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THE INTEGRAL MONODROMY OF THE CYCLE TYPE SINGULARITIES

CLAUS HERTLING AND MAKIKO MASE

ABSTRACT. The middle homology of the Milnor fiber of a quasihomogeneous polynomial with
an isolated singularity is a Z-lattice and comes equipped with an automorphism of finite order,
the integral monodromy. Orlik (1972) made a precise conjecture, which would determine this
monodromy in terms of the weights of the polynomial. Here we prove this conjecture for the
cycle type singularities. A paper of Cooper (1982) with the same aim contained two mistakes.
Still it is very useful. We build on it and correct the mistakes. We give additional algebraic
and combinatorial results.

1. INTRODUCTION AND MAIN RESULT

The main objects of the paper are a quasihomogeneous singularity, the monodromy on its Mil-
nor lattice, Orlik’s conjecture for this monodromy, and our proof in the case of a cycle type
singularity. In order to make precise statements, we start with some algebraic definitions.

Definition 1.1. (a) Start with a product p € ZJt] of cyclotomic polynomials which has only
simple zeros. The Orlik block Or(p) is a pair (H,h) where H is a Z-lattice of rank deg(p) and
h : H — H is an automorphism of finite order with characteristic polynomial p such that an
element ag € H with

deg(p)—1

H= Q_}O Z- W (ap). (1.1)

exists. Such an element is called a generating element. The Orlik block Or(p) is up to isomor-
phism uniquely determined by p, which justifies the notion Or(p).

(b) Consider a pair (H, h) where H is a Z-lattice and h : H — H is an automorphism of finite
order. It admits a decomposition into Orlik blocks if it is isomorphic to a direct sum of Orlik
blocks.

(c) Consider a pair (H, h) where H is a Z-lattice and h : H — H is an automorphism of finite
order. Then the characteristic polynomial pg j of h is a product of cyclotomic polynomials. It
has a unique decomposition pgj = Hizlpl- with py|pi—1]...|p2|p1 and p; # 1 and all p; unitary
and such that p; has only simple zeros. The pair (H,h) admits a standard decomposition into
Orlik blocks, if an isomorphism (H, h) & @é:l Or(p;) exists.

A polynomial f € Clzy,...,x,] is called quasihomogeneous if for some weight system
(w1, ..., w,) with w; € (0,1) N Q each monomial in f has weighted degree 1. It is called an

isolated quasihomogeneous singularity if it is quasihomogeneous and the functions (%fl, e 6‘?
vanish simultaneously only at 0 € C". Then the Milnor lattice Hyyy := H Y (£=1(1),Z) (here
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Hffff) means the reduced homology in the case n = 1 and the usual homology in the cases
n > 2) is a Z-lattice of some finite rank p € N, which is called the Milnor number [Mi68]. It
comes equipped with an automorphism hps; of finite order, the monodromy.

Orlik conjectured the following.

Conjecture 1.2. (Orlik’s conjecture [Or72, Conjecture 3.1]) For any isolated quasihomogeneous
singularity, the pair (Hpri, hara) admits a standard decomposition into Orlik blocks.

Here we will prove this conjecture for the cycle type singularities. A cycle type singularity is
a polynomial f € C[xy,...,x,] in n > 2 variables of the following shape,

Ay —
f=alza+ 232w+ ...+ 2" ' xp + 2021 where aq,...,a, €N, (1.2)

(N = {1,2,3,...}) and which is an isolated quasihomogeneous singularity. By Lemma 3.4 in

[HK12], a polynomial f as in (1.2) is an isolated quasihomogeneous singularity if and only if n
is odd or (1.3) holds,

either ay = ... =a, =1 or

a; # 1 for some even j and for some odd j. (1.3)

n is even and {

Define d := []’_, a; — (—1)™. Then (see e.g. Lemma 4.1 in [HZ19])

Jj=1

M:Haa‘:d+(*1)"7

Jj=1

and there are natural numbers vy, ..., v, (which are given in (5.1)) such that

(Wi ) = (5 2)

is the unique weight system for which f is quasihomogeneous of weighted degree 1. They satisfy
also ged(d,v1) = ... = ged(d,vy,). Define b := d/ged(d,v1) € N. An easy calculation which
builds on the formula in [MO70] for the characteristic polynomial in terms of (w, ..., w,) (see
e.g. Lemma 4.1 in [HZ19]) shows that the characteristic polynomial of hpry; on Hyzgp is

PHyri v = (tb - l)ng(d’vl) ’ (t - 1)(71)". (14)
Therefore Orlik’s conjecture says here the following.

Theorem 1.3. For a cycle type singularity as abowve,

(ged(d, v1) — 1)Or(t — 1) ® Or(4=L)  if n is odd,

Hyrig, hara) = if n i
(Huzit, harat) {gcd(d,vl)Or(tb—1)@Or(t—1) if n is even.

Our proof in section 5 builds on Cooper’s work [Co82]. By [Mi68], the set
?O = fﬁl(RZO) n S2n71 C S2n71 cCcn

is diffeomorphic to the Milnor fiber f=1(1). Cooper studied for the cycle type singularities a
beautiful subset G C Fy, which is a probably a deformation retract of the Milnor fiber (Cooper’s
Lemma 3 is slightly weaker). He considered certain cells from which this set G is built up and
which allow to filter G by a sequence of subsets G = G, D Gy_1 D ... D G1 D Gg = (. Finally,
he studied a spectral sequence which comes from this filtration.

Cooper claimed to have proved Orlik’s conjecture for the cycle type singularities. But his
paper contains two serious mistakes. The second one leads in the case of even n to the wrong

claim
b

t—1

(H]Wila h]y[il) = (ng(d, Ul) — 1)Ol‘(tb — 1) D OI‘( ) D QOI‘(t — 1).
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The right-hand side is a decomposition into Orlik blocks, but not a standard decomposition.

The history of Orlik’s conjecture is as follows. Michel and Weber claimed in the introduction
of [MWS6] to have a proof of Orlik’s conjecture in the case n = 2. We trust this claim. Hertling
[He92] proved Orlik’s conjecture for some cases with n = 3 by explicit calculations using Coxeter-
Dynkin diagrams. A chain type singularity is a polynomial f € Clzy,...,z,] in n > 1 variables of
the shape a:‘i““ +x1252 + ...+ Tp_12%™ where aq, ..., a, € N. Tt is an isolated quasihomogeneous
singularity. Orlik and Randell [OR77, Theorem (2.11)] proved for it that (Hpazy, hy,,;) is a single
Orlik block. Together with two algebraic results in [HM20], this implies Orlik’s conjecture for
the chain type singularities [HM20, Theorem 1.3 (a)]. Two other algebraic results in [HM20]
imply Orlik’s conjecture for the Thom-Sebastiani sum f + g of two isolated quasihomogeneous
singularities f and g which both satisfy Orlik’s conjecture [HM20, Theorem 1.3 (c)]. This relative
result can be combined with the facts that Orlik’s conjecture holds for the chain type singularities
and the cycle type singularities (main result of this paper). We obtain Orlik’s conjecture for all
iterated Thom-Sebastiani sums of chain type singularities and cycle type singularities [HM20,
Theorem 1.3 (d)]. This surpasses all known cases. These singularities are precisely the invertible
polynomials. They form an important subfamily of all isolated quasihomogeneous singularities.

We will discuss the relation of this paper to Cooper’s work and the two mistakes in the
Remarks 5.1. His work is the basis for the sections 3 and 4 below. Section 2 gives new algebraic
results. Section 3 gives the set G, its cells and an inductive construction of cycles of which only
the beginning is in [Co82]. Section 4 makes good use of the spectral sequence which Cooper
considered and determines H,,_1(G,Z). A combination of the results of the sections 2, 3 and 4
and a discussion of the monodromy proves Theorem 1.3 in section 5.

2. ALGEBRAIC RESULTS

The following two lemmata 2.3 and 2.4 are elementary. They will be used in the proof of Orlik’s
conjecture for cycle type singularities with an even number of variables. They say something
about the Z-lattices H(%9 with automorphisms h(%€) of finite order, which are defined in Defi-
nition 2.1.

Definition 2.1. Let d € N and ¢ € Z. Define the pair Lo®® = (H(¢) p(d9)) as follows.
H(de) — Zq@@?;ll Z-6; is a Z-lattice of rank d. Define additionally §4 := c"y—zgi;i §; € H(de),
Then h(%¢) : H — H is the automorphism of finite order d which is defined by

RO s sy, Ggs 01, 8 84 for j e {1,...,d—1}. (2.1)
Remark 2.2. The characteristic polynomial of h(4¢) is t¢ — 1. If ¢ # 0, then

d d
> z-5;=EPz-5;
j=1 j=1

is an h(®“)invariant sublattice of index |¢| in H(%9) and (EB?:lZ -8, h(d)) = Or(t? — 1),
Therefore Lo®Y 2 Or(t? — 1). If ¢ = 0 then the summands Z - y and @;l;ll Z-§; of H49) are
h(@)-invariant with (Z - v, h(®<)) = Or(t — 1) and (@] Z - 6;, (%)) = Or(£=1).
Lemma 2.3. Letd,v € N, c€ Z and b := d/ged(d,v) € N. Then

(H®) (&)Y = (ged(d, v) — 1)Or(t” — 1) @ Lo®). (2.2)

Proof: Write h := (h(dvc))”. The elements dy, ..., d4 can be renumbered to elements 51, ...,gd
(i.e. {01,...,04} = {d1,...,04}) such that these form ged(d, v) many cycles of length b with respect
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to h:
h: gab+1 — gab—i—Q = gab—&-b = g{zb—&-l
for a € {0,1,...,gcd(d,v) — 1}.
Define
ged(d,v)—1
Bi= Y dapy; forje{l,..b}
a=0

Then these also form a cycle of length b with respect to h, and their sum is ¢,

h' 51*—>52'—> = By e B,

d
ZﬁJ 25 = 25]- = cy.
j=1
We obtain
ged(d,v)—2 b
(H(d»C)Jl) = @ @Z 6ab+]7h el Z- FY+ZZ 5]7
a=0 e
= (ged(d,v) — 1)Or(tl’ — 1) & Lo, O

Lemma 2.4. Let d € N and ¢,¢ € Z. The following three conditions are equivalent.
(i) Lo(%®) = 1,0(4:9)
(ii) Lo & Or(t — 1) = Lo @ Or(t — 1).
(111) ged(d, ¢) = ged(d, ©).
And
Lo®9) @ Or(t — 1) = Or(t? — 1) ® Or(t — 1) (2.3)
— gcd(d,c) =1.

Proof: Keep the notations 1, ..., 84,7 of Definition 2.1 for the elements of H(%¢). And extend
them by ¢, :=9,, if j € Z—{1,...,d}, jo € {1, ...,d} and d|(j — jo).

(iii)=(i): We start with Lo*® for some ¢ € N with c|d. We will present a construction which
leads to certain ¢ € Z with Lo®® = Lo®®. Then we will show that these are all ¢ € Z with

ged(d, ) = c.
Choose a € N with ged(a,d) = 1, and choose b € Z. Define
_ a—1
vi=7, 0j:= b’Y+Zf5j+i for j € Z,
i=0

so that 5~j1 = gj2 if d|(j1 — j2). Of course, h(%9) acts by

WO F s, 6 00, (2.4)

and we have

(bd + ac) (2.5)

HM&.
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Furthermore, the condition ged(a,d) = 1 implies

d d
Z,%_FZZ.S}:H((LC) :Z"Y+ZZ.6j . (26)
j=1

Jj=1

To see this, choose b1,by € N with ab; — dby = 1. Then for j € Z

b1 —1 dbo dbs
—(bib+be0)T+ Y Ojrar = —b1bT — > Gk +bibT+ Y b4k =0,
k=0 k=1 k=0

which shows (2.6). Together, (2.4), (2.5) and (2.6) give
Lo(®®) = [olhbdtac), (2.7)

Now choose any ¢ € Z with ged(d, ¢) = ¢. It remains to see that there exist « € N and b € Z
with ged(a,d) =1 and ¢ = bd + ac.

For any integer m € Z — {0}, write m = T 11
choose

(M) where v,(m) € Z>. We

Up
p prime number P

Ab/ = H b,

p prime number with v, (d)=v,(¢)>0

b = —b—|d € Zey,
c d ¢ ~d

a = E—b~f:E—|-bf—|-@d€N.
C C C C C

Then ¢ = bd + ac. For a prime number p with v,(d) > v,(¢), vp(g) =0 and v,(%) > 0 and
vp(a) = 0. For a prime number p with v,(d) = v,(¢) > 0 v,(£) = 0 and v,(b) > 0 and v,(a) = 0.
For a prime number p with 0 < v,(d) < v,(¢), v,(£) > 0 and v,(b%) = 0 and v,(a) = 0.
Therefore ged(a, d) = 1.

(i)=(ii): This is trivial.

(il)=(iii): We proved already (iii)=-(i) and (i)=-(ii). Therefore, in (ii) we can suppose
¢ = ged(d, ¢) and ¢ = ged(d, ¢). Then we have to show ¢ =¢.

Write the elements in Definition 2.1 for H (%) with a tilde, so as 51, . gd, 5. Write generators
of Or(t — 1) on the left-hand side respectively right-hand side of (ii) as 8 respectively B The
automorphisms of the left-hand side respectively right-hand side of (ii) which extend h(%)
respectively h(4%) by id on Or(t — 1), are called h respectively h.

Let

g: Lo @ Or(t—1) — Lo @ Or(t—1)

be an isomorphism. Then
ﬁog:goh. (2.8)
This and ker(h —id) =Z-vy® Z- 5 and ker(fz—id) :Z~§@Z-Eimply

- ~ - ~ . by b
g(v) = b1y + 028, g(B) = b3y + by with (b; bz> € GL(2,Z).
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Because of (2.8) and the action of h on 47, ..., 5 and hon ~, B, gl, ey gd, numbers ay, ..., a4+2 € Z
with

d
9(05) = ag41y + aq28 + Zai&ﬂ'q for j € {1,...,d}
i=1
exist. Write a := Zle a;. Then
N d
(b7 +b28) = gler) =90 4)
j=1
~ d ~
= dagy17y + dagy208 + (Z G,i> . Z 0;
i=1 j=1

= (dags1 + a@)F + dagi2B,
so ¢by = dagy1+ac, cby =dagyo.

+1 = byby — babs implies ged(by, by) = 1. Therefore c is in the ideal generated by d and ¢, which
is the ideal generated by ¢, because ¢|d. Thus ¢]c. Because of the symmetry of the situation also
c|¢. We obtain ¢ = ¢. This shows (ii)=-(iii).

Now the equivalence of (i), (ii) and (iii) is proved. It remains to see (2.3). It follows using the
isomorphism Lo®" 22 Or(#¢ — 1) in Remark 2.2 and the equivalence of (i), (ii) and (ii). 0
3. CELLS, CHAINS AND CYCLES

Throughout this section we fix a cycle type singularity f(z1,...,z,) as in (1.2) with n > 2 and
ai,...,a, € N with (1.3). By [Mi68], the Milnor fiber f~!(1) C C" and the set

ﬁo = f_l(Rzo) N S2n—1 C SQn—l C cn
are diffeomorphic. Cooper [Co82] considers the subset G C Fy which is defined as follows,
G={ze8" "2y, >0V je{l,...,n—1}, zinz >0} (3.1)

He conjectures that G is a deformation retract of Fy. He proves a slightly weaker deformation
lemma (stated at the end of 3. in [Co82]) which implies especially that the inclusion map
iy : G — Fy induces epimorphisms in homology. For him and for us, this property suffices.

Cooper builds G up from certain cells. We will need these cells, and also refinements of them.
For this, quite some notations are needed. They are given now.

Notations 3.1. N := {1,...,n}, so that RY = R". The map
e:R" 5 T":= (SH)" CC",  (r1,...,7n) > (2™ . ¥,

induces an isomorphism e} : R"/Z™ — T™. Also the projection prp : R" — R™/Z™ will be
useful. Then e = e o prp. The following binary operation ® is not standard, but it will also be
useful,

®:R% x (S1)" = C", (a1, ...;an) © (b1, ..., by) == (a1b1, ..., anby).

Given a finite tuple (v1, ..., vx) € (R™)¥ of vectors in R", we consider the subset of R™

k
C(v1, .oy U) i= {Ztivi |t1,....,tx € ]0,1]}.
i=1
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If (v1,...,v) is a tuple of linearly independent vectors (which will be the case almost always),
C(v1,...,v) is a hypercube of dimension k. Then it inherits an orientation from the ordered
tuple (v1,...,vx). And then its boundary is

k
OC(v1,.vr) = Y (1) C(v1, 000y T, ooy k) (3.2)
=1
k .
— Z(—l)z_l(vi + C(’Ul, ...,UAZ‘, ...,’Uk)),
=1

where v; means that v; is erased in the tuple. The following observation will be useful, because
we will consider the images of hypercubes under prp in R"/Z". If v; € Z", then

pro(C(v1,..yvg)) = pro(C(vr,va + Agvr, .o, Uk + Agv1)) (3.3)
for any Ag, ..., \p € R,
and similarly for v; € Z" instead of vy € Z".

The exponents aq, ..., a, € N in the monomials of the cycle type singularity are the source of
useful integers and vectors of integers:

Recall p = ap- an, d=p—(-1)".
Forke N: g, = (- 1) “ag—1 €%, soa;=1.
Ay = (D" cay = (=1)"u=(-1)"d+1.
Forke N: b, := (gl, , Qg 1,O,.. 0)€Z", sob =(0,..,0).
anrl = ( 23 +0y n) ez".
Forke N: ¢, = (Qpi1Q1,erOpi1Qp1,0p gty -mnr Gy)

= 7n+1'bk+(0 O Ay -y n)
= (=1)"d-by+c €Z", especially ¢; =b, 4

Also the following vectors in Q™ will be used,

for j € {1,...,d}: p, = % ¢ €Qn.
In fact, their images prp(p ) in R™/Z™ will be the only 0-chains in R™/Z" which we will need.
The reason is the equality

prT(Qj_H) = prT(}Zj + %gk) for any k € N. (3.4)
For any subset A C N with A # (), define
R* = {r=(r1,...,7n) €ER"|r; =0 for j ¢ A} C R",
74 C  Z" and Rgo C RY, and CA c C" analogously,
Asx = RGNSl
pry : R"— R4 the projection.

A4 is a deformation of a simplex of dimension |A| — 1. We call it a deformed simplex. Its
boundary consists of the deformed simplices Ap with B G A.

We want to consider N and its subsets A as cyclic: 1 follows n. In order to write this down,
we denote by (k)moedn € N for k € Z the number with n|(k — (k)modn)-
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For A ; N with A # 0, the blocks are the maximal sequences k, (k + 1)modns -+, (K + Dmodn
within A. Their number is called b(A). And the block beginnings are the first numbers in the
blocks. Explicitly, they are the numbers in the set

(ks o kjgayt = {k € A (k = Dmoan ¢ A},
with 1 < kf' < ... <kjia <n.
The gaps of A are the blocks of N — A. Also their number is b(A). A set A G N is thick if

b(A) = n — |A|. Equivalent is that each gap of A consists of a single number. For thick A C N
define the sign

, /1 4 JAl+1 .. n
blgn(A) .—blgn(al o k{‘ k{:‘(A)

) € {£1} where
N — {kf‘, "'7kl1)4(A)} ={a, ...,Oé|A‘} with o < ... < QA

A set A G N with A # 0 is almost thick if b(A) = n — |A| — 1. Equivalent is that one gap
consists of two numbers and each other gap consists of a single number. For an almost thick set
B with gap {ko, (ko + 1)modn} of two elements, denote

BW .= BU{ko}, B® :=BU{(ko+ 1)modn}-
B®M and B® are the unique thick sets with B ¢ B® and |B®| = |B| + 1. They satisfy
b(B) = b(BW).

For A G N with A # (), we will define a subtorus T4 C T™ below. For this we define for each

block beginning kf in A a vector of integers,

= Q;jj(bkﬁrl —bya) forje{l,...b(B) -1}
= (00 0,1 (g ), s () (s 5),0,.0.,0) € 2",

A -1
dyay = Ga (@nyrbrp 1 —byp )
-1 —1
= (""Qn+1gk;‘m)@kl“—l’0’ ey 0,1, (*ak;j(A))’ ...,gngkbA(A)) e 7",
Then the subtorus Ty C T™ is the set
Ty = e(C(df,....dyay) CT"

It is a torus of dimension b(A). Finally, observe that the b(A)-dimensional hypercube
p,+ d_lC(gk{x, vy A )

b(A)

maps by e to a subset of T4,
e(p, +d7 Clegg, e ) C T, (3.5)

because the vectors d—* Cra are linear combinations of the vectors df, vy d{:‘( 4y, and for each vector
P, there is a vector Ej such that g@j) = Q(Bj) and ﬁj is a linear combination of d4, ...,d;:‘( 4)-
And observe that many of the 2°(4) vertices of the image in T4 of this hypercube coincide and
that the vertices form the set {Q(Bj)7g(2(j+1)modd)’ ""Q(B(j-s-b(A))modd)}’ because of (3.4).

Some of these notations are due to Cooper [Co82], namely the deformed simplices A 4, the
tori T4, the block beginnings, their number b(A) and the thick sets A. The hypercubes, the
integers a;, and the vectors by, ¢;,ds and p; are new. The observations in the following lemma

are all due to Cooper [Co82].
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Lemma 3.2. [Co82] We stick to the cycle type singularity f above and all induced data in the
Notations 3.1.

@
I

d
LJANG{QQHU U 2s0T4 (3.6)
J=1 ACN, A0

d
= UAN@{Q(QJ.)}U U AqOTy.

i=1 AGN thick
For AG N with A# 0,
GNCA=A,0Ty. (3.7)

The sets Ay © {g(gj)} and Ay ® Ty are called cells of G. The natural map Int(Ay) x Ty —
Int(A4) @ T4 is a diffeomorphism. The natural map Ay — An © {g(gj)} is a diffeomorphism.

dimg(Ay © {Q(Bj)} =n-1, (3.8)

=n—1 if A is thick,

dimg(Aa ©Ta) = |A] - 1+ b(4) { <n-—1 if A is not thick.

If A,B G N with A # B, then Int(Ax) © Ta NInt(Ap) ©Tp = 0. If B G A G N with
b(B) = b(A) then Ap ©Tg C Ay ©Tq.

A C N thick implies |A| € {[242], [%E] +1,...,n— 1}. In the case n even, there are only two
thick sets A with |A| = %, the set Ayq := {1,3,,...,n — 1} and the set Ae, = {2,4,...,n}. The
cells Ap,, ®Ta,, and Aa,, ® Ta,, are the unit spheres in CAd respectively CAev.

A C N almost thick implies |A| € {[5],...,n — 2}.

The proof is easy. We will not give details. If z;, z;41 € C* with z;“ zj4+1 > 0 then
arg(zj4+1) = (—ay) arg(z;)mod 2.
This observation is crucial.

Now we will build up chains, starting with the cells Ay ® {Q(Bj)}, and ending with cycles

which represent elements of H,,_1(G,Z). In section 4 we will show that these cycles (and the cells
Ay,,®Ta,, and Ay, ©Ty,, in the case n even) generate H,,_1(G,Z). Of course, it is necessary
to refine the cells of G to a simplicial chain complex. We will not describe this precisely. Except
from the cells Ay ® {Q(Bj)}, we will work only with the following chains (compare (3.5)),

C(A,j) =Ar0e (Bj +d7 ' Clega, ...,gkﬁm)) CALOTa (3.9)
for AG N thick, je{1,..,d},
C(B,A,j):=ApGe (Bj +d 7' Clega, ...,gk?(m)) CAROTs (3.10)

for BG A G N with A thick, |[B] =[A|-12>1, j€{1,...,d}.

Here our notation is not precise in two ways. (1) If the projection

n

. -1
EBJ +d C(Qk{‘aagkbA(A))_)T

is not injective, the chain C(A,j) or C(B, A4, j) shall take multiplicities into account. (2) The
chain obtains an orientation from the order of the vectors Chfts - Chit if they are linearly

independent.
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We decompose the boundary of a chain C(A, j) into two parts, 9C(A4, j) = 1C(A, j)+02C(A,7)
with

HC(Aj) = 08aoe(p,+d ' Clegp e ,)), (3.11)
3C(A,j) = ()AL © e (Qj +d 1 Clegs, ~~~7Qk§‘(A)))
= (—DMA e (gj +d 10 (e, ...,gkgx(A))) . (3.12)

The definitions of the following chains ng) and X J(k) are crucial. Here j € {1,...,d} and
ke {0,1,..., =]}

2
R = " sign(A)-C(4,5) forke {1,2,...,[%}}, (3.13)
A thick,|A|=n—k
R(%) = 0 ifnisodd
j = ’
R = Ayofep,)}

For ng) with & > 1, the decomposition 8R§k) = 61R§k) + 82R§k) of its boundary into two parts
is well defined. For k = 0 we define 82R§0) :=0 and 5‘1R§0) = 8R§O). The definition of the next
chains is inductive. Again j € {1,...,d}.
0 0
X = Ayoiep)r =R, (3.14)

"; Ly, (3.15)

The following theorem is the main result of this section. Its proof takes the rest of this section.

XM= XY XY L RW for ke {1,

Theorem 3.3. Again, j € {1,...,d} and k € {0,1,...,[%2]}.
k k
ox™ = oR", (3.16)

n41
and especially an([ U (3.17)

n+

1
So, the chains X]([ =D e cycles and induce homology classes in H,_1(G,Z). (Theorem 4.6
will tell more.) If n is odd then

d

ZX(_"T“) —0. (3.18)
J
j=1
If n is even then
& (%)
ZX]' 3 _ (_1)(5'4-2)(5’-‘1-1)5 CQ1d5...Gp_q
j=1
(Aa,y ©Ta,, + (—D)2ara3..an 184, © Ta..) - (3.19)

Proof: (3.16) for k = 0 is 9X,” = &, R\"). It is true by definition of & R\". By induction,
we obtain for £ > 0
(k+1) (k) (k) (k+1)
0X| = X" —ox) +oR!

= (0RY — 0, R, + 0, RFHY) 4 0 R,
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Therefore we have to show for &£ > 0
nRY — oY, + 0,RITY =0, (3.20)

In fact, Ré-kﬂ) was chosen so that (3.20) holds. In order to show (3.20), first we study 81R§k)
For A = {ky,....kja} C N with ky <... <k ifn ¢ Aand with ky =n & ko < ... <kpy if
n € A and for B = {kl,...,l/f;,...,k|,4|} C A define

sign(B, A) := (—1)771. (3.21)
Then
aR" = > S sign(B, A) -sign(A) - C(B, A, j)
A thick,|A|=n—k BCA,|B|=|A|—1
for k > 1, (3.22)
HRY = > sign(B,N)-Apo{e(p)}
B:|B|=n—1

First we consider the cases k > 1. A part of the following arguments will be valid also
for the case k = 0 and will give this case. In general, the subsets B of thick sets A with
|B| = |A| — 1 =n —k — 1 are of three different types,

type I ‘ type 11 ‘ type 111
b(B)=0b(A)+1 | b(B)=0b(A) b(B) = b(A) —
= B thick = B almost thick

First, consider a set B of type III. Then only one thick set A with |[A| =n —k and A D B
exists. It contains a block {ij} which consists of a single number kf, and B=A — {kf} The
gap of B which contains Ic;4 consists of k;‘ and the gaps of A left and right of k;‘, so this gap of
the set B has 3 elements. Therefore the set B is neither thick nor almost thick. All other gaps
of B consist of a single number. Observe

prp(ces) = prplcs ), thus
prg(d™ O(CkA Ckg“(A))) = prB(d_lC(gkle, ...,QkﬁB))), thus
C(B,A,j) = C(B,j)CApOTp,
dimC(B,A,j) = |B|—140bB)=]4]—2+b(A)—
= dimC(A,j) — 2 =dimR" —
Therefore this part C(B, A, j) of the boundary 81R§k) has too small dimension and can be
ignored.

Next, consider a set B of type II. It is almost thick. It has one gap which consists of two
numbers kg and (ko + 1)moan. All other gaps consist of a single number. The only two thick
sets A with A D B and |A| =n — k are BV := BU {ko} and B® := BU {(ko + Dmodn}. All
possibilities for ko except one are easy to treat, namely the cases kg € {1,...,n} — {n—1}. In
all these cases

prp(c, s ) = pr(c s@ ) = prp(g:e) for any i € {1,...,b(B)},
thus  C(B, BW, j) = C(B, B®, j) = C(B, j).
One checks also

sign(B, BY) = sign(B, B?), sign(BW) = —sign(B®?). (3.23)
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These observations show that these contributions to 0; R§k) cancel.
The only difficult possibility for kg is the case kg = n — 1. Then

(1) (1) (1) (1)
=1 < k¥ < .. < ki, , kf =k
B® B(2) B2
k1 < e < kg < kg =

G =¢, = (=1)"d-b, +¢,
b(B)
prB(—kf((;))) = ((=D"d+1)prp(c),
1 =sign(B,B®) = (=1)/Blsign(B, BW), (3.24)
sign(B?) = (=1)""sign(BW),
sign(B, B®)sign(B®) = (—=1)"Psign(B, BM)sign(BM).

This together with (3.3), formulas for ¢;, and Qf and especially k¥ =1 and b; = (0, ..., 0) shows

perrB(p +d C( kB<2)>‘ *y kB(Z)))

b(B)
+(=1)" P propry(p. +d ' Cle 50 pt))
J 1 b(B)
= prrprp(p; + d™'C(eyp, - e, (—1)"der))
= prppra(p, +C’( Qk-fa--- d~ ckﬁB),(—l)”gl))
(3.3) _ _ _
= perI'B(p +C(d~ CkB —d e, .nd 1gk55) —d ey, (=1)"¢))
= preprp(p, + C((=1)"bp s (1) "z (—1)"c1))

= (‘Dnb(B)QleB Lip ) " PIT PYB(C(d1 s dy a"')dliB)))'
This implies
C(B,B?,j) + (-1)"")-c(B, BV, j)

= (—1)nb(B)Q1Qk2B...QkZJ73(B) -Ap ©Tg. (325)

This is up to the sign sign(B, B?®) - sign(B(®) the contribution of B to 81R§k). Especially, it
is independent of j. Therefore a set B of type 11 makes the same contribution to 31R;k) and to

(r“)lRyj_l Thus its contribution to the difference 01 R 61R( 41 1s zero.

Finally, consider a set B of type I. It is thick. Its gaps are the sets
{(k7 = Dmoan}, - {(ky(5) = Dimodn}-
Exactly b(B) thick sets A with A D B and |A| = n — k exist. They are the sets
AD = BU{(kP — Dmodn?}

for i € {1,...,b(B)}.
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The set of block beginnings of A®) is the set {k?, ..., kﬁ . b(B } Therefore the contribution
of B to the boundary 61R§-k) is

b(B)
Z sign(B, AW) - sign(A®)

i=1
ApOe (Qj + d_lC(gkls,...,gkiB c’%(s))> , (3.26)

and the contribution of B to 81R§§_)1 looks analogously, with j replaced by j + 1. The following
calculation of signs will be useful,

sign(B) = (—1)(=DHn=kD+0B)=0) g (A0)
= (-pRHIE sign(A(”),
sign(B, AW) = (-1 D00 = ()
sign(B, AY) - sign(4¥) = sign(B)- (- )”3|H ! (3.27)

On the other side, the boundary 82R§-k+ ) has only contributions from sets B of type I. The
contribution of one such set B is as follows. Here we use (3.12), (3.2) and (3.4).

contribution of B to 82R§k+1)

2 se(B) ()P Apoe(p +d 00, - ag,)
(32) sign(B)(—1)IBI-1.
b(B)
(0 ap o (p, + 47 Clerp i, )
i=1
b(B)
72 7, 1AB®Q<Bj+d71gkiB +d*1C’(Qk1B,...,QkiB Ckb(B))))
(3-4) Z sign(B |B|+zAB Oe <p +d- C(CkB Y CiB - C;gg(B)))
b(B
- Z sign(B)(-1)""Ap o e ( 1T d_lc(gkf’ ""Q’“iB Cka)))

=  —(contribution of B to 81R(-k))
+(contribution of B to 61RJ+1)

Therefore the contribution of B to 81R§-k) - 61Rj+1 + 32R§-k+1) is zero.

So, no set B C N with |B| =n — k — 1 gives a contribution to this sum. Therefore this sum
is zero. (3.20) is proved for k > 1.

Now we will show (3.20) for k£ = 0. 81R§-O), 01R§(£1 and 82R§-1) are sums over sets B C N
with |B| = n — 1. These sets are the sets B®) := N — {3} for i € N. The set B is thick with
b(B™) = 1. Tt can be treated as the sets of type I above. The same calculations as above for
sets of type I show that the contribution of B® to the sum 81R§0) — 81R§»[}21 + 82R§-1) is zero.
Therefore this sum is zero. Therefore (3.20) holds also for k = 0, so it holds for all k£ > 0.
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This implies (3.16) for k > 1. It holds for k = 0 anyway.
It remains to prove (3.17), (3.18) and (3.19). (3.17) is because of (3.16) equivalent to
ntl ntl

81R§-[ > — 0. In the case n odd this is trivial as then Rg- =) — by definition. In the
case n even, we have to show 81R§%) = (0. By Lemma 3.2, there are only two thick sets A with
|A] = §, the sets A,y = {1,3,...,n—1} and Ac, = {2,4,...,n}. In the discussion above of (91R§-k)
for k > 1, we distinguished 3 different types of sets B with |[B| =|A|-1=n—k—1and B C A.
In the cases A € {Ay4, Aev}, we have only sets B of type III. Above we stated that the part

C(B,A,j) of 81R§k) (here for k = %) has too small dimension and can be ignored. Therefore
81R§%) = 0. We proved (3.17).

ntl
(3.18) holds for odd n and is an immediate consequence of (3.15) and R;- >) =,
(3.19) holds for even n. It requires two calculations which are similar to the one which led to
(3.25). The details are as follows. (3.15) and (3.13) show

S - S
j=1 j=1

d d
= ) sign(Aeq) - C(Aoa, §) + Y _sign(Aey) - C(Aey, §)
j=1 j=1
d
= ZSign(Aod) AV IFROX (Bj + d_lc(gl,g3, "'7Qn71))

j=1

d
+ Zsign(Aev) : AAe'u QQ (BJ + dilC(Q%QLa "'agn)> N
j=1

Here

Il
—
|
—_
N
w3
—
[NE]
+
—
=

Sign(Aod)
sign(Ae,) = (=DE7VE2 = (=1)% - sign(Aoa).

Because of Py =P+ d~'c, and (3.3) (and (—1)" =1 as n is even), we have

d
ZprT (BJ + dilC(QI’QS’ ""Qn—1)>

j=1
= prp (]31+C(g1,d_1g3,....7d_1gn71))

= prp (731 + C(gl,d_1g3 — d_lgl, ...,d_lgn_l - d_lgl))
= prp(p, + Cley, (=1)"bg, o, ()"0, 1))

= (_1)n/2_1 prr (C(QSV"VQTL—DQI))‘
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If we identify pry ,(b;) with a column vector in M, 5x1(Z) then the tuple
(pra,,(b3),...,pra,, (b, 1),Pra,,(c;)) is an upper triangular % x Z-matrix, and its deter-
minant is a,as...a,,_;. Therefore

d
ZAAod ©e (Bj + dilc(ghgi’ﬂ "'7Qn—1))

j=1
= (-)"*'aya3..a, ;- Da,, ©Ta,,.

Observe
PTy4,, (cor) = PTy4,, (cor—1)-
Therefore
d
Z Pr4,, PIT (BJ + d_lc(g2ﬂg4ﬂ "'7Qn))
j=1
d
= ZprAev prop (B] + d_lc(gl’QSv "'aanl))
j=1

= (_1)n/2_1 Pra,, Prr (C(b37 "'vbnfhgl)) .
If we identify pry (b;) with a column vector in M,/ 5.1(Z) then the tuple

n n

(pra,, (b3),...,pra,, (b, _1),Pra, (c;)) is an upper triangular % x H-matrix, and its deter-
minant is

Aoy Uy = G103...0p_1 * A103...0p_1.
Therefore
d
Y Au, @e(p, +d7'Cleg,hyney)
j=1
= (—1)"/271%@3...@”_1 ca1a3...an_1 - A4, ©Ty,,.
(3.19) follows. O

4. A SPECTRAL SEQUENCE, FOLLOWING AND CORRECTING COOPER

Throughout this section we fix a cycle type singularity f(z1,...,2,) as in (1.2) with n > 2
and ay,...,a, € N with (1.3), as in section 3. Cooper [Co82] considered a filtration of the set
G C Fy = [} (Rxo)NS?n~1 ¢ §2n~1 c C", which was defined in (3.1), by a sequence of subsets,

G=G,DGn_1D..0G DGy=0.

He studied a spectral sequence (E;t, d;t)v-zl,szl,s-s-tzo which is associated to this filtration. It
allows to determine H,,_1(G,Z). Though he made two serious mistakes. Here we will partly
follow his line of thoughts, but correct the mistakes. Remark 5.1 will explain the differences to
[Co82].

Cooper does not give a reference for the construction of the spectral sequence. We found a
manuscript of Hatcher [Ha04] very useful for our situation and will cite Theorem 4.2 and some
preparations for Theorem 4.2 from it.

First we will define the subspaces G5y C G and make some elementary observations. Then
we will introduce the spectral sequence, following Hatcher. Then we will study it in detail
(following partly Cooper) in Lemma 4.3 and Theorem 4.5. Theorem 4.6 will give the conclusion
for H,_1(G,Z). It complements Theorem 3.3.
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Definition 4.1. [Co82] Recall the definition (3.1) of the set G C C". Define G,, := G, Gg := 0,
and define for s € {1,...,n — 1}

Gs := {z€ G|at most s of the coordinates z1, ..., z, are # 0}

ACN:|A|<s

Here the second equality follows from Lemma 3.2. Lemma 3.2 gives also the differences

Gs - Gs—la

d
Gn—Gnor = | JInt(Ay)® {e(p)}, (4.2)
j=1
Gy—Gy 1 = U  mt(As)©Ta forse{1,...,n—1}. (4.3)
ACN: |A|=s

In this paper, all considered homology groups will have coefficients in Z. Especially, we
consider for (s,t) € N x Z the homology groups of the spaces G and of the pairs (Gs, Gs—1),

Ay, = Hy(Gs) i= Hey4(Gs, 2), (4.4)
E;t = H5+t(GS7 Gsfl) = Hs+t(G57 Gsflyz)-

We extend this definition by

A;t = Eslﬂf =0 for s <0,
A;,t = H,+(Q), E;,t =0 for s >n+1.

Of course
Aiyt:E;,t:O fors+t<0ors+t>n, (4.6)
as dimg G4, < n — 1. Cooper [Co82] observed that Lemma 3.2 (especially that the map
Int(Ag) X Ta — Int(A4) ©Ta

is a diffeomorphism) and (4.3) imply

d

H*(Gn; Gn—l) = @Hn—l(AN © {Q(B])}76AN O] {Q(BJ)})’ (47)
H,(G,,Ge_1) = P  HAAAOTa, 0040 Ta) (4.8)
ACN: |Al=s

for s <n—1.
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And here
Hy1(An ©{elp;)}, 08N O {e(p)}) = Z

with generator the class [XJ(O)], (4.9)
Ho (AAOTA, 0A4 ©Ta) = Hig—1(Aa,084) @ Ho(Ta), (4.10)
Hig=1(Aa, 04 4) =2 Z with generator the class [A 4], (4.11)
b(A)
H,(Ta) = Q) Ho(S"), H.(S") = Ho(S") & Hy(S), (4.12)
j=1
Ho(S*)=7Z and H,(S")=7Z
with generators [p] and [S'] for any p € S*. (4.13)
By (4.7) and (4.9) the group
d
Bl = Hy1(Gp,Guoi) = Hu(Gr,Gor) = P Z- [X\)] (4.14)

j=1

is a Z-lattice of rank d with generators the classes [X:EO)], e [Xc(lo)]. All the groups E}, are
Z-lattices (= finitely generated free Z-modules).
The long exact homology sequence for the pair (G5, Gs—1) for s € N reads as follows,

1 1 1 1 -1 1
1 i 17 1 kg1 i 1 J 1 k 1
e Asfl,tJrl — As,t - Es,t - Asfl,t — As,tfl - Es,tfl — Asfl,tfl e

Here 3! is induced by the embedding Gs_; < Gy, j! is the natural map from absolute homology
to relative homology, and k! is the boundary map. Together, these exact homology sequences
can be put into a large diagram which Hatcher [Ha04] calls a staircase diagram, because the long
exact sequences look like staircases in this diagram:

.1 1 -1 1
A;—l,t-ﬁ-l j_> Esl—l,t+1 k_> Aé—2,t+l j_> Esl—2,t+1 k_> A;—3,t+1
bt Jt bt
1 3\ 1 ky 1 3\ 1 k 1
As,t - Es,t — Asfl,t - Esfl,t — A572,t
bt bt Lt
I Bl 4§t Ja!

Ai—i—l,t—l - E;—&-l,t—l - Ai,t—l - El,, = Ai—l,t—l
The map
d;t =d' =gl okt: E;t — Esl—Lt (4.15)

is the cellular boundary map [Ha04]. The system (E{ ,,d} ;)s ez of spaces and maps is the first
page of a spectral sequence which is associated to the filtration

G=G,DG,_1D..D0G; DGy=0.

The other pages (EY ;,d5 ;)s,tez for 7 > 2 are constructed inductively together with versions of
the staircase diagram above for any r > 2 instead of r = 1, so, tuples (A, ET,,i", j", k", dr)
are constructed inductively for any r > 2. The following theorem describes this construction
and gives the general properties. It follows from Lemma 5.1 and Proposition 5.2 in [Ha04].
Proposition 5.2 in [Ha04] applies with the conditions (i) and (i) in it. The indices in A}, and
E;t here are chosen differently (more standard) from those in [Ha04].
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Theorem 4.2. [Ha04, Lemma 5.1 and Proposition 5.2]
(a) (Properties) Fiz r > 2. The tuple (Ag,, EY,,i",j", k", d") will be constructed from the

5,6

tuple (AZ;l,E;;l,ir_l,jr_l,k:r_l,dr_l) in part (c). It has the following properties:

AL = Al (4.16)
I AL = Bl e (4.17)
KB, — AT, (4.18)
d" =" ok" 1Bl — Eg iy, d7od =0. (4.19)

The restriction of i" to Ay, is also called iy, and similarly for j",k" and d". There are long
exact sequences,

r i 3% KT 4
e As—i—r—2,t—r+2 — As+r—1,t—r+1 — Es,t — As—l,t
i, AT J" ET k' AT
— s,t—1 — s—r+1,t+r—2 — s—rit+r—2"""

They can be put together into the following staircase diagram (the positions of the arrows for j"
are not precise).

g k" g k"
T r i T T T T
A i 77 Bl & Aiown T Eiounn o Alsin
$ir $ir ir
g k" g k"
T T T T T T T
As,t J Es,t - As—l,t J Es—l,t - As—Q,t
$ar $ir ir
AT " BT k—) AT i ET Ii; AT
s+1,6—1 J s+1,t—1 sit—1 J s,t—1 s—1,t—1

(b) (Spectral sequence) The part (EY,,d,)r>1,stcz of the tuples above for all r > 1 is a
spectral sequence. It converges to H,(G). This imprecise statement means the following. For
each (s,t) € Z2, a bound r(s,t) € N exists such that the space ES = E;(ts’t) coincides with E
for any r > r(s,t), and

EY, = F:/Fi, where (4.20)

Fi, = Im(A;t — Aib,sﬂ—t—n) =Im(Hy14(Gs) = Hyi4(G))-
(¢) (Construction) Fix r > 2. Suppose that the tuple (Ag;l,Eg;l,i"_17jT_17kT'_1,d7'_1) has
been constructed. Then especially "~ o d"~! = 0. Therefore the quotient

By = ker(dyy')/Tm(dyy, 1, pyo) (4.21)
is well-defined. It is a subquotient of E;;l. The space
ALy = TTHAL ) C ALY (4.22)

is well-defined, anyway. It is a subspace of Ag;l, The map i" is the restriction of i" "' to A
The map j" on AL, = ir_l(A::it+1) is defined on i"~(a) for a € A::iﬂ_l by

71N a) = [ @),
A priori, this is in E;:AH’HPI/Im(d’S“;L). But it turns out to be in E{_,. 4, 1. The map

k" on EY, is defined on [a] for a € ker(dggl) C E;Il by k7 ([a]) := k"~1(a) which is a priori in
AZ:it, But it turns out to be in Ay_; ; and to be well-defined.
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Theorem 4.2 gives basic and general properties, which are not specific to the geometry of G
and its subspaces G (except for our definition of F?,, where we used A), .., ,, = Hoy(G)).
Now we will use the geometry of G and its subspaces G5 to make more specific statements. We
are interested especially in EZ7,_;_, as that is the subquotient F,ffl/F;i:} of H,,_1(G) by part
(b). Lemma 4.3 gives first elementary observations. Algebraic statements in Lemma 4.4 make
a part of Theorem 4.5 more transparent. Theorem 4.5 states the main results on the spectral

sequence. Theorem 4.6 gives the conclusion for H,,_1(G). It complements Theorem 3.3.

Lemma 4.3. (a) Forr > 2

Tnios =ker(di b, OV CELY, (C..CEL, . (4.23)
(b) Forr > 1 and for s < [2£]
B 1-s=EJ,_1_,=0 andthus F;_; =0. (4.24)
(¢) Consider even n. Forr > 1
FYS = Im((Hao1(Gy) = Haot(G)) 2 EF 5
= Ehin =FEya=H,1(Gy,Gy) 222 (4.25)

The generators are the classes in H,_1(G) respectively in Hy,—1(Gn, Gz _1) of the spheres Ay, ®
Ta,, C CA and Au,, ® Ta,, C CAe (see Lemma 3.2).

Proof: (a) Because of (4.6) E;“;l = 0 for s +t > n. Therefore dg;i_lyn_l_s_r_ﬂ =0, and
by (421) Eg,nflfs = ker(d;;Ll—l—s)'

(b) For s <n —1, the set B}, | . = H, 1(Gs,Gs_1) has by (4.8), (4.10) and (4.12) only
contributions from sets A C N with b(A) = n — |A|, so from thick sets A. By Lemma 3.2, if

s < [241], there are no thick sets A with |A| = s. Therefore then Ef, ,  =0and E}, ;, ,=0
for > 1 and £, _;_ = 0. This and (4.20) imply inductively F,;_; =0 for s < [2HL).

(c) The first equality is the definition of F) / 21 The isomorphism F" / 21 = EY 5, follows with
(4.20) and F};_; =0 for s < 3.

The equality Elg’%f1 = H, 1(G=,Gxn_4) is the definition of E%’%fl. By (4.8), (4.10) and
(4.12) it has a contribution isomorphic to Z with generator [A 4 ® T4] for any thick set A with
|A| = %. By Lemma 3.2, these are only the sets A,q and A.,. Therefore Elg,gq >~ 72 As the
spheres Ay, ©Ty4,, and Ay, © T4,, have no boundary, the boundary map

1 .l 1 —
kﬂ n__q E%)%71%Agil)%il—Hn_Q(G%_l)

22

and also the induced maps k% »_; and the maps d'» »_; are zero maps. Therefore for r > 1
2732 2173

8

E ,=E

vl

=L

[N Bt
wf3

-1

w3

Part (c) is proved. O
The sole purpose of the following elementary algebraic lemma is to make Theorem 4.5 (d)
more transparent.

Lemma 4.4. Recall from (4.14) that the group E) | = H,_1(G,Gy_1) is a Z-lattice of rank d
with generators the classes [Xl(o)]7 - [Xéo)}. Define for r € {1,...,[2£3]} the sublattice

d
B, =Y 7-[X{"V]CcE}_, (4.26)

Jj=1
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which is generated by the classes [X\" V], .., [X(Y_l)] in Hy—1(G,Gp—1). Then E}L L =E; .
Forr > 2

r—1 r—2 r—2 .
XV =[x >]_[X(<j+1)>mdd] for j € {1,...,d}, (4.27)

d
SV = o, (4.28)
j=1
and th_l - E7117—1 s a sublattice of rank d —1 which is generated by any d—1 of the d elements
[Xfr_l)], ey [X(Y_l)]. The lattice Eﬁﬁl is a primitive sublattice of E} _,. Forr >3, Eg,l has
index d in Eff_ll
Proof: (4.27) follows from the deﬁnition of X](-Tfl) in (3.15) and from RY*U C Gp_1. (4.28)

is an immediate consequence of (4.27). E 1 is obviously a primitive sublattice of E711,71 of rank
d—1. For r > 3, E _; has index d in E’“ 1 because

1 = {Z 2k - |zk €Z, sz € dZ} (4.29)

Jj=1
by (4.27) and (4.28) (for [X;H)]). O
Theorem 4.5. (a) [Co82, 18] For s € {[*£2], [2$4],....,n — 1}
dip 1 s Efy 1 o — Bl , 1, isinjective, (4.30)
B s=Egp_1-5=0 for r > 2. (4.31)
(b) Forte {3,..,[23]} and 3< r <t
By 113
E! C . (4.32)
T g (Bp—ti2,-3)
(c) For s < [%£2] and r > 1
Ef 4, 1-5s=0. (4.33)
(d) Recall the definition of ET,—l in Lemma 4.4.
~ 3
E,_, = E_, forrefl,.., [”; I}, (4.34)
~[n+3 3
EX, = E._,=FE.2 forr> [%}. (4.35)

Proof: (a) (4.31) is an immediate consequence of (4.30), because of the definition of E?

n (4.21).

The injectivity of d, ;_, was proved in [Co82, 18.]. Our proof differs in a way which allows
to apply it also to the proof of (4.34) in part (d). First we consider some useful sets and maps.
Fix s € {[2£2], 2], ..., n— 1}.

Ai(s) = {AC N|A thick, |A| = s},
Asfs) = {(A)] A€ Ais),] € {1, b(A))
with k2, (k' + 1)moan € A},

pr; :  A(s) = Ai(s),(A,j) — A, the canonical projection.

s,n—1—s
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For the given s, each A € A;(s) contains a block which consists of > 2 elements. Therefore
pry @ Az(s) — A (s) is surjective.

B(s) := {B C N|B almost thick, |B| =s—1},
B B(s) = N,Bi1(B) := ko if {ko, (ko + 1)modn} C N — B,
B+ B(s) = N,B2(B) == (B1(B) + mod n;
ar o Asx(s) = B(s), (A, )) = A= {(kG+1)mead — 2modn}
as Ag(s) = B(s), (4, ) r—)A—{kf}.

B1(B) and B2(B) are the first and last element of the unique block of N — B with two elements.
k# is the beginning of a block of A with > 2 elements, and (k(j41),.0. — 2)modn} is the last
element of this block. a; and ay are bijections, and (see the notations 3.1 for B") and B(®))
BYW = BU{B1(B)} = pry(a; (B)),
B® = BU{B2(B)} = pry(a; ' (B)).
Recall what (4.8), (4.10) and (4.12) say about E}, ,  and E} ,, , .. Both are Z-lattices.

The generators of E},, _;_, are simply the classes [Ay ® Tal, A € Ai(s),
Esl,n—l—s = n—l(G87 Gs—l) (436)
= @ Hy 1 (Aa ©Ta, 004 ©Ty) = @ Z-[Apa ©Tal,
A€A(s) AeAi(s)
Esl—1,n—1—s splits into two parts, one from almost thick sets, the other from thick sets,

E;—anfs = n—2(Gs—17 Gs—2) (4.37)

= (Hn—Q(Gs—lsz—Z))B 2 (Hn—Q(Gs—la Gs—2))A with

(Hn—Q(Gs—lsz—2))B = @ Z - [AB © TB]7
BeB(s)

(Hn-2(Gs-1,Ge2)) 1= @  Heo1(Aa,084) @ Hyay—1(Ta)
A€ A (s—1)
b(A)

= B Dz [2a0Taswr—1)an)
Acdy (s—1) i=1

We will work mainly with the part from almost thick sets. The projection to this part is called
Pra,

Prp: Eslanflfs = Hn72<Gsfla G572) — (Hn72(G8717 G572))B .
We will prove that prjod} ,, ;_, is injective. This implies that d} ,, ;_, is injective. Recall
dip 1 s=Js1m1 s0kl, 1, andkl, , is a boundary map. Therefore for A € A;(s)
dypo1-s([Aa ©Ta)) = [0A4 © T4 (4.38)
= Z sign(B, A) - [Ap © T4,

BCA: BEB(s)UA1(s—1)
We care only about the terms for B C A with B € B(s). These sets B split into two types,
{Bc A|BeB(s)}={BcA|A=BW}yu{Bc A|A=B?}. (4.39)
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We claim to have on the level of chains

Ap©Tg ifA:B(l),
Ap©Ta =S (—agy,p) Ap©Ts if A=B®, By(B) #n, (4.40)

(~1)! P (—a,)Ap ©Tp if A= B®, B(B) =n.

This follows from comparison of T4 with Ts. If B = a1(A, j) then $1(B) = (k(j4+1)00, = 2)modn
is the last element of the j-th block of A. If B = as(A4, ) then B2(B) = k}-“ is the beginning of
the j-th block of A. The generating vectors of T4 and Tg from these blocks of A and B differ
as follows,

prp(d)) = pry(d?) if B =ai(4,;),
PYB(CJ}A) = (—ap,(B)) 'PTB(dJE) if B = aa(A,7), (4.41)

where j = j if B2(B) # n and where in the case f2(B) =n

j=0b(B)=0b(4), j=1,
prB(d?) = prB(dﬁl) for i € {1,...,b(B) — 1}.
This shows (4.40). Together (4.38), (4.39) and (4.40) give
pr (di, 1 ([Aa0Ta))= > sign(B,A) [Ap© Tg]
Beai(pry ' (A))
+ > sign(B, A) - (—ag,p)) - [Ap © T (4.42)
Beax(pry ' (A)),B2(B)#n
+ > (—1)"P)~'sign(B, A) - (—a,) - [Ap © Tg).
Becaz(pry H(A)),B2(B)=n
Recall from (3.23) and (3.24)
sign(B,B®) = sign(B, BY) if f2(B) #n,
1=sign(B,B®) = (=D)!Plsign(B,BY) if 35(B) =n,
and (—1)°B) =Bl —(_q)n,

In view of these signs and (4.42), an arbitrary linear combination }° ,c 4, (s 24 * [Aa © Ta],

ZA € Z, is mapped by pry odé,n—l—s to

prs(dsn-1-s z za-[Aa O T4l ]) (4.43)
Ac Ay (s)

= Z sign(B,B(l))(zBm _aﬁg(B)ZB@))[AB @TB]
BeB(s),B2(B)#n

+ Z sign(B, B(l))(ZB(1) — (71)nanZB(2))[AB ® TB].
BeB(s),B2(B)=n

The following Claim 1 will be useful here and in the proof of (4.34) in part (d).
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Claim 1: Fiz any B € B(s). A sequence (B;)ien of elements B; € B(s) with B = B,, and
with the following property exists,

1 2 .
By, =BF forieN. (4.44)
Additionally,
the map N — N, i+ B2(B;), is a bijection. (4.45)

Proof of Claim 1: We will describe such a sequence from a point of view which will make
its existence clear. Suppose we have such a sequence (B;);cn. Compare the set of gaps of

B((?ll)modn = Bz(l) with the set of gaps of Bl@) = B((ilil)mod . These sets almost coincide. Only

the gap {B2(B;)} of Bl(l) is shifted one position to the left to the gap {8:1(B;)} of BZ-(Q). Starting
from the set of gaps of B,(?) = Bil), one shifts in n steps all gaps to the left, so that the final
position of each gap is the original position of the gap left of it. One has to take care that the

gaps stay always apart from one another. It is clear that starting from the set of gaps of B,(f),

one can find such n steps. Also (4.45) is clear. This finishes the proof of Claim 1. (O)
Consider now a linear combination ZAE.Al(s) 24 - [Aa © T4l, 24 € Z, which is mapped by
prgodl, i, to 0. Choose any A € A(s) and choose B € B(s) with B® = A. Claim 1

provides a sequence (B;)ieny with B, = B, BY = 4, (4.44) and (4.45). Then (4.43) gives the
relations
apy()Zpe i Pa(Bi) # n,
ZB(g) == ZBQ) == (446)
(i=Dmod n ‘ (—l)nanZB(z) if ,62(31) =n.
Together these relations and (4.45) imply especially

ZA=Qn 24, 50 (=1)"d-24=0, s02z4=0.

Therefore pry od} ,, ;_, is injective, and thus also df ,, ;
of part (a).

(b) The definition (4.21) of E}, "}, , g for r > 3 gives

is injective. This finishes the proof

r—2
r—1 En—t+1,t—3
B i1 C Py —) .
' dr=2(E;, 14—

If r = 3, this is (4.32). If r > 4, (4.31) gives £, "7, _;, . =0,s0 B/}, 4 CE 7., 4
Induction gives (4.32).
(c) E} = H,_2(Gs-1,Gs_2) has by (4.8), (4.10) and (4.12) only contributions from

s—1n—1—s

sets A C N with |4]| =s—1 and b(A) € {n — |A|,n — 1 — | A|}. These are thick or almost thick

sets. By Lemma 3.2, for s < [%£2], there are no thick or almost thick sets with [A| = s — 1.

Therefore then E! =0and ET =0 forr>1.

s—1ln—1-—s s—1ln—1-—s
(d) By (4.23), for r > 2
Ep g =ker(dy By = BT ) C BT CE,

n,—1*

(4.47)

For r > [2£3] 41, E;:L_M_:; = 0 by part (c). Therefore then Ej, _; = E:l__ll Inductively we
obtain

n+3 3
E®  =E | =E> forrZ[%}.

n,—1 n,—1 = “n,—1
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It remains to prove (4.34). We will prove it by induction in r. By definition E}L_l =E, ;.
First we treat the special case r = 2:

E?z,—l = ker(d": E’}L,—l - E}L—1,—1)7
d((x)") = d'([Ay o {elp,)}) = 08y © {e(p))}]

= Z sign(B,N) - [Ap © {e(p.)}]

=Jj
BCN:|B|=n—1

= Z sign(B,N) - [Ap © {Q(QJH
BCN:|B|=n—1

S ErlL—l,—l = Hn—2(Gn—17 Gn—2)
= @Z' [An—giy ©{elp)} =Z".
1=1

The last equality follows from (4.8) and (4.10). Obviously d*([X ;0)}) is independent of j and is
# 0. Therefore

By = ker(d' :E, ;= By )
d d
= (X u X5 eny s =0t =E .
j=1 j=1
Now we suppose r € {3, ..., [2£2]} and (induction hypothesis) E;_fl = E;_fl This induction
hypothesis and (4.26) give
d—1 d
B =B =@z XV =Yz (XY cEL . (4.48)
j=1 j=1

We have to control d;;ll([XJ(.r_m]). Recall four points:

(i) dT?:L,_—:ll = j;j,—l ° k;_—ll
(i) k;ill is a boundary map with image in
A -1 = (il)r_2(f4:z—r+17r—3) = Im(Hn—Q(Gn—H-l) — Hn—Q(Gn—l))-

n—1,

(iii) j;j’_l maps this space to E;:Llﬂ,_?ﬂ which satisfies because of (4.32) (for r =t)

Er—l c E’rlL—T'+1,7'—3 o Hn—Q(Gn—r-‘rl) Gn—r)

—r+1,r—3 = -
norly dl (E’}L7T+2,T73) dl (E7£7T+2,7’73)

r—2)

(iv) (3.16) in Theorem 3.3 gives OXJ(-PQ) = 81R§-
fits.

These four points imply

, and this is a chain in G,,_, 41, which

Hn72(Gn7T+17 anr)
d1 (Erll—r+2,7'—3)

&L (X = 0BV €

n,—1

(4.49)

We will show the following claim.
Claim 2: The class [61R§r_2)] in the quotient in (4.49) of the chain 5‘1R;T_2) is independent
of 3, and for m € Z

m-[RV ] =0 <= dm. (4.50)
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Claim 2 implies

B = ker(d;fl EPI — B, i+1r 3)
r— (429 7,
= {ZZ] ( 2) 11z € Z, ZzJEdZ} E; 5.
Jj=1

It remains to prove Claim 2.

The chain 0 R§T72) was already studied in the proof of Theorem 3.3. Formula (3.22) showed
contributions from pairs (B, A) of sets B C A C N with |B| = |A| -1, |[Al=n—r+2and A
thick. A priori B could be one of three types I, IT and III. But a set B of type III gives nothing.
A set B of type II is almost thick and gives either nothing or the contribution in (3.25) (up to a
sign) which is independent of j. A set B of type I is thick and gives the contribution in (3.26),
which we call now Cont(B, 81R§7'_2)).

First we will show that Cont(B, 81R;T_2)) is a relative cycle, so that it gives a class

[Cont(B, 01 RV~ € Hy—o(Gnors1, Gnr). (4.51)
Then we will show that this class is independent of j.
01 (Cont(B, 81R;T_2))> contains 0Ap, so it is in G,,_,, and we can ignore it. For the signs
n (3.26), recall (3.27). Then

92 (Cont(B, 0, RY"™?))
b(B)
Z sign(B)(~1)| B+ Ap & (p +d~ 8C(ck5 o CRB oo C’%(B))) :

This is equal to 0, because for each pair (i,l) € {1,..,b(B)}? with i < [, the term
Bj—kd*lC'(gle,...,g/k?, ""Q/’ﬁ?"”’gkﬁm) and the term Qj_s_l—kd*lC(gk{z, ...,g/k?,...,gkls CLB )

b(B)
turn up twice and with different signs. Therefore Cont(B, 81R§-T72)) is a relative cycle. In the
proof of Theorem 3.3, we found

— Cont(B, 81R§.T_2)) + Cont (B, 5‘1R§:_12))
= Cont(B,%R"")
= 9y(Cont(B,R™V))
= 9(Cont(B,R™V)) — 8 (Cont(B, R\ ™")).
In the last difference, the first term is a boundary, and the second term is in G,,_,.. Therefore the
class in H,,_o(Gn—rt1, Gn—r) of this difference is 0. Therefore the class in (4.51) is independent
of j.
We see that all contributions to the class [81R§vr72)} € H,_2(Gn—rt1,Gn—r) are independent
of j, so this class is independent of j. This implies the first statement in Claim 2.
By (4.28) 0= "¢ [X\""?] € EL _,. Thus
d
0=>"d (X)) =d-[0RV?] forany j € {1,...,d}
Jj=1
in the quotient in (4.49). This is < of (4.50).
It remains to prove = of (4.50). Define s := n —r + 2. Then r € {3,... ["T*?’]} implies
s € {[%2],...,n — 1}. So part (a) and its proof apply. The map prgod),_, 5, 3 is injective,
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and formula (4.43) gives its image in H,_2(Gp—ry1,Gn—r)p. For = of (4.50), it is sufficient to
show for m € Z

m - prg([01RY ™)) € prg(Im(dh_, 5, ) = dm, (4.52)

here [81R§»T72)] denotes the class in H,,_o(Gp_r+1,Gn—p) (not the class in the quotient in (4.49)).

For prB([(?lR;.T_z)]), we need only the contributions of sets B € B(n — r + 2). By the proof
of Theorem 3.3, the contribution of such a set B is 0 if f2(B) # n, and it is given by (3.25) if
B2(B) = n. We obtain

r—2
pr([on Ry ) = > (EDayps-ars, - [Ap © ).
BeB(n—r+2): f2(B)=n
Suppose that the left-hand side of (4.52) holds for some m € Z. Write

Ap:=m- (:I:l)glngB...gkf(B).

Then we have a linear combination ZAGAl(nfrJr?) za - [Aa ©Ty) with

m-prg( R V) = > A - [Ap © Tg] (4.53)
BeB(n—r+2): B2(B)=n

prp d:L77“+2,r73( > zac[As0 TA])
Ac A (n—r+2)

Choose a set B € B(n—r+2) with f2(B) = n. Claim 1 provides a sequence (B;);en of elements

B; € B(n —r+2) with B = By, (4.44) and (4.45). Then (4.53) and (4.43) give the first line of
(4.46), so

n—1
Zp@) = (H ai) K2:108
i=1
By (4.43), the coefficient Ap is
A = sign(B,BWY). (ZBm - (_1)nanZB(2)) (4.54)
= sign(B,BW) - zpa) - (1 = a,41)
sign(B, BY) - zpa) - (—=1)"Hd.

Therefore A\p € dZ. Observe ged(d, 21Qk23~@k;33)) = 1. Therefore, d|m. (4.52) is proved. This

finishes the proof of part (d). O
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Theorem 4.6. The homology group H,—1(G,Z) = H,—1(G) is a Z-lattice of rank

p=(=1)"a,; =d+(-1)"
A Z-basis of it is
(X17), o XG5 (A, © Tyl [Aa,, ©Ta,, ], if s even,

n+1 ( n+1

(4.55)
x5, ), if 7 is odd.

n4l
Together with [Xc(l[ 2 D], these elements satisfy the relation (3.18) if n is odd and the relation
(3.19) if n is even.

Proof: By Lemma 3.2, in the case n even, [Ag,, © T4, ,] and [A4,, © Ty,,] are homology

ntl ntl
classes in H,,_1(G). By Theorem 3.3, [X1([ 2 ])]7 ey [Xé[ 2 ])] are homology classes in H,,_1(G),
the relation (3.18) holds if n is odd, and the relation (3.19) holds if n is even. We have to show
that the elements in (4.55) form a Z-basis of H,,_1(G).

First we consider even n. By Lemma 4.3 (b) and (c) and Theorem 4.5 (a), E55,_;_, = 0 for
all s except s =n and s = . Therefore F;_; =0 for all s < §, and by Lemma 43 (c)
ﬁﬁlzﬂﬂﬂ—fmf:mmey»m4®>
= En n -1 = En n 1 - n71<G%7G%71) = Z2 (456)
with generators the classes in H,,_1(G) respectively in Hn,l(G%,G%,l) of the spheres
AAAod @ TAod - CAOd
and Ay, ®Ta,, C CA. By Theorem 4.5 (d) and Lemma 4.4
~n+ Q
E’?Lo—l -1 *®Z 2 n—l - n—l(GaGn—1)7 (4'57)
E°_; is a Z-lattice of rank d — 1, and
Fr H,_
E>© ~ n—1 _ n l(G) (458)

nolT oE T Im(H,—1(Gn) = H,1(G)))

n—1

Therefore H,,_1(G) is a Z-lattice of rank d + 1 with Z-basis as in (4.55), and F)’ 3 ', is a primitive
sublattice of rank 2 with generators the classes of the spheres Ay , ® T4, and Ay, ©T4,,.

Now we consider odd n. By Lemma 4.3 (b) and Theorem 4.5 (a), ESS, ;_, = 0 for all s # n.
Therefore F;_; =0 for all s # n and

H, (G)=F] =2 E7 (4.59)
By Theorem 4.5 (d) and Lemma 4.4

n,—1 —

d—
EX @ X( 2 C El -1 = n—l(Ga Gn—l)a (460)

and E7°_; is a Z-lattice of rank d — 1. Therefore H,_;(G) is a Z-lattice of rank d — 1 with
Z-basis as in (4.55). O

Remarks 4.7. In the proof of part (d) of Theorem 4.5, we considered the contribution
Cont(B,alRyﬂ)) of aset B € Aj(n—r+1) (B is thick with |[B| = n —r 4+ 1) to the chain
81R§»T_2). We showed that it is a relative cycle in Hy,—o(Gp—rt1, Gnr), and we saw that it is
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independent of j. We did not make precise which cycle it is, as we did not need this. Now we
will say which cycle it is, but leave the proof to the reader:

[Cont(B, 8, R\ )] (4.61)
= g1 - [AB @Q(d_lc(ngB —leB7...7Qk,IJ)3(B) _Qk}ﬁB)_l))]
= &2 [Ap©e(Clbyp —bys, b= bka(B)il))}-

A @g(C(df, --~»dﬁB)—1))]-
with g1 = sign(B)(—l)'B‘7 €9 =€ - (_1)n(b(B)—1).

= &2 leBng..-QkﬁB>71

5. PROOF OF THE MAIN RESULT

Throughout this section we fix a cycle type singularity f(z1,...,2,) as in (1.2) with n > 2 and
a1, .., a, € N with (1.3), as in the sections 3 and 4. We want to prove the main result of this
paper, Theorem 1.3.

The deformation lemma in [Co82, 3.] implies that the inclusion map i, : G — Fy induces
an epimorphism (ig), : Hy,—1(G,Z) — H,_1(Fy,Z). Both groups are Z-lattices of rank p. This
holds by Theorem 4.6 for H,,_1(G,Z) and by [Mi68] for H,,_1(Fp,Z). Therefore the epimorphism
is an isomorphism:

(Zg)* : Hn_l(G,Z) — Hn—l(FO; Z)

It remains to determine the monodromy on H,,_1(G,Z). We call this monodromy hep,. First
we give the weights (wy, ..., w,) of the quasihomogeneous polynomial f (see e.g. Lemma 4.1 in
[HZ19]):

wj = 2eQn(0,1) forjeN with

d
d = JJa-CD"=p-(1",

n j+n—1
v = D2 DT TT atmeans with (5.1)
=1 k=j+1
aj'l)j + U(j""l)modn = d
One sees easily ged(d,v1) = ... = ged(d, vy,). We defined already b := d/ ged(vq,d). In the case

of a quasihomogeneous singularity, one can give explicitly a diffeomorphism ®,,,, : C* — C" of
the Milnor fibration which induces the monodromy on the homology of the Milnor fiber and on
H,_1(G,Z). Tt looks as follows.

Dron : C" = C",  (21,.,2n) — (ezmwlzl, ...,eQﬂiw"zn).

It maps the point Q(Bj) to the point Q(B(j+v1)modd)’ because of a;v; +v(;41),.,4, = d- Therefore
it maps the chain R;k) to the chain RE@ and the chain X™ to the chain X*) .
J+1)mod d J (J+V1)mod d

In the case of even n, it maps the spheres Ay, ® Ty4,, C CA¢ and Ay, © Ta,, C CAe to
themselves.
Now we can apply the results of section 2. In order to make the relation to these results

transparent, we introduce the following notations,

ev

nt1l
5, = X"V e H,_1(G,Z) forje{l,..d},
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for odd n or even n, and

v o= [AAM @TAM] + (—1)%a1a3...an,1 . [AAM ® TAev] S Hn,1(G,Z),
g = [AAM, O) TAm,] € anl(G, Z),
¢ = (_1)(%+2)(%+1)é $183.--0,,_1 € L,

for even n. Then

oS 0 if n is odd
Hua(G,2) = G?Z.aj@{ZW@Z-ﬂ if n is even,
=
hmon(05) = §(j+v1 Jmod d
hnon(7) = 7 hmon(B) = B, if nis even,
zd: 5. — { 0 if n is odd (because of (3.18)),
- 7o ¢+ if nis even (because of (3.19)).
§=

The proof of Lemma 2.3 can be adapted to show for odd n

b _
(Hyn-1(G,Z)), hinon) = (ged(v1,d) — 1)Or(tb -1)e Or(tt — 11

).
For even n, we see with Definition 2.1, Lemma 2.3 and Lemma 2.4

(Hn—l (Ga Z); hmon)

Definition 2.1
)

(H®), (R 4)or) @ Or(t — 1)

Lemma 2.3

o~ (ged(vy,d) — 1)Or(t’ — 1) @ Lo®®) ¢ Or(t — 1)
Lemma 2.4
= ged(vy, d)Or(t? — 1) @ Or(t — 1),

the last isomorphism uses ged(b, ¢) = 1 and (2.3). This finishes the proof of Theorem 1.3.

Remarks 5.1. Cooper’s paper [Co82] studied the integral monodromy of the cycle type singu-
larities. It is split into 22 sections. The sections 1 und 2 are an introduction and a discussion
of a degenerate case. The sections 3 to 14 are devoted to the deformation lemma in section 3 in
[Co82] which yields that (i4). is surjective.

Section 15 introduces the deformed simplices A 4, the tori T4, the chains Ay ® Ty, the blocks
of sets A C N, and it gives most of the statements of our Lemma 3.2.

Section 16 states formulas which are close to our formula (4.40).

At the end of section 17, a formula which is close to our formula (4.43) is derived. Section 17
also defines the subsets G and thick sets A and states a part of our formulas (4.7)—(4.13) for
the relative homology groups.

Section 18 first introduces the spectral sequence (Ey ;,dg ;) of the filtration

G=G,DGn_1D..D0G DGy=0.

But it gives neither a reference, nor the properties in our Theorem 4.2. Then it states and proves
the injectivity of the maps d, ; , in our Theorem 4.5 (a). Though it does not use our Claim
1, but uses a specific sequence of n - (n — s) elements B; € B(s). Claim 1 is more efficient and

can be used also for the proof of our Theorem 4.5 (d).
The lemma in Section 19 is crucial, but not correct. It claims correctly [X j(.l)] € E} _,, but
wrongly [X ](»2)} € EY

1- By Theorem 4.5 (d), this is true only if n € {3,4}. The wrong argument
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is in the proof of the lemma at the end of section 19: A part of the boundary is missed. This
makes Cooper believe that X ;2) is always a cycle. He constructs and sees only the beginning for

k € {0,1,2} of the sequence (X;k))ke{l,w[%]} of chains.
The lemma in section 20 has some similarity with our Claim 2 (in the proof of our

Theorem 4.5 (d)). But it is too special.

The lemma in section 21 concludes wrongly that the classes [X ;2)] j=1,...,d—1 form a Z-basis
of E;° ;. This is true only for n € {3,4}. It builds on the lemma in section 19. The wrong
statements on the elements and generators of E7°_; in the sections 19 and 21 form the first
serious mistake.

The final section 22 makes the second serious mistake, in the case of even n. It states correctly

that for even n 35, _;_( # 0 only if s € {5, n}. And it derives correctly
(ES 21, hmon) = 20r(t — 1)

2

and

b _
(B2 hanon) = (ged(v1,d) — 1)Or(t? — 1) @ Or(tt_ill) (5.2)

1 of the filtration F_; of
H,_1(G) lift to a splitting of H,,_1(G) which is invariant by the monodromy. This would give
a non-standard decomposition of (H,,—1(G), hmon) into Orlik blocks (and this is what Cooper
claims to have for even n).

But Cooper’s paper contains most of the ingredients which we need for the proof of Orlik’s
conjecture. We corrected the two mistakes, we were more careful with the signs and proofs, we

But then it supposes wrongly that the quotients E%o,gq and E7°

introduced more notations, we had the full sequence of chains (X J(»k)) keql,.... 1]y and we had

the algebraic statements in our section 2. But Cooper’s paper [Co82] was an indispensable basis
on which we could build.

Remarks 5.2. Orlik and Randell study in [OR77] mainly the integral monodromy of the chain
type singularities. But section 3 says also something about the cycle type singularities. In (3.4.1)
they make a conjecture on the integral monodromy of the cycle type singularities which would
imply Orlik’s conjecture. Their ansatz for a proof is very different from [Co82]. They point
themselves to a gap in this ansatz.
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