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ORBIFOLD SPLICE QUOTIENTS AND LOG COVERS OF SURFACE PAIRS

WALTER D. NEUMANN AND JONATHAN WAHL

Abstract. A three-dimensional orbifold (Σ, γi, ni), where Σ is a rational homology sphere,
has a universal abelian orbifold covering, whose covering group is the first orbifold homology.

A singular pair (X,C), where X is a normal surface singularity with QHS link and C is a Weil

divisor, gives rise on its boundary to an orbifold. One studies the preceding orbifold notions in
the algebro-geometric setting, proving the existence of the universal abelian log cover of a pair.

A key theorem computes the orbifold homology from an appropriate resolution of the pair. In

analogy with the case where C is empty and one considers the universal abelian cover, under
certain conditions on a resolution graph one can construct pairs and their universal abelian

log covers. Such pairs are called orbifold splice quotients.

Let (X, 0) be the germ of a normal complex surface singularity whose link Σ is a rational
homology sphere (QHS). The topology of Σ is determined from any good resolution

(X̃, E)→ (X, 0)

by its weighted dual resolution graph Γ, which is a tree. The discriminant group D(Γ), the
cokernel of the intersection matrix (Ei ·Ej), is isomorphic to the first homology group of Σ. The
universal abelian cover (UAC) Σ′ → Σ extends to a “cover” (X ′, 0) → (X, 0) of singularities,
also called the UAC. These covers are quotients by an action of D(Γ).

It was shown in [7] that under some mild conditions on a graph Γ with t ends (“semigroup
and congruence conditions”), one can construct

(1) explicit classes of complete intersection singularities (X ′, 0) ⊂ (Ct, 0)
(2) a diagonal representation D(Γ) ⊂ (C∗)t acting freely on each X ′ − {0}
(3) (X ′, 0)→ (X ′, 0)/D(Γ) ≡ (X, 0), the UAC of a singularity with graph Γ.

Such X, called “splice quotient singularities,” are thus explicit examples having a resolution
with the given graph Γ. (See (6.1) below for a precise statement). For their role in singularity
theory, see e.g. [4] and [5].

The “end-curve theorem” of [8] characterizes those singularities (X, 0) which are splice quo-
tients. The t ends of the graph Γ of the minimal good resolution correspond to t isotopy classes
of knots in the link Σ. Splice quotient singularities are exactly those for which each such class is
represented (up to a multiple) by the zero-set of a function on (X, 0). In this way, one recovers
the result ([10]) that rational singularities, and those minimally elliptic singularities with QHS
link, are splice quotients.

Rather than consider only covering spaces of a three-manifold Σ, it is natural to consider
orbifold covers. Given a class of r knots {γi} in Σ, with multiplicities ni ≥ 1, consider “covers”
which are allowed to branch over these knots, with ramification indices bounded by the ni.
(Compare with looking at extensions of a number field allowed to ramify over some finite set of
primes.) In Section 1 this notion is discussed and related to usual orbifold language, including
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the universal abelian orbifold cover (UAOC) Σ′′ → Σ and its covering group, the (first) orbifold
homology group Horb

1 (Σ). When Σ is a QHS, Proposition 1.3 indicates how to compute Horb
1 (Σ),

and proves it is an extension of the usual first homology group of Σ by a product of cyclic groups
of order ni. Abelian orbifold covers are classified by quotients of Horb

1 (Σ).
There is an analogous notion of cover for a singular pair (X,C). Here (X, 0) is again a normal

surface singularity with link Σ, and C = Σri=1niCi is a sum of irreducible Weil divisors {Ci}. By
intersecting with a neighborhood boundary, a pair (X,C) gives rise to Σ and the orbifold data
of knots γi and weights ni. A log cover of the pair is a finite covering of X branched only over
the Ci, with ramification bounded by ni. Basic results about branched cyclic covers are given
in Section 2.

For (X,C) with QHS link, Theorem 3.1 proves the existence of the universal abelian log
cover, or UALC, a log cover of pairs (X ′′, C ′′)→ (X,C) which corresponds to the UAOC on the
boundary. Note that the Ci need not be Q-Cartier.

From the graph of any good resolution of (X, 0), one can compute the covering group D(Γ)
of the UAC (X ′, 0)→ (X, 0). To find the covering group of the UALC of a pair (X,C), consider

the smallest good resolution (X̃, E) → (X, 0) for which the proper transform C̃i of each Ci
intersects transversally a leaf (or end) Ei of E, and each leaf intersects at most one C̃i. Such

leaves are called special, and X̃ ≡ X̃C is the minimal orbifold resolution of (X,C). Denote the
corresponding graph ΓC ; it is quasi-minimal (see (6.1) below). Now let Γ∗C be the same graph,
but decorated by the placement of an arrow and a weight ni at each special leaf Ei. Finally, let
D(Γ∗C) be the cokernel of the matrix (Ei · Ej) modified by multiplying each row corresponding
to a special leaf Ei by ni . One can easily prove there is a short exact sequence

0→ ⊕Z/(ni)→ D(Γ∗C)→ D(ΓC)→ 0.

Example. If X = C2 and C = {xpyq(x− y)r(y2 − x3)s = 0}, the diagram for Γ∗C is

s q
OO OO

−1• −2•

p −1

•oo

−5

•
−2

•
−1

•
r

//

One finds ΓC by removing the arrows and p, q, r, s. D(Γ∗C) is the direct sum of 4 cyclic groups,
of orders p, q, r, s respectively.

The first important result is proved in (4.3):

Theorem 1. D(Γ∗C), the cokernel of the modified intersection matrix above, is isomorphic to
Horb

1 (Σ), and is the covering group of the UALC of (X,C).

According to [7], a graph Γ with t ends gives a faithful diagonal representation D(Γ) ↪→ (C∗)t.
In Proposition 5.3, we show there is a representation D(Γ∗) ↪→ (C∗)t compatible with that of
D(Γ) via a map N : (C∗)t → (C∗)t which raises coordinates to the power given by the weight at
the corresponding special end of Γ∗, and leaves other entries fixed.

Our purpose is to define what it means for a pair (X,C) to be an orbifold splice quotient.
The graphs ΓC and Γ∗C depends only on the boundary topology of the corresponding orbifold.
In (6.5) we have
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Theorem 2. Let Γ be a quasi-minimal graph with t ends and Γ∗ a decorated version, assigning a
weight to the special ends. Let D(Γ∗) ↪→ (C∗)t be the corresponding representation. If Γ satsifies
the semigroup and congruence conditions, then

(1) there are isolated complete intersection singularities (X ′′, 0) ⊂ (Ct, 0)
(2) on each (X ′′, 0), there is a Cartier divisor C ′′ so that D(Γ∗) acts on the pair (X ′′, C ′′),

freely off the support of C ′′

(3) each quotient (X ′′, C ′′)→ (X ′′, C ′′)/D(Γ∗) ≡ (X,C) is the UALC
(4) the orbifold data associated to (X,C) is Γ,Γ∗.

Definition. A pair (X,C) in the above Theorem is called an orbifold splice quotient.

We outline the construction and proof. Assign a variable xi to every end of Γ. By the
semigroup and congruence hypotheses and the major Theorem 7.2 of [7], one may consider
a set of D(Γ)-invariant splice-equations {fj(xi) = 0}, giving an isolated complete intersection
singularity (X ′, 0) ⊂ (Ct, 0), which is the UAC of the quotient X ≡ X ′/D(Γ). The Cartier divisor
{xi = 0} on X ′ is a reduced curve; some power of xi is D(Γ)-invariant, and xdet Γ

i provides a
Cartier divisor on X whose reduction is an irreducible Q-Cartier divisor. In particular, for each
special end of Γ and corresponding xi, define the Q-Cartier divisor Ci as the reduced image of
{xi = 0} on (X, 0).

Next, replace a variable xi corresponding to a special leaf by zni
i . Consider the new complete

intersection singularity (X ′′, 0) ⊂ (Ct, 0) defined by {fj(zni
i ) = 0}. This is the inverse image of

(X ′, 0) under the aforementioned power map N : Ct → Ct which raises to the nthi power in the
ith special entry, and is the identity on others. We prove that (X ′′, 0) is an isolated complete
intersection singularity. We also show (5.3) D(Γ∗) is the inverse image under N of D(Γ), hence
acts on (X ′′, 0). Letting C ′′ be the sum of the divisors zi = 0 for the special leaves, the result
will follow.

There is an analogue of the End-Curve Theorem of [8] for orbifold splice quotients. For a given

pair (X,C), consider the minimal orbifold resolution (X̃C , E) → (X, 0) and the corresponding
graph ΓC , with the special ends noted. In (6.8) we prove:

Theorem 3. (Orbifold End-Curve Theorem) A pair (X,ΣniCi) is an orbifold splice quotient if
and only each Ci is Q-Cartier, and for every non-special end of the graph ΓC , there is a function
on (X, 0) whose zero-set on X̃C cuts out a smooth curve transversal to the end.

It follows from the definition that an orbifold splice quotient is a splice quotient for which
each Ci is Q-Cartier. We do not know whether the converse is true; we suspect not. However,
in (6.9) and (6.10) we have the following:

Corollary. If (X, 0) has a rational singularity, then every pair (X,C) is an orbifold splice
quotient.

Corollary. Let (X,C) be a pair for which every non-special end of ΓC comes from an end of
the minimal good resolution. Then (X,C) is an orbifold splice quotient if and only if (X, 0) is a
splice quotient and every Ci is Q-Cartier.

The paper is organized as follows: In Section 1 we recall the basics of orbifolds in dimension
three, the universal orbifold covering and fundamental group, and orbifold homology. Section
2 introduces singular pairs and their log covers, with focus on cyclic covers. From now on, one
assumes the link is a QHS. Section 3 gives an algebro-geometric construction of the universal
abelian log cover of a pair. The orbifold homology is computed in Section 4 from a plumbing
diagram; the crucial representation of the orbifold discriminant group occurs in Section 5. The
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definition and construction of orbifold splice quotients appears in Section 6, with an example
presented in Section 7.

We are grateful to Eduard Looijenga and Helge Møller Pedersen for assistance with proving
Proposition 4.4.

1. Orbifolds

For the special purposes of this paper, an orbifold will be a compact oriented 3–manifold
Σ, plus a disjoint set of embedded circles (or “knots”) γ1, · · · , γr ⊂ Σ, to which are associated
positive integers n1, · · · , nr (the orbifold weights). While this is not the standard definition of
orbifold (e.g., [5]), it will be useful in considering branched covers with restricted ramification.
See Example 1.2 below.

Definition 1.1. A (finite) orbifold covering consists of another orbifold (Σ′, γ′j , n
′
j) and a finite

map f : Σ′ → Σ, with the following properties:

(1) the inverse image of a knot γi consists of various γ′ij , with n′ij dividing ni
(2) f−1(∪γi) = ∪γ′j , and f is a covering map off this set
(3) locally around γ′ij , f maps to a neighborhood of γi as an orbifold quotient of order

ni/n
′
ij

.

The last statement means that if the pairs (Σ, γi) and (Σ′, γ′ij ) are given locally as (R3, z−axis),

then the map f is given by dividing out by the group of rotations of order ni/n
′
ij

around the

z-axis. Since f is a covering map of some degree d off the γ′ij , it follows that for each i,∑
j

ni/n
′
ij = d.

More precisely, the orbifolds we are considering could be described as “locally cyclic orientable
3-orbifolds” since their local structure is always D3/(Z/(n)) for some n (D3 a three-disk). We
restrict to cyclic groups since all our 3–manifolds are boundaries of 4-manifolds with complex
structure.

Example 1.2. Let M ′ be a compact oriented 3-manifold on which a finite group G acts smoothly
and faithfully, preserving orientation, and with the property that the isotropy group Gx at any
point x is cyclic. We consider M ′ → M ≡ M ′/G as an orbifold covering. The knots γi ⊂ M
are the images of the components of the set of points on M ′ with non-trivial isotropy, and the
weight ni is the order of this isotropy group. The γ′ij are the inverse images of the γi, and the

n′ij = 1.

From now on we will often use the notation Σ both for the orbifold and its underlying space
when what is meant is clear from context. Most of the definitions here and below are due to
Thurston (e.g., Chapter 13 of his notes [14]).

An orbifold has an orbifold fundamental group πorb1 (Σ), obtained by quotienting π1(Σ−
⋃
i γi)

by the relations µni
i = 1, where µi is represented by the boundary of a small transverse disk

to γi. This can also be described as πorb1 (Σ) = π1(Σ′), where Σ′ is the result of replacing a
D2 × S1 neighborhood of each γi by K(Z/(ni), 1)× S1, glued so that µi represents a generator
of π1(K(Z/(ni), 1)). (Here K(Z/(ni), 1) is an Eilenberg-Maclane complex—a CW-complex with
fundamental group Z/(ni) and contractible universal cover.)

The Galois correspondence between covering spaces and subgroups of the fundamental group
extends to orbifolds, using orbifold covers and orbifold fundamental group (see e.g., [6]). In
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particular, any orbifold has a universal abelian orbifold cover, or UAOC, classified by the com-
mutator subgroup of πorb1 (Σ). Its covering transformation group is the abelianization πorb1 (Σ)ab

of πorb1 (Σ); this is also Horb
1 (Σ;Z) := H1(Σ′;Z), the degree 1 orbifold homology of Σ (see [6],

[12], and [13] for more on orbifold homology).
Not every orbifold is the quotient of a manifold by a finite group, as in Example 2.1; an

example is (S2 × S1, {p} × S1, n) for n > 1. However, if Σ is a QHS we prove:

Proposition 1.3. Let (Σ, γi, ni) be an orbifold for which the underlying space Σ is a QHS. Then

the UAOC Σ̃ab of Σ is a finite cover of Σ, and its covering group G = Horb
1 (Σ;Z) sits in an

exact sequence

0→ Z/(n1)⊕ · · · ⊕ Z/(nr)→ G→ H1(Σ;Z)→ 0 .

The Proposition follows from two Lemmas.

Lemma 1.4. If Σ is a QHS, there is an exact sequence

0→
r⊕
i=1

Z→ H1(Σ−
⋃
i

γi)→ H1(Σ)→ 0,

where the first map is dotting with (µ1, · · · , µr).

Proof. The long-exact sequence of the pair (Σ,Σ−
⋃
i γi) gives

0 = H2(Σ)→ H2(Σ,Σ−
⋃
i

γi)→ H1(Σ−
⋃
i

γi)→ H1(Σ)→ H1(Σ,Σ−
⋃
i

γi) = 0.

The first term is 0 since Σ is QHS. Let T = ∪iTi be the union of small closed tubular neighbor-
hoods of the γi, each one a closed 2-disk bundle over an S1; let T o and T oi denote their interiors.
Then the inclusion Σ−

⋃
i γi ⊂ Σ−T o induces an isomorphism Hj(Σ,Σ−

⋃
i γi))

∼= Hj(Σ,Σ−T o).
By excision (removing Σ− T ), one has

Hj(Σ,Σ− T o) ∼= Hj(T, T − T o)) = Hj(T, ∂T ) = ⊕iHj(Ti, ∂Ti).

But

H2(Ti, ∂Ti) = kerH1(∂Ti)→ H1(Ti)

is the free Z-module generated by µi, while H1(Ti, ∂Ti) = 0, whence the result. �

Lemma 1.5. Horb
1 (Σ) ∼= H1(Σ−

⋃
i γi))/(n1µ1, · · · , nrµr).

Proof. If G is a group, N a normal subgroup, then abelianizing G/N is the same as abelianizing
G and then modding out by the image of N in Gab; either method gives G/G′N , where ′

denotes commutator subgroup. For, every element of the commutator subgroup is a product of
commutators, so the map G′ → (G/N)′ is surjective. Apply now to G = π1(Σ −

⋃
i γi) and N

the normal subgroup generated by the relations µni
i = 1. Then G/N = πorb1 (Σ), and abelianizing

gives Horb
1 (Σ); Gab = H1(Σ−

⋃
i γi), and the image of N is (n1µ1, · · · , nrµr) . �

Remark 1.6. The Proposition shows one could construct the UAOC by first forming the UAC

Σ′ → Σ, taking the inverse images of the γi’s, and then making a sequence Σ̃ab → Σ′ of cyclic

branched covers over these knots. The orbifold weights on Σ̃ab are equal to 1.
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2. Covers of singular pairs

The singularity version concerns singular pairs (X,C). Here, (X, 0) is the germ of a complex
normal surface singularity (thus homeomorphic to the cone over its link Σ), and C =

∑r
i=1 niCi

is a positive combination of reduced and irreducible Weil divisors. Intersecting with the boundary
of a small ball neighborhood of the singular point in a smooth ambient space gives an orbifold
link in a natural way.

The data of a singular pair (X,C) is more frequently encoded in the literature as a log pair
(X,∆X), with the boundary of X the effective Q-divisor

∆X =

r∑
i=1

(1/ni)Ci.

Log pairs are essential notions in algebraic geometry (e.g. [2]), and 1/ni could be replaced by
any real number between 0 and 1. However, for this paper the singular pair (X,

∑
niCi) is a

more convenient way to display branching data for branched covers.
We denote the support of C by |C| = ∪ri=1Ci. A map of pairs f : (X ′, C ′)→ (X,C) is a finite

map of normal germs f : X ′ → X so that f(|C ′|) = |C|.

Definition 2.1. A log cover of pairs f : (X ′, C ′)→ (X,C) is a map of pairs with the following
additional properties:

(1) f−1(|C|) = |C ′|, and f is an unramified covering space off this set.
(2) For C =

∑r
i=1 niCi and f∗Ci =

∑si
j=1mijC

′
ij (as Weil divisors), one has mij |ni, all j.

(3) C ′ =
∑r
i=1

∑si
j=1 ni/mijC

′
ij .

In other words, for a log cover of pairs, the map f : X ′ → X is ramified only over the Ci,
and the ramification index mij on any curve above it divides ni. (In particular, if ni = 1, no
ramification is allowed above Ci.)

Remark 2.2. Note that if a map of pairs satisfies (1), then the conditions (2) and (3) above
are together equivalent to a relation on the boundary divisors, namely

f∗(∆X) = ∆X′ .

We note the easy

Lemma 2.3. Let f : X ′ → X be a finite map of germs of normal surface singularities. If f is
ramified off the singular points, then there are unique minimal divisors C ′ on X ′ and C on X
so that f : (X ′, C ′)→ (X,C) is a log cover of pairs.

Proof. Let C1, · · · , Cr be the irreducible components of the branch curve of f on X. Write
f∗Ci =

∑si
j=1mijC

′
ij as before. Define ni = lcm(mij , j = 1, · · · , si). Then set C =

∑r
i=1 niCi

and C ′ =
∑r
i=1

∑si
j=1 ni/mijC

′
ij . The result now follows. �

A log cover of pairs (X ′, C ′)→ (X,C) is said to be abelian (resp., cyclic) if an abelian (resp.,
cyclic) group G acts on X ′ with quotient X, permuting the curves lying above each Ci.

To make a cyclic cover, take the nth root of an appropriate function h on X, and normalize.
Let A be the analytic local ring of X, h ∈ mA non-0. Then Tn − h is an irreducible polynomial
over the quotient field of A iff h is not a dth power, where d|n. One may verify this condition as
follows: if the divisor (h) of zeroes of h is the sum of irreducible Weil divisors

∑r
i=1 kiCi, then

for any d > 1 dividing n we have that (1/d)
∑r
i=1 kiCi is not a principal divisor. In this case,

adjoining an nth root of h and normalizing gives an n-cyclic cover of pairs (X ′, C ′)→ (X,C), for
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appropriate C and C ′. Specifically, examining the cyclic behavior over each Ci and normalizing,
we find that mij = n/gcd(n, ki) = ni, so that

C =

r∑
i=1

(n/gcd(n, ki))Ci, C ′ =

r∑
i=1

gcd(n,ki)∑
j=1

C ′ij

is as in Lemma 3.2. If n|ki, then the coefficient of Ci is 1, so that no branching occurs over this
curve and it need not be part of C. We summarize in the

Lemma 2.4. Let (X, 0) be a normal germ, h ∈ mA a non-0 function with divisor of zeroes∑r
i=1 kiCi. Suppose n > 1 is such that h is not a dth power, for any d > 1 which divides n. Then

adjoining an nth root of h and normalizing gives an n-cyclic cover of pairs (X ′, C ′) → (X,C),
with

C =
∑

′(n/(gcd(n, ki))Ci,

where ′ means the sum is taken over those Ci for which n does not divide ki.

We illustrate the last construction by asking whether there exists an n-cyclic cover totally
ramified over a given irreducible Weil divisor. Recall that Cl(X), the divisor class group of X,
is the free abelian group generated by the irreducible Weil divisors on X (or equivalently height
one prime ideals in A = OX,0), modulo principal divisors.

Proposition 2.5. Let (X, 0) be a normal surface singularity, C1 an irreducible Weil divisor,
n > 1 a positive integer.

(1) There exists an n-cyclic cover of pairs (X ′, C ′) → (X,nC1) with C ′ irreducible if and
only if the class of C1 in Cl(X) is divisible by n.

(2) Such a cover is unique exactly when the link of X is a QHS and the discriminant group
has order prime to n.

Proof. As explained above, suppose one has an n-cyclic cover obtained from a function whose
zero divisor is

∑r
i=1 kiCi. It is branched exactly over those Ci for which n does not divide ki.

To have a cover as in (1) requires therefore that an h ∈ A exist with (h) = k1C1 +nD, where k1

and n are relatively prime. If uk1 is congruent to 1 mod n, we can use hu with (hu) = C1 +nD′.
Thus, the class of C1 is divisible by n.

Conversely, if the class of C1 is divisible by n, then for some h in the quotient field of A and
divisor G, we can write

C1 = nG+ (h).

Writing h = j/k, with j, k ∈ A, we have that (jkn−1) = C1 + nG′, where G′ = (k) − G. So,
adjoining an nth root of the regular function (jkn−1) yields a cyclic cover which (by Lemma 2.4)
is branched only over C1.

As for uniqueness, recall that adjoining nth roots of two elements h and h′ gives the same
field extension if and only if h/h′ is an nth power. Suppose there is an effective non-Cartier
divisor C so that nC is Cartier, with (α) = nC. Then the Cartier divisors of h and hα differ
by a multiple of n; but extracting nth roots gives different field extensions. So, the uniqueness
question is exactly whether there are non-trivial elements of order dividing n in the divisor class
group. If the link of X is not a Q-homology sphere, then the divisor class group contains a vector
space modulo a free Z-module, hence contains elements of all finite order. If the link is a QHS,
then as recalled in the next section the divisor class group is a direct sum of a complex vector
space plus the (finite) discriminant group. The result follows. �

We illustrate the last proposition with the following
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Example 2.6. Consider the A1 singularity X = {(x, y, z) ∈ C3 : xz − y2 = 0}, C1 the line
{y = z = 0}, and C2 the irreducible Cartier divisor {z − x2 = 0}. The link of (X, 0) is the lens
space L(2, 1) = RP 3 with fundamental group Z/(2), and the divisor class group is cyclic of order
2, generated by the class of C1. The principal divisor (z) = 2C1, and z is not a power of any
element. We consider nth root constructions of z and z(z − x2).

(1) For n = 2k + 1, the nth root of z gives (X ′, C ′1) → (X, (2k + 1)C1). X ′ is another A1

singularity {xv−u2 = 0}, C ′1 is the line {u = v = 0}, and the coordinates are related by
y = uvk, z = v2k+1. The group action on X ′ is given by (x, u, v) 7→ (x, ζu, ζ2v), where ζ
is a primitive (2k + 1)st root of 1.

(2) For n = 2k, the nth root of z gives (C2, {v = 0}) → (X, kC1). A generator of the
covering group acts via (u, v) 7→ (−u, ζv), where ζ is a primitive (2k)th root of 1. Thus,
x = u2, y = −uvk, z = v2k. The cover factors through the UAC, given by taking the
square root of z (the case k = 1).

(3) The square roots of z−x2 and z(z−x2) give (Lemma 2.4) non-isomorphic double covers
of (X, 2C2). In the first case, the cover is obtained by adjoining T with T 2 = z − x2,
giving a D4 singularity y2 = x(T 2+x2). For the second cover, one adjoins S2 = z(z−x2);
normalize via P = Sx/y, since P 2 = x(z−x2), and note also that SP = y(z−x2). This
second cover, of embedding dimension 5, is an 8/3 cyclic quotient singularity. Example
3.4 below gives the full story.

3. universal abelian log cover of a pair

If (X, 0) has QHS link Σ, then for topological reasons the UAC on the boundary extends to
a UAC of X − {0}, so taking integral close of X in this extension gives what we call the UAC
(X ′, 0) → (X, 0). One can also construct (X ′, 0) directly using a covering of a good resolution
of X, as in [9], (3.1).

If (X,C) is a singular pair for which X has QHS link Σ, one might in principle try to extend
a cover of the corresponding orbifold associated to Σ to a branched cover of X − {0} and then
of X. It seems more natural to make a direct algebro-geometric construction. We have the
following definition/theorem.

Theorem 3.1. Suppose (X,C) is a singular pair for which X has QHS link Σ. Then there exists
a universal abelian log cover (or UALC) (X ′′, C ′′)→ (X,C), a cover of pairs which induces the
UAOC on the boundary.

Proof. Let (X̃, E)→ (X, 0) be a good resolution, and E the lattice generated by the irreducible
exceptional curves Ei. Following Mumford [3], one has a natural direct sum decomposition

Cl(X, 0) ∼= H1(X̃,OX̃)⊕ E∗/E,

the direct sum of a complex vector space of dimension pg(X) plus the finite discriminant group
isomorphic to H1(Σ;Z), of order |det(Ei ·Ej)| (see [9], (2.3) for a nice discussion.) The universal
abelian cover g : (X ′, 0)→ (X, 0) is unramified off the singular point, with covering group E∗/E.
We indicate how to form the UALC via a sequence of cyclic covers of X ′.

Write C =
∑
niCi (we may as well assume all ni > 1). Since a vector space is a divisible

group, we may write the class of Ci in Cl(X) uniquely as [Ci] = ni[Di] + ti, where ti is a torsion
divisor class. But the class of g∗(ti) is trivial, i.e., g∗[Ci] − nig∗[Di] is trivial in Cl(X ′). Thus
g∗Ci−nig∗Di is a principal divisor, given by a unique (up to scalar) function h′i in the quotient

field of A := OX′,0. Writing h′i = ji/ki, with ji, ki ∈ A, we see that hi = jik
ni−1
i ∈ A is a

regular function, defining an effective divisor of the form g∗(Ci) + niFi, for some Fi. Since g
is a covering off the singular point, g∗(Ci) is a reduced divisor. So, one can form the cyclic
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cover by adjoining an ni-th root of hi and normalizing; this depends only on h′i. But the other
g∗(Cj) share no common components with each other, so remain reduced when pulled back to
the cyclic cover given by a root of hi. Thus we can repeat the cyclic quotient construction, and
eventually obtain a series of cyclic covers branched to order nj over every g∗(Cj), and hence
over Cj . The final local ring is the normalization obtained after adjoining to A the nthi root of
hi, all i = 1, · · · , r. �

We summarize in the

Corollary 3.2. Let (X,C =
∑r
i=1 niCi) be a singular pair for which X has QHS link Σ. Then

the universal abelian log cover (X ′′, C ′′)→ (X,C) is constructed by forming the universal abelian
cover of X, and then taking cyclic covers of orders n1 through nr. The covering group G sits in
a short exact sequence

0→ Z/(n1)⊕ · · · ⊕ Z/(nr)→ G→ H1(Σ;Z)→ 0 .

Example 3.3. In Example (2.6(2)) above, taking a fourth root of the function z gives the UALC
of (X, 2C1); thus, the covering group is cyclic, so the exact sequence above is not split.

Example 3.4. In Example (2.(6.3)) above, the UALC of (X, 2C2) is obtained by first taking
the UAC of X; set x = u2, y = uv, z = v2, and the inverse image of C2 is v2−u4 = 0. Taking the
double branched cover gives C[u, v, t]/t2−v2+u4 as UALC, an A3-singularity, with curve the two
components of t = v2−u4 = 0. The covering group is the Klein four-group Z/2×Z/2, generated
by (t, v, u) 7→ (−t, v, u) and (t, v, u) 7→ (t,−v,−u). The invariants of the first involution is the
UAC, while that of the second is the D4-singularity described as the “first case” in Example
(2.(6.3)). The invariants of the other involution, which is −I on the coordinates, gives the 8/3
cyclic quotient; in the previous notation, S = tv and P = tu.

Example 3.5. Consider the pair consisting of (C2, 0) and r ≥ 3 lines L1, · · · , Lr through the
origin, with multiplicities n1, · · · , nr ≥ 2. The UALC of (C2,

∑r
i=1 niLi) is a Brieskorn complete

intersection of type (n1, · · · , nr). Specifically, for any r−2 distinct numbers a1, · · · , ar−2, consider
the singularity (Y, 0) defined by

xni
i + x

nr−1

r−1 + aix
nr
r = 0, i = 1, · · · , r − 2,

and the map f : (Y, 0)→ (C2, 0) defined on the ring level by

x 7→ xnr
r , y 7→ x

nr−1

r−1 .

Thus, y+aix maps to −xni
i , so the map is branched over the corresponding line with multiplicity

ni, i = 1, · · · , r− 2. It is not hard to see that f is the UALC over these lines and the coordinate
axes, and is the quotient by the group Z/(n1)⊕· · ·⊕Z/(nr) acting diagonally on the coordinates
in Cr.

4. Orbifold homology group from plumbing

As always, (X̃, E) → (X, 0) will denote a good resolution of a singularity with QHS link Σ,
where E = E1 ∪ · · · ∪ Em. From the weighted resolution dual graph Γ, one forms the lattice
E = ⊕Z · Ei and its dual E∗, with dual basis e1, · · · , em defined by ei(Ej) = δij . The following
is well-known:

Proposition 4.1. H1(Σ) is isomorphic to the discriminant group D(Γ) = E∗/E, with generators
e1, · · · , em, modulo the relations

m∑
j=1

(Ei · Ej)ej = 0, i = 1, 2, · · · ,m.



160 WALTER D. NEUMANN AND JONATHAN WAHL

This result follows from examining the exact sequence

H2(Σ) = 0→ H2(X̃)→ H2(X̃,Σ)→ H1(Σ)→ H1(X̃) = 0.

Note H2(X̃) = ⊕Z[Ei] ∼= E and H2(X̃,Σ) ∼= H2(X̃) ∼= H2(X̃)∗ ∼= E∗. More precisely, let Ki ⊂ Σ

be a meridian knot over Ei, i.e., the boundary of a complex disk Ai in X̃ which is transversal
to Ei. Then the classes [Ai] form a basis of H2(X̃,Σ), dual to the [Ei], and the image of [Ai] in
H1(Σ) is [Ki].

The Q-valued pairing on E∗ allows one to define ei · ej ∈ Q; by linear algebra, the matrix
(ei · ej) is the inverse of the matrix (Ei · Ej). From ([8], (1.2) and (9.2)), one can calculate the
topologically defined linking number ` of meridian knots on Σ:

Proposition 4.2. The linking number satisfies

`(Ki,Kj) = −ei · ej .

A surface pair (X,C) gives rise to an orbifold (Σ, γi, ni) on the boundary, and we wlll prove
one can compute the orbifold homology Horb

1 (Σ) from a log resolution of the pair. That is, we

consider a good resolution (X̃, E) → (X, 0) for which the full inverse image of C has strong

normal crossings. A proper transform C̃i of Ci intersects one exceptional curve Ei transversally,
so that its boundary γi is a meridian knot of type Ki over a point of Ei; to it is associated an
orbifold weight ni ≥ 1. For convenience, one can blow up further so that each exceptional curve
intersects at most one C̃i.

More generally, assume one is given a good resolution with exceptional curves E1, · · · , Em,
and a meridian knot Ki and weight ni associated to each Ei. This defines an orbifold structure
(Σ, γi, ni) on the link. The goal will be to prove the

Theorem 4.3. For the orbifold (Σ, γi, ni), the orbifold homology Horb
1 (Σ) is generated by

e1, · · · , em, modulo the relations
m∑
j=1

ni(Ei · Ej)ej = 0, i = 1, 2, · · · ,m.

In other words, multiply the rows of the intersection matrix by the corresponding orbifold
weight, and take the cokernel of the resulting non-symmetric matrix. Also, note that if ni = 1,
then Ki and γi are irrelevant.

By Lemma 1.5, to prove the Theorem one needs to find first the cohomology of H1(Σ−
⋃
γi).

By Lemma 1.4 and the above discussion, one has as generators the classes of Ki and µj , and the
complete set of relations must be of the form

(∗)
m∑
j=1

(Ei · Ej)[Kj ] =

m∑
j=1

nij [µj ], i = 1, · · · ,m,

for some integral matrix (nij).
Note there is a natural orientation of the µj ; a small tubular neightborhood Tj of γj in Σ is

a complex disk in Ej times γj , and µj is the boundary of a transverse disk.
Because of Lemma 1.5, Theorem 4.3 follows easily from the next Proposition. The proof is

due to Helge Møller Pedersen, after which an alternate proof due to Eduard Looijenga will be
outlined.

Proposition 4.4. With the notation above, the relations in H1(Σ−
⋃
γi) are

[µi] +

m∑
j=1

(Ei · Ej)[Kj ] = 0, i = 1, · · · ,m.
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Proof. We use linking numbers to relate the classes of the Ki and the µj .

Lemma 4.5. Suppose K is a meridian as above, with [K] of order d in H1(Σ). Then there is
a closed oriented two-chain in Σ−

⋃
γi whose boundary is homotopic to

dK −
m∑
j=1

d`(K, γj)µj .

Proof. There is a closed oriented 2-chain A in Σ whose boundary consists of d copies of K.
We may modify A around the intersection points with all the γj so that there are d|`(K, γj)|
transverse intersection points of A with γj (itself a meridian curve). As `(K, γj) is positive by
Proposition 4.2, γj intersects A positively at these points. A small closed tubular neighborhood
of γj intersects A in d`(K, γj) small disks, and the boundary of each is homotopic to +µj .
Removing the interior of these disks from A therefore gives a closed 2-chain in Σ −

⋃
γi with

boundary dK −
∑
d`(K, γj)µj , as claimed. �

Denoting by δ = |det(Ei · Ej)| the order of H1(Σ), we multiply by δ/d, and conclude the
relations in H1(Σ−

⋃
γi)

δ[Ki] =

m∑
j=1

δ`(Ki,Kj)[µj ], i = 1, · · · ,m.

Viewing as a matrix equation, left multiply both sides by (Ei ·Ej), which by (4.2) is minus the
inverse of `(Ki,Kj); this gives

δ

m∑
j=1

(Ei · Ej)[Kj ] = −δ[µi].

Substituting into (∗) above yields

δ
∑

nij [µj ] = −δ[µi].

But the [µi] are Z-independent in H1(Σ−
⋃
γi). Thus nij = −δij , so that

m∑
j=1

(Ei · Ej)[Kj ] = −[µi].

�

Remark 4.6. Looijenga’s approach is for each Ei to find the boundary of an appropriate closed
oriented 2-chain in Σ−

⋃
γi. Let b = −Ei · Ei.

Suppose γi lies over r ∈ Ei; p1, · · · , pt are intersection points of Ei with its neighbors; and
q1, · · · , qb are any other distinct points of Ei. There is a meromorphic section s of the normal
bundle N → Ei, with simple poles at the qk and no zeroes. Let E′i result from removing from Ei
the interiors of small disks centered at r, the pj , and the qk; one now has the section s : E′i → N ,
which can be scaled into a section of an appropriate unit circle bundle N ′ ⊂ N . Now consider
the images in N ′ of the boundaries of the removed disks.

As N ′ → Ei is locally D × S1 → D, a fibre Ki is homotopic to the inverse image of
the boundary of D (consider the family (teiθ, eiθ), 0 ≤ t ≤ 1). Since s has a simple pole
at qk, the image of the boundary of D has the opposite orientation as the inverse image
(cf. z 7→ (z, 1/z) 7→ (z, |z|/z)). So the b circles contribute −bKi to the boundary of s(E′i).
The circle around r contributes the knot µi to the boundary.

Since disks were removed from the intersections of Ei with other Ek, the 2-chain s(E′i) can
be pushed up from N ′ minus these disks to Σ −

⋃
γi. Locally Ei ∩ Ek looks analytically like
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zw = 0, and Σ can be viewed as |zw| = ε. The boundary of the disk ∆k = {|z| ≤ δ, w = 0} has
boundary that can be lifted to {|z| = δ, w = ε/δ}, which on Σ gives a meridian of Ek, of class
Kk.

Therefore, the closed oriented 2-chain s(E′i) ⊂ Σ−
⋃
γi has boundary homotopic to

−bKi + µi +
∑
k 6=i

(Ei · Ek)Kk = µi +
∑
k

(Ei · Ek)Kk.

This expression becomes zero in homology.

5. Action of the orbifold discriminant group

With (X̃, E) as before, suppose E1, · · · , Et are the ends (or leaves) of the graph Γ. Recall
the diagonal representation of the discriminant group D(Γ):

Proposition 5.1. ([7], (5.2), (5.3)). There is a natural injection D(Γ) ↪→ (Q/Z)t, given by
e 7→ (e · e1, · · · , e · et). Exponentiating Q/Z ↪→ C∗ via r 7→ exp(2πir), one has a faithful diagonal
action of D(Γ) on Ct, where the entries are t-tuples of det(Γ)-th roots of unity.

Given a pair (X,C), there is a log resolution so that each C̃i intersects an end Ei of the graph
(cf. (6.4) below). For this orbifold situation, to those ends Ei we are given knots γi of type Ki

plus a weight ni; assign a weight nj = 1 to any other end. We represent the extra data by a
decorated graph Γ∗, by adding to each end of Γ an arrow and the associated weight.

Definition 5.2. The orbifold discriminant group D(Γ∗) is the group generated by e1, · · · , em
modulo the relations

m∑
j=1

ni(Ei · Ej)ej = 0, i = 1, 2, · · · , t.

m∑
j=1

(Ei · Ej)ej = 0, i = t+ 1, · · · ,m.

According to Theorem 4.3, D(Γ∗) is isomorphic to the orbifold homology group (all weights
of interior Ej equal 1). Modding out the ei’s by the further relations with all ni = 1 (as in
Proposition 4.1) gives the surjection Φ : D(Γ∗)→ D(Γ), with kernel the sum of cyclic groups of
orders n1 through nt. This is the same as the general result in Proposition 1.3.
D(Γ∗) has a natural diagonal representation compatible with that for D(Γ), using the “power

map” N : (C∗)t → (C∗)t given on points by

(a1, · · · , at) 7→ (an1
1 , · · · , ant

t ).

Proposition 5.3. There is a natural injection D(Γ∗) ↪→ (C∗)t and a commutative diagram

D(Γ∗) ↪→ (C∗)t

↓ Φ ↓ N
D(Γ) ↪→ (C∗)t

Proof. We claim there is a map D(Γ∗)→ (Q/Z)t given by

e 7→ ((e · e1)/n1, (e · e2)/n2, · · · , (e · et)/nt).
One needs to check that the relations defining D(Γ∗) go to 0 in every entry of (Q/Z)t. But in
the kth entry,

m∑
j=1

ni(Ei · Ej)ej 7→
m∑
j=1

ni(Ei · Ej)ej · ek/nk = ni/nk

m∑
j=1

(Ei · Ej)ej · ek = ni/nkδik,
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which equals 0 or 1, in either case 0 in Q/Z. After exponentiation, one gets a map to (C∗)t.
This gives the commutative diagram asserted.

There remains to check injectivity in the top row, or equivalently injectivity of ker Φ→ kerN .
As these groups have the same order n1 · · ·nt, we show surjectivity. But by definition, the map
above sends E1 to (1/n1, 0 · · · , 0) in (Q/Z)t, hence to one of the obvious generators of kerN . �

Remark 5.4. According to [7], (5.1), the discriminant group D(Γ) can be generated by any
collection of t − 1 of the classes e1, · · · , et of the leaves. However, D(Γ∗) might require more
than t− 1 generators, and even the t leaf classes might not generate.

Example 5.5. Consider the decorated graph Γ∗ below of a D4 singularity:

2OO

−2•
2

−2

•oo

−2

•
−2

•
2//

Index the three leaves clockwise by e1, e2, e3, and the central curve by f . Then the discriminant
group D(Γ) is the direct sum of two cyclic groups of order 2, generated by e1 and e2; note
e3 = e1 + e2, and f = 0). However, D(Γ∗) is the direct sum of two cyclic groups of order 4,
generated by e1 and e2, and an additional cyclic group of order 2, generated by f (which is not
in the span of e1, e2, e3). So the kernel of the natural projection is < 2e1 > ⊕ < 2e2 > ⊕ < f >.

On the other hand, we have the following

Proposition 5.6. The orbifold discriminant group D(Γ∗) requires at most t generators.

Proof. Let s = m− t denote the number of interior vertices of Γ. We claim that the second set
of s relations in (5.2) imply that s of the ei can be written as combinations of the t remaining
ej , which then suffice as generators of D(Γ∗).

We use the notation ei to denote the corresponding vertex of Γ. An interior vertex ek of
valence r gives rise to a relation −(Ek · Ek)ek + ek,1 + · · · + ek,r = 0, so that any ek,j can be
written as a combination of the r other e’s. In other words, if ej is any neighbor of ek , then ej
can be written as a combination of ek and ek’s remaining neighbors.

Choose any interior vertex f , which we label the “center.” We will connect every adjacent
pair of vertices with a red or green arrow pointing away from f . First, insert a red arrow from
f to one of its neighbors f ′. From f to any of its other neighbors insert a green arrow. Next,
if the end of an arrow is an end of Γ, do nothing more at that vertex. Otherwise, at any vertex
which is the end of an arrow, choose a red arrow to one of its (other) neighbors; if there are any
further neighbors, choose a green arrow to each of them. Continue until one reaches all the end
vertices of Γ. In this way, for every interior vertex, there is one red arrow emerging. Call the
s vertices which are the end of red arrows “red vertices”, while the remainder (there are t of
them) are “green vertices.”

We claim that each red vertex can each be written as a combination of the green ones. Every
vertex has a distance from the center, so we prove the result by induction on the distance. We
have already said that the center v is green, as are all but one of its neighbors. In particular, its
red neighbor can be written as a combination of v and v’s green neighbors. Next, let e be any
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red vertex. Then it is the end of a red arrow emanating from a vertex e′ which is closer to the
center. Then e is a combination of e′ and e′’s other neighbors. The other neighbors of e′ are e′′,
which is closer to the center, and possibly extra ones (if the valence of e′ is at least 3). But those
extra neighbors are green, since only one red arrow can emerge from e′, and that is the one to
e. Thus, e can be written as a combination of green vertices plus e′ and e′′. But e′ and e′′ are
closer to the center, so the inductive step applies (whether or not either is red or green). �

6. orbifold splice quotients

We briefly outline the basics of splice quotient singularities; see Section 1 of [8] for a few more
details, and [7] for the full story.

We retain the same notation as before for a good resolution of a singularity, including the
graph Γ and the diagonal representation D(Γ) ↪→ (C∗)t. Γ has leaves (vertices of valence 1) and
nodes (vertices of valence ≥ 3). Associated to Γ is a splice diagram ∆, obtained by collapsing all
vertices of valence two, and assigning a positive integer weight to every node and emanating edge
by taking an appropriate determinant. From this data, for each node one can assign a weight to
every leaf of ∆; the semigroup condition on ∆ then requires that each weight on an emanating
edge of that node is in the semigroup generated by the weights of the “outer” leaves. Choosing a
coordinate xi for each of the t leaves, one can then write a total of t−2 splice diagram equations
in the xi’s, by writing for each node a sum of monomials (one for each emanating edge) which
have the same weight as the product of weights around the node (one uses the coefficients of
the semigroup relations). The congruence condition allows one to insure that each equation so
obtained transforms by a character under the action of the representation of D(Γ) on Ct. One
thus produces from Γ isolated complete intersection singularities in Ct on which D(Γ) acts, freely
off the origin. There are choices involved, and higher order terms can be added.

Γ is called quasi-minimal if any string in the graph contains no −1 vertex, or consists of a
unique −1 vertex. (A string is a connected subgraph containing no nodes.) The Main Theorem
7.2 of [7] starts with a graph Γ:

Theorem 6.1. [7] Suppose Γ is quasi-minimal and satisfies the semigroup and congruence con-
ditions. Then:

(1) A set of splice diagram equations {fj(xi) = 0} for Γ defines an isolated complete inter-
section singularity (X ′, 0) ⊂ (Ct, 0).

(2) The discriminant group D(Γ) acts freely on X ′ − {0}.
(3) The quotient (X, 0) ≡ (X ′, 0)/D(Γ) has an isolated normal surface singularity, and a

good resolution (X̃, E)→ (X, 0) whose associated dual graph is Γ.
(4) f : (X ′, 0) → (X, 0) is the universal abelian cover, in particular unramified off the

origins.
(5) Each curve C ′i = {xi = 0} ∩ X ′ is mapped by (X ′, 0) → (X, 0) to an irreducible curve

Ci, whose proper transform C̃i on X̃ is smooth and intersects the exceptional curve
transversally, along an end Ei.

Such (X, 0) are called splice quotient singularities.
In more detail, the curve C ′i is reduced, with |D(Γ)|/h irreducible components, where h is the

order of ei in D(Γ) (follows from [7], Section 3). xhi is D(Γ) invariant, hence a function on (X, 0);
its zero-set is a Cartier divisor, which is h times an irreducible Weil divisor Ci. x

h
i is an end-curve

function for (X, 0); on the resolution (X̃, E) it vanishes only on E and an end-curve C̃i, which
intersects Ei transversally at one point. Thus the above construction gives not only a splice-
quotient singularity (X, 0), but also a collection of end-curve functions and their corresponding
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irreducible curves Ci. Note finally that f∗(Ci) is the reduced sum of the irreducible components
of C ′i.

Whether a given (X, 0) is a splice quotient singularity is given by the principal result of [8],
the End-Curve Theorem:

Theorem 6.2. [8] Let (X, 0) be a normal surface singularity with QHS link, (X̃, E) → (X, 0)
a good resolution. Suppose for every end Ei of the exceptional curve E there is a function on
(X, 0) whose zero set on X̃ is an end-curve for Ei. Then (X, 0) is a splice quotient singularity.

An immediate Corollary is the result of T. Okuma:

Theorem 6.3. [10] Let (X̃, E) → (X, 0) be a quasi-minimal resolution of a rational surface
singularity. Then the graph Γ satisfies the semigroup and congruence conditions. Moreover,
every end-curve C̃i is cut out by an end-curve function on X.

Proof. For any end-curve C̃i on X̃, the image Ci on X is a Q-Cartier divisor (since X is rational),
so some multiple of it is the zero-set of a function on X. �

To analyze a pair (X,C), one needs a well-adapted log resolution.

Proposition 6.4. A pair (X,C =
∑
niCi) has a minimal orbifold resolution, a smallest log

resolution π : (X̃C , E)→ (X, 0) satisfying

(1) each Ci has proper transform C̃i which is smooth, intersecting E transversally

(2) C̃i intersects a leaf Ei of E

(3) each leaf Ej of E intersects at most one C̃i
(4) X̃C is quasi-minimal.

X̃C is unique except when a log resolution consists of a single curve plus two C̃i intersecting it
transversally at two points.

Proof. Starting with the minimal good resolution of X, resolve in a minimal way the singularities
of the reduced inverse image of each Ci until one has strong normal crossings (the minimal log-
resolution). If the proper transform of some Ci does not intersect a leaf, blow-up that intersection
point. If three or more proper transforms intersect the same leaf, blow-up each of the intersection
points. If two intersect the same leaf, which has another connection with the graph, again blow-
up those points. The only missing case is when two transforms intersect a graph consisting of
a single curve; in that case, one could blow-up either of the intersection points. Otherwise, one
has uniqueness of the resolution.

We claim the corresponding resolution is quasi-minimal. If a −1 curve intersects some C̃i,
then it is an end-curve; if its neighboring curve had valence 2, the −1 curve could be blown
down, contradicting the minimality of the blow-up process. If a −1 curve intersects no C̃i and
it has a neighbor curve with valence 2, again one could contract the −1 curve, violating the
minimality process. �

We exclude the simple cases for which one has non-uniqueness of the resolution.
Thus, a pair gives rise to a quasi-minimal graph ΓC , as well as a decorated version Γ∗C which

has arrows and weights at special edges. From this data, we can assign weight one to non-special
edges, and encode all the weights in a power map N : Ct → Ct given on functions by xi 7→ zni

i .
By (5.3), one has D(Γ∗) = N−1(D(Γ)).

We give conditions on graphs Γ and Γ∗ that allow one to give equations for a pair (X,C) and
its UALC. This is Theorem 2 of the introduction, which we now prove.
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Let Γ be a quasi-minimal graph with t ends satisfying the semigroup and congruence con-
ditions, and Γ∗ a decorated version with arrows and weights at special ends. Assign a coordi-
nate xi to each end of Γ. Choose a complete intersection singularity (X ′, 0) ⊂ (Ct, 0) defined
by t − 2 splice equations {fk(x1, x2, · · · , xt) = 0} on which D(Γ) acts, freely off 0. Then

(X ′, 0) → (X ′, 0)/D(Γ) ≡ (X, 0) is the UAC, and there is a resolution (X̃, E) → (X, 0) with
graph Γ. If Ei is a special end of E, the curve C ′i = {xi = 0} ∩ X ′ is reduced and maps to a
Q-Gorenstein curve Ci on (X, 0). Let C ′ = ΣC ′i. Consider as above a power map N : Ct → Ct.

Theorem 6.5. Consider Γ, Γ∗, (X ′, 0), fk(x1, · · · , xt), (X, 0), Ci, C
′, N : Ct → Ct, as above.

(1) Define (X ′′, 0) = N−1(X ′, 0) = {fk(zn1
1 , · · · , znt

t ) = 0, 1 ≤ k ≤ t − 2} ⊂ Ct. Then
(X ′′, 0) is an isolated complete intersection singularity on which D(Γ∗) acts.

(2) Let C ′′ ⊂ X ′′ be the reduced Cartier divisor which is the sum of {zi = 0}∩X ′′ for special
i. Then D(Γ∗) acts on C ′′ and acts freely on X ′′ − C ′′.

(3) The quotient (X ′′, C ′′) → (X ′′, C ′′)/D(Γ∗) = (X,C) is the universal abelian log cover,
where C = ΣniCi is the sum (with the weights) corresponding to the special ends of Γ∗.

Proof. We show first that (X ′′, 0) is non-singular away from the origin. N is a covering map off
the intersection with the coordinate hyperplanes zi = 0. N can be factored as the composition of
maps which raise powers one coordinate at a time. To study what happens over the reduced curve
{xi = 0} ∩X ′, factor the map N by first raising the ith coordinate to the nthi power, and then
raising all the other coordinates to the appropriate power. The inverse image of {xi = 0} ∩X ′
under the first map is smooth (away from 0), and the second map is unramified over the new
curve. Further, {zi = 0} ∩X ′′ is reduced.

Note D(Γ∗) is a subgroup of (C∗)t, which itself preserves all {zj = 0}, so it acts on X ′′ as well
as C ′′. By construction, N : (X ′′, 0)→ (X ′, 0) is a covering map off C ′′. Since D(Γ) acts freely
on X ′ − {0}, then N−1(D(Γ)) = D(Γ∗) acts freely on X ′′ − C ′′. The full (and free) quotient
of X ′′ − C ′′ by D(Γ∗) is thus X − ΣCi. The construction above matches that of the UALC as
described in Section 3. �

Definition 6.6. A pair which arises as in the Theorem is called an orbifold splice quotient.

Remark 6.7. Note that the condition for (X,ΣniCi) to be a splice quotient is independent of
the weights ni, and depends only on the Ci (which must be Q-Cartier).

There is an analogue of the End-Curve Theorem for orbifold splice quotients.

Theorem 6.8. Let (X,C = ΣniCi) be a pair, with minimal orbifold resolution and data (X̃, E),
Γ, Γ∗. Then the following are equivalent:

(1) (X,C) is an orbifold splice quotient
(2) Each Ci is Q-Cartier, and for every non-special end Ej of E there is an end-curve

function.

Proof. One implication follows from the above discussion; we prove the converse.
Since Ci is Q-Cartier, it is the zero-locus of a function gi on X. Therefore, on X̃, gi vanishes

only on E and C̃i, hence is an end-curve function for that special leaf. But by assumption,
for each non-special leaf there is an end-curve function. Thus, there are end-curve functions for
every end of Γ. By the End-Curve Theorem, Γ satisfies the semigroup and congruence conditions
and (X, 0) itself is a splice quotient. It follows from the construction above that (X,C) is an
orbifold splice quotient. �

Corollary 6.9. If (X, 0) has a rational singularity, then any pair (X,C) is an orbifold splice
quotient.
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Proof. Since (X, 0) is rational, every curve Ci is Q-Cartier. For each non-special end Ej on the

minimal orbifold resolution X̃, choose any end-curve C̃j . Its image Cj on X is the zero-set of
a function hj , which becomes an end-curve function of Ej . The result now follows from the
Theorem. �

Therefore, if (X, 0) has a rational singularity and C ⊂ X is a reduced curve, then modulo
taking an abelian quotient, one can write down from the orbifold resolution diagram Γ some
explicit equations for the singularity and the components of the curve C. This includes the case
X = C2, where it has been known for a long time (e.g. [1]) how to write down the equation of
a singular curve from its resolution diagram. One should compare as well with Example 3.5.

Corollary 6.10. Consider the pair (X,ΣniCi). Suppose (X, 0) is a splice quotient, each Ci is
Q-Cartier, and all the non-special ends of E on the minimal orbifold resolution are ends from
the minimal good resolution. Then (X,C) is an orbifold splice quotient.

Proof. Since (X, 0) is a splice quotient, there is an end-curve function for every end of the graph
of the minimal good resolution. Such a function works just as well if that end is also an end on
the minimal orbifold resolution. Now apply the Theorem. �

If (X, 0) is a splice-quotient singularity which is not rational, there will likely exist quasi-
minimal resolutions for which the semigroup conditions are not satisfied.

Example 6.11. The minimally elliptic hypersurface singularity (X, 0)={x2 + y3 + z7 = 0} is a
splice quotient, with graph and splice diagram for the minimal good resolution

−3 • ◦

−2

•
−1

•
−7

• ◦
2
◦

7

3

◦

Blowing up further gives a quasi-minimal resolution graph and splice diagram:

−3 • −1 • ◦ ◦

−2

•
−1

•
−9

•
−1

• ◦
2
◦

7

3

1
◦

1

1

◦

The splice diagram does not satisfy the semigroup conditions.

One can understand the previous example as follows: A singularity with this graph (there are
two of them) is minimally elliptic and has unimodular resolution graph. Thus the divisor class
group is isomorphic to C, so there is no torsion, and Q-Cartier is the same as Cartier. The only
end-curve functions for the MGR on the −7 curve are powers of z; so on the further blow-up,
one cannot have end-curve functions for both the new −1 end-curves.
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7. An example

Let (X, 0) be the D4 singularity {w2 = xy(x + y)}. Consider the curve C = pC1 + qC2,
where C1 is the Weil divisor given by the prime ideal (y, w), and C2 is a curve, equations to be
determined, which on the minimal resolution is smooth and intersects tangentially the central
curve, to order 2, away from the other intersection points. To go from the familiar minimal
resolution of X to an orbifold resolution, one needs to blow up three times so that C̃2 intersects
a unique leaf. The graph Γ∗C is

x3 x4

• •
x2 x5

p

•oo −4• •
−1

•
q

//

•
x1

The representation on C5 of D(Γ) is the four-group, acting only on the x1, x2, x3 coordinates, by
multiplying two of the variables by −1. There will be 2 splice diagram equations coming from
the valence 4 node (locating the cross-ratio of the fourth point), and one from the other. One
set of equations (there are many) on which the group acts equivariantly is

x4 − x2
2 − x2

3 = 0

x2
1 + x2

2 − x2
3 = 0

x5 − x2
4 − x1x2x3(x2

1 + x2
2 + x2

3) = 0.

Invariants for the group action are x = x2
1, y = x2

2, z = x2
3, w = x1x2x3, and x4 and x5, and these

are related by

x4 = y + z; x+ y − z = 0; x5 = x2
4 + w(x+ y + z).

Using xyz = w2, the quotient is the familiar equation w2 = xy(x+ y). The curve C2 turns out
to be a principal (i.e., Cartier) divisor defined by x5 = (x+ 2y)2 + 2w(x+ y). x2 = 0 defines C ′1,
so x2

2 = y is an end-curve function.
To pass to the UALC, in all equations one replaces x2 by zp2 , x5 by zq5 , and x1, x3, x4 by

z1, z3, z4 respectively. The orbifold homology group in (C∗)5 is generated by

(1/2)[1, 0, 1, 0, 0], (1/2p)[p, 1, 0, 0, 0], and (1/q)[0, 0, 0, 0, 1],

hence is the product of three cyclic groups of orders 2, 2p, and q, respectively. Here we have used
the familiar notation (1/n)[q1, · · · , qk] to denote the diagonal group generated by (ζq1 , · · · , ζqk),
where ζ is a primitive nth root of 1.
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