with a structure of Z/27Z-graded C-algebra with the
identity Tiq, which satisfies axiom (ii).

Proof. The associativity of the product follows from Proposition 49. It is obvious by Proposi-
tion 32 that Ao A% C A;-Tj for all 4,5 € Z/27Z. Tt is also clear by the definition of the map o

above that the natural surjective maps Jac(f) — Jac(f9), g € Gy equip A" with a structure of
Jac(f)-module, which coincides with the product map o : Ajy ®c A, — Aj. O
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Take a nowhere vanishing N-form dzq A --- Adxy and set ¢ := [dz1 A--- Aday] € Q. For
cach g € Gy, let wy € Q) be the residue class of W, € ONa (Fix(g)) where

wg — dxil/\~-~/\dxmg ?fIg:(il,...,Z'Ng), 11 <"'<iNg . (4.46)
14 ifI, =10
Obviously, we have wiq = (.

Definition 56. Define a C-bilinear map +: A’ Q¢ Q}’Gf — Q}’Gf by setting, for each g, h € G
and ¢(X)7 ¢(X) € C[xh s 7-TN]7

(1960)J5) F (1 Ge)n) 1= S [6()1b )y ] (147)
where & : G — C*, g — @ is a map given by
gy :=e é(N — Ng)(N—=Ng+1)|. (4.48)
Remark 57. The map @ : G — C* satisfies ajg = 1 and
@y, 1 = (—1)z NN WN=Nat D) g e G (4.49)

The map + induces an isomorphism + ¢ : A" — Q/f,cf of Z/2Z-graded C-modules:

FC Ay — Dy, [B(X)]Dg = [0(x)]Tg - ¢ = A [6(x)]wg, (4.50)
Note that for each g, h € Gy and ¢(x), ¥(x) € C[z1,...,zn] we have
([¢(x)]vg) F ([ (x)Jwn) = (([#(x)]7g) © ([(x)]on)) F ¢, (4.51)

by which we obtain the following
Proposition 58. The map -: A’ ®c¢ Q’f,Gf — Q’f,Gf satisfies axiom (iii) in Definition 16.

On A’ we have the action of ¢ € Aut(f, @) induced by the isomorphism - ¢ : A’ — Q’f,Gf,
which is denoted by ¢*. We also use the notation of (3.6).
Proposition 59. Axiom (iv) is satisfied by A’, namely, azioms (iva) and (ivb) hold.
Proof. Let (g, h) be a spanning pair of elements of Gy with the factorization (g1, g2, h1, he) and ¢
an element of Aut(f, G). For simplicity, set g’ := pogop™t, h' := pohop™1, gl := pog;op~! and
hl:=poh;op~! for i = 1,2. Note that the pair (¢/, 1) is a spanning pair with the factorization
(91, g5, hy, hhy) since ¢ is a C-algebra automorphism of C[zy, ..., zy], which induces a bi-regular

map ¢ : (Fix(g;)) — Fix(g;). It also follows that there exist Ay, Ay, ;s Ap,, € C*, i = 1,2 such
that

P (Wia) = Apid, @ (Wg,) = Ag,, Wor, @ (Wh,) = Ay, Wnyy 0= 1,2,
(see (4.46) for the definition of w,) and that, by (4.48), @y = @y, Qp = @p, @y = Oy, and
Qp; = Oip, fori=1,2.
For each ¢(x) € Clxy,...,2zN], we have
" ([p(x)]vg) = [¢"o(x)]¢"(Vy),

since

¢*([0(xX)Jvg) F 0™ (¢) = " ([#(x)]7g I ¢) = @™ ([P (x)]wy)

= @gl" (X" (wg) = =L ([p" o))" (7)) - 9" (O) = ([¢"6(X)]* (7)) - *(€).

ag/

Therefore, we only need to show that ¢*(7,) o ¢*(Ts) = ©* (U4 0 ).
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It easily follows that
©" (Vi) = Tia, ¢ (Vg;) = )\;:zi Vg, " (Un,) = )\;: ;
since *(Tiq) b ©*(¢) = ¢*(Tig F ¢) = ¢*(¢) and
()\gaglﬂgﬁ) Q= Ap, Ogrwg = P (g,wg,) = ¢"(Vg,) F 9" () = (A" (Tg,)) F ¢,
Aon, Tny) B C = Agy, @nrwny = @ (@n,wn;) = @ (0n,) F 0™ () = Ap* (Tn,)) ¢
Lemma 60. We have
A

Y91 )\‘Pyz . €g1,92 .

)\Lph2 . Ehl,hz

* * $Phq
©"(wg) = = wy,  ¢"(wh) = —2 (4.52)
Ap €q1.95 Ao En! b,
which implies
Aoy Aeay  Egto0l Agn, Aoy  Ehlhy
80*5 — 91 92 .~172 .5/7 SD* Eh — 1 2 .~17 2 ‘@h/. 453
( 9) Ai €91,92 J ( ) )‘?a €h1,ha ( )

Proof. Let Ten be the tangent sheaf on CV. For each g € Gy, define a poly-vector field
Oy €T ((CN, /\N_N-‘?”T-CN) by

F) P . . . . .
~ g N N e g =0 NN )y 1< < NN

9 noI= 8sz’Ng'/
g -

1 if 16, =0

Since we have p*(wia) = Apwia and p*(wWg,) = Ay, Wy for i = 1,2, the poly-vector field 591.
transforms under ¢ as
(Z,ia%-%ﬁg;, i=1,2,
¢ g
where £y, is the signature of the permutation Iiq — Ig, U Iy, and £y is the signature of the
permutation liq — Ig, U Iy;. Suppose that ©*(wg) = Ap,wy for some A, € C* and let g,
be the signature of the permutation lijq — Ij LI I, and £, be signature of the permutation

Liqg — Ig, LIy . Then, 59 transforms under ¢ as

Note that 59 = 591792591 A 592 and 591 = évgiygéﬂﬂvgi A 'ég;. Hence, we have

)\Sog . 59593,95 _ >\‘Pg1 >\4P92 . €g1€g2

Ao Eg€g1g2 )‘i ggiggé'
Therefore, the statement is reduced to show that
€010 _ AT
Eg Ey
However, by calculating the number of elements less than j in the sequences I¢

g1’ 152 and Ig
for each element j in I or [7 , it turns out that the LHS of the above equation is equal to

g2’
(=1)(N=Ng)(N=Ngy) - Similarly, the RHS is equal to (71)(N_Ngi)(N_Ngé). They coincide since
we have Ny, = Ny and Ng, = Ny, . (]
Lemma 61. We have )
(6" Hou] = 22 [Hy ], (4.54)

©
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Proof. Recall Definition 27, where H , is defined as a non-zero constant multiple of

2
det ( o/ ) .
8$i8$j i€l n

Now, Iy =15, = I, Iy = Ig,z = Icg. This is nothing but the transformation rule of the

determinant under the automorphism ¢. O

Since gahe = id and g4hl, = id by definition of the factorizations,
Ng2:Nh2:Nh2:Ny§7 )‘S’Dgg :/\th7
where we identify wp, with wg, under Q¢ 5, = g, and wy;, with wy, under Qy p, = Qy . By
the above lemma, it follows that
©*(g) 0 " (Vn)
_ )\‘\991 )\‘sz )\‘phl )\‘P’Q . E':\191’92 . ghl,h2
= - t il
X Soigh  Enym

. 691 O 6}1/

_ /\8091 )“P.qz AS"M )\‘th Eg1,92  Ehihe
= 1 — —
Ao Coiogs  Enyh,

€g},95€h4, b,

L(N-N_/)(N-N_, -1 1 B
. (_1)2( ) 1 e {—Qage(gé)] .29 [Hyr 1] Ty
€g.h4
1 -~
= (—1)F(N=No)(N=Nyy=1) o [—age(gﬂ} . £91,928ha by
2 €g1,h1

2 ~
)\‘sz H )\9"91 )\‘»"hl €g1,h1
: (Hg ] = Ug'n’
A2 A2 Eg 1
® ® 91,01

= cgn (9" Hyn] 9" (Ugn) = ¢* (Vg 0 ),
where we also used that

~ _ _ ~ ~ N—N,,)(N=N,, )~
Chyhy = (,1)(1\7 Npy )(N Nh2)5h27h1, iy = (,1)( ny ) n)

2 Enyng -

Hence, we proved the algebra structure o of A’ is Aut(f, G)-invariant.
The G-twisted Z/2Z-graded commutativity, axiom (ivb), is a direct consequence of Proposi-
tion 48 since Hy j, = Hy 4 and g*(Us) = e[—age(g2)] - U, which follows from the calculation

9" (0n) ¢ =g"(v) - (e[—age(g)] 9" (C)) = e [—age(g)] - g" (Qhwn)
= e[—age(g2)] - (@nwn) = (e[—age(g2)] - p) I C.
We have finished the proof of the proposition. O

We show the invariance of the bilinear form Jy ¢ with respect to the product structure of A’.
We use the notation in Definition 27.

Proposition 62. For a spanning pair (g, h) of elements of Gy, we have

Jr.gn (vg Fwp, [ hess(fgmh)] w(gh)1>
/Lfgmh

= ()& (a0 - (|

As a consequence, the algebra A’ satisfies axiom (v).

hess(fgﬁh)] w(gh)l» . (4.55)

/,[/fgl"vh
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Proof. Let (g1, 92,h1,ha) be the factorization of the spanning pair (g, h)
equation (4.55) is calculated as

The LHS of the

Jf,gh <Ug = Wh, [

1
hess(fgmh)} w(gh)1>
Mfgﬁh
_ Jy.gn ((vg o) ¢, { : hGSS(fg”h)} w(gh)l)
ap, ’ Hfanh

QgnCq,h 1
= L2 Jron (wgm [heSS(fgnh)Hg,h} w(gm—l)
Qap Hpann
_ Qgn .
— 7@}1 (

1) EN-Nop ) (N=Npy 1) g [;age(gz)}  E0r92Chay

€g1,h1
_ 1
()Y e | Saselgh)] - 6

Qgh (_1)%(N—N92)(N—Ngz—l)—i-(N—Ngh)
Qp,

2

1 1 €g1.92E1
‘e {2%@(91) - §3ge(h1) - age(gg)} eI i SENTe ]

€g1,h
On the other hand, the RHS of the equation (4.55) is calculated as

(SN (05) ([ tess(0) [ ) )
Fonh
1 _ _ _
a( " (_1)(N Ng)(N Np) .e [_age(h2 1)]
gh)—1

1
“Jtn (wh, (Lf — hess(fgmh)] Ug ov(gh)_1> - C)

_ Qp-1Cg (gh)—t

1
— 71)(N*N9)(N*Nh) -e[—age(g2)] - J1.n (wh, { hess(fgmh)] - Whl)
a(gh)—l ,Ltfgﬁh
ap— 1 Eq 2, 1g -1
= O () (NN (N =N+ F(N=Ngy (N =Ny =1) g [_age(gl) _ age(gz)} L9 e
Q(gh)—1 2 €g2,h1
1
(DY e | Sager)| -6
= Ohtt Y (N=Ngt1)(N=Na)+ 3 (N =Ny, )(N=Ng; =1)=(N =Ny, )+(N—=Ng; ) (N =Ny
Q(gh)—1
1 1 1 g, £
e [—2age(gl) - §age(h1) - 2age(gg)] gt L KO RN |G,
g1,h1
~1 ~
where we used that 5g;1,h1 Egrlhy =

Eha,h1 and 591_1’h1 = &g1,hy =

= 69117;“. We have
QghQ(gp)-1 = (—1)%(N_N9h)(N_N9h+l) and apan,-1 = (—1)%(N_Nh)(N_Nh+l) by (4.49). Hence,
it follows from a direct calculation by the use of

N_NQZ(N_N01)+(N_N92) N_Nh:(N_Nh1)+(N_Nh2)7
N_Ngh :N_N9192 = (N_N91)+(N_Nh1)’

Ngz = Nh,,
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(cf. Proposition 32) that
1 1
i(N_Ngth_Ngh"‘l) + §(N_Ngz)(N_Ngz —-1) +(N_Ngh)
1
= 5 (N = Np)(V = Niy+1) + (N = Ny + 1)(N = Ny)

1
+ §(N - Ngl)(N - Ngl - 1) - (N - Ngz) + (N - Ngl)(N - Ng2)
=0 (mod 2),
which gives the equation (4.55)

For X € Ay, we ), ' € Q) g, Jpro(X Fw,w') is non-zero only if ' € Q’f!(gh),l and the
pair (g, h) is a spanning pair. Note that I, UI}, U1y, = Iiq if and only if I, UI(gpy-1 Ul-1 = Iiq,
which means the pair (g, h) is a spanning pair if and only if the pair (h, (gh) 1) is so. Therefore,
Jra(X F w,w’) is non-zero if and only if Jsg(w,(h™1)*X F ') is so. It follows that the
axiom (v) can be reduced to the equation (4.55). O

The last axiom (vi) is trivially satisfied for A’. Therefore, we have shown the existence of a
G ¢-twisted Jacobian algebra of f.
Moreover, it is easy to see the following

Proposition 63. For each subgroup G C Gy, there exists a G-twisted Jacobian algebra of f.
Proof. Consider the subspace A¢, of A" defined by

&= DA
geG
the restriction of the product structure map o : A’ ®c A" — A’ to A, ®c Al and the restriction
of the A’-module structure map F: A’ ®¢ Q},Gf — A’ to Ay ®c Qp - By the construction of
these structures on A’, it is almost obvious that they satisfy all the axioms in Definition 16.

We have finished the proof of Theorem 22.

5. ORBIFOLD JACOBIAN ALGEBRAS FOR ADE ORBIFOLDS

The classification of invertible polynomials in three variables giving ADE singularities and
the subgroups of their maximal diagonal symmetries preserving the holomorphic volume form is
given in Table 1 below (see also [ET13a] Section 8 Table 3).

As it is explained in Section 8 in [ET13al, one can describe explicitly the geometry of van-

ishing cycles for the holomorphic map f: C3/G — C. Here, @ is a crepant resolution
of C?/G and f is the convolution of the resolution map C3 /G — C?/G and the induced one
f : C3/G — C. Note that C3/G is covered by some charts all isomorphic to C*. When
G respects one coordinate we only need to look at the resolutions of C? given in [BaeKn].
For G = Z/2Z acting (z;,2;) — (—z;,—z;), we have C®°/G = C x {z* = zy} C C* by
x=z},y = z},2 = zz; and we have the two charts C* — C*;
(t,u,v) = (t,u,uv*,uv) and (t,u,v) — (t,uv, v, uv).
For G = Z/3Z = (3(1,2,0)), we have C*/G = C x {z* = zy} C C* by
z=2y=252="22

and we have the three charts C3 — C*;

3

(t,u,v) = (t,u,u?v® wv) , (tu,v) = (tu*v,uv? ww) and (t,u,v) — (t, u*v? v, uv).

We shall calculate the restriction of onn each chart based on the classification in Table 1.
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Type H f(z1,x2,x3) [ Gy NSL(3;C) [ Singularity Type
I 2R L2002 k> 1 (1(0,1,1)) Ao
2P 22422 k>1 (2(0,1,1), 5(1,0,1)) Agp1
23 4 25 4 22 <1(1,2,0)> D,
2+ 25+ 23 é(l,o, 1)) Eg
284+ + 23 {1} Eg
I 274 22+ 2022%, k>1 <%(1,07 1)> Ayp_1
23+ 25 4 2222 k> 1 (2(0,1,1)) Aspin
z%+z§71+227;§, k>4 <%(1,07 1)> Dy,
23 4 22 4 2042 {1} FEs
23 4 25 + 2023 {1} E;
I 27 + 2323 + Z22§+1, k>1 {1} Dakto
I\ Zf + 2129 + ZQZé, k),l >2 {1} Ari—1
Z% +4 ,2’1ZéC -+ ZQZ%, k>2 {1} D2k+1
\% 2122 + 252’3 + Z:l),Zl, kil>1 {1} Api

TABLE 1. Classification of invertible polynomials giving ADE singularities and the
groups of their diagonal symmetries preserving the holomorphic volume form.

1. For the pair

1
fr=a 22422 (k>1), G:= <2(0,1,1)>, (5.1)
we have in the two charts
Fltu,v) = " 4w+ ww? and f(t,u,v) = " + w0 + . (5.2)

Critical points of fare on the intersection of two charts.
2. For the pair

1
fr=2F 422422 (k>1), G:= <2(1,0,1)>, (5.3)
we have in the two charts
Flt,u,v) =2 + uF + uo? and f(t,u,v) = 2 + u?ko® + 0. (5.4)

Critical points of fare on the first chart.

3. For k > 1, set

1

2(1,0,1)>. (5.5)

Here, since the resulution is not unique, we take A-Hilb C? of [CR] where A = Z /27 x 7 /2.
We have C3/G =2 C x {z% = way} C C* by w = 2},2 = 23,y = 23, 2 = 212223 and we have four
charts C3 — C%;

1
fr=2 422422 (k>1), G:= <2(0,1,1),

(t,u,v) = (t,u, tuv? tuv) , (t,u,v) = (¢, tu’o, v, tuv) |
(t,u,v) = (tPuv,u,v, tuv) and (t,u,v) — (tu, uv, tv, tuv).
Then we have in the four charts
Fltu,v) =t5 +u+tw? | ft,u,v) =5 + tuv + v, (5.6a)
f(t, u,v) = t**uFvF 4 u 4+ v and J/‘\(t7 u,v) = t"u® + uv 4 to. (5.6b)

Critical points of fare on the fourth chart.

4. For the pair

1

pmsteded 6= (5020), (5.7)
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we have in the three charts
f(t, u,v) = t* 4+ u + u?v?, f(t, u,v) = t* + u?v + uv? and f(t, u,v) =2 +utv? +v. (5.8)

Critical points of ]? are on the second chart.
5. For the pair

1
s 6= (G00n), (59)
we have in the two charts
f(t, u,v) = 3 + u? + uv? and f(t, u,v) = t3 +utv? + 0. (5.10)
Critical points of fare on the first chart.
6. For the pair
2, .2 2%k 1
fi=2i 425+ 225" (K>1), G:= 5(1,0,1) , (5.11)
we have in the two charts
f(t, u,v) = t* + tuFv?* + u and f(t, u,v) = t2 + tof + v (5.12)

Critical points of ]? are on the second chart.
7. For the pair
1

fr=2i 422 4 222" (k>1), G:= <2

(0,1, 1)> ; (5.13)
we have in the two charts
f(t, u,v) = t? + u + uF T+ and f(t, u,v) = t* + vu® 4+ uvk L (5.14)

Critical points of fare on the second chart.

8. For the pair
1

=22 428 42022 (k> 4), G:= <2(1,0,1)>, (5.15)

we have in the two charts
J?(t, u,v) = tF 7 4 tuv? + u and f(t, u,v) = t* 71 4 to 4 v, (5.16)

Critical points of ]?are on the second chart.
To summarize, we observed that critical points of the map f are contained in one chart
isomorphic to C3. The restriction of f to the chart is given by f defined in Table 2.

f(z1, 2, 23) G Fy1,y2,y3)
L[z +22+23, k>1 (3(0,1,1)) Yi T+ 2 + 203
2. || 2+ 25423, k>1 (3(1,0,1)) Yi + Y5 + vy
3. Z%k+Z§+Z§7 kE>1 <%(071>1)7%(17071)> ylfy§+yly3+y2y3
4. || 22 + 25 + 22 (3(1,2,0)) Yyt + ysys + yau3
5. | 2 + 25+ 23 (2(1,0,1)) Y3+ 5 + y2u3
6. || 28+ 23 + 2223%, k>1 (3(1,0,1)) yi +y1y5 + yeu3
T || 2+ 23 + 22235, k> 1 (3(0,1,1)) Yt + ysyd + yayh T
8. || 2R+ 26" + 2023, k>4 (3(1,0,1)) yi '+ iy + yaui
TasLE 2. (f,G) = (F,{1})

Therefore, concerning the geometry of vanishing cycles, the pair (f, G) is equivalent to the
pair (f,{1}). Then, it is quite natural to expect that the orbifold Jacobian algebra Jac(f,G)
of (f, @) is isomorphic to the one Jac(f,{1}) of the pair (f,{1}), the usual Jacobian algebra
Jac(f) of f, which is the following
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Theorem 64. There is an isomorphism of Frobenius algebras

Jac(f,G) = Jac(f,{1}) (5.17)
for all f and f in Table 2.
Proof. We shall give a proof of this theorem based on the classification in Table 2. Let the
notation be as in Section 4. For each g € G let K be the maximal subgroup of G fixing Fix(g).

Define e, € Jac(f,G) by e, := ﬁvg, which is more natural element than v,.
g
1. For k > 1, set

1
fr=2M141 22422 Gi=(g), g:= 5(0, 1,1), (5.18)
f= y]f+1 + Y2 + y2y§~ (5.19)
The Jacobian algebra Jac(f,{1}) and the bilinear form J 13 on Qy 113 can be calculated as
Jac(f, {1}) = (C[Zh 22, 23] /((k + I)Z]fa 2ZQa 223) = <[1]v [Zl}v L) [Zl]k71>(c ) (520)
- 1
Jf,{l} ([le A dZQ A ng], [Zic 1le AN dZQ A ng]) = m (521)
As a C-module, the orbifold Jacobian algebra Jac(f, G) is of the following form:
Jac(f,G) = <eid, [21],-- - [zl}k_1>c ) <eg, [z1]eg, - - -, [zl}k_leg>c . (5.22)
Note that dim¢ Jac(f, G) = 2k. The bilinear form J¢ ¢ on Qf ¢ can be calculated as
Jf,id (6id F ¢, [21]k71 F C) = Jf,id ([d21 ANdzg A ng], [Zlf_ldzl Adzo N\ ng]) (523&)
1 1
= 9. = 5.23b
4k+1) 2k+1) ( )
1 _
Jrq (egF ¢, [21]* e, () = ZJf’g ([dz1], [2F ldzl]) (5.23¢)
1 1 1
- Z.(=1)-2. = 5.23d
4 (=1) k+1 2(k+1)’ ( )
which imply the following relations in the orbifold Jacobian algebra Jac(f,G) :
(1] =0, €)= —ea. (5.24)
On the other hand, the Jacobian algebra Jac(f,{1}) is given by
Jac(?a {1}) = (C[yh Y2, y3] /((k + l)ylfv 1+ yga 2y2y3) (525)
=~ Clyr, sl /(yhv3 +1) - (5.26)
Note that dimc Jac(f, {1}) = 2k. Therefore, we have an algebra isomorphism
Jac(F,{1}) = Jac(f,G), [n1] — [21], [ys] — eq, (5.27)
which is, moreover, an isomorphism of Frobenius algebras since we have
_ 1
5.1y ([dyr A dya A dys), [yy ™~ dys A dys A dys]) = WD) (5.28)
2. For k > 1, set
1
fr=z2F 422422 Gi={(g), g:= 5(1,0,1), (5.29)
=yl +y5 + yu3. (5.30)
The Jacobian algebra Jac(f,{1}) and the bilinear form J 13 on Qy 11} can be calculated as
Jac(f,{1}) = Clz1, 22, 23] /(2kz%k_1, 229, 2Z3) = <[1], [21], - - [21}2k72>(c , (5.31)
1
Jf’{l} ([d21 A ng AN ng], [Z%k_del A ng AN ngD = —. (532)

8k
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As a C-module, the orbifold Jacobian algebra Jac(f, G) is of the following form:

Jac(fv G) = <eida [zf]a ceey [Z%]k71>c S5 <eg>(c . (533)
Note that dimc Jac(f, G) = k + 1. The bilinear form J; ¢ on Qf ¢ can be calculated as
Jria (eia F G R = Jpaa ([den Adee Ades), [2872dzr Adzo Adzs))  (5.34a)
1 1
= 2. = __ .34b
8k 4k’ (5:34b)
1
Tra(eyFGegb Q) = g ([dza), [d22)) (5.340)
1 1 1
= J-(-D-2 5= (5.34d)
which imply the following relations in the orbifold Jacobian algebra Jac(f,G) :
[2f] o ey =0, ef] = —k[22]F L (5.35)
On the other hand, the Jacobian algebra Jac(f,{1}) is given by
Jac(f,{1}) = Cly1,y2. 93]/ (21, kys " + y3. 2y0y3) (5.36)
= Clyz,ysl /(kys " + 93, y2y3) - (5.37)
Note that dim¢ Jac(f,{1}) = k + 1. Therefore, we have an algebra isomorphism
Jac(F,{1}) = Jac(£,G),  [ya] =[], [ys] = ey, (5.38)
which is, moreover, an isomorphism of Frobenius algebras since we have
_ 1
J7.1y ([dy1 A dya A dys), [ys ™~ dys A dyz A dys]) = e (5.39)
3. For k > 1, set
1 1
fr=2 122422 G:=(gh), g:= 5(0,1,1), he=5(1,0,1), (5.40)
T = vivs + y1ys + yaus- (5.41)
The Jacobian algebra Jac(f,{1}) and the bilinear form J; {13 on Qy 113 can be calculated as
Jac(f,{1}) = Clz1, 22, 23] /(2/@’2%’“71, 229,223) = ([1],[1],.. -, [2;1}2’6_2%C , (5.42)
1
Jf,{l} ([le A dZQ A ng}, [Z%k_del A dZQ A ngD = @ (543)
As a C-module, the orbifold Jacobian algebra Jac(f, G) is of the following form:
Jac(f, G) = (eia, [23], -+, [22]" 1) @ (eys [2legs - [22] e ) s (5.44)

where ey, := [z1]e, since Jac(f, h) = {0} and Jac(f, gh) = {0}.
Note that dimc Jac(f,G) = 2k — 1.
The bilinear form Jy ¢ on Qf ¢ can be calculated as

Jria (eia F AV RC) = Jpaa ([dzn Adee Ades), [277?dzy Adzo Adzs])  (5.45a)
1 1
= = 4
8k 2k’ (5-45b)
_ 1 _
IPICANS (22 Qe; F¢) = ZJf’g ([z1d21], [22F dz)) (5.45c¢)
1 1 1
N R P 4
1 D4 =0 (5.45d)

which imply the following relations in the orbifold Jacobian algebra Jac(f, Q) :

7] T oey =0, (eg)* = —[A]. (5.46)
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On the other hand, the Jacobian algebra Jac(f,{1}) is given by

Jac(f, {1}) = Clyr, y2, 3] / (ky} " s + y, kyrys '+ yz,y1 +92) - (5.47)
Note that dim¢ Jac(f,{1}) = 2k — 1. Therefore, we have an algebra isomorphism
Jac(F, {1}) = Jac(£,G),  [yrye] = [2F), [on] = €} (5.48)
which is, moreover, an isomorphism of Frobenius algebras since we have
1k 1
Jf,{l} ([dy1 A dys A dys], [yll‘ 1y§ Ydyr A dys A dyg]) = on (5.49)
4. Set
3., .3 .2 1
fi=a+2+2;5, G:={(g9), g:= 5(1,270)7 (5.50)
T =yt + ysys + yu3. (5.51)
The Jacobian algebra Jac(f,{1}) and the bilinear form J; {13 on Qy (13 can be calculated as
Jac(f, {1}) = C[zh 22, 23] /(3‘2%7 3237 223) = <[1]7 [Zl]a [22]7 [2122]>(C ) (552)
1
Jf){l} ([le A dZQ N dZ3], [legdzl AN d2’2 A\ ng]) = E (553)
As a C-module, the orbifold Jacobian algebra Jac(f, G) is of the following form:
Jac(f,G) = (eia, [2122]) ¢ ® (ey, eg—1>(c . (5.54)
Note that dimc Jac(f, G) = 4. The bilinear form J; ¢ on Q¢ can be calculated as
Jpid (eia F ¢, [z122] F Q) = Jpia ([dz1 Adzo Adzs), [z122dz1 Adza Adzg])  (5.55a)
1 1
- 3. — == .55b
=6 (5.55Db)
1
JrglegtCegrHC) = §Jf,g ([dzs], [dz3]) (5.55¢)
1 1 1
- Z.(=1)-83.-==_-= .55d
S(-1)3 =, (5.550)
which imply the following relations in the orbifold Jacobian algebra Jac(f,G) :
ef] =0, 65_1 =0, egoey1 = —[z120]. (5.56)
On the other hand, the Jacobian algebra Jac(f,{1}) is given by
Jac(f,{1}) = Clyr,y2,ys] /(2y1.2ysy2 + ¥3, ¥5 + 2y2y3) (5.57)
= Clyz, sl / (2ysy2 + 3. Y5 + 2y2ys) - (5.58)

Note that dimc Jac(f,{1}) = 4. Therefore, we have an algebra isomorphism

Jac(f, {1}) —» Jac(f,G),

47 27

/=T V=1 /=T NSy
[y2]+—>62 3 1eg+e 3 leg—l, [yg]r—>e4 3 1eg+e 3 1eg71, (5.59)

which is, moreover, an isomorphism of Frobenius algebras since we have

1
7.y ([dys A dyz A dys], [y2ysdyy A dyz A dys]) = . (5.60)
5. Set
4 3 2 1
fi=21+2+25, G:={(g), g:= 5(1,07 1), (5.61)
fe=yi +y3 +yeys. (5.62)

The Jacobian algebra Jac(f,{1}) and the bilinear form J 13 on Qy 11} can be calculated as
Jac(f, {1}) = C[Zla 22, Z3] /(4'2?7 3Z§7 2Z3) = <[1}7 [Zl]a [Z2]7 [Z%L [21'22]’ [Z%ZZDC ) (563)
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1
Jf’{l} ([dZ1 A dzy N\ dZ3], [Z%ZQle Adzg N dZ3]) = ﬂ (564)
As a C-module, the orbifold Jacobian algebra Jac(f, G) is of the following form:
Jac(f,G) = (eiq, [22], [#1), [2%22}% @ (g, [22]eg) ¢ - (5.65)
Note that dimc Jac(f, G) = 6. The bilinear form J¢ ¢ on Qy ¢ can be calculated as
Jtid (eid F ¢ [Pz F C) = Jfia ([dzl Adzy A dzs), [22z0dzy A dzy A d23]) (5.66a)
1 1
= 2. %= T (5.66Db)
1
JpglegHClzlegEQ) = lJf,g ([dz2], [z2d22]) (5.66¢)
1 1 1
= Z.(=1)-2.=2=_= 5.66d
which imply the following relations in the orbifold Jacobian algebra Jac(f,G) :
222 =0, [2oe, =0, 2 =—2[:3] (5.67)

On the other hand, the Jacobian algebra Jac(f,{1}) is given by
Jac(f, {1}) = Cly1.y2, 93] / (395, 292 + 43, 2y2v3) - (5.68)
Note that dimc Jac(f, {1}) = 6. Therefore, we have an algebra isomorphism
Jac(F, (1) = Jac(f,G), ] = [22], el > 23], [ys] — ey, (5.69)

which is, moreover, an isomorphism of Frobenius algebras since we have
1

I7, 1y Ay A dyz A dys], [yryzdys A dya A dys]) = . (5.70)
6. For k£ > 1, set

frmd gt adt, G=(), g=301,01), (5.71)
F= i+ yiyh + yau3. (5.72)

The Jacobian algebra Jac(f,{1}) and the bilinear form J; 13 on Q¢ 113 can be calculated as
Jac(f,{1}) = Cle1,20,23] /(221,220 + 23", QkZQng_l) (5.73)
= ([1),[zs], - -, [28] 7, [22), [2223), - - - 2225 72]) (5.74)
Jy (1) ([dzl Adzo A dzs], [zgzgkfzdzl Adzo N dZ?,D = 8ik: (5.75)

As a C-module, the orbifold Jacobian algebra Jac(f, G) is of the following form:

Jac(f,G) = <6id7 [22],..., [zg]k_l, [22], [22] - [23], . . ., [22] - [zg}k_1>c @ (eg)c - (5.76)

Note that dim¢ Jac(f, G) = 2k + 1. The bilinear form Jy g on Q¢ ¢ can be calculated as

Jrid (eid b za] - [ F c) = Jrua ([dz1 A dza A dzs], [22225 2 dzy A dza A dzg]) (5.77a)
11
= 2= (5.77b)
1
JraleabCegh €)= S Jpg ([d2], [dz]) (5.77¢)
1 11
= 1.(_1).2.5__17 (5.77d)

which imply the following relations in the orbifold Jacobian algebra Jac(f,G) :
2[z] + [25]" =0, [#]oeg =0, e =—k[z] [5]"". (5.78)



ORBIFOLD JACOBIAN ALGEBRAS FOR INVERTIBLE POLYNOMIALS 125

On the other hand, the Jacobian algebra Jac(f,{1}) is given by
Jac(f,{1}) = Cly1, y2, s] /(2y1 +ys kyiys !+, 2y2y3) : (5.79)

Note that dime Jac(f, {1}) = 2k + 1. Therefore, we have an algebra isomorphism

Jac(f,{1}) —> Jac(f,G), [y1] = [22], [y2] = [3], [ys] — e, (5.80)
which is, moreover, an isomorphism of Frobenius algebras since we have
_ 1
Ty (1ds A dys A dys], ynys ™ dys A dys A dys)) = = (5.81)
7. For k > 1, set
fmd At adt G=(g), 9= 0,11), (5.82)
Ti=vf +ysys +yays (5.83)
The Jacobian algebra Jac(f, {1}) and the bilinear form Jy (13 on Qy (13 can be calculated as
Jac(f,{1}) = C[zl,zQ,ZS]/(zzl,zzQ 426 (k4 1)zQz§k) (5.84)
= <[1]7 [23}7 ) [23]2k7 [2:2]7 [2223]5 SRR [2223k71]>c P (585)
Jf {1} ([dzl Adza N\ ng} [22Z§k71d2’1 Adza N\ ng}) = # (5.86)
’ ’ 42k + 1)
As a C-module, the orbifold Jacobian algebra Jac(f, G) is of the following form:
Jac(f,G) = <6id7 [23), -, [23]", [2228], [222] - [23), . ., [2223] - [Z:f}k71>c @ (eg)c - (5.87)

Note that dimc Jac(f, G) = 2(k + 1). The bilinear form J; ¢ on ¢ ¢ can be calculated as

Jf,id (6id [ g, [2’223] . [Z%}kil [ {) Jf,id ([dzl A dza N ngL [222«32,]67le“1 Adza N ng}) (588&)

1 1

= 2 Ikt 2@kt 1) (5-88b)
Tra(es Geam Q) = 1pg ([dai],da1)) (5.85¢)
= %.(_1).2.% = _i (5.88d)
which imply the following relations in the orbifold Jacobian algebra Jac(f, Q) :
2enzs) + (2L =0, [Floe, =0, &= —%; L] 23] (5.89)
On the other hand, the Jacobian algebra Jac(f, {1}) is given by
Jac(F,{1}) = Clys,ye,us] / (201, 2y + 15,03 + (b + Dyt (5.90)
= Clyz,ws] /(2pm2 + 057" 03 + (kb + Dy - (5.91)
Note that dimc Jac(f, {1}) = 2(k 4 1). Therefore, we have an algebra isomorphism
Jac(F, (1)) =+ Jac(£, ), [ua] = e = 313", [us] > 3], (592
which is, moreover, an isomorphism of Frobenius algebras since we have
Iy ([dyl A dys A dys], [y2ysdys A dys A d?/'a]> = m (5.93)
8. For k > 4, set
fi=2 4k 022 Gi= (9), g:= %(1,0, 1), (5.94)

Fe=oi " + e +yeus. (5.95)
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The Jacobian algebra Jac(f, {1}) and the bilinear form J¢ 13 on Qy (13 can be calculated as

Jac(f,{1}) = Clz1, 22, 2] /(2Z1, (k—1)22 4 22, 2zm) (5.96)
~ (n N PN e 5.97
([ Lol oo [ [l (5.97)
T ([dzl Adza A dzs), (252 dzy A dza A dzg]) -1 (5.98)
’ ’ 4(k—1)
As a C-module, the orbifold Jacobian algebra Jac(f, G) is of the following form:
Jac(f, ) = (e [zal, o[22 )@ (e, [zalegs - [22) ey ). (5.99)
Note that dimc¢ Jac(f, G) = 2k — 3. The bilinear form J; ¢ on Qy ¢ can be calculated as
Jrid (eid F ¢, [22]k72 = C) = Jyia ([dzl ANdza N ng]7 [Z§72d21 Adzz A dZ3]) (5.100&)
1 1
= 2 T T Ty (5.100b)
_ 1 _
Tra (oo Gl Peg b ¢) = Jng (Idzal, 125 dza] (5.100¢)
1 1 1
= Z.(=1)-2. =— 1
4 (=1) k-1 2(k—1)’ (5-100d)
which imply the following relations in the orbifold Jacobian algebra Jac(f,G) :
(2] %0y =0, e =—[z]. (5.101)
On the other hand, the Jacobian algebra Jac(f,{1}) is given by
Jac(f,{1}) = Cly1, vz, 3] /((k — Dy oy, + 3, 2y2y3) - (5.102)
Note that dime Jac(f, {1}) = 2k — 3. Therefore, we have an algebra isomorphism
Jac(f, {1}) = Jac(f,G), [w] = [z2], [yz] = —(k — 1)[22]*7%, [y] = ey, (5.103)
which is, moreover, an isomorphism of Frobenius algebras since we have
_ 1
5 13 ([dyl A dya A dys], [y~ 2dys A dys A dy3]> BPCESS (5.104)
We finished the proof of Theorem 64. O
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