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SMOOTH RIGIDITY AND REMEZ INEQUALITIES VIA TOPOLOGY OF

LEVEL SETS

Y. YOMDIN

Abstract. A smooth rigidity inequality provides an explicit lower bound for the (d + 1)-st

derivatives of a smooth function f , which holds, if f exhibits certain patterns, forbidden for

polynomials of degree d. The main goal of the present paper is twofold: first, we provide an
overview of some recent results and questions related to smooth rigidity, which recently were

obtained in Singularity Theory, in Approximation Theory, and in Whitney smooth extensions.

Second, we prove some new results, specifically, a new Remez-type inequality, and on this base
we obtain a new rigidity inequality. In both parts of the paper we stress the topology of the

level sets, as the input information.

Here is a very informal statement of the main new result of this paper: the classical
Remez-type inequality compares the maxima of a polynomial on the unit ball B and on its

sub-domain Z. The answer is given in terms of the volume of Z. We replace Z by its boundary
(whose volume is zero), but require Z to have sufficiently many connected components. Then

the answer is given in terms of the minimal volume of the connected components of Z.

1. Introduction

Let f(x) be a smooth function on the unit n-dimensional ball Bn. A “rigidity inequality” for
f is an explicit lower bound for the (d+ 1)-st derivative of f , which holds, if f exhibits certain
patterns, forbidden for polynomials of degree d.

We expect rigidity inequalities to be valid for those polynomial behavior patterns, which are
stable with respect to smooth approximations. At present many such important patterns are
known (see [8, 14, 19, 16]). However, translation of the known “near-polynomiality” results into
“rigidity inequalities” usually is not straightforward, and many new questions arise.

Smooth rigidity inequalities naturally form a certain domain of interrelated results and ques-
tions in Smooth Analysis. They are closely related to some other important mathematical fields,
including Singularity Theory, Approximation Theory, Real Algebraic Geometry, and Whitney
extension problems.

The main goal of the present paper is twofold: first, we provide an overview of some recent
results and questions related to smooth rigidity. We start with Remez-type inequalities ([15,
16, 17]), continue with recent exciting developments in the classical Whitney smooth extension
theory ([3, 6, 7]), and conclude with a recent important development in global Singularity Theory,
achieved in [8].

Second, we prove some new results. This includes a new Remez-type inequality. On this base,
via the results of [17], we obtain a new Smooth rigidity inequality. We also want to illustrate in
more detail some results of [8] and their consequences for smooth rigidity. For this purpose we
give a direct proof of one very special case of the general results of [8]. On this base we provide
also the corresponding rigidity inequality. In all these new (or almost new) results the stress is
on the topology of the level sets, as the input information.

http://dx.doi.org/10.5427/jsing.2022.25v
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Here is our main new result: let Bn be the unit n-dimensional ball. For a given integer d let
Z ⊂ Bn be a smooth compact hypersurface with N = (d − 1)n + 1 connected components Zj .
Let µj be the n-volume of the interior of Zj , and put µ = minµj , j = 1, . . . , N . Then for each
polynomial P of degree d on Rn we have

maxBn |P |
max Z |P |

≤ (
4n

µ
)d.

As a consequence, we provide an explicit lower bound for the (d+1)-st derivatives of any smooth
function f , which vanishes on Z, while being of order 1 on Bn (smooth rigidity):

||f (d+1)|| ≥ 1

(d+ 1)!
(
4n

µ
)d.

We also provide an interpretation, in terms of smooth rigidity, of one of the simplest versions of
the results in [8].

The paper is organized as follows: Sections 2 - 5 form a review part of the paper. Specifically,
in Sections 2 and 3 we provide an overview of some results of [17]. In Section 4 we shortly outline
some connections of smooth rigidity with the recent important progress in the Whitney smooth
extension problem ([3, 6, 7]). In Section 5 we provide a short overview of the results of [8].

Sections 6 and 7 provide new results: in Section 6 we obtain a new Remez-type inequality,
wich uses both the topological and measure information. On this base a corresponding rigidity
inequality is obtained. In Section 7 we give a proof of one result in the sprit of [8], and provide
on this base the corresponding rigidity inequality.

The author would like to thank E. Shustin and the referee for useful suggestions and comments.

2. Smooth rigidity - some background

In this section we summarize, following [17], some basic facts concerning smooth rigidity. One
of possible specific setings of the Smooth rigidity problem was proposed in [17]. It assumes as
an input data a certain closed subset Z of the zeroes set Y (f) of f . The following definition was
given in [17]:

Let f : Bn → R be a d+ 1 times continuously differentiable function on the unit closed ball
Bn ⊂ Rn. For l = 0, 1, . . . , d+ 1 put

Ml(f) = max z∈Bn∥f (l)(z)∥,
where the norm of the l-th derivative f (l)(z) of f is defined as the sum of the absolute values of
all the partial derivatives of f of order l.

For Z ⊂ Bn let Wd(Z) denote the set of Cd+1 smooth functions f(z) on Bn, vanishing on Z,
with M0(f) = 1.

Definition 2.1. For Z ⊂ Bn we define the d-th rigidity constant RGd(Z) as

RGd(Z) = inf
f∈Wd(Z)

Md+1(f).

By this definition we get immediately Md+1(f) ≥ RGd(Z) for any f(z) on Bn, vanishing on
Z, with M0(f) = 1. Our goal is to estimate RGd(Z) in terms of accessible geometric features of
Z. The rigidity constant RGd(Z) is closely related to some of the central notions in the modern
smooth extension theory (see [3, 6, 7] and references therein). We give more comments on this
connection in Section 4.

The following one-dimensional example illustrates some patterns of smooth rigidity. Start with
a basic property of polynomials: a nonzero univariate polynomial P (x) of degree d can have at
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most d real zeros. Here is the corresponding rigidity result (well-known in various forms). It
bounds from below the (d+ 1)-st derivative of a function f , which violates this property:

Proposition 2.2. For each (d + 1)-smooth function f(x) on [−1, 1], with max [−1,1]|f(x)| ≥ 1
and with d+ 1 or more distinct zeroes on [−1, 1], we have

max [−1,1]|f (d+1)(x)| ≥ (d+ 1)!

2d+1
.

A short proof can be given using the Lagrange remainder formula in the polynomial inter-
polation of f on its zeroes , or (more or less equivalently) via divided finite differences (see
[17]).

In terms of the rigidity constant RGd(Z) Proposition 2.2 implies

Proposition 2.3. For any Z ⊂ B1 we have RGd(Z) ≥ (d+1)!
2d+1 , if Z consists of at least d + 1

different points, and RGd(Z) = 0 if Z consists of at most d different points.

The corresponding “near-polynomiality” result is the following:

Corollary 2.4. Any (d+ 1)-smooth function f(x) on [−1, 1], with

max [−1,1]|f(x)| ≥ 1, max [−1,1]|f (d+1)(x)| < (d+ 1)!

2d+1

has at most d zeroes in [−1, 1].

In higher dimensions the powerful one-dimension tools such as Lagrange’s remainder formula,
and divided finite differences, are not directly applicable. Still, Proposition 2.2 implies, via line
sections, the following

Proposition 2.5. For any Z ⊂ Bn with a non-empty interior,

RGd(Z) ≥ (d+ 1)!

2d+1
.

Proof: Let f ∈ Ud(Z). Fix a certain point x1 with |f(x1)| = 1, fix x2 in the interior of Z, and
let ℓ be the straight line through x1, x2. The restriction f̄ of f to the intersection of ℓ with Bn

has an entire interval of zeroes near x2, and it satisfies M0(f̄) = 1. Applying Proposition 2.2 to
f̄ completes the proof. □

Considering restrictions of f to the straight lines ℓ as above, and applying Proposition 2.2,
we obtain in [14], in particular, the following “near-polynomiality” result:

Theorem 2.6. ([14]) Let f(x) be a smooth function on Bn, with M0(f) = 1. If Md(f) ≤ 2−d−1,
for some d ≥ 1, then the set of zeroes Y of f is contained in a countable union of smooth
hypersurfaces, and the (n− 1)-Hausdorff measure of Y is bounded by a constant, depending only
on n and d.

In turn, we immediately obtain a certain multi-variate rigidity inequality: if for some d ≥ 1
the set of zeroes Z of a smooth function f on Bn of sup-norm 1 violates the restrictions of
Theorem 2.6, then Md(f) is at least 2

−d−1.

However, the above approach to estimating RGd(Z), based on restrictions of f to some
straight lines ℓ, works only in situations, where “many” straight lines intersect Z at “many”
points. Essentially, (via the integral-geometric interpretation) this is the case of sets Z ⊂ Bn,
containing hypersurfaces of a big Hausdorff (n − 1)-measure. Still, for many natural classes of
candidate zero sets Z, this condition is not satisfied. For example, this is the case for Z being
a finite set (unless, by a rare coincidence, many points of Z lie on the same straight line). The
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same remains true if we replace each point of such a finite set Z with a small hypersurface around
it.

The main goal of [17] was to develop a pure multi-dimensional approach to smooth rigidity,
based on polynomial Remez-type inequalities (which compare the maxima of a polynomial on
the closed unit ball, and on its closed subset Z). Loosely speaking, one of the main results of
[17] was that the d-rigidity of a set Z is approximately the reciprocal d-Remez constant of Z.

3. Remez constant

Let us recall the definition and some basic properties of the Remez (or Lebesgue, or norming)
constant. See [4, 2, 5, 15] for more details and references.

Definition 3.1. For a set Z ⊂ Bn ⊂ Rn and for each d ∈ N the Remez constant Rd(Z) is the
minimal K for which the inequality

sup
Bn

|P | ≤ K sup
Z

|P |

is valid for any real polynomial P (x) = P (x1, . . . , xn) of degree d.

Clearly, we always have Rd(Z) ≥ 1. For some Z the Remez constant Rd(Z) may be equal to
∞. In fact, Rd(Z) is infinite if and only if Z is contained in the set of zeroes

YP = {x ∈ Rn, | P (x) = 0}
of a certain polynomial P of degree d. We call sets Z with finite Rd(Z) d-norming. We use also

the reciprocal Remez constant R̂d(Z) := 1
Rd(Z) .

3.1. Rigidity constant via Remez constant. An important initial observation, connecting
the Remez and rigidity constants is:

Lemma 3.2. ([17]) RGd(Z) = 0 if and only if R̂d(Z) = 0.

See [17] for the proof. The following is one of the main results of [17]. It is based, in particular,
on [16]:

Theorem 3.3. ([17]) For any Z ⊂ Bn, we have (d+1)!
2 R̂d(Z) ≤ RGd(Z), or

RGd(Z) · Rd(Z) ≥ (d+ 1)!

2
.

This lower bound is valid for any Z, and it is sharp, up to constants (depending only on n
and d, and on the separation between the point), for finite sets, as Theorem 3.4 below shows.
However, we cannot expect an upper bound of the form

(3.1) RGd(Z) ≤ C(n, d)R̂d(Z),

for some constant C(n, d) depending only on n and d, to be valid in general: indeed, by Propo-

sition 2.5, for any Z ⊂ Bn with a non-empty interior, RGd(Z) ≥ (d+1)!
2d+1 . On the other hand, sets

Z with a non-empty interior may have arbitrarily small Remez constant R̂d(Z). For example,
let P be a polynomial of degree d with M0(P ) = 1, and for some η > 0 let Z be the η-sublevel
set of P , i.e. Z = {z ∈ Bn, |P (z)| ≤ η}. Clearly, Z has a non-empty interior, and we have

R̂d(Z) ≤ η.

Still, for some important types of sets Z an upper bound for the rigidity through the Remez
constant holds. In [17] we prove it for finite sets Z with a controlled minimal distance between
the points:



SMOOTH RIGIDITY AND REMEZ INEQUALITIES VIA TOPOLOGY OF LEVEL SETS 447

Theorem 3.4. ([17]) Let Z ⊂ Bn be a finite set, and let ρ be the minimal distance between the
points of Z. Then

(d+ 1)!

2
R̂d(Z) ≤ RGd(Z) ≤ C(n, d)

ρd+1
R̂d(Z).

This theorem can be considered as a generalization of Proposition 2.3 to higher dimensions.

In dimensions 2 and higher we have finite sets Z with positive but arbitrarily small R̂d(Z),
and with ρ, uniformly bounded from below. For such sets the upper bound of Theorem 3.4 is
meaningful. One of the simplest examples is a plane triangle Zh, defined as

Zh = {(−1

2
, 0), (0, h), (

1

2
, 0)}.

Easy computation shows that R̂1(Zh) =
h
2 .

4. Smooth rigidity and Whitney extensions

In this section we discuss, quite informally, some very important connections between the
smooth rigidity and Whitney smooth extension (see [11, 12, 13, 3, 6, 7]). In fact, our Definition
2.1 of the d-rigidity RGd(Z) is a special case of one of the main notions in the Whitney smooth
extension theory. Indeed, in the Whitney Cm-extension problem we consider a closed subset
Z ⊂ Bn, and a function f̃ on Z. The question is whether f̃ is extendable to a Cm-smooth
function f on Bn, and if so, what is the minimal Cm-norm of the smooth extensions f of f̃ to
Bn. In our Definition 2.1 we just assume that f̃ ≡ 0 on Z, add the requirement M0(f) = 1, and
ask for the minimal Md(f) of the extensions f .

In dimension n = 1 the Whitney extension theorem of [12] provides the complete and explicit
answer to the Cm - extension question: it is possible if and only if all the divided finite differences
of f̃ on the subsets of Z of cardinality at most m+ 1 are uniformly bounded. The minimal Cm

- norm of the extensions is also estimated through these finite differences.

As a consequence we can produce an explicit expression for the d-th rigidity constant RGd(Z).

Consider all the subsets Z̃ = {z0, z1, . . . , zd+1}, with z0 ∈ [−1, 1] \ Z and z1, . . . , zd+1 ∈ Z, and

let ∆d+1(Z̃) denote the d+ 1-st divided finite difference on Z̃ of the function

y0 = 1, y1 = . . . = yd+1 = 0.

Then the d-th rigidity constant RGd(Z) can be estimated as the infimum over all the subsets Z̃

as above of ∆d+1(Z̃).

There is a fundamental difficulty in extending one-dimensional polynomial interpolation and
smooth extension results to higher dimensions. This difficulty manifests itself in many ways,
but for our purposes it can be shortly summarized as follows: in dimensions greater than one
there are no canonical divided finite differences. Even the following most basic question, directly
suggested by Whitney’s one-dimensional results, was open for many years:

In order to check a Cm-extensibility of f̃ on Z ⊂ Bn, and to estimate a minimal Cm-norm
of the extension, is it enough to check only subsets of Z of a fixed cardinality N = N(n,m)?

A remarkable progress was achieved in the multi-dimensional Whitney extension problem in
the last two decades (see [3, 6, 7] and references therein). In particular, the above question
was ultimately answered positively in [6]. As a result, we can provide an explicit expression for
the d-th rigidity constant RGd(Z) through the rigidity constants RGd(Z̄), where Z̄ runs over
all the finite subsets of Z of cardinality N = N(n, d). However, in a strict contrast with the
one-dimensional case, the rigidity constants RGd(Z̄) for finite sets Z̄ of cardinality N are not
given anymore by a simple formula.
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Accordingly, we come to an important problem of providing some “computable” bounds for
RGd(Z̄) for finite sets Z̄ in terms of their geometry. Some results in this direction were obtained
in [17]. In particular, besides the results in Sections 2 and 3 above, we have the following
“density” lower bound for the rigidity RGd(Z):

Theorem 4.1. ([17]) Let Z ⊂ Bn be a finite set, and let ρ be the minimal distance between the
points of Z. Assume that the cardinality M = |Z| satisfies M > (4d)n( 1ρ )

n−1. Then

0 <
(d+ 1)!

2

(
Mρn − (4d)nρ

4n

)d

≤ RGd(Z).

Informally, if in resolution ρ the set Z “looks more massive than an algebraic hypersurface of
degree d”, then its d-th rigidity constant is positive.

Some additional results, in terms of the asymptotic behavior of the covering number of Z̄,
were obtained in [18]. We plan to present separately our results on connections between smooth
rigidity and Whitney extensions.

5. What is the degree of a smooth hypersurface (after A. Lerario and M.
Stecconi, [8])

In this section we continue the review part of the present paper. We discuss, from the point of
view of smooth rigidity, an important recent progress in Global Singularity Theory, achieved in
[8]. Informally, the results of [8] claim that, under appropriate transversality conditions, singular
loci of smooth functions are isotopic to the corresponding singular loci of algebraic polynomials
of explicitly bounded degree. It is shown, in particular, that if f as above vanishes transversally
on a smooth manifold Z ⊂ Bn, and if high-order derivatives of f are small enough, then Z is
smoothly isotopic to a component of a zero set of a polynomial P of a “small” degree. We expect
that the results of [8] will lead to some important “rigidity via topology” inequalities for singular
loci of smooth functions.

Let’s quote [8] and state one of its main results more accurately. For a smooth f : Bn → R with
a compact and smooth zero set Y (f) the following problem is considered: what is the smallest
degree of a polynomial P whose zero set Y (P ) is diffeomorphic to Y (f)? More generally, for W
a closed semialgebraic subset of the jet space Jr(Bn,Rq) we consider the (type W ) singularity
YW (f), defined as

YW (f) = (jrf)−1(W ),

where jrf : Bn → Jr(Bn,Rq) is the r-jet extension of f . Certainly, some transversality assump-
tions are necessary in order to study the topology of the singular sets YW (f). Otherwise, even
in the simplest case of the zero level hypersurfaces of f any closed subset of Bn may appear as
Y (f) for a certain C∞ function f .

Define the discriminant set ∆W as the set of all f ∈ Cr+1, whose r-jet extension
jrf : Bn → Jr(Bn,Rq) is not transversal to W . Quantitatively, the transversality of f to
W is measured by the distance δW (f) from f to ∆W in the space of Cr+1-smooth functions.

Theorem 5.1. ([8], Theorem 1) Let W ⊂ Jr(Bn,Rq) be closed semialgebraic. For every
f ∈ Cr+2(Bn,Rq) with jrf transversal to W there exists a polynomial map P = (P1, . . . , Pq)
with

deg (Pi) ≤ C(r)max

{
r + 1,

||f ||Cr+2

δW (f)

}
,

such that the (type W ) singularity YW (f) is smoothly isotopic to YW (P ).
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This result allows the authors to immediately bound the topological complexity of YW (f) (see
[8], Corollary 2).

From the smooth rigidity poin of view, Theorem 5.1 immediately implies the following result,
where we put C̄(r) = 1

C(r) :

Theorem 5.2. For f as above, and for a certain closed semialgebraic W ⊂ Jr(Bn,Rq), assume
that the (type W ) singularity YW (f) is not smoothly isotopic to YW (P ) for any polynomial map
P of a given degree d ≥ r + 1. Then

||f ||Cr+2 ≥ C̄(r) · d · δW (f).

Of course, the condition of YW (f) not being smoothly isotopic to YW (P ) for any polynomial
map P of degree d ≥ r + 1 can be replaced by stronger conditions in terms of topological
complexity of YW (P ) (for example, in terms of the sum of its Betti numbers).

If we take the degree d as the “measure of complexity” of polynomials, then Theorem 5.2
implies the linear grows of the norm ||f ||Cr+2 with d, at least. In would be interesting to make
this very initial observation more rigorous.

We believe that an explicit and detailed study, in the above directions, of the specific singular-
ity types W is well justified. As an example, in Section 7 below we provide a strongly simplified
(and restricted only to the zero hypersurfaces Y (f)) version of Theorem 5.1. Our goals there
are to get explicit bounds, to estimate separately the (r + 1)-st derivative of f , and to provide
simple geometric arguments in the proof of this specific case.

6. “Topological” Remez-type inequality

Starting with this section, we show the new results of the present paper. Remez-type inequal-
ities provide an upper bound for Rd(Z) in terms of various “computable” characteristics of Z.
In particular, the classical multi-dimensional Remez inequality ([2], [10], see also [5]) uses the
Lebesgue measure of Z. It reads as follows:

Theorem 6.1. For any measurable Z ⊂ Bn we have

(6.1) Rd(Z) ≤ Td

(
1 + (1− λ)

1
n

1− (1− λ)
1
n

)
≤
(4n
λ

)d
.

Here Td(t) = cos(d arccos t) is the Chebyshev polynomial of degree d, and λ = mn(Z)
mn(Bn) , with

mn being the Lebesgue measure on Rn. This inequality is sharp and for n = 1 it coincides with
the classical Remez inequality of [10].

Some other examples of Remez-type inequalities, and a more detailed discussion can be found
in [4, 5, 15]. In particular, it was shown in [15] that the Lebesgue measure can be replaced in
Theorem 6.1 with a more sensible geometric invariant ωn,d(Z), defined in terms of the covering
numbers of Z. The invariant ωn,d(Z) always satisfies mn(Z) ≤ ωn,d(Z), so its substitution
instead of the Lebesgue measure into (6.1) can only improve the result. The invariant ωn,d(Z)
allows us to distinguish between various discrete and even finite sets of different geometry and
density.

However, there are natural classes of sets Z, for which Theorem 6.1, as well as its strengthen-
ing, where mn(Z) is replaced with ωn,d(Z), do not work. Consider, for instance, smooth compact
hypersurfaces Z ⊂ Bn. Their n-measure is zero, and if their (n − 1)-area is small, then also
ωn,d(Z) = 0. Still Z may be a d-norming set by “topological” reasons. Theorem 6.2 below is
one of the main results of the present paper. It provides a Remez-type inequality for smooth
compact hypersurfaces Z ⊂ Bn, in terms of the number of their connected components, and of
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the n-volume of the interiors of these components (and not of the components themselves, as in
Theorem 6.1).

We state this result in a slightly more general way: let Uj , j = 1, . . . , N, be nonintersecting
compact connected domains in Bn with nonempty interiors, and let µj = mn(Uj) be the n-
measure of Uj . It is convenient to assume that µ1 ≥ µ2 ≥ . . . ≥ µN . Put Zj = ∂Uj , to be the
boundary of Uj , and let Z = ∪N

j=1Zj .

Define d̄ by (d̄− 1)n + 1 ≤ N < d̄n + 1, and for each natural d ≤ d̄ put jd = (d− 1)n + 1.

Theorem 6.2. With the above notations, for each d ≤ d̄ we have

Rd(Z) ≤
(

4n

µjd

)d

.

Proof:
Let d ≤ d̄ be fixed, and let P be a polynomial of degree d with M0(P ) = 1. To prove

Theorem 6.2 it is sufficient to show that max Z |P | ≥ κd := (
µjd

4n )d. Thus we assume, in contrary,
that max Z |P | < κd, and bring this assumption to a contradiction.

We have the following lemma:

Lemma 6.3. For each Uj , j = 1, . . . , N, we have

max Uj |P (x)| ≥
(µj

4n

)d
.

Proof: By the classical multidimensional Remez inequality, given by Theorem 6.1 above, and
applied to the set Uj , we have

1 = M0(P ) ≤
(
4n

µj

)d

max Uj
|P (x)|, or max Uj

|P (x)| ≥
(µj

4n

)d
.

This completes the proof of Lemma 6.3. □

Next we notice that if max Z |P | < κd, then for each j = 1, . . . , jd, the polynomial P has a
local maximum (or minimum) at a certain point x̄j in the interior of Uj . Indeed, in this case,
by Lemma 6.3, the maximum of |P | inside Uj satisfies

max Uj
|P (x)| ≥ (

µj

4n
)d ≥ (

µjd

4n
)d = κd,

while max Z |P | < κd. Hence the maximum of |P | in Uj is strictly greater than its maximum
on the boundary Zj . In particular, the point x̄j , where this maximum is achieved, is a critical
point of P , i.e. gradP (x̄j) = 0.

Consequently, if max Z |P (x)| < κd, then in the interior of each domain Uj , j = 1, . . . , jd,
there is a critical point of P , which is a local maximum or a local minimum of P . Performing a
small perturbation of P we can assume that all the critical points of P are non-degenerate.

It remains to bound from above the maximal possible total number of non-degenerated max-
ima and minima of a polynomial P of degree d of n variables. By Bezout theorem, the total
number of non-degenerated critical points of P , i.e. of the solutions of the system

∂f

∂xi
= 0, i = 1, . . . , n,

cannot exceed (d− 1)n. This contradiction completes the proof of Theorem 6.2. □

Now, let Z be as in Theorem 6.2. Combining Theorems 6.2 and 3.3, we obtain a “topological”
rigidity inequality:
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Theorem 6.4. For each d ≤ d̄ we have

RGd(Z) ≥ (d+ 1)!

2
(
µjd

4n
)d.

6.1. Some examples and remarks. An immediate corollary of Theorem 6.2 is the following:

Corollary 6.5. Let the degree d be given. Put N = (d − 1)n + 1, and let Uj , j = 1, . . . , N, be
nonintersecting compact connected domains in Bn with nonempty interiors. As above, Zj = ∂Uj

denote the boundaries of Uj, and µj = mn(Uj) is the n-measure of Uj. Then the set Z = ∪N
j=1Zj

is d-norming, and

Rd(Z) ≤ (
4n

µN
)d.

In a special case of exactly one domain we have the following corollary of Theorem 6.2:

Corollary 6.6. Let Z be the boundary of the compact connected domain U in Bn, n ≥ 1, with
the n-volume of U being µ. Then we have

R1(Z) ≤ 4n

µ
.

Corollary 6.7. Let Z1, Z2 be the boundaries of the compact connected nonintersecting domains
U1, U2 in Bn, n ≥ 1, with the n-volumes of U1, U2 being µ1 ≥ µ2. Then for Z = Z1 ∪ Z2 we
have

R2(Z) ≤
(4n
µ2

)2
.

Proof: For any n ≥ 1 we have, by definition, j1 = 1, j2 = 2. Hence the result follows directly
from Theorem 6.2. □

Theorem 6.2 is sharp up to constants (depending on n and d) with respect to the volume µjd

and with respect to the required number N of the domains Uj . We give here in detail only the
simplest example, for n = 2 and d = 2, i.e. we consider Corollary 6.7 instead of Theorem 6.2.
Then we shortly discuss also the general case.

For a given h > 0 consider a polynomial Ph(x, y) = h2x2 + y2 − 1
4h

2. The zero set Yh of

Ph(x, y) is the ellipse centered at the origin, with the semiaxes 1
2 and h

2 in the directions Ox
amd Oy, respectively. Now in Corollary 6.7 we put U1 to be the interior of the ellipse Yh, and
U2 to be the interior of the rectangle

Qh =
{
(x, y) | − 1

4
≤ x ≤ 1

4
,

2h

3
≤ y ≤ 3h

4

}
.

We see immediatly that just one oval in Z is not enough to make Z a 2-norming set. Indeed, Z1

is the zero set the polynomial Ph of degree 2. Next, the maximum of |Ph| on Qh does not exceed
h2 while the maximum of |Ph| on B2 is at least 1− 1

4h
2. We conclude that for Z = Z1 ∪ Z2 we

have

R2(Z) ≥
1− 1

4h
2

h2
≥ 1

2h2

for small h. On the other hand, the smallest area of U1, U2 is of U2, and we have µ2 = h
48 . Thus

the bound of Corollary 6.7, for n = 2, takes the form

R2(Z) ≤
(4n
µ2

)2
=
(8 · 48

h

)2
=

147456

h2
.

Therefore, the power, with which the volume µ2 enters the bound, is accurate, while the bound
itself is sharp, up to a constant.
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The requirement of Theorem 6.2 to have at least N = (d− 1)n + 1 different disjoint domains
Uj remains relatively sharp also in higher degrees and dimensions.

Gonsider the following polynomial P (x1, . . . , xn) of degree nd:

P (x1, . . . , xn) =

n∏
i=1

Q(xi), Q(t) = (t− η1)(t− η2) · . . . · (t− ηd),

with η1, · · · , ηd pairwise distinct numbers in the open interval (− 1√
n
, 1√

n
). The zero set Y of the

polynomial P is the union of all the shifted coordinate hyperplanes

xi = ηj , i = 1, . . . , n, j = 1, . . . , d.

On each connected component of the complement W = Bn \ Y the polynomial P preserves
its sign, and it changes its sign as the argument crosses Y . The complement W contains, in
particular, (d − 1)n adjoint cubes, on a half of them P being positive, and on a half negative.
Now fix a small positive number ζ, which is a regular value of P , put P̄ = P − ζ, and consider
the sublevel set V = {x ∈ Bn, P̄ (x) ≥ 0}. We take as Uj , j = 1, . . . , 1

2 (d− 1)n all the compact
connected components of V , inside the cubes, were P was positive. The boundaries Zj of Uj

are smooth compact hypersurfaces, contained in the zero set Ȳ of P̄ . Therefore for Z = ∪Zj

we have Rnd(Z) = ∞. Replacing d by d
n we produce an example of N̂ = 1

2 (
d
n − 1)n disjoint

connected domains Ûj for which Ẑ = ∪Ẑj is not a d-norming set. We conclude that the required
number N = (d − 1)n + 1 of the domains Uj in Theorem 6.2 is sharp in the degree d, up to a
constant depending only on the dimension n.

We expect than the power d, with which the volume µjd enters the bound, is accurate.

However, the above construction immediately produces examples with Rd(Z) ∼ ( 1
µjd

)
d
n only.

Indeed, we can consider the product of the polynomials Q(xi) as above, with the roots of the
first one down-scaled to the size h. Then all the domains Uj constructed belong to the strip
|x1| ≤ h. Repeating verbally the construction of the example after Corollary 6.7, we obtain

Rd(Z) ∼ ( 1h )
d
n , while µjd ∼ h.

Notice that for d = 1, 2 and for any n, the bound (d − 1)n + 1 = 1, 2, on the number of the
connected components of Z, is sharp. For d ≥ 3, in many cases this bound can be improved,
since by topological reasons, other critical points, beyond maxima and minima, must appear.
Still, we are aware only of some partial estimates of the possible number of minima and maxima
of real polynomials. In particular, one can show that the number of extrema of P does not exceed
1
2d

n + O(dn−1). For n=3, in [1] there are examples with at least 13
36d

n extrema. Also the lower

bound ( 2
n−1

n! )dn is known. In a recent paper [9] it is shown that (on the real sphere) homogeneous
polynomials can have all the (a priori complex) solutions of the critical point equations to be
real. (The author thanks E. Shustin and the referee for providing some references).

We consider an accurate estimate of the required number of the connected components of Z
in Theorem 6.2 as an interesting question in real algebraic geometry, closely related not only to
bounding the number of the extrema of P , but also to the topology and mutual position of its
ovals.

Returning to the product polynomial P (x1, . . . , xn) =
∏n

i=1 Q(xi), constructed above, we
notice that P can be considered as a “poly-degree d” polynomial, with respect to the appropriate
Newton diagram. Many results of real algebraic geometry can be extended to such polynomials,
as well as some Remez-type inequalities. We expect that the connection between these two
topics, provided by Theorem 6.2, remain valid also for polynomials with a prescribed Newton
diagram (and not only of a given degree).
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7. Topology of transversal level sets

In this section we illustrate in more detail the results of [8] and their consequences for smooth
rigidity. For this purpose, and in order to provide as explicit geometric arguments as possible,
we give below a direct proof of one very special case of the general results of [8]. On this base
we provide also the corresponding rigidity inequality.

Let f be a Cd+1-smooth function on Bn, with M0(f) = 1. For a given γ > 0, a real number
c is called a γ-regular value of f , if for each x ∈ Bn with f(x) = c, we have || grad f(x)|| ≥ γ.
In this case the level set

Yc(f) = {x ∈ Bn, f(x) = c}
is a regular compact manifold of dimension n− 1.

To simplify the presentation, and to avoid the boundary effects, we assume that f does not
vanish out of the concentric ball Bn

1
2

. Next we assume that for a certain γ, 0 < γ < 1, zero is a

γ-regular value of f . In the notations of [8], for W consisting of the jets with the zero value, γ
is, essentially, the distance δW (f) of f to the discriminant set ∆W .

Thus the zero level set Y0(f) = {x ∈ Bn, f(x) = 0} is a compact smooth hypersurface in Bn
1
2

.

Let Vi, i = 1, . . . , q, denote the connected components of Y0(f).

We put T = T (γ) = min {1, d!γ2

4C3
}, where the constant C3 = C3(n, d) is defined below. Finally,

let P = Pd(f) be the Taylor polynomial at the origin of degree d of f , and let Y0(P ) be its zero
set. The following result is (essentially) a very special case of Theorem 1.1 of [8] (see also Section
5 above):

Theorem 7.1. If Md+1(f) ≤ T then the smooth hypersurface Y0(f) = ∪q
i=1Vi is smoothly

isotopic to a certain union W = ∪q
i=1Wi of the smooth connected components Wi of the algebraic

hypersurface Y0(P ).

Proof: In order to avoid complicated expressions, we use below constants Cq(d, n), depending
only on d and n, not specifying some of them explicitly.

The following lemma provides a bound for the norms of the intermediate derivatives Mq(f)
of a smooth f through M0(f) and Md+1(f).

Lemma 7.2. Let f be a Cd+1-smooth function on Bn. Then for k = 1, 2, . . . , d we have

Mk(f) ≤ C1(n, d)M0(f) + C2(n, d)Md+1(f).

Proof: Let P = Pd(f) be the Taylor polynomial at the origin of degree d of f . By Taylor’s
formula we have for x ∈ Bn

|f(x)− P (x)| ≤ 1

(d+ 1)!
Md+1(f).

We conclude that M0(P ) ≤ M0(f) +
1

(d+1)!Md+1(f). Next we use the equivalence of all the

norms on the finite-dimensional space of polynomials of degree d, and obtain, for k = 1, 2, . . . , d,

Mk(P ) ≤ C̄(n, d)M0(P ) ≤ C̄(n, d)[M0(f) +
1

(d+ 1)!
Md+1(f)].

Finally, once more using Taylor’s formula, we get for k = 1, 2, . . . , d,

Mk(f) ≤ Mk(P ) +
1

(d− k + 1)!
Md+1(f) ≤ C1(n, d)M0(f) + C2(n, d)Md+1(f),

where C1(n, d) = C̄(n, d), C2(n, d) = C̄(n, d) 1
(d+1)! +

1
(d−k+1)! . This completes the proof of

Lemma 7.2. □
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In particular, under our initial assumptions that M0(f) = 1 and Md+1(f) ≤ T ≤ 1 we have

M2(f) ≤ C1(n, d) + C2(n, d) := C3(n, d).

Put δ = γ
3C3

. Then, in a δ-neighborhood Uδ of Y0(f) we have || grad f(x)|| ≥ 1
2γ.

Next we consider a vectorfield v(x) in Uδ defined by v(x) = grad f(x)
|| grad f(x)||2 . For x ∈ Uδ we have

||v(x)|| ≤ 2
γ .

The derivative of f in the direction of v(x) satisfies the identity

df

dv
(x) =< v(x), grad f(x) >=

< grad f(x), grad f(x) >

|| grad f(x)||2
= 1.

For each y ∈ Y0(f) denote by ζ(y, t) the trajectory of the vectorfield v(x), satisfying ζ(y, 0) = y.

Since for x ∈ Uδ we have ||v(x)|| ≤ 2
γ , for each t with |t| ≤ δγ

2 = γ2

2C3
:= η the trajectory ζ(y, t)

remains in Uδ, and hence it is well-defined.

Now we consider the “normal bundle” mapping Ψ : G → Uδ of the product G = Y0(f)×[−η, η]
into Uδ, defined by

Ψ(y, t) = ζ(y, t).

By the construction, Ψ satisfies f(Ψ(y, t)) = t. By the uniqueness and dependence on the initial
data of the trajectories ζ(y, t), the mapping Ψ provides a diffeomorphism of G with its image,
which is the level strip Qη = {x ∈ Uδ, |f(x)| ≤ η}.

Let us return now to the Taylor polynomial P of degree d of f at the origin. By the remainder
formula, and since we assume that Md+1(f) ≤ T , we have M0(f − P ) ≤ T

(d+1)! ≤
1
2η. Also by

the Taylor formula we have M1(f − P ) ≤ T
d! ≤

γ2

4C3
. We conclude that for t ∈ [−η, η], and for

each y ∈ Y0(f), along the trajectory ζ(y, t) we have |dPdt − 1| ≤ 1
2 .

Therefore, for each y ∈ Y0(f), along the trajectory ζ(y, t) the polynomial P (ζ(y, t)) has exactly
one simple zero at a certain t(y) ∈ [−η, η]. By the implicit function theorem, the function t(y)
is Cd-smooth.

Summarizing, we conclude that the part Ω of the zero set Y0(P ) of P , which is contained in
the level strip Qη, is given in the coordinates y, t on Qη as the graph of the smooth function t(y)
on Y0(f). Hence Ω = ∪q

i=1Ωi, where each Ωi is the graph t(y) on Vi. We immediately conclude
also that Ωi is diffeomorphic to Vi, i = 1, . . . , q. But in fact, the formula tτ (y) = τt(y), τ ∈ [0, 1],
provides a smooth isotopy between Ω and Y0(f). This completes the proof of Theorem 7.1. □

The corresponding rigidity statement is

Theorem 7.3. Let f be as above, with 0 a γ-regular value of f . If Y0(f) is not smoothly isotopic
to a certain union W = ∪q

i=1Wi of smooth connected components Wi of an algebraic hypersurface
Y0(P ), with P a polynomial of degree d, then

Md+1(f) ≥ T = T (γ) = min

{
1,

d!γ2

4C3

}
.

Remark 7.4. “No isotopy” condition of Theorem 7.3 can be weakened in many forms, in
particular, in terms of the Betti numbers of the components of Y0(f), of their mutual position,
etc.
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