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THE INTEGRAL MONODROMY OF THE CYCLE TYPE SINGULARITIES

CLAUS HERTLING AND MAKIKO MASE

Abstract. The middle homology of the Milnor fiber of a quasihomogeneous polynomial with

an isolated singularity is a Z-lattice and comes equipped with an automorphism of finite order,
the integral monodromy. Orlik (1972) made a precise conjecture, which would determine this

monodromy in terms of the weights of the polynomial. Here we prove this conjecture for the
cycle type singularities. A paper of Cooper (1982) with the same aim contained two mistakes.

Still it is very useful. We build on it and correct the mistakes. We give additional algebraic

and combinatorial results.

1. Introduction and main result

The main objects of the paper are a quasihomogeneous singularity, the monodromy on its Mil-
nor lattice, Orlik’s conjecture for this monodromy, and our proof in the case of a cycle type
singularity. In order to make precise statements, we start with some algebraic definitions.

Definition 1.1. (a) Start with a product p ∈ Z[t] of cyclotomic polynomials which has only
simple zeros. The Orlik block Or(p) is a pair (H,h) where H is a Z-lattice of rank deg(p) and
h : H → H is an automorphism of finite order with characteristic polynomial p such that an
element a0 ∈ H with

H =

deg(p)−1⊕
j=0

Z · hj(a0). (1.1)

exists. Such an element is called a generating element. The Orlik block Or(p) is up to isomor-
phism uniquely determined by p, which justifies the notion Or(p).

(b) Consider a pair (H,h) where H is a Z-lattice and h : H → H is an automorphism of finite
order. It admits a decomposition into Orlik blocks if it is isomorphic to a direct sum of Orlik
blocks.

(c) Consider a pair (H,h) where H is a Z-lattice and h : H → H is an automorphism of finite
order. Then the characteristic polynomial pH,h of h is a product of cyclotomic polynomials. It

has a unique decomposition pH,h =
∏l

i=1 pi with pl|pl−1|...|p2|p1 and pl ̸= 1 and all pi unitary
and such that p1 has only simple zeros. The pair (H,h) admits a standard decomposition into

Orlik blocks, if an isomorphism (H,h) ∼=
⊕l

i=1 Or(pi) exists.

A polynomial f ∈ C[x1, ..., xn] is called quasihomogeneous if for some weight system
(w1, ..., wn) with wi ∈ (0, 1) ∩ Q each monomial in f has weighted degree 1. It is called an

isolated quasihomogeneous singularity if it is quasihomogeneous and the functions ∂f
∂x1

, ..., ∂f
∂xn

vanish simultaneously only at 0 ∈ Cn. Then the Milnor lattice HMil := H
(red)
n−1 (f−1(1),Z) (here
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H
(red)
n−1 means the reduced homology in the case n = 1 and the usual homology in the cases

n ≥ 2) is a Z-lattice of some finite rank µ ∈ N, which is called the Milnor number [Mi68]. It
comes equipped with an automorphism hMil of finite order, the monodromy.

Orlik conjectured the following.

Conjecture 1.2. (Orlik’s conjecture [Or72, Conjecture 3.1]) For any isolated quasihomogeneous
singularity, the pair (HMil, hMil) admits a standard decomposition into Orlik blocks.

Here we will prove this conjecture for the cycle type singularities. A cycle type singularity is
a polynomial f ∈ C[x1, ..., xn] in n ≥ 2 variables of the following shape,

f = xa1
1 x2 + xa2

2 x3 + ...+ x
an−1

n−1 xn + xan
n x1 where a1, ..., an ∈ N, (1.2)

(N = {1, 2, 3, ...}) and which is an isolated quasihomogeneous singularity. By Lemma 3.4 in
[HK12], a polynomial f as in (1.2) is an isolated quasihomogeneous singularity if and only if n
is odd or (1.3) holds,

n is even and

ß
either a1 = ... = an = 1 or
aj ̸= 1 for some even j and for some odd j.

(1.3)

Define d :=
∏n

j=1 aj − (−1)n. Then (see e.g. Lemma 4.1 in [HZ19])

µ =

n∏
j=1

aj = d+ (−1)n,

and there are natural numbers v1, ..., vn (which are given in (5.1)) such that

(w1, ..., wn) =
(v1
d
, ...,

vn
d

)
is the unique weight system for which f is quasihomogeneous of weighted degree 1. They satisfy
also gcd(d, v1) = ... = gcd(d, vn). Define b := d/ gcd(d, v1) ∈ N. An easy calculation which
builds on the formula in [MO70] for the characteristic polynomial in terms of (w1, ..., wn) (see
e.g. Lemma 4.1 in [HZ19]) shows that the characteristic polynomial of hMil on HMil is

pHMil,hMil
= (tb − 1)gcd(d,v1) · (t− 1)(−1)n . (1.4)

Therefore Orlik’s conjecture says here the following.

Theorem 1.3. For a cycle type singularity as above,

(HMil, hMil) ∼=
®

(gcd(d, v1)− 1)Or(tb − 1)⊕Or( t
b−1
t−1 ) if n is odd,

gcd(d, v1)Or(tb − 1)⊕Or(t− 1) if n is even.

Our proof in section 5 builds on Cooper’s work [Co82]. By [Mi68], the set

F0 := f−1(R≥0) ∩ S2n−1 ⊂ S2n−1 ⊂ Cn

is diffeomorphic to the Milnor fiber f−1(1). Cooper studied for the cycle type singularities a
beautiful subset G ⊂ F0, which is a probably a deformation retract of the Milnor fiber (Cooper’s
Lemma 3 is slightly weaker). He considered certain cells from which this set G is built up and
which allow to filter G by a sequence of subsets G = Gn ⊃ Gn−1 ⊃ ... ⊃ G1 ⊃ G0 = ∅. Finally,
he studied a spectral sequence which comes from this filtration.

Cooper claimed to have proved Orlik’s conjecture for the cycle type singularities. But his
paper contains two serious mistakes. The second one leads in the case of even n to the wrong
claim

(HMil, hMil) ∼= (gcd(d, v1)− 1)Or(tb − 1)⊕Or
( tb − 1

t− 1

)
⊕ 2Or(t− 1).
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The right-hand side is a decomposition into Orlik blocks, but not a standard decomposition.
The history of Orlik’s conjecture is as follows. Michel and Weber claimed in the introduction

of [MW86] to have a proof of Orlik’s conjecture in the case n = 2. We trust this claim. Hertling
[He92] proved Orlik’s conjecture for some cases with n = 3 by explicit calculations using Coxeter-
Dynkin diagrams. A chain type singularity is a polynomial f ∈ C[x1, ..., xn] in n ≥ 1 variables of
the shape xa1+1

1 +x1x
a2
2 + ...+xn−1x

an
n where a1, ..., an ∈ N. It is an isolated quasihomogeneous

singularity. Orlik and Randell [OR77, Theorem (2.11)] proved for it that (HMil, h
µ
Mil) is a single

Orlik block. Together with two algebraic results in [HM20], this implies Orlik’s conjecture for
the chain type singularities [HM20, Theorem 1.3 (a)]. Two other algebraic results in [HM20]
imply Orlik’s conjecture for the Thom-Sebastiani sum f + g of two isolated quasihomogeneous
singularities f and g which both satisfy Orlik’s conjecture [HM20, Theorem 1.3 (c)]. This relative
result can be combined with the facts that Orlik’s conjecture holds for the chain type singularities
and the cycle type singularities (main result of this paper). We obtain Orlik’s conjecture for all
iterated Thom-Sebastiani sums of chain type singularities and cycle type singularities [HM20,
Theorem 1.3 (d)]. This surpasses all known cases. These singularities are precisely the invertible
polynomials. They form an important subfamily of all isolated quasihomogeneous singularities.

We will discuss the relation of this paper to Cooper’s work and the two mistakes in the
Remarks 5.1. His work is the basis for the sections 3 and 4 below. Section 2 gives new algebraic
results. Section 3 gives the set G, its cells and an inductive construction of cycles of which only
the beginning is in [Co82]. Section 4 makes good use of the spectral sequence which Cooper
considered and determines Hn−1(G,Z). A combination of the results of the sections 2, 3 and 4
and a discussion of the monodromy proves Theorem 1.3 in section 5.

2. Algebraic results

The following two lemmata 2.3 and 2.4 are elementary. They will be used in the proof of Orlik’s
conjecture for cycle type singularities with an even number of variables. They say something
about the Z-lattices H(d,c) with automorphisms h(d,c) of finite order, which are defined in Defi-
nition 2.1.

Definition 2.1. Let d ∈ N and c ∈ Z. Define the pair Lo(d,c) = (H(d,c), h(d,c)) as follows.

H(d,c) = Z·γ⊕
⊕d−1

j=1 Z·δj is a Z-lattice of rank d. Define additionally δd := c·γ−
∑d−1

j=1 δj ∈ H(d,c).

Then h(d,c) : H → H is the automorphism of finite order d which is defined by

h(d,c) : γ 7→ γ, δd 7→ δ1, δj 7→ δj+1 for j ∈ {1, ..., d− 1}. (2.1)

Remark 2.2. The characteristic polynomial of h(d,c) is td − 1. If c ̸= 0, then

d∑
j=1

Z · δj =
d⊕

j=1

Z · δj

is an h(d,c)-invariant sublattice of index |c| in H(d,c), and (
⊕d

j=1 Z · δj , h(d,c)) ∼= Or(td − 1).

Therefore Lo(d,1) ∼= Or(td − 1). If c = 0 then the summands Z · γ and
⊕d−1

j=1 Z · δj of H(d,c) are

h(d,c)-invariant with (Z · γ, h(d,c)) ∼= Or(t− 1) and (
⊕d−1

j=1 Z · δj , h(d,c)) ∼= Or( t
d−1
t−1 ).

Lemma 2.3. Let d, v ∈ N, c ∈ Z and b := d/ gcd(d, v) ∈ N. Then

(H(d,c), (h(d,c))v) ∼= (gcd(d, v)− 1)Or(tb − 1)⊕ Lo(b,c). (2.2)

Proof: Write h := (h(d,c))v. The elements δ1, ..., δd can be renumbered to elements δ̃1, ..., δ̃d
(i.e. {δ1, ..., δd} = {δ̃1, ..., δ̃d}) such that these form gcd(d, v) many cycles of length b with respect
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to h:

h : δ̃ab+1 7→ δ̃ab+2 7→ ... 7→ δ̃ab+b 7→ δ̃ab+1

for a ∈ {0, 1, ..., gcd(d, v)− 1}.

Define

βj :=

gcd(d,v)−1∑
a=0

δ̃ab+j for j ∈ {1, ..., b}.

Then these also form a cycle of length b with respect to h, and their sum is cγ,

h : β1 7→ β2 7→ ... 7→ βb 7→ β1,
b∑

j=1

βj =

d∑
j=1

δ̃j =

d∑
j=1

δj = cγ.

We obtain

(H(d,c), h) ∼=
gcd(d,v)−2⊕

a=0

Ñ
b⊕

j=1

Z · δ̃ab+j , h

é
⊕

Ñ
Z · γ +

b∑
j=1

Z · βj , h

é
∼= (gcd(d, v)− 1)Or(tb − 1)⊕ Lo(b,c). 2

Lemma 2.4. Let d ∈ N and c, c̃ ∈ Z. The following three conditions are equivalent.

(i) Lo(d,c) ∼= Lo(d,c̃).

(ii) Lo(d,c) ⊕Or(t− 1) ∼= Lo(d,c̃) ⊕Or(t− 1).
(iii) gcd(d, c) = gcd(d, c̃).

And

Lo(d,c) ⊕Or(t− 1) ∼= Or(td − 1)⊕Or(t− 1) (2.3)

⇐⇒ gcd(d, c) = 1.

Proof: Keep the notations δ1, ..., δd, γ of Definition 2.1 for the elements of H(d,c). And extend
them by δj := δj0 if j ∈ Z− {1, ..., d}, j0 ∈ {1, ..., d} and d|(j − j0).

(iii)⇒(i): We start with Lo(d,c) for some c ∈ N with c|d. We will present a construction which

leads to certain c̃ ∈ Z with Lo(d,c) ∼= Lo(d,c̃). Then we will show that these are all c̃ ∈ Z with
gcd(d, c̃) = c.

Choose a ∈ N with gcd(a, d) = 1, and choose b ∈ Z. Define

γ̃ := γ, δ̃j := bγ +

a−1∑
i=0

δj+i for j ∈ Z,

so that δ̃j1 = δ̃j2 if d|(j1 − j2). Of course, h(d,c) acts by

h(d,c) : γ̃ 7→ γ̃, δ̃j 7→ δ̃j+1, (2.4)

and we have

d∑
j=1

δ̃j = (bd+ ac) · γ̃. (2.5)
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Furthermore, the condition gcd(a, d) = 1 implies

Z · γ̃ +

d∑
j=1

Z · δ̃j = H(d,c)

Ñ
= Z · γ +

d∑
j=1

Z · δj

é
. (2.6)

To see this, choose b1, b2 ∈ N with ab1 − db2 = 1. Then for j ∈ Z

−(b1b+ b2c)γ̃ +

b1−1∑
k=0

δ̃j+ak = −b1bγ̃ −
db2∑
k=1

δj+k + b1bγ̃ +

db2∑
k=0

δj+k = δj ,

which shows (2.6). Together, (2.4), (2.5) and (2.6) give

Lo(d,c) ∼= Lo(d,bd+ac). (2.7)

Now choose any c̃ ∈ Z with gcd(d, c̃) = c. It remains to see that there exist a ∈ N and b ∈ Z
with gcd(a, d) = 1 and c̃ = bd+ ac.

For any integer m ∈ Z− {0}, write m = m
|m| ·

∏
p prime number p

vp(m), where vp(m) ∈ Z≥0. We

choose

b̃ :=
∏

p prime number with vp(d)=vp(c̃)>0

p,

b := −b̃− |c̃| ∈ Z<0,

a :=
c̃

c
− b · d

c
=

c̃

c
+ b̃

d

c
+

|c̃|
c
d ∈ N.

Then c̃ = bd + ac. For a prime number p with vp(d) > vp(c̃), vp(
c̃
c ) = 0 and vp(

d
c ) > 0 and

vp(a) = 0. For a prime number p with vp(d) = vp(c̃) > 0 vp(
c̃
c ) = 0 and vp(b) > 0 and vp(a) = 0.

For a prime number p with 0 < vp(d) < vp(c̃), vp(
c̃
c ) > 0 and vp(b

d
c ) = 0 and vp(a) = 0.

Therefore gcd(a, d) = 1.

(i)⇒(ii): This is trivial.

(ii)⇒(iii): We proved already (iii)⇒(i) and (i)⇒(ii). Therefore, in (ii) we can suppose
c = gcd(d, c) and c̃ = gcd(d, c̃). Then we have to show c = c̃.

Write the elements in Definition 2.1 for H(d,c̃) with a tilde, so as δ̃1, ..., δ̃d, γ̃. Write generators

of Or(t − 1) on the left-hand side respectively right-hand side of (ii) as β respectively β̃. The
automorphisms of the left-hand side respectively right-hand side of (ii) which extend h(d,c)

respectively h(d,c̃) by id on Or(t− 1), are called h respectively h̃.
Let

g : Lo(d,c) ⊕Or(t− 1) → Lo(d,c̃) ⊕Or(t− 1)

be an isomorphism. Then

h̃ ◦ g = g ◦ h. (2.8)

This and ker(h− id) = Z · γ ⊕ Z · β and ker(h̃− id) = Z · γ̃ ⊕ Z · β̃ imply

g(γ) = b1γ̃ + b2β̃, g(β) = b3γ̃ + b4β̃ with

Å
b1 b2
b3 b4

ã
∈ GL(2,Z).
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Because of (2.8) and the action of h on δ1, ..., δd and h̃ on γ̃, β̃, δ̃1, ..., δ̃d, numbers a1, ..., ad+2 ∈ Z
with

g(δj) = ad+1γ̃ + ad+2β̃ +

d∑
i=1

aiδ̃i+j−1 for j ∈ {1, ..., d}

exist. Write a :=
∑d

i=1 ai. Then

c(b1γ̃ + b2β̃) = g(cγ) = g(

d∑
j=1

δj)

= dad+1γ̃ + dad+2β̃ +

(
d∑

i=1

ai

)
·

d∑
j=1

δ̃j

= (dad+1 + ac̃)γ̃ + dad+2β̃,

so cb1 = dad+1 + ac̃, cb2 = dad+2.

±1 = b1b4 − b2b3 implies gcd(b1, b2) = 1. Therefore c is in the ideal generated by d and c̃, which
is the ideal generated by c̃, because c̃|d. Thus c̃|c. Because of the symmetry of the situation also
c|c̃. We obtain c = c̃. This shows (ii)⇒(iii).

Now the equivalence of (i), (ii) and (iii) is proved. It remains to see (2.3). It follows using the

isomorphism Lo(d,1) ∼= Or(td − 1) in Remark 2.2 and the equivalence of (i), (ii) and (iii). 2

3. Cells, chains and cycles

Throughout this section we fix a cycle type singularity f(x1, ..., xn) as in (1.2) with n ≥ 2 and
a1, ..., an ∈ N with (1.3). By [Mi68], the Milnor fiber f−1(1) ⊂ Cn and the set

F0 := f−1(R≥0) ∩ S2n−1 ⊂ S2n−1 ⊂ Cn

are diffeomorphic. Cooper [Co82] considers the subset G ⊂ F0 which is defined as follows,

G = {z ∈ S2n−1 | zaj

j zj+1 ≥ 0 ∀ j ∈ {1, ..., n− 1}, zan
n z1 ≥ 0}. (3.1)

He conjectures that G is a deformation retract of F0. He proves a slightly weaker deformation
lemma (stated at the end of 3. in [Co82]) which implies especially that the inclusion map
ig : G ↪→ F0 induces epimorphisms in homology. For him and for us, this property suffices.

Cooper builds G up from certain cells. We will need these cells, and also refinements of them.
For this, quite some notations are needed. They are given now.

Notations 3.1. N := {1, ..., n}, so that RN = Rn. The map

e : Rn → Tn := (S1)n ⊂ Cn, (r1, ..., rn) 7→ (e2πir1 , ..., e2πirn),

induces an isomorphism eT : Rn/Zn → Tn. Also the projection prT : Rn → Rn/Zn will be
useful. Then e = eT ◦ prT . The following binary operation ⊙ is not standard, but it will also be
useful,

⊙ : Rn
≥0 × (S1)n → Cn, (a1, ..., an)⊙ (b1, ..., bn) := (a1b1, ..., anbn).

Given a finite tuple (v1, ..., vk) ∈ (Rn)k of vectors in Rn, we consider the subset of Rn

C(v1, ..., vk) := {
k∑

i=1

tivi | t1, ..., tk ∈ [0, 1]}.
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If (v1, ..., vk) is a tuple of linearly independent vectors (which will be the case almost always),
C(v1, ..., vk) is a hypercube of dimension k. Then it inherits an orientation from the ordered
tuple (v1, ..., vk). And then its boundary is

∂C(v1, ..., vk) =

k∑
i=1

(−1)i−1C(v1, ...,“vi, ..., vk) (3.2)

−
k∑

i=1

(−1)i−1(vi + C(v1, ...,“vi, ..., vk)),
where “vi means that vi is erased in the tuple. The following observation will be useful, because
we will consider the images of hypercubes under prT in Rn/Zn. If v1 ∈ Zn, then

prT (C(v1, ..., vk)) = prT (C(v1, v2 + λ2v1, ..., vk + λkv1)) (3.3)

for any λ2, ..., λk ∈ R,

and similarly for vj ∈ Zn instead of v1 ∈ Zn.
The exponents a1, ..., an ∈ N in the monomials of the cycle type singularity are the source of

useful integers and vectors of integers:

Recall µ = a1 · ... · an, d = µ− (−1)n.

For k ∈ N : ak := (−1)k−1a1 · ... · ak−1 ∈ Z, so a1 = 1.

an+1 := (−1)na1 · ... · an = (−1)nµ = (−1)nd+ 1.

For k ∈ N : bk := (a1, ..., ak−1, 0, ..., 0) ∈ Zn, so b1 = (0, ..., 0).

bn+1 := (a1, a2, ..., an) ∈ Zn.

For k ∈ N : ck := (an+1a1, ..., an+1ak−1, ak, ak+1, ..., an)

= an+1 · bk + (0, ..., 0, ak, ..., an),

= (−1)nd · bk + c1 ∈ Zn, especially c1 = bn+1.

Also the following vectors in Qn will be used,

for j ∈ {1, ..., d} : p
j

:=
j

d
· c1 ∈ Qn.

In fact, their images prT (pj) in Rn/Zn will be the only 0-chains in Rn/Zn which we will need.

The reason is the equality

prT (pj+1
) = prT (pj +

1

d
ck) for any k ∈ N. (3.4)

For any subset A ⊂ N with A ̸= ∅, define

RA := {r = (r1, ..., rn) ∈ Rn | rj = 0 for j /∈ A} ⊂ Rn,

ZA ⊂ Zn and RA
≥0 ⊂ Rn

≥0 and CA ⊂ Cn analogously,

∆A := RA
≥0 ∩ S2n−1 ⊂ S2n−1,

prA : Rn → RA the projection.

∆A is a deformation of a simplex of dimension |A| − 1. We call it a deformed simplex. Its
boundary consists of the deformed simplices ∆B with B ⫋ A.

We want to consider N and its subsets A as cyclic: 1 follows n. In order to write this down,
we denote by (k)modn ∈ N for k ∈ Z the number with n|(k − (k)modn).
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For A ⫋ N with A ̸= ∅, the blocks are the maximal sequences k, (k + 1)modn, ..., (k + l)modn

within A. Their number is called b(A). And the block beginnings are the first numbers in the
blocks. Explicitly, they are the numbers in the set

{kA1 , ..., kAb(A)} = {k ∈ A | (k − 1)modn /∈ A},

with 1 ≤ kA1 < ... < kAb(A) ≤ n.

The gaps of A are the blocks of N − A. Also their number is b(A). A set A ⫋ N is thick if
b(A) = n− |A|. Equivalent is that each gap of A consists of a single number. For thick A ⊂ N
define the sign

sign(A) := sign

Å
1 ... |A| |A|+ 1 ... n
α1 ... α|A| kA1 ... kAb(A)

ã
∈ {±1} where

N − {kA1 , ..., kAb(A)} = {α1, ..., α|A|} with α1 < ... < α|A|.

A set A ⫋ N with A ̸= ∅ is almost thick if b(A) = n − |A| − 1. Equivalent is that one gap
consists of two numbers and each other gap consists of a single number. For an almost thick set
B with gap {k0, (k0 + 1)modn} of two elements, denote

B(1) := B ∪ {k0}, B(2) := B ∪ {(k0 + 1)modn}.

B(1) and B(2) are the unique thick sets with B ⊂ B(i) and |B(i)| = |B| + 1. They satisfy
b(B) = b(B(i)).

For A ⫋ N with A ̸= ∅, we will define a subtorus TA ⊂ Tn below. For this we define for each
block beginning kAj in A a vector of integers,

dAj := a−1
kA
j

(bkA
j+1

− bkA
j
) for j ∈ {1, ..., b(B)− 1}

= (0, ..., 0, 1, (−akA
j
), ..., (−akA

j
)...(−akA

j+1−2), 0, ..., 0) ∈ Zn,

dAb(A) := a−1
kA
b(A)

(an+1bkA
1
+ c1 − bkA

b(A)
)

= (..., an+1a
−1
kA
b(A)

akA
1 −1, 0, ..., 0, 1, (−akA

b(A)
), ..., ana

−1
kA
b(A)

) ∈ Zn.

Then the subtorus TA ⊂ Tn is the set

TA := e(C(dA1 , ..., d
A
b(A))) ⊂ Tn.

It is a torus of dimension b(A). Finally, observe that the b(A)-dimensional hypercube

p
j
+ d−1C(ckA

1
, ..., ckA

b(A)
)

maps by e to a subset of TA,

e
(
p
j
+ d−1C(ckA

1
, ..., ckA

b(A)
)
)
⊂ TA, (3.5)

because the vectors d−1ckA
i
are linear combinations of the vectors dA1 , ..., d

A
b(A), and for each vector

p
j
there is a vector p̃

j
such that e(p̃

j
) = e(p

j
) and p̃

j
is a linear combination of dA1 , ..., d

A
b(A).

And observe that many of the 2b(A) vertices of the image in TA of this hypercube coincide and
that the vertices form the set {e(p

j
), e(p

(j+1)mod d
), ..., e(p

(j+b(A))mod d
)}, because of (3.4).

Some of these notations are due to Cooper [Co82], namely the deformed simplices ∆A, the
tori TA, the block beginnings, their number b(A) and the thick sets A. The hypercubes, the

integers ak and the vectors bk, ck, d
A
k and p

j
are new. The observations in the following lemma

are all due to Cooper [Co82].
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Lemma 3.2. [Co82] We stick to the cycle type singularity f above and all induced data in the
Notations 3.1.

G =

d⋃
j=1

∆N ⊙ {e(p
j
)} ∪

⋃
A⫋N, A̸=∅

∆A ⊙ TA (3.6)

=

d⋃
j=1

∆N ⊙ {e(p
j
)} ∪

⋃
A⫋N thick

∆A ⊙ TA.

For A ⫋ N with A ̸= ∅,

G ∩ CA = ∆A ⊙ TA. (3.7)

The sets ∆N ⊙ {e(p
j
)} and ∆A ⊙ TA are called cells of G. The natural map Int(∆A) × TA →

Int(∆A)⊙ TA is a diffeomorphism. The natural map ∆N → ∆N ⊙ {e(p
j
)} is a diffeomorphism.

dimR(∆N ⊙ {e(p
j
)} = n− 1, (3.8)

dimR(∆A ⊙ TA) = |A| − 1 + b(A)

ß
= n− 1 if A is thick,
< n− 1 if A is not thick.

If A,B ⫋ N with A ̸= B, then Int(∆A) ⊙ TA ∩ Int(∆B) ⊙ TB = ∅. If B ⫋ A ⫋ N with
b(B) = b(A) then ∆B ⊙ TB ⊂ ∆A ⊙ TA.

A ⊂ N thick implies |A| ∈ {[n+1
2 ], [n+1

2 ] + 1, ..., n− 1}. In the case n even, there are only two
thick sets A with |A| = n

2 , the set Aod := {1, 3, , ..., n − 1} and the set Aev := {2, 4, ..., n}. The

cells ∆Aod
⊙ TAod

and ∆Aev ⊙ TAev are the unit spheres in CAod respectively CAev .
A ⊂ N almost thick implies |A| ∈ {[n2 ], ..., n− 2}.

The proof is easy. We will not give details. If zj , zj+1 ∈ C∗ with z
aj

j zj+1 > 0 then

arg(zj+1) ≡ (−aj) arg(zj)mod 2π.

This observation is crucial.
Now we will build up chains, starting with the cells ∆N ⊙ {e(p

j
)}, and ending with cycles

which represent elements of Hn−1(G,Z). In section 4 we will show that these cycles (and the cells
∆Aod

⊙TAod
and ∆Aev

⊙TAev
in the case n even) generate Hn−1(G,Z). Of course, it is necessary

to refine the cells of G to a simplicial chain complex. We will not describe this precisely. Except
from the cells ∆N ⊙ {e(p

j
)}, we will work only with the following chains (compare (3.5)),

C(A, j) := ∆A ⊙ e
(
p
j
+ d−1C(ckA

1
, ..., ckA

b(A)
)
)
⊂ ∆A ⊙ TA (3.9)

for A ⫋ N thick, j ∈ {1, ..., d},

C(B,A, j) := ∆B ⊙ e
(
p
j
+ d−1C(ckA

1
, ..., ckA

b(A)
)
)
⊂ ∆B ⊙ TA (3.10)

for B ⫋ A ⫋ N with A thick, |B| = |A| − 1 ≥ 1, j ∈ {1, ..., d}.

Here our notation is not precise in two ways. (1) If the projection

e : p
j
+ d−1C(ckA

1
, ..., ckA

b(A)
) → Tn

is not injective, the chain C(A, j) or C(B,A, j) shall take multiplicities into account. (2) The
chain obtains an orientation from the order of the vectors ckA

1
, ..., ckA

b(A)
if they are linearly

independent.
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We decompose the boundary of a chain C(A, j) into two parts, ∂C(A, j) = ∂1C(A, j)+∂2C(A, j)
with

∂1C(A, j) = ∂∆A ⊙ e
(
p
j
+ d−1C(ckA

1
, ..., ckA

b(A)
)
)
, (3.11)

∂2C(A, j) = (−1)|A|−1∆A ⊙ ∂e
(
p
j
+ d−1C(ckA

1
, ..., ckA

b(A)
)
)

= (−1)|A|−1∆A ⊙ e
(
p
j
+ d−1∂C(ckA

1
, ..., ckA

b(A)
)
)
. (3.12)

The definitions of the following chains R
(k)
j and X

(k)
j are crucial. Here j ∈ {1, ..., d} and

k ∈ {0, 1, ..., [n+1
2 ]}.

R
(k)
j :=

∑
A thick,|A|=n−k

sign(A) · C(A, j) for k ∈ {1, 2, ..., [n
2
]}, (3.13)

R
(n+1

2 )
j := 0 if n is odd,

R
(0)
j := ∆N ⊙ {e(p

j
)}.

For R
(k)
j with k ≥ 1, the decomposition ∂R

(k)
j = ∂1R

(k)
j + ∂2R

(k)
j of its boundary into two parts

is well defined. For k = 0 we define ∂2R
(0)
j := 0 and ∂1R

(0)
j := ∂R

(0)
j . The definition of the next

chains is inductive. Again j ∈ {1, ..., d}.

X
(0)
j := ∆N ⊙ {e(p

j
)} = R

(0)
j , (3.14)

X
(k)
j := X

(k−1)
j −X

(k−1)
j+1 +R

(k)
j for k ∈ {1, ..., [n+ 1

2
]}. (3.15)

The following theorem is the main result of this section. Its proof takes the rest of this section.

Theorem 3.3. Again, j ∈ {1, ..., d} and k ∈ {0, 1, ..., [n+1
2 ]}.

∂X
(k)
j = ∂1R

(k)
j , (3.16)

and especially ∂X
([n+1

2 ])
j = 0. (3.17)

So, the chains X
([n+1

2 ])
j are cycles and induce homology classes in Hn−1(G,Z). (Theorem 4.6

will tell more.) If n is odd then

d∑
j=1

X
(n+1

2 )
j = 0. (3.18)

If n is even then

d∑
j=1

X
(n
2 )

j = (−1)(
n
2 +2)(n

2 +1) 1
2 · a1a3...an−1

·
(
∆Aod

⊙ TAod
+ (−1)

n
2 a1a3...an−1∆Aev

⊙ TAev

)
. (3.19)

Proof: (3.16) for k = 0 is ∂X
(0)
j = ∂1R

(0)
j . It is true by definition of ∂1R

(0)
j . By induction,

we obtain for k ≥ 0

∂X
(k+1)
j = ∂X

(k)
j − ∂X

(k)
j+1 + ∂R

(k+1)
j

=
Ä
∂1R

(k)
j − ∂1R

(k)
j+1 + ∂2R

(k+1)
j

ä
+ ∂1R

(k+1)
j .
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Therefore we have to show for k ≥ 0

∂1R
(k)
j − ∂1R

(k)
j+1 + ∂2R

(k+1)
j = 0. (3.20)

In fact, R
(k+1)
j was chosen so that (3.20) holds. In order to show (3.20), first we study ∂1R

(k)
j .

For A = {k1, ..., k|A|} ⊂ N with k1 < ... < k|A| if n /∈ A and with k1 = n & k2 < ... < k|A| if

n ∈ A and for B = {k1, ..., “kj , ..., k|A|} ⊂ A define

sign(B,A) := (−1)j−1. (3.21)

Then

∂1R
(k)
j =

∑
A thick,|A|=n−k

∑
B⊂A,|B|=|A|−1

sign(B,A) · sign(A) · C(B,A, j)

for k ≥ 1, (3.22)

∂1R
(0)
j =

∑
B: |B|=n−1

sign(B,N) ·∆B ⊙ {e(p
j
)}.

First we consider the cases k ≥ 1. A part of the following arguments will be valid also
for the case k = 0 and will give this case. In general, the subsets B of thick sets A with
|B| = |A| − 1 = n− k − 1 are of three different types,

type I type II type III
b(B) = b(A) + 1 b(B) = b(A) b(B) = b(A)− 1
⇒ B thick ⇒ B almost thick

First, consider a set B of type III. Then only one thick set A with |A| = n − k and A ⊃ B
exists. It contains a block {kAj } which consists of a single number kAj , and B = A− {kAj }. The
gap of B which contains kAj consists of kAj and the gaps of A left and right of kAj , so this gap of
the set B has 3 elements. Therefore the set B is neither thick nor almost thick. All other gaps
of B consist of a single number. Observe

prB(ckA
j
) = prB(ckA

j+1
), thus

prB(d
−1C(ckA

1
, ..., ckA

b(A)
)) = prB(d

−1C(ckB
1
, ..., ckB

b(B)
)), thus

C(B,A, j) = C(B, j) ⊂ ∆B ⊙ TB ,

dim C(B,A, j) = |B| − 1 + b(B) = |A| − 2 + b(A)− 1

= dim C(A, j)− 2 = dimR
(k)
j − 2.

Therefore this part C(B,A, j) of the boundary ∂1R
(k)
j has too small dimension and can be

ignored.
Next, consider a set B of type II. It is almost thick. It has one gap which consists of two

numbers k0 and (k0 + 1)modn. All other gaps consist of a single number. The only two thick
sets A with A ⊃ B and |A| = n− k are B(1) := B ∪ {k0} and B(2) := B ∪ {(k0 + 1)modn}. All
possibilities for k0 except one are easy to treat, namely the cases k0 ∈ {1, ..., n} − {n − 1}. In
all these cases

prB(ckB(1)

i

) = prB(ckB(2)

i

) = prB(ckB
i
) for any i ∈ {1, ..., b(B)},

thus C(B,B(1), j) = C(B,B(2), j) = C(B, j).

One checks also

sign(B,B(1)) = sign(B,B(2)), sign(B(1)) = −sign(B(2)). (3.23)
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These observations show that these contributions to ∂1R
(k)
j cancel.

The only difficult possibility for k0 is the case k0 = n− 1. Then

kB
(1)

1 = 1 < kB
(1)

2 < ... < kB
(1)

b(B), , kB
(1)

j = kBj
∥ ∥

kB
(2)

1 < ... < kB
(2)

b(B)−1 < kB
(2)

b(B) = n,

c
kB(2)

b(B)

= cn = (−1)nd · bn + c1,

prB(ckB(2)

b(B)

) = ((−1)nd+ 1) prB(c1),

1 = sign(B,B(2)) = (−1)|B|sign(B,B(1)), (3.24)

sign(B(2)) = (−1)n−1sign(B(1)),

sign(B,B(2))sign(B(2)) = (−1)b(B)sign(B,B(1))sign(B(1)).

This together with (3.3), formulas for ck and dBj and especially kB1 = 1 and b1 = (0, ..., 0) shows

prT prB(pj + d−1C(c
kB(2)

1

, ..., c
kB(2)

b(B)

))

+(−1)b(B) prT prB(pj + d−1C(c
kB(1)

1

, ..., c
kB(1)

b(B)

))

= prT prB(pj + d−1C(ckB
2
, ..., ckB

b(B)
, (−1)ndc1))

= prT prB(pj + C(d−1ckB
2
, ..., d−1ckB

b(B)
, (−1)nc1))

(3.3)
= prT prB(pj + C(d−1ckB

2
− d−1c1, ..., d

−1ckB
b(B)

− d−1c1, (−1)nc1))

= prT prB(pj + C((−1)nbkB
2
, ..., (−1)nbkB

b(B)
, (−1)nc1))

= (−1)nb(B)a1akB
2
...akB

b(B)
· prT prB(C(dB1 , d

B
2 , ..., d

B
b(B))).

This implies

C(B,B(2), j) + (−1)b(B) · C(B,B(1), j)

= (−1)nb(B)a1akB
2
...akB

b(B)
·∆B ⊙ TB . (3.25)

This is up to the sign sign(B,B(2)) · sign(B(2)) the contribution of B to ∂1R
(k)
j . Especially, it

is independent of j. Therefore a set B of type II makes the same contribution to ∂1R
(k)
j and to

∂1R
(k)
j+1. Thus its contribution to the difference ∂1R

(k)
j − ∂1R

(k)
j+1 is zero.

Finally, consider a set B of type I. It is thick. Its gaps are the sets

{(kB1 − 1)modn}, ..., {(kBb(B) − 1)modn}.

Exactly b(B) thick sets A with A ⊃ B and |A| = n− k exist. They are the sets

A(i) = B ∪ {(kBi − 1)modn}

for i ∈ {1, ..., b(B)}.
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The set of block beginnings of A(i) is the set {kB1 , ...,”kBi , ..., kBb(B)}. Therefore the contribution
of B to the boundary ∂1R

(k)
j is

b(B)∑
i=1

sign(B,A(i)) · sign(A(i))

· ∆B ⊙ e
(
p
j
+ d−1C(ckB

1
, ..., ĉkB

i
, ..., ckB

b(B)
)
)
, (3.26)

and the contribution of B to ∂1R
(k)
j+1 looks analogously, with j replaced by j + 1. The following

calculation of signs will be useful,

sign(B) = (−1)(i−1)+(n−kB
i )+(b(B)−i) · sign(A(i))

= (−1)k
B
i +|B|−1 · sign(A(i)),

sign(B,A(i)) = (−1)(k
B
i −1)−(i−1) = (−1)k

B
i −i,

sign(B,A(i)) · sign(A(i)) = sign(B) · (−1)|B|+i−1. (3.27)

On the other side, the boundary ∂2R
(k+1)
j has only contributions from sets B of type I. The

contribution of one such set B is as follows. Here we use (3.12), (3.2) and (3.4).

contribution of B to ∂2R
(k+1)
j

(3.12)
= sign(B)(−1)|B|−1 ·∆B ⊙ e

(
p
j
+ d−1∂C(ckB

1
, ..., ckB

b(B)
)
)

(3.2)
= sign(B)(−1)|B|−1 ·(b(B)∑

i=1

(−1)i−1∆B ⊙ e
(
p
j
+ d−1C(ckB

1
, ..., ĉkB

i
, ..., ckB

b(B)
)
)

−
b(B)∑
i=1

(−1)i−1∆B ⊙ e
(
p
j
+ d−1ckB

i
+ d−1C(ckB

1
, ..., ĉkB

i
, ..., ckB

b(B)
)
))

(3.4)
=

b(B)∑
i=1

sign(B)(−1)|B|+i∆B ⊙ e
(
p
j
+ d−1C(ckB

1
, ..., ĉkB

i
, ..., ckB

b(B)
)
)

−
b(B)∑
i=1

sign(B)(−1)|B|+i∆B ⊙ e
(
p
j+1

+ d−1C(ckB
1
, ..., ĉkB

i
, ..., ckB

b(B)
)
)

= −(contribution of B to ∂1R
(k)
j )

+(contribution of B to ∂1R
(k)
j+1).

Therefore the contribution of B to ∂1R
(k)
j − ∂1R

(k)
j+1 + ∂2R

(k+1)
j is zero.

So, no set B ⊂ N with |B| = n− k − 1 gives a contribution to this sum. Therefore this sum
is zero. (3.20) is proved for k ≥ 1.

Now we will show (3.20) for k = 0. ∂1R
(0)
j , ∂1R

(0)
j+1 and ∂2R

(1)
j are sums over sets B ⊂ N

with |B| = n− 1. These sets are the sets B(i) := N − {i} for i ∈ N . The set B(i) is thick with
b(B(i)) = 1. It can be treated as the sets of type I above. The same calculations as above for

sets of type I show that the contribution of B(i) to the sum ∂1R
(0)
j − ∂1R

(0)
j+1 + ∂2R

(1)
j is zero.

Therefore this sum is zero. Therefore (3.20) holds also for k = 0, so it holds for all k ≥ 0.
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This implies (3.16) for k ≥ 1. It holds for k = 0 anyway.
It remains to prove (3.17), (3.18) and (3.19). (3.17) is because of (3.16) equivalent to

∂1R
([n+1

2 ])
j = 0. In the case n odd this is trivial as then R

(n+1
2 )

j = 0 by definition. In the

case n even, we have to show ∂1R
(n
2 )

j = 0. By Lemma 3.2, there are only two thick sets A with

|A| = n
2 , the sets Aod = {1, 3, ..., n−1} and Aev = {2, 4, ..., n}. In the discussion above of ∂1R

(k)
j

for k ≥ 1, we distinguished 3 different types of sets B with |B| = |A|−1 = n−k−1 and B ⊂ A.
In the cases A ∈ {Aod, Aev}, we have only sets B of type III. Above we stated that the part

C(B,A, j) of ∂1R
(k)
j (here for k = n

2 ) has too small dimension and can be ignored. Therefore

∂1R
(n
2 )

j = 0. We proved (3.17).

(3.18) holds for odd n and is an immediate consequence of (3.15) and R
(n+1

2 )
j = 0.

(3.19) holds for even n. It requires two calculations which are similar to the one which led to
(3.25). The details are as follows. (3.15) and (3.13) show

d∑
j=1

X
(n
2 )

j =

d∑
j=1

R
(n
2 )

j

=

d∑
j=1

sign(Aod) · C(Aod, j) +

d∑
j=1

sign(Aev) · C(Aev, j)

=

d∑
j=1

sign(Aod) ·∆Aod
⊙ e
Ä
p
j
+ d−1C(c1, c3, ..., cn−1)

ä
+

d∑
j=1

sign(Aev) ·∆Aev ⊙ e
Ä
p
j
+ d−1C(c2, c4, ..., cn)

ä
.

Here

sign(Aod) = (−1)
n
2 (n

2 +1) 1
2 ,

sign(Aev) = (−1)(
n
2 −1)n

2
1
2 = (−1)

n
2 · sign(Aod).

Because of p
j+1

= p
j
+ d−1c1 and (3.3) (and (−1)n = 1 as n is even), we have

d∑
j=1

prT
Ä
p
j
+ d−1C(c1, c3, ..., cn−1)

ä
= prT

Ä
p
1
+ C(c1, d

−1c3, ...., d
−1cn−1)

ä
(3.3)
= prT

Ä
p
1
+ C(c1, d

−1c3 − d−1c1, ..., d
−1cn−1 − d−1c1)

ä
= prT

Ä
p
1
+ C(c1, (−1)nb3, ..., (−1)nbn−1)

ä
= (−1)n/2−1 prT

(
C(b3, ..., bn−1, c1)

)
.
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If we identify prAod
(bj) with a column vector in Mn/2×1(Z) then the tuple

(prAod
(b3), ...,prAod

(bn−1),prAod
(c1)) is an upper triangular n

2 × n
2 -matrix, and its deter-

minant is a1a3...an−1. Therefore

d∑
j=1

∆Aod
⊙ e
Ä
p
j
+ d−1C(c1, c3, ..., cn−1)

ä
= (−1)n/2−1a1a3...an−1 ·∆Aod

⊙ TAod
.

Observe

prAev
(c2l) = prAev

(c2l−1).

Therefore
d∑

j=1

prAev
prT
Ä
p
j
+ d−1C(c2, c4, ..., cn)

ä
=

d∑
j=1

prAev
prT
Ä
p
j
+ d−1C(c1, c3, ..., cn−1)

ä
= (−1)n/2−1 prAev

prT
(
C(b3, ..., bn−1, c1)

)
.

If we identify prAev
(bj) with a column vector in Mn/2×1(Z) then the tuple

(prAev
(b3), ...,prAev

(bn−1),prAev
(c1)) is an upper triangular n

2 × n
2 -matrix, and its deter-

minant is

a2a4...an = a1a3...an−1 · a1a3...an−1.

Therefore
d∑

j=1

∆Aev
⊙ e
Ä
p
j
+ d−1C(c2, c4, ..., cn)

ä
= (−1)n/2−1a1a3...an−1 · a1a3...an−1 ·∆Aev

⊙ TAev
.

(3.19) follows. 2

4. A spectral sequence, following and correcting Cooper

Throughout this section we fix a cycle type singularity f(x1, ..., xn) as in (1.2) with n ≥ 2
and a1, ..., an ∈ N with (1.3), as in section 3. Cooper [Co82] considered a filtration of the set
G ⊂ F0 = f−1(R≥0)∩S2n−1 ⊂ S2n−1 ⊂ Cn, which was defined in (3.1), by a sequence of subsets,

G = Gn ⊃ Gn−1 ⊃ ... ⊃ G1 ⊃ G0 = ∅.

He studied a spectral sequence (Er
s,t, d

r
s,t)r≥1,s≥1,s+t≥0 which is associated to this filtration. It

allows to determine Hn−1(G,Z). Though he made two serious mistakes. Here we will partly
follow his line of thoughts, but correct the mistakes. Remark 5.1 will explain the differences to
[Co82].

Cooper does not give a reference for the construction of the spectral sequence. We found a
manuscript of Hatcher [Ha04] very useful for our situation and will cite Theorem 4.2 and some
preparations for Theorem 4.2 from it.

First we will define the subspaces Gs ⊂ G and make some elementary observations. Then
we will introduce the spectral sequence, following Hatcher. Then we will study it in detail
(following partly Cooper) in Lemma 4.3 and Theorem 4.5. Theorem 4.6 will give the conclusion
for Hn−1(G,Z). It complements Theorem 3.3.



INTEGRAL MONODROMY OF THE CYCLE TYPE SINGULARITIES 283

Definition 4.1. [Co82] Recall the definition (3.1) of the set G ⊂ Cn. Define Gn := G, G0 := ∅,
and define for s ∈ {1, ..., n− 1}

Gs := {z ∈ G | at most s of the coordinates z1, ..., zn are ̸= 0}
=

⋃
A⊂N : |A|≤s

∆A ⊙ TA. (4.1)

Here the second equality follows from Lemma 3.2. Lemma 3.2 gives also the differences
Gs −Gs−1,

Gn −Gn−1 =

d⋃
j=1

Int(∆N )⊙ {e(p
j
)}, (4.2)

Gs −Gs−1 =
⋃

A⊂N : |A|=s

Int(∆A)⊙ TA for s ∈ {1, ..., n− 1}. (4.3)

In this paper, all considered homology groups will have coefficients in Z. Especially, we
consider for (s, t) ∈ N × Z the homology groups of the spaces Gs and of the pairs (Gs, Gs−1),

A1
s,t := Hs+t(Gs) := Hs+t(Gs,Z), (4.4)

E1
s,t := Hs+t(Gs, Gs−1) := Hs+t(Gs, Gs−1,Z). (4.5)

We extend this definition by

A1
s,t = E1

s,t = 0 for s ≤ 0,

A1
s,t = Hs+t(G), E1

s,t = 0 for s ≥ n+ 1.

Of course

A1
s,t = E1

s,t = 0 for s+ t < 0 or s+ t ≥ n, (4.6)

as dimR Gs ≤ n− 1. Cooper [Co82] observed that Lemma 3.2 (especially that the map

Int(∆A)× TA → Int(∆A)⊙ TA

is a diffeomorphism) and (4.3) imply

H∗(Gn, Gn−1) =

d⊕
j=1

Hn−1(∆N ⊙ {e(p
j
)}, ∂∆N ⊙ {e(p

j
)}), (4.7)

H∗(Gs, Gs−1) =
⊕

A⊂N : |A|=s

H∗(∆A ⊙ TA, ∂∆A ⊙ TA) (4.8)

for s ≤ n− 1.
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And here

Hn−1(∆N ⊙ {e(p
j
)}, ∂∆N ⊙ {e(p

j
)}) ∼= Z

with generator the class [X
(0)
j ], (4.9)

H∗(∆A ⊙ TA, ∂∆A ⊙ TA) ∼= H|A|−1(∆A, ∂∆A)⊗H∗(TA), (4.10)

H|A|−1(∆A, ∂∆A) ∼= Z with generator the class [∆A], (4.11)

H∗(TA) ∼=
b(A)⊗
j=1

H∗(S
1), H∗(S

1) = H0(S
1)⊕H1(S

1), (4.12)

H0(S
1) ∼= Z and H1(S

1) ∼= Z
with generators [p] and [S1] for any p ∈ S1. (4.13)

By (4.7) and (4.9) the group

E1
n,−1 = Hn−1(Gn, Gn−1) = H∗(Gn, Gn−1) =

d⊕
j=1

Z · [X(0)
j ] (4.14)

is a Z-lattice of rank d with generators the classes [X
(0)
1 ], ..., [X

(0)
d ]. All the groups E1

s,t are
Z-lattices (= finitely generated free Z-modules).

The long exact homology sequence for the pair (Gs, Gs−1) for s ∈ N reads as follows,

· · ·A1
s−1,t+1

i1→ A1
s,t

j1→ E1
s,t

k1

→ A1
s−1,t

i1→ A1
s,t−1

j1→ E1
s,t−1

k1

→ A1
s−1,t−1 · · ·

Here i1 is induced by the embedding Gs−1 ↪→ Gs, j
1 is the natural map from absolute homology

to relative homology, and k1 is the boundary map. Together, these exact homology sequences
can be put into a large diagram which Hatcher [Ha04] calls a staircase diagram, because the long
exact sequences look like staircases in this diagram:

A1
s−1,t+1

j1→ E1
s−1,t+1

k1

→ A1
s−2,t+1

j1→ E1
s−2,t+1

k1

→ A1
s−3,t+1

↓ i1 ↓ i1 ↓ i1

A1
s,t

j1→ E1
s,t

k1

→ A1
s−1,t

j1→ E1
s−1,t

k1

→ A1
s−2,t

↓ i1 ↓ i1 ↓ i1

A1
s+1,t−1

j1→ E1
s+1,t−1

k1

→ A1
s,t−1

j1→ E1
s,t−1

k1

→ A1
s−1,t−1

The map

d1s,t := d1 := j1 ◦ k1 : E1
s,t → E1

s−1,t (4.15)

is the cellular boundary map [Ha04]. The system (E1
s,t, d

1
s,t)s,t∈Z of spaces and maps is the first

page of a spectral sequence which is associated to the filtration

G = Gn ⊃ Gn−1 ⊃ ... ⊃ G1 ⊃ G0 = ∅.

The other pages (Er
s,t, d

r
s,t)s,t∈Z for r ≥ 2 are constructed inductively together with versions of

the staircase diagram above for any r ≥ 2 instead of r = 1, so, tuples (Ar
s,t, E

r
s,t, i

r, jr, kr, dr)
are constructed inductively for any r ≥ 2. The following theorem describes this construction
and gives the general properties. It follows from Lemma 5.1 and Proposition 5.2 in [Ha04].
Proposition 5.2 in [Ha04] applies with the conditions (i) and (ii) in it. The indices in A1

s,t and

E1
s,t here are chosen differently (more standard) from those in [Ha04].
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Theorem 4.2. [Ha04, Lemma 5.1 and Proposition 5.2]
(a) (Properties) Fix r ≥ 2. The tuple (Ar

s,t, E
r
s,t, i

r, jr, kr, dr) will be constructed from the

tuple (Ar−1
s,t , Er−1

s,t , ir−1, jr−1, kr−1, dr−1) in part (c). It has the following properties:

ir : Ar
s,t → Ar

s+1,t−1, (4.16)

jr : Ar
s,t → Er

s−r+1,t+r−1, (4.17)

kr : Er
s,t → Ar

s−1,t, (4.18)

dr := jr ◦ kr : Er
s,t → Er

s−r,t+r−1, dr ◦ dr = 0. (4.19)

The restriction of ir to Ar
s,t is also called irs,t, and similarly for jr, kr and dr. There are long

exact sequences,

· · ·Ar
s+r−2,t−r+2

ir→ Ar
s+r−1,t−r+1

jr→ Er
s,t

kr

→ Ar
s−1,t

ir→ Ar
s,t−1

jr→ Er
s−r+1,t+r−2

kr

→ Ar
s−r,t+r−2 · · ·

They can be put together into the following staircase diagram (the positions of the arrows for jr

are not precise).

Ar
s−1,t+1

↗
jr Er

s−1,t+1
kr

→ Ar
s−2,t+1

↗
jr Er

s−2,t+1
kr

→ Ar
s−3,t+1

↓ ir ↓ ir ↓ ir

Ar
s,t

↗
jr Er

s,t
kr

→ Ar
s−1,t

↗
jr Er

s−1,t
kr

→ Ar
s−2,t

↓ ir ↓ ir ↓ ir

Ar
s+1,t−1

↗
jr Er

s+1,t−1
kr

→ Ar
s,t−1

↗
jr Er

s,t−1
kr

→ Ar
s−1,t−1

(b) (Spectral sequence) The part (Er
s,t, d

r
s,t)r≥1,s,t∈Z of the tuples above for all r ≥ 1 is a

spectral sequence. It converges to H∗(G). This imprecise statement means the following. For

each (s, t) ∈ Z2, a bound r(s, t) ∈ N exists such that the space E∞
s,t := E

r(s,t)
s,t coincides with Er

s,t

for any r ≥ r(s, t), and

E∞
s,t

∼= F s
s+t/F

s−1
s+t , where (4.20)

F s
s+t := Im(A1

s,t → A1
n,s+t−n) = Im(Hs+t(Gs) → Hs+t(G)).

(c) (Construction) Fix r ≥ 2. Suppose that the tuple (Ar−1
s,t , Er−1

s,t , ir−1, jr−1, kr−1, dr−1) has

been constructed. Then especially dr−1 ◦ dr−1 = 0. Therefore the quotient

Er
s,t := ker(dr−1

s,t )/ Im(dr−1
s+r−1,t−r+2) (4.21)

is well-defined. It is a subquotient of Er−1
s,t . The space

Ar
s,t := ir−1(Ar−1

s−1,t+1) ⊂ Ar−1
s,t (4.22)

is well-defined, anyway. It is a subspace of Ar−1
s,t . The map ir is the restriction of ir−1 to Ar

s,t.

The map jr on Ar
s,t = ir−1(Ar−1

s−1,t+1) is defined on ir−1(a) for a ∈ Ar−1
s−1,t+1 by

jr(ir−1(a)) := [jr−1(a)].

A priori, this is in Er−1
s−r+1,t+r−1/ Im(dr−1

s,t+1). But it turns out to be in Er
s−r+1,t+r−1. The map

kr on Er
s,t is defined on [a] for a ∈ ker(dr−1

s,t ) ⊂ Er−1
s,t by kr([a]) := kr−1(a) which is a priori in

Ar−1
s−1,t. But it turns out to be in Ar

s−1,t and to be well-defined.
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Theorem 4.2 gives basic and general properties, which are not specific to the geometry of G
and its subspaces Gs (except for our definition of F s

s+t where we used A1
n,s+t−n = Hs+t(G)).

Now we will use the geometry of G and its subspaces Gs to make more specific statements. We
are interested especially in E∞

s,n−1−s as that is the subquotient F s
n−1/F

s−1
n−1 of Hn−1(G) by part

(b). Lemma 4.3 gives first elementary observations. Algebraic statements in Lemma 4.4 make
a part of Theorem 4.5 more transparent. Theorem 4.5 states the main results on the spectral
sequence. Theorem 4.6 gives the conclusion for Hn−1(G). It complements Theorem 3.3.

Lemma 4.3. (a) For r ≥ 2

Er
s,n−1−s = ker(dr−1

s,n−1−s) ⊂ Er−1
s,n−1−s ⊂ ... ⊂ E1

s,n−1−s. (4.23)

(b) For r ≥ 1 and for s < [n+1
2 ]

Er
s,n−1−s = E∞

s,n−1−s = 0 and thus F s
n−1 = 0. (4.24)

(c) Consider even n. For r ≥ 1

F
n/2
n−1 = Im

(
(Hn−1(Gn

2
) → Hn−1(G)

) ∼= E∞
n
2 ,n2 −1

= Er
n
2 ,n2 −1 = E1

n
2 ,n2 −1 = Hn−1(Gn

2
, Gn

2 −1) ∼= Z2. (4.25)

The generators are the classes in Hn−1(G) respectively in Hn−1(Gn
2
, Gn

2 −1) of the spheres ∆Aod
⊙

TAod
⊂ CAod and ∆Aev

⊙ TAev
⊂ CAev (see Lemma 3.2).

Proof: (a) Because of (4.6) Er−1
s,t = 0 for s + t ≥ n. Therefore dr−1

s+r−1,n−1−s−r+2 = 0, and

by (4.21) Er
s,n−1−s = ker(dr−1

s,n−1−s).

(b) For s ≤ n − 1, the set E1
s,n−1−s = Hn−1(Gs, Gs−1) has by (4.8), (4.10) and (4.12) only

contributions from sets A ⊂ N with b(A) = n − |A|, so from thick sets A. By Lemma 3.2, if
s < [n+1

2 ], there are no thick sets A with |A| = s. Therefore then E1
s,n−1−s = 0 and Er

s,n−1−s = 0

for r ≥ 1 and E∞
s,n−1−s = 0. This and (4.20) imply inductively F s

n−1 = 0 for s < [n+1
2 ].

(c) The first equality is the definition of F
n/2
n−1. The isomorphism F

n/2
n−1

∼= E∞
n
2 ,n2 −1 follows with

(4.20) and F s
n−1 = 0 for s < n

2 .

The equality E1
n
2 ,n2 −1 = Hn−1(Gn

2
, Gn

2 −1) is the definition of E1
n
2 ,n2 −1. By (4.8), (4.10) and

(4.12) it has a contribution isomorphic to Z with generator [∆A ⊙ TA] for any thick set A with
|A| = n

2 . By Lemma 3.2, these are only the sets Aod and Aev. Therefore E1
n
2 ,n2 −1

∼= Z2. As the

spheres ∆Aod
⊙ TAod

and ∆Aev
⊙ TAev

have no boundary, the boundary map

k1n
2 ,n2 −1 : E1

n
2 ,n2 −1 → A1

n
2 −1,n2 −1 = Hn−2(Gn

2 −1)

and also the induced maps krn
2 ,n2 −1 and the maps drn

2 ,n2 −1 are zero maps. Therefore for r ≥ 1

E1
n
2 ,n2 −1 = Er

n
2 ,n2 −1 = E∞

n
2 ,n2 −1.

Part (c) is proved. 2

The sole purpose of the following elementary algebraic lemma is to make Theorem 4.5 (d)
more transparent.

Lemma 4.4. Recall from (4.14) that the group E1
n,−1 = Hn−1(G,Gn−1) is a Z-lattice of rank d

with generators the classes [X
(0)
1 ], ..., [X

(0)
d ]. Define for r ∈ {1, ..., [n+3

2 ]} the sublattice‹Er
n,−1 :=

d∑
j=1

Z · [X(r−1)
j ] ⊂ E1

n,−1, (4.26)
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which is generated by the classes [X
(r−1)
1 ], ..., [X

(r−1)
d ] in Hn−1(G,Gn−1). Then ‹E1

n,−1 = E1
n,−1.

For r ≥ 2

[X
(r−1)
j ] = [X

(r−2)
j ]− [X

(r−2)
(j+1)mod d

] for j ∈ {1, ..., d}, (4.27)

d∑
j=1

[X
(r−1)
j ] = 0, (4.28)

and ‹Er
n,−1 ⊂ E1

n,−1 is a sublattice of rank d−1 which is generated by any d−1 of the d elements

[X
(r−1)
1 ], ..., [X

(r−1)
d ]. The lattice ‹E2

n,−1 is a primitive sublattice of E1
n,−1. For r ≥ 3, ‹Er

n,−1 has

index d in ‹Er−1
n,−1.

Proof: (4.27) follows from the definition of X
(r−1)
j in (3.15) and from R

(r−1)
j ⊂ Gn−1. (4.28)

is an immediate consequence of (4.27). ‹E2
n,−1 is obviously a primitive sublattice of E1

n,−1 of rank

d− 1. For r ≥ 3, ‹Er
n,−1 has index d in ‹Er−1

n,−1 because‹Er
n,−1 = {

d∑
j=1

zk · [X(r−2)
j ] | zk ∈ Z,

d∑
j=1

zj ∈ dZ} (4.29)

by (4.27) and (4.28) (for [X
(r−2)
j ]). 2

Theorem 4.5. (a) [Co82, 18.] For s ∈ {[n+2
2 ], [n+4

2 ], ..., n− 1}

d1s,n−1−s : E
1
s,n−1−s → E1

s−1,n−1−s is injective, (4.30)

Er
s,n−1−s = E∞

s,n−1−s = 0 for r ≥ 2. (4.31)

(b) For t ∈ {3, ..., [n+3
2 ]} and 3 ≤ r ≤ t

Er−1
n−t+1,t−3 ⊂

E1
n−t+1,t−3

d1(E1
n−t+2,t−3)

. (4.32)

(c) For s < [n+2
2 ] and r ≥ 1

Er
s−1,n−1−s = 0. (4.33)

(d) Recall the definition of ‹Er
n,−1 in Lemma 4.4.

Er
n,−1 = ‹Er

n,−1 for r ∈ {1, ..., [n+ 3

2
]}, (4.34)

E∞
n,−1 = Er

n,−1 = ‹E[n+3
2 ]

n,−1 for r ≥ [
n+ 3

2
]. (4.35)

Proof: (a) (4.31) is an immediate consequence of (4.30), because of the definition of Er
s,n−1−s

in (4.21).
The injectivity of d1s,n−1−s was proved in [Co82, 18.]. Our proof differs in a way which allows

to apply it also to the proof of (4.34) in part (d). First we consider some useful sets and maps.
Fix s ∈ {[n+2

2 ], [n+4
2 ], ..., n− 1}.

A1(s) := {A ⊂ N |A thick, |A| = s},
A2(s) := {(A, j) |A ∈ A1(s), j ∈ {1, ..., b(A)}

with kAj , (k
A
j + 1)modn ∈ A},

pr1 : A2(s) → A1(s), (A, j) 7→ A, the canonical projection.
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For the given s, each A ∈ A1(s) contains a block which consists of ≥ 2 elements. Therefore
pr1 : A2(s) → A1(s) is surjective.

B(s) := {B ⊂ N |B almost thick, |B| = s− 1},
β1 : B(s) → N, β1(B) := k0 if {k0, (k0 + 1)modn} ⊂ N −B,

β2 : B(s) → N, β2(B) := (β1(B) + 1)modn,

α1 : A2(s) → B(s), (A, j) 7→ A− {(k(j+1)mod d
− 2)modn},

α2 : A2(s) → B(s), (A, j) 7→ A− {kAj }.

β1(B) and β2(B) are the first and last element of the unique block of N −B with two elements.
kAj is the beginning of a block of A with ≥ 2 elements, and (k(j+1)mod d

− 2)modn} is the last

element of this block. α1 and α2 are bijections, and (see the notations 3.1 for B(1) and B(2))

B(1) = B ∪ {β1(B)} = pr1(α
−1
1 (B)),

B(2) = B ∪ {β2(B)} = pr1(α
−1
2 (B)).

Recall what (4.8), (4.10) and (4.12) say about E1
s,n−1−s and E1

s−1,n−1−s. Both are Z-lattices.
The generators of E1

s,n−1−s are simply the classes [∆A ⊙ TA], A ∈ A1(s),

E1
s,n−1−s = Hn−1(Gs, Gs−1) (4.36)

=
⊕

A∈A1(s)

Hn−1(∆A ⊙ TA, ∂∆A ⊙ TA) =
⊕

A∈A1(s)

Z · [∆A ⊙ TA],

E1
s−1,n−1−s splits into two parts, one from almost thick sets, the other from thick sets,

E1
s−1,n−1−s = Hn−2(Gs−1, Gs−2) (4.37)

=
(
Hn−2(Gs−1, Gs−2)

)
B ⊕

(
Hn−2(Gs−1, Gs−2)

)
A with(

Hn−2(Gs−1, Gs−2)
)
B :=

⊕
B∈B(s)

Z · [∆B ⊙ TB ],

(
Hn−2(Gs−1, Gs−2)

)
A :=

⊕
A∈A1(s−1)

Hs−1(∆A, ∂∆A)⊗Hb(A)−1(TA)

=
⊕

A∈A1(s−1)

b(A)⊕
i=1

Z · [∆A ⊙ TA∪{(kA
i −1)modn}].

We will work mainly with the part from almost thick sets. The projection to this part is called
prB,

prB : E1
s−1,n−1−s = Hn−2(Gs−1, Gs−2) → (Hn−2(Gs−1, Gs−2))B .

We will prove that prB ◦d1s,n−1−s is injective. This implies that d1s,n−1−s is injective. Recall

d1s,n−1−s = j1s−1,n−1−s ◦ k1s,n−1−s, and k1s,n−1−s is a boundary map. Therefore for A ∈ A1(s)

d1s,n−1−s([∆A ⊙ TA]) = [∂∆A ⊙ TA] (4.38)

=
∑

B⊂A:B∈B(s)∪A1(s−1)

sign(B,A) · [∆B ⊙ TA],

We care only about the terms for B ⊂ A with B ∈ B(s). These sets B split into two types,

{B ⊂ A |B ∈ B(s)} = {B ⊂ A |A = B(1)} ∪ {B ⊂ A |A = B(2)}. (4.39)
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We claim to have on the level of chains

∆B ⊙ TA =


∆B ⊙ TB if A = B(1),

(−aβ2(B)) ·∆B ⊙ TB if A = B(2), β2(B) ̸= n,

(−1)b(B)−1(−an)∆B ⊙ TB if A = B(2), β2(B) = n.

(4.40)

This follows from comparison of TA with TB . If B = α1(A, j) then β1(B) = (k(j+1)modn
−2)modn

is the last element of the j-th block of A. If B = α2(A, j) then β2(B) = kAj is the beginning of
the j-th block of A. The generating vectors of TA and TB from these blocks of A and B differ
as follows,

prB(d
A
j ) = prB(d

B
j ) if B = α1(A, j),

prB(d
A
j ) = (−aβ2(B)) · prB(d

B
j̃
) if B = α2(A, j), (4.41)

where j̃ = j if β2(B) ̸= n and where in the case β2(B) = n

j = b(B) = b(A), j̃ = 1,

prB(d
A
i ) = prB(d

B
i+1) for i ∈ {1, ..., b(B)− 1}.

This shows (4.40). Together (4.38), (4.39) and (4.40) give

prB
(
d1s,n−1−s([∆A ⊙ TA])

)
=

∑
B∈α1(pr

−1
1 (A))

sign(B,A) · [∆B ⊙ TB ]

+
∑

B∈α2(pr
−1
1 (A)),β2(B)̸=n

sign(B,A) · (−aβ2(B)) · [∆B ⊙ TB ] (4.42)

+
∑

B∈α2(pr
−1
1 (A)),β2(B)=n

(−1)b(B)−1sign(B,A) · (−an) · [∆B ⊙ TB ].

Recall from (3.23) and (3.24)

sign(B,B(2)) = sign(B,B(1)) if β2(B) ̸= n,

1 = sign(B,B(2)) = (−1)|B|sign(B,B(1)) if β2(B) = n,

and (−1)b(B)−1+|B| = (−1)n.

In view of these signs and (4.42), an arbitrary linear combination
∑

A∈A1(s)
zA · [∆A ⊙ TA],

zA ∈ Z, is mapped by prB ◦d1s,n−1−s to

prB
(
d1s,n−1−s

Ñ ∑
A∈A1(s)

zA · [∆A ⊙ TA]

é)
(4.43)

=
∑

B∈B(s),β2(B)̸=n

sign(B,B(1))
(
zB(1) − aβ2(B)zB(2)

)
[∆B ⊙ TB ]

+
∑

B∈B(s),β2(B)=n

sign(B,B(1))
(
zB(1) − (−1)nanzB(2)

)
[∆B ⊙ TB ].

The following Claim 1 will be useful here and in the proof of (4.34) in part (d).
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Claim 1: Fix any B ∈ B(s). A sequence (Bi)i∈N of elements Bi ∈ B(s) with B = Bn and
with the following property exists,

B
(1)
(i+1)modn

= B
(2)
i for i ∈ N. (4.44)

Additionally,

the map N → N, i 7→ β2(Bi), is a bijection. (4.45)

Proof of Claim 1: We will describe such a sequence from a point of view which will make
its existence clear. Suppose we have such a sequence (Bi)i∈N . Compare the set of gaps of

B
(2)
(i−1)modn

= B
(1)
i with the set of gaps of B

(2)
i = B

(1)
(i+1)modn

. These sets almost coincide. Only

the gap {β2(Bi)} of B
(1)
i is shifted one position to the left to the gap {β1(Bi)} of B

(2)
i . Starting

from the set of gaps of B
(2)
n = B

(1)
1 , one shifts in n steps all gaps to the left, so that the final

position of each gap is the original position of the gap left of it. One has to take care that the

gaps stay always apart from one another. It is clear that starting from the set of gaps of B
(2)
n ,

one can find such n steps. Also (4.45) is clear. This finishes the proof of Claim 1. (2)

Consider now a linear combination
∑

A∈A1(s)
zA · [∆A ⊙ TA], zA ∈ Z, which is mapped by

prB ◦d1s,n−1−s to 0. Choose any A ∈ A1(s) and choose B ∈ B(s) with B(2) = A. Claim 1

provides a sequence (Bi)i∈N with Bn = B, B
(2)
n = A, (4.44) and (4.45). Then (4.43) gives the

relations

z
B

(2)

(i−1)modn

= z
B

(1)
i

=


aβ2(Bi)zB(2)

i
if β2(Bi) ̸= n,

(−1)nanzB(2)
i

if β2(Bi) = n.
(4.46)

Together these relations and (4.45) imply especially

zA = an+1 · zA, so (−1)nd · zA = 0, so zA = 0.

Therefore prB ◦d1s,n−1−s is injective, and thus also d1s,n−1−s is injective. This finishes the proof
of part (a).

(b) The definition (4.21) of Er−1
n−t+1,t−3 for r ≥ 3 gives

Er−1
n−t+1,t−3 ⊂

Er−2
n−t+1,t−3

dr−2(Er−2
n−t+r−1,t−r)

.

If r = 3, this is (4.32). If r ≥ 4, (4.31) gives Er−2
n−t+r−1,t−r = 0, so Er−1

n−t+1,t−3 ⊂ Er−2
n−t+1,t−3.

Induction gives (4.32).

(c) E1
s−1,n−1−s = Hn−2(Gs−1, Gs−2) has by (4.8), (4.10) and (4.12) only contributions from

sets A ⊂ N with |A| = s− 1 and b(A) ∈ {n− |A|, n− 1− |A|}. These are thick or almost thick
sets. By Lemma 3.2, for s < [n+2

2 ], there are no thick or almost thick sets with |A| = s − 1.

Therefore then E1
s−1,n−1−s = 0 and Er

s−1,n−1−s = 0 for r ≥ 1.

(d) By (4.23), for r ≥ 2

Er
n,−1 = ker(dr−1

n,−1 : Er−1
n,−1 → Er−1

n−r+1,r−3) ⊂ Er−1
n,−1 ⊂ E1

n,−1. (4.47)

For r ≥ [n+3
2 ] + 1, Er−1

n−r+1,r−3 = 0 by part (c). Therefore then Er
n,−1 = Er−1

n,−1. Inductively we
obtain

E∞
n,−1 = Er

n,−1 = E
[n+3

2 ]
n,−1 for r ≥ [

n+ 3

2
].
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It remains to prove (4.34). We will prove it by induction in r. By definition ‹E1
n,−1 = E1

n,−1.
First we treat the special case r = 2:

E2
n,−1 = ker(d1 : E1

n,−1 → E1
n−1,−1),

d1([X
(0)
j ]) = d1([∆N ⊙ {e(p

j
)}]) = [∂∆N ⊙ {e(p

j
)}]

=
∑

B⊂N : |B|=n−1

sign(B,N) · [∆B ⊙ {e(p
j
)}]

=
∑

B⊂N : |B|=n−1

sign(B,N) · [∆B ⊙ {e(p
1
)}]

∈ E1
n−1,−1 = Hn−2(Gn−1, Gn−2)

=

n⊕
i=1

Z · [∆N−{i} ⊙ {e(p
1
)}] ∼= Zn.

The last equality follows from (4.8) and (4.10). Obviously d1([X
(0)
j ]) is independent of j and is

̸= 0. Therefore

E2
n,−1 = ker(d1 : E1

n,−1 → E1
n−1,−1)

= {
d∑

j=1

zj · [X(0)
j ] | zj ∈ Z,

d∑
j=1

zj = 0} = ‹E2
n,−1.

Now we suppose r ∈ {3, ..., [n+3
2 ]} and (induction hypothesis) Er−1

n,−1 = ‹Er−1
n,−1. This induction

hypothesis and (4.26) give

Er−1
n,−1 = ‹Er−1

n,−1 =

d−1⊕
j=1

Z · [X(r−2)
j ] =

d∑
j=1

Z · [X(r−2)
j ] ⊂ E1

n,−1. (4.48)

We have to control dr−1
n,−1([X

(r−2)
j ]). Recall four points:

(i) dr−1
n,−1 = jr−1

n−1,−1 ◦ k
r−1
n,−1.

(ii) kr−1
n,−1 is a boundary map with image in

Ar−1
n−1,−1 = (i1)r−2(A1

n−r+1,r−3) = Im(Hn−2(Gn−r+1) → Hn−2(Gn−1)).

(iii) jr−1
n−1,−1 maps this space to Er−1

n−r+1,r−3, which satisfies because of (4.32) (for r = t)

Er−1
n−r+1,r−3 ⊂

E1
n−r+1,r−3

d1(E1
n−r+2,r−3)

=
Hn−2(Gn−r+1, Gn−r)

d1(E1
n−r+2,r−3)

.

(iv) (3.16) in Theorem 3.3 gives ∂X
(r−2)
j = ∂1R

(r−2)
j , and this is a chain in Gn−r+1, which

fits.

These four points imply

dr−1
n,−1([X

(r−2)
j ] = [∂1R

(r−2)
j ] ∈ Hn−2(Gn−r+1, Gn−r)

d1(E1
n−r+2,r−3)

. (4.49)

We will show the following claim.

Claim 2: The class [∂1R
(r−2)
j ] in the quotient in (4.49) of the chain ∂1R

(r−2)
j is independent

of j, and for m ∈ Z

m · [∂1R(r−2)
j ] = 0 ⇐⇒ d|m. (4.50)
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Claim 2 implies

Er
n,−1 = ker(dr−1

n,−1 : Er−1
n,−1 → Er−1

n−r+1,r−3)

= {
d∑

j=1

zj · [X(r−2)
j ] | zj ∈ Z,

d∑
j=1

zj ∈ dZ} (4.29)
= ‹Er

n,−1.

It remains to prove Claim 2.

The chain ∂1R
(r−2)
j was already studied in the proof of Theorem 3.3. Formula (3.22) showed

contributions from pairs (B,A) of sets B ⊂ A ⊂ N with |B| = |A| − 1, |A| = n − r + 2 and A
thick. A priori B could be one of three types I, II and III. But a set B of type III gives nothing.
A set B of type II is almost thick and gives either nothing or the contribution in (3.25) (up to a
sign) which is independent of j. A set B of type I is thick and gives the contribution in (3.26),

which we call now Cont(B, ∂1R
(r−2)
j ).

First we will show that Cont(B, ∂1R
(r−2)
j ) is a relative cycle, so that it gives a class

[Cont(B, ∂1R
(r−2)
j )] ∈ Hn−2(Gn−r+1, Gn−r). (4.51)

Then we will show that this class is independent of j.

∂1
Ä
Cont(B, ∂1R

(r−2)
j )

ä
contains ∂∆B , so it is in Gn−r, and we can ignore it. For the signs

in (3.26), recall (3.27). Then

∂2
Ä
Cont(B, ∂1R

(r−2)
j )

ä
=

b(B)∑
i=1

sign(B)(−1)|B|+i−1 ·∆B ⊙
(
p
j
+ d−1∂C(ckB

1
, ..., ĉkB

i
, ..., ckB

b(B)
)
)
.

This is equal to 0, because for each pair (i, l) ∈ {1, ..., b(B)}2 with i < l, the term
p
j
+d−1C(ckB

1
, ..., ĉkB

i
, ..., ĉkB

l
, ..., ckB

b(B)
) and the term p

j+1
+d−1C(ckB

1
, ..., ĉkB

i
, ..., ĉkB

l
, ..., ckB

b(B)
)

turn up twice and with different signs. Therefore Cont(B, ∂1R
(r−2)
j ) is a relative cycle. In the

proof of Theorem 3.3, we found

− Cont(B, ∂1R
(r−2)
j ) + Cont(B, ∂1R

(r−2)
j+1 )

= Cont(B, ∂2R
(r−1)
j )

= ∂2(Cont(B,R
(r−1)
j ))

= ∂(Cont(B,R
(r−1)
j ))− ∂1(Cont(B,R

(r−1)
j )).

In the last difference, the first term is a boundary, and the second term is in Gn−r. Therefore the
class in Hn−2(Gn−r+1, Gn−r) of this difference is 0. Therefore the class in (4.51) is independent
of j.

We see that all contributions to the class [∂1R
(r−2)
j ] ∈ Hn−2(Gn−r+1, Gn−r) are independent

of j, so this class is independent of j. This implies the first statement in Claim 2.

By (4.28) 0 =
∑d

j=1[X
(r−2)
j ] ∈ E1

n,−1. Thus

0 =

d∑
j=1

dr−1
n,−1([X

(r−2)
j ]) = d · [∂1R(r−2)

j ] for any j ∈ {1, ..., d}

in the quotient in (4.49). This is ⇐ of (4.50).
It remains to prove ⇒ of (4.50). Define s := n − r + 2. Then r ∈ {3, ..., [n+3

2 ]} implies

s ∈ {[n+2
2 ], ..., n − 1}. So part (a) and its proof apply. The map prB ◦d1n−r+2,r−3 is injective,
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and formula (4.43) gives its image in Hn−2(Gn−r+1, Gn−r)B. For ⇒ of (4.50), it is sufficient to
show for m ∈ Z

m · prB([∂1R
(r−2)
j ]) ∈ prB(Im(d1n−r+2,r−3)) ⇒ d|m, (4.52)

here [∂1R
(r−2)
j ] denotes the class inHn−2(Gn−r+1, Gn−r) (not the class in the quotient in (4.49)).

For prB([∂1R
(r−2)
j ]), we need only the contributions of sets B ∈ B(n − r + 2). By the proof

of Theorem 3.3, the contribution of such a set B is 0 if β2(B) ̸= n, and it is given by (3.25) if
β2(B) = n. We obtain

prB([∂1R
(r−2)
j ]) =

∑
B∈B(n−r+2): β2(B)=n

(±1)a1akB
2
...akB

b(B)
· [∆B ⊙ TB ] .

Suppose that the left-hand side of (4.52) holds for some m ∈ Z. Write

λB := m · (±1)a1akB
2
...akB

b(B)
.

Then we have a linear combination
∑

A∈A1(n−r+2) zA · [∆A ⊙ TA] with

m · prB([∂1R
(r−2)
j ]) =

∑
B∈B(n−r+2): β2(B)=n

λB · [∆B ⊙ TB ] (4.53)

= prB

Ñ
d1n−r+2,r−3

( ∑
A∈A1(n−r+2)

zA · [∆A ⊙ TA]
)é

.

Choose a set B ∈ B(n−r+2) with β2(B) = n. Claim 1 provides a sequence (Bi)i∈N of elements
Bi ∈ B(n− r + 2) with B = Bn, (4.44) and (4.45). Then (4.53) and (4.43) give the first line of
(4.46), so

zB(2) =
(n−1∏

i=1

ai

)
· zB(1) .

By (4.43), the coefficient λB is

λB = sign(B,B(1)) ·
(
zB(1) − (−1)nanzB(2)

)
(4.54)

= sign(B,B(1)) · zB(1) · (1− an+1)

= sign(B,B(1)) · zB(1) · (−1)n+1d.

Therefore λB ∈ dZ. Observe gcd(d, a1akB
2
...akB

b(B)
) = 1. Therefore, d|m. (4.52) is proved. This

finishes the proof of part (d). 2
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Theorem 4.6. The homology group Hn−1(G,Z) = Hn−1(G) is a Z-lattice of rank

µ = (−1)nan+1 = d+ (−1)n.

A Z-basis of it is

[X
(n
2 )

1 ], ..., [X
(n
2 )

d−1], [∆Aod
⊙ TAod

], [∆Aev
⊙ TAev

], if n is even,

[X
(n+1

2 )
1 ], ..., [X

(n+1
2 )

d−1 ], if n is odd.
(4.55)

Together with [X
([n+1

2 ])

d ], these elements satisfy the relation (3.18) if n is odd and the relation
(3.19) if n is even.

Proof: By Lemma 3.2, in the case n even, [∆Aod
⊙ TAod

] and [∆Aev
⊙ TAev

] are homology

classes in Hn−1(G). By Theorem 3.3, [X
([n+1

2 ])
1 ], ..., [X

([n+1
2 ])

d ] are homology classes in Hn−1(G),
the relation (3.18) holds if n is odd, and the relation (3.19) holds if n is even. We have to show
that the elements in (4.55) form a Z-basis of Hn−1(G).

First we consider even n. By Lemma 4.3 (b) and (c) and Theorem 4.5 (a), E∞
s,n−1−s = 0 for

all s except s = n and s = n
2 . Therefore F s

n−1 = 0 for all s < n
2 , and by Lemma 4.3 (c)

F
n
2
n−1 = F

n
2 +1
n−1 = ... = Fn−1

n−1 = Im(Hn−1(Gn
2
) → Hn−1(G))

∼= E∞
n
2 ,n2 −1 = E1

n
2 ,n2 −1 = Hn−1(Gn

2
, Gn

2 −1) ∼= Z2 (4.56)

with generators the classes in Hn−1(G) respectively in Hn−1(Gn
2
, Gn

2 −1) of the spheres

∆Aod
⊙ TAod

⊂ CAod

and ∆Aev ⊙ TAev ⊂ CAev . By Theorem 4.5 (d) and Lemma 4.4

E∞
n,−1 = ‹E n+2

2
n,−1 =

d−1⊕
j=1

Z · [X(n
2 )

j ] ⊂ E1
n,−1 = Hn−1(G,Gn−1), (4.57)

E∞
n,−1 is a Z-lattice of rank d− 1, and

E∞
n,−1

∼=
Fn
n−1

F
n
2
n−1

=
Hn−1(G)

Im(Hn−1(Gn
2
) → Hn−1(G)))

. (4.58)

Therefore Hn−1(G) is a Z-lattice of rank d+1 with Z-basis as in (4.55), and F
n
2
n−1 is a primitive

sublattice of rank 2 with generators the classes of the spheres ∆Aod
⊙ TAod

and ∆Aev
⊙ TAev

.
Now we consider odd n. By Lemma 4.3 (b) and Theorem 4.5 (a), E∞

s,n−1−s = 0 for all s ̸= n.
Therefore F s

n−1 = 0 for all s ̸= n and

Hn−1(G) = Fn
n−1

∼= E∞
n,−1. (4.59)

By Theorem 4.5 (d) and Lemma 4.4

E∞
n,−1 = ‹E n+3

2
n,−1 =

d−1⊕
j=1

Z · [X(n+1
2 )

j ] ⊂ E1
n,−1 = Hn−1(G,Gn−1), (4.60)

and E∞
n,−1 is a Z-lattice of rank d − 1. Therefore Hn−1(G) is a Z-lattice of rank d − 1 with

Z-basis as in (4.55). 2

Remarks 4.7. In the proof of part (d) of Theorem 4.5, we considered the contribution

Cont(B, ∂1R
(r−2)
j ) of a set B ∈ A1(n − r + 1) (B is thick with |B| = n − r + 1) to the chain

∂1R
(r−2)
j . We showed that it is a relative cycle in Hn−2(Gn−r+1, Gn−r), and we saw that it is
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independent of j. We did not make precise which cycle it is, as we did not need this. Now we
will say which cycle it is, but leave the proof to the reader:

[Cont(B, ∂1R
(r−2)
j )] (4.61)

= ε1 · [∆B ⊙ e
(
d−1C(ckB

2
− ckB

1
, ..., ckB

b(B)
− ckB

b(B)−1
)
)
]

= ε2 · [∆B ⊙ e
(
C(bkB

2
− bkB

1
, ..., bkB

b(B)
− bkB

b(B)−1
)
)
].

= ε2 · akB
1
akB

2
...akB

b(B)−1
· [∆B ⊙ e

(
C(dB1 , ..., d

B
b(B)−1)

)
].

with ε1 = sign(B)(−1)|B|, ε2 = ε1 · (−1)n(b(B)−1).

5. Proof of the main result

Throughout this section we fix a cycle type singularity f(x1, ..., xn) as in (1.2) with n ≥ 2 and
a1, ..., an ∈ N with (1.3), as in the sections 3 and 4. We want to prove the main result of this
paper, Theorem 1.3.

The deformation lemma in [Co82, 3.] implies that the inclusion map ig : G ↪→ F0 induces

an epimorphism (ig)∗ : Hn−1(G,Z) → Hn−1(F0,Z). Both groups are Z-lattices of rank µ. This

holds by Theorem 4.6 for Hn−1(G,Z) and by [Mi68] for Hn−1(F0,Z). Therefore the epimorphism
is an isomorphism:

(ig)∗ : Hn−1(G,Z) → Hn−1(F0,Z).
It remains to determine the monodromy on Hn−1(G,Z). We call this monodromy hmon. First

we give the weights (w1, ..., wn) of the quasihomogeneous polynomial f (see e.g. Lemma 4.1 in
[HZ19]):

wj =
vj
d

∈ Q ∩ (0, 1) for j ∈ N with

d =

n∏
j=1

aj − (−1)n = µ− (−1)n,

vj =

n∑
l=1

(−1)l−1

j+n−1∏
k=j+l

a(k)modn
, with (5.1)

ajvj + v(j+1)modn
= d.

One sees easily gcd(d, v1) = ... = gcd(d, vn). We defined already b := d/ gcd(v1, d). In the case
of a quasihomogeneous singularity, one can give explicitly a diffeomorphism Φmon : Cn → Cn of
the Milnor fibration which induces the monodromy on the homology of the Milnor fiber and on
Hn−1(G,Z). It looks as follows.

Φmon : Cn → Cn, (z1, .., zn) 7→ (e2πiw1z1, ..., e
2πiwnzn).

It maps the point e(p
j
) to the point e(p

(j+v1)mod d
), because of ajvj + v(j+1)modn

= d. Therefore

it maps the chain R
(k)
j to the chain R

(k)
(j+v1)mod d

and the chain X
(k)
j to the chain X

(k)
(j+v1)mod d

.

In the case of even n, it maps the spheres ∆Aod
⊙ TAod

⊂ CAod and ∆Aev
⊙ TAev

⊂ CAev to
themselves.

Now we can apply the results of section 2. In order to make the relation to these results
transparent, we introduce the following notations,

δj := [X
([n+1

2 ])
j ] ∈ Hn−1(G,Z) for j ∈ {1, ..., d},
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for odd n or even n, and

γ := [∆Aod
⊙ TAod

] + (−1)
n
2 a1a3...an−1 · [∆Aev ⊙ TAev ] ∈ Hn−1(G,Z),

β := [∆Aev ⊙ TAev ] ∈ Hn−1(G,Z),
c := (−1)(

n
2 +2)(n

2 +1) 1
2 · a1a3...an−1 ∈ Z,

for even n. Then

Hn−1(G,Z) =

d−1⊕
j=1

Z · δj ⊕
ß

0 if n is odd,
Z · γ ⊕ Z · β if n is even,

hmon(δj) = δ(j+v1)mod d
,

hmon(γ) = γ, hmon(β) = β, if n is even,
d∑

j=1

δj =

ß
0 if n is odd (because of (3.18)),
c · γ if n is even (because of (3.19)).

The proof of Lemma 2.3 can be adapted to show for odd n

(Hn−1(G,Z)), hmon) ∼= (gcd(v1, d)− 1)Or(tb − 1)⊕Or(
tb − 1

t− 1
).

For even n, we see with Definition 2.1, Lemma 2.3 and Lemma 2.4

(Hn−1(G,Z), hmon)
Definition 2.1∼=

(
H(d,c), (h(d,c))v1

)
⊕Or(t− 1)

Lemma 2.3∼= (gcd(v1, d)− 1)Or(tb − 1)⊕ Lo(b,c) ⊕Or(t− 1)
Lemma 2.4∼= gcd(v1, d)Or(tb − 1)⊕Or(t− 1),

the last isomorphism uses gcd(b, c) = 1 and (2.3). This finishes the proof of Theorem 1.3.

Remarks 5.1. Cooper’s paper [Co82] studied the integral monodromy of the cycle type singu-
larities. It is split into 22 sections. The sections 1 und 2 are an introduction and a discussion
of a degenerate case. The sections 3 to 14 are devoted to the deformation lemma in section 3 in
[Co82] which yields that (ig)∗ is surjective.

Section 15 introduces the deformed simplices ∆A, the tori TA, the chains ∆A⊙TA, the blocks
of sets A ⊂ N , and it gives most of the statements of our Lemma 3.2.

Section 16 states formulas which are close to our formula (4.40).
At the end of section 17, a formula which is close to our formula (4.43) is derived. Section 17

also defines the subsets Gs and thick sets A and states a part of our formulas (4.7)–(4.13) for
the relative homology groups.

Section 18 first introduces the spectral sequence (Er
s,t, d

r
s,t) of the filtration

G = Gn ⊃ Gn−1 ⊃ ... ⊃ G1 ⊃ G0 = ∅.
But it gives neither a reference, nor the properties in our Theorem 4.2. Then it states and proves
the injectivity of the maps d1s,n−1−s in our Theorem 4.5 (a). Though it does not use our Claim
1, but uses a specific sequence of n · (n − s) elements Bi ∈ B(s). Claim 1 is more efficient and
can be used also for the proof of our Theorem 4.5 (d).

The lemma in Section 19 is crucial, but not correct. It claims correctly [X
(1)
j ] ∈ E2

n,−1, but

wrongly [X
(2)
j ] ∈ E∞

n,−1. By Theorem 4.5 (d), this is true only if n ∈ {3, 4}. The wrong argument
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is in the proof of the lemma at the end of section 19: A part of the boundary is missed. This

makes Cooper believe that X
(2)
j is always a cycle. He constructs and sees only the beginning for

k ∈ {0, 1, 2} of the sequence (X
(k)
j )k∈{1,...,[n+1

2 ]} of chains.

The lemma in section 20 has some similarity with our Claim 2 (in the proof of our
Theorem 4.5 (d)). But it is too special.

The lemma in section 21 concludes wrongly that the classes [X
(2)
j ]j=1,...,d−1 form a Z-basis

of E∞
n,−1. This is true only for n ∈ {3, 4}. It builds on the lemma in section 19. The wrong

statements on the elements and generators of E∞
n,−1 in the sections 19 and 21 form the first

serious mistake.
The final section 22 makes the second serious mistake, in the case of even n. It states correctly

that for even n E∞
s,n−1−s ̸= 0 only if s ∈ {n

2 , n}. And it derives correctly

(E∞
n
2 ,n2 −1, hmon) ∼= 2Or(t− 1)

and

(E∞
n,−1, hmon) ∼= (gcd(v1, d)− 1)Or(tb − 1)⊕Or

( tb − 1

t− 1

)
. (5.2)

But then it supposes wrongly that the quotients E∞
n
2 ,n2 −1 and E∞

n,−1 of the filtration F •
n−1 of

Hn−1(G) lift to a splitting of Hn−1(G) which is invariant by the monodromy. This would give
a non-standard decomposition of (Hn−1(G), hmon) into Orlik blocks (and this is what Cooper
claims to have for even n).

But Cooper’s paper contains most of the ingredients which we need for the proof of Orlik’s
conjecture. We corrected the two mistakes, we were more careful with the signs and proofs, we

introduced more notations, we had the full sequence of chains (X
(k)
j )k∈{1,...,[n+1

2 ]}, and we had

the algebraic statements in our section 2. But Cooper’s paper [Co82] was an indispensable basis
on which we could build.

Remarks 5.2. Orlik and Randell study in [OR77] mainly the integral monodromy of the chain
type singularities. But section 3 says also something about the cycle type singularities. In (3.4.1)
they make a conjecture on the integral monodromy of the cycle type singularities which would
imply Orlik’s conjecture. Their ansatz for a proof is very different from [Co82]. They point
themselves to a gap in this ansatz.
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