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EQUISINGULAR ALGEBRAIC APPROXIMATION OF REAL AND

COMPLEX ANALYTIC GERMS

JANUSZ ADAMUS AND AFTAB PATEL

Abstract. We show that a Cohen-Macaulay analytic singularity can be arbitrarily closely
approximated by Nash germs which are also Cohen-Macaulay and share the same Hilbert-

Samuel function. We also prove that every analytic singularity is topologically equivalent to

a Nash singularity with the same Hilbert-Samuel function.

1. Introduction

One of the central problems in analytic geometry concerns algebraic approximation of analytic
objects. In the present paper, we consider approximation of a (real or complex) analytic germ
(X, a) by Nash, or even algebraic, germs which are equisingular with (X, a) in the sense of the
Hilbert-Samuel function. Recall that, for an analytic germ (X, a), the Hilbert-Samuel function
HX,a is defined as

HX,a(η) = dimK
OX,a
mη+1

, for all η ∈ N ,

where OX,a is the local ring of X at a, with the maximal ideal m. The Hilbert-Samuel function
encodes many important algebro-geometric properties of the germ (e.g., its multiplicity) and may
be regarded as a measure of its singularity. It plays a central role in resolution of singularities
(see [6]).

Throughout this paper, by an analytic germ (or singularity) we mean the germ at a point
of a K-analytic space (see, e.g., [5, Def. 7.7]), where K = R or C. Thus, analytic germs are
in one-to-one correspondence with local analytic K-algebras, that is, rings of the form K{x}/I,
where x = (x1, . . . , xn) and I is an ideal in the ring of convergent power series K{x}. The
correspondence is via the isomorphism OX,a ∼= K{x}/I. (In particular, our analytic germs need
not be reduced.) We say that the germ (X, a) is Nash when the ideal I can be generated by
algebraic power series (i.e., convergent power series algebraic over the ring of polynomials K[x]),
and algebraic when I can be generated by polynomials.

In the first part of the paper, we deal with singularities of special types. Namely, those
whose local ring is Cohen-Macaulay, or even better, a complete intersection. We prove that
a complete intersection singularity can be arbitrarily closely approximated by algebraic germs
which are also complete intersections and share the same Hilbert-Samuel function (Theorem 7.3
and Remark 7.4). Polynomial approximation is not possible, in general, for Cohen-Macaulay
singularities (see Example 8.2). The next best thing is an approximation by Nash germs. In
Theorem 8.1, we show that a Cohen-Macaulay singularity can be arbitrarily well approximated
by Nash germs which are also Cohen-Macaulay and share the same Hilbert-Samuel function.
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These results may be combined with the main theorem of the second part, which works for
arbitrary singularities.

The second part of the paper is concerned with approximation of an analytic singularity (X, 0)
by Nash germs which are homeomorphic with (X, 0). We give a variant of Mostowski’s theorem
[10], Theorem 10.1, showing that every analytic germ (X, 0) ⊂ (Kn, 0) can be arbitrarily closely

approximated by a Nash germ (X̂, 0) ⊂ (Kn, 0), such that the pairs (Kn, X) and (Kn, X̂) are
topologically equivalent near zero, and the Hilbert-Samuel functions HX,0 and HX̂,0 coincide.

This work has been motivated by two key applications: In a subsequent paper, we show how
Theorem 8.1 implies the existence of flat Nash approximations to flat analytic morphisms and
may thus be used in the theory of analytic deformations. The other, more distant goal, is to
apply our Theorem 10.1 at every step of a resolution of singularities of an analytic germ to
show that the resolution tower itself is topologically equivalent to a Nash object. The Hilbert-
Samuel equisingularity then implies that the Nash tower actually resolves singularities of the
approximating Nash germ.

When dealing with questions about the Hilbert-Samuel function of the local ring
OX,a = K{x}/I, it is convenient to work with a so-called diagram of initial exponents of I,
a combinatorial representation of the ideal I, denoted N(I), which we recall in Section 2. In-
deed, the Hilbert-Samuel function of K{x}/I may be read off from the sub-level sets of (the
complement of) N(I) (Lemma 6.2). The diagram itself is, in turn, uniquely determined by a
standard basis of I, which is a special generating set of I (see Section 3). Our key tool in es-
tablishing Hilbert-Samuel equisingularity of a given germ and its approximants is a theorem of
Becker [3], which gives a criterion for a collection {F1, . . . , Ft} ⊂ I to form a standard basis of
I in terms of finitely many equations that depend polynomially on the Fi. It is therefore well
suited for an application of the classical Algebraic Artin Approximation.

We call (X, a) a Cohen-Macaulay (resp. complete intersection) singularity when the local
ring OX,a is Cohen-Macaulay (resp. a complete intersection); see Section 7 for definitions. The
finite determinacy of the Hilbert-Samuel function of a complete intersection follows already from
the work of Srinivas and Trivedi [18]. We give a new proof of this fact here, because it can
also be applied in the Cohen-Macaulay case, which is new. Roughly speaking, we combine the
equivalence of Cohen-Macaulayness and flatness (Remark 7.2) with a corollary to Hironaka’s
flatness criterion (Proposition 2.5), to show that with respect to a certain total ordering on Nn
the diagrams of I and its suitable approximation Iµ coincide. We then show (Proposition 6.7)
that this equality implies equality of the diagrams with respect to the standard ordering, and
hence equality of the Hilbert-Samuel functions.

Finally, in the proof of Theorem 10.1, we combine the above Becker criterion with the original
strategy of Mostowski, based on P loski’s parametrized Artin approximation [15] and a theorem
of Varchenko stating that the algebraic equisingularity of Zariski implies the topological equisin-
gularity [19]. We use the modern exposition of Mostowski’s theorem, due to Bilski, Parusiński
and Rond [7], where the original P loski theorem is replaced with a more powerful Theorem 4.1.

The paper is structured as follows: In the next section, we recall Hironaka’s division algorithm
and its consequences for the diagrams of initial exponents. We also prove Proposition 2.5, used in
the treatment of Cohen-Macaulay singularities. In Sections 3 and 4, we recall our two main tools:
the s-series criterion and a nested parametrized algebraic approximation theorem. Sections 5
and 6 contain various auxiliary results needed in the proofs of Theorems 7.3 and 8.1. The latter
are proved in Sections 7 and 8 respectively. The remainder of the paper is devoted to the proof
of Theorem 10.1.
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2. Hironaka’s division algorithm, diagram of initial exponents, and flatness

Let K = R or C. Let A denote the field K or the ring K{y} of convergent power series
in variables y = (y1, . . . , ym), and let m denote the maximal ideal of A (so m = (0) in case
A = K). Let A{z} denote the ring of convergent power series in variables z = (z1, . . . , zk) with
coefficients in A (i.e., K{z} or K{y, z}, depending on A). We will write zα for zα1

1 . . . zαkk , where

α = (α1, . . . , αk) ∈ Nk.
The mapping A 3 F (y) 7→ F (0) ∈ K = A/m of evaluation of the y variables at 0 induces an

evaluation mapping

A{z} 3 F =
∑
α∈Nk

Fα(y)zα 7→ F (0) =
∑
α∈Nk

Fα(0)zα ∈ K{z} .

(In case A = K, this is just the identity mapping.) For an ideal I in A{z}, define

I(0) := {F (0) : F ∈ I},
in K{z}, the evaluated ideal.

A positive linear form on Kk is given as Λ(α) =
∑k
j=1 λjαj , for some λj > 0. Given such

Λ, we will regard Nk as endowed with the total ordering defined by the lexicographic ordering
of the (k + 1)-tuples (Λ(α), αk, . . . , α1). The support of a non-zero F =

∑
α∈Nk Fαz

α ∈ A{z}
is defined as suppF = {α ∈ Nk : Fα 6= 0}. The initial exponent of F , denoted expΛF , is the
minimum (with respect to the above total ordering) over all α ∈ suppF . Similarly,

suppF (0) = {α ∈ Nk : Fα(0) 6= 0} and expΛF (0) = minΛ{α ∈ suppF (0)} ,
for the evaluated series. We have suppF (0) ⊂ suppF , and hence expΛF ≤ expΛF (0). We will
write simply expF and expF (0) instead of expΛF and expΛF (0), when Λ(α) = |α| = α1+· · ·+αk.

We now recall Hironaka’s division algorithm.

Theorem 2.1 ([5, Thm. 3.1, 3.4]). Let Λ be any positive linear form on Kk. Let

G1, . . . , Gt ∈ A{z},
and let αi := expΛGi(0), 1 ≤ i ≤ t.

Then, for every F ∈ A{z}, there exist unique Q1, . . . , Qt, R ∈ A{z} such that

F =

t∑
i=1

QiGi +R,(2.1)

αi + suppQi ⊂ ∆i, 1 ≤ i ≤ t, and suppR ⊂ ∆,

where

∆1 := α1 + Nk, ∆i := (αi + Nk) \
i−1⋃
j=1

∆j for i ≥ 2,

and ∆ := Nk \
⋃t
i=1 ∆i.

The diagram of initial exponents of an ideal I in A{z}, relative to Λ, is defined as

NΛ(I) = {expΛF : F ∈ I \ {0}}.
Similarly, for the evaluated ideal I(0), we set

NΛ(I(0)) = {expΛF (0) : F ∈ I, F (0) 6= 0}.
We will write N(I) and N(I(0)) instead of NΛ(I) and NΛ(I(0)), when Λ(α) = |α| = α1+· · ·+αk.
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Note that every diagram NΛ(I) satisfies the equality NΛ(I) + Nk = NΛ(I). (Indeed, for
α ∈ NΛ(I) and γ ∈ Nk, one can choose F ∈ I with expΛF = α; then zγF ∈ I, hence

α+ γ = expΛ(zγF )

is in NΛ(I).)

Remark 2.2. It is easy to show that, for every ideal I in A{z} and for every positive linear
form Λ, there exists a unique smallest (finite) set VΛ(I) ⊂ NΛ(I) such that VΛ(I) +Nk = NΛ(I)
(see, e.g., [5, Lem. 3.8]). The elements of VΛ(I) are called the vertices of the diagram NΛ(I).

Corollary 2.3 ([5, Cor. 3.9]). Let Λ be any positive linear form on Kk. Let I be an ideal in
K{z}, and let α1, . . . , αt ∈ Nk be the vertices of the diagram NΛ(I). Choose Gi ∈ I such that
expΛGi = αi, 1 ≤ i ≤ t, and let {∆i,∆} denote the partition of Nk determined by the αi, as

above. Then, NΛ(I) =
⋃t
i=1 ∆i and the Gi generate the ideal I.

Proof. The equality NΛ(I) =
⋃t
i=1 ∆i follows immediately from Remark 2.2. According to

Theorem 2.1, any F ∈ K{z} can be written as F =
∑t
i=1QiGi + RF , where suppRF ⊂ ∆.

Therefore, F ∈ I if and only if RF ∈ I. But suppRF ⊂ ∆ = Nk \NΛ(I), hence RF ∈ I if and
only if RF = 0. �

The remainder of this section will be concerned with the algebraic notion of flatness. Recall
that a module M over a Noetherian ring A is called flat when, for every exact sequence

0→ N ′ → N → N ′′ → 0

of A-modules, the sequence

0→ N ′ ⊗AM → N ⊗AM → N ′′ ⊗AM → 0

is also exact. The following result of Hironaka expresses flatness in terms of his division algorithm.

Theorem 2.4 ([5, Thm. 7.9]). Let I be an ideal in A{z}. Let Λ be any positive linear form on Kk,
and let α1, . . . , αt be the vertices of NΛ(I(0)). Let G1, . . . , Gt ∈ I be such that expΛGi(0) = αi,
1 ≤ i ≤ t. Then, the following are equivalent:

(i) A{z}/I is flat as an A-module
(ii) For any F ∈ I, the remainder of F after division (2.1) by G1, . . . , Gt is zero.

Let now x = (x1, . . . , xn), n ≥ 2. Fix k ∈ {1, . . . , n− 1}. To simplify notation, let x[k] denote
variables (x1, . . . , xk), and x̃ the remaining (xk+1, . . . , xn). In what follows, we will regard
elements of K{x} either as power series in all the variables x with coefficients in K, written
F =

∑
β∈Nn fβx

β , fβ ∈ K, or as power series in variables x[k] with coefficients in K{x̃}, written

F =
∑
α∈Nk Fα(x̃)xα[k], Fα(x̃) ∈ K{x̃}.

For F ∈ K{x}, we will denote by F (0) the series with variables x̃ evaluated at 0. That is, if
F =

∑
α∈Nk Fα(x̃)xα[k] then

F (0) =
∑
α∈Nk

Fα(0)xα[k] ∈ K{x[k]}.

Equivalently, if F =
∑
β∈Nn fβx

β then

F (0) =
∑

β∈Nk×{0}n−k
fβx

β ∈ K{x[k]}

(i.e., the sum is over those β = (β1, . . . , βn) for which βk+1 = · · · = βn = 0).
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To avoid confusion, for F ∈ K{x}, we will denote its support as an element of K{x̃}{x[k]} by
suppNkF , and the support as an element of K{x} as suppNnF . That is,

suppNkF = {α ∈ Nk : Fα(x̃) 6= 0} and suppNnF = {β ∈ Nn : fβ 6= 0}.

Note that a positive linear form Λ(β) =
∑n
i=1 λiβi on Kn gives rise to a positive form

∑k
i=1 λiβi

on Kk. By a slight abuse of notation, we will denote the latter also by Λ.

Proposition 2.5. Let I be an ideal in K{x}, let 1 ≤ k < n, and let x̃ denote the variables
(xk+1, . . . , xn).

(i) If there exist a positive linear form Λ on Kn and a set D ⊂ Nk such that

NΛ(I) = D × Nn−k,
then K{x}/I is a flat K{x̃}-module.

(ii) If K{x}/I is a flat K{x̃}-module, then there exist l0 ∈ N and a set D ⊂ Nk such that, for

all l ≥ l0, the diagram NΛ(I) with respect to the linear form Λ(β) =

k∑
i=1

βi +

n∑
j=k+1

lβj

satisfies NΛ(I) = D × Nn−k.

Remark 2.6. Note that if Λ is such that NΛ(I) = D×Nn−k for some D ⊂ Nk, then necessarily
D = NΛ(I(0)).

Proof. For the proof of (i), we will need the following well known corollary to the classical “local
criterion for flatness” (see, e.g., [5, Cor. 7.6]): K{x}/I is flat as a K{x̃}-module if and only if
I ∩ (x̃)K{x} ⊂ (x̃)·I.

Suppose that F ∈ I ∩ (x̃)K{x}. Then, F (0) = 0. Let β1, . . . , βt ∈ Nk×{0}n−k be the vertices
of NΛ(I), and let G1, . . . , Gt ∈ I be such that expΛGi = βi, 1 ≤ i ≤ t. By Theorem 2.1 and

Corollary 2.3, there are Q1, . . . , Qt ∈ K{x} such that F =
∑t
i=1QiGi and the sets βi+suppNnQi

are pairwise disjoint.
Write βi = (αi, 0), where αi ∈ Nk, 1 ≤ i ≤ t. It follows that the sets αi + suppNkQi(0) in

Nk are also pairwise disjoint, and hence the initial exponents expΛQi(0)Gi(0) = expΛQi(0) +αi

are pairwise distinct. On the other hand,
∑t
i=1Qi(0)Gi(0) = F (0) = 0. This is only possible if

Qi(0) = 0 for all i. In other words, Qi ∈ (x̃)K{x}. Hence F =
∑t
i=1QiGi is in (x̃) ·I, which

proves (i).

Suppose now that K{x}/I is K{x̃}-flat. Let λ(α) = |α| for α ∈ Nk, and let α1, . . . , αt be the
vertices of N(I(0)) = Nλ(I(0)). Let {∆i,∆} be the partition of Nk determined by the αi as in
Theorem 2.1. Let l0 = 1 + max{|αi| : i = 1, . . . , t}, let l ≥ l0 be arbitrary, and set

Λ(β) :=

k∑
i=1

βi +

n∑
j=k+1

lβj .

Set βi := (αi, 0) = (αi1, . . . , α
i
k, 0, . . . , 0) ∈ Nn, 1 ≤ i ≤ t. We will show that the vertices of

NΛ(I) are precisely {β1, . . . , βt}.
Let G1, . . . , Gt ∈ I be such that expGi(0) = αi, 1 ≤ i ≤ t. Write Gi =

∑
α∈Nk Gi,αx

α
[k],

where Gi,α =
∑
γ∈Nn−k gi,α,γ x̃

γ . For every i, there are at most finitely many α ∈ suppNkGi with

λ(α) < λ(αi). For each such α, by the choice of αi, we have ν(Gi,α) ≥ 1, where for a non-zero
F ∈ K{x̃}, ν(F ) = max{r : F ∈ (x̃)r}. Therefore, for each such α and for every non-zero term
gi,α,γ x̃

γ of Gi,α, we have |γ| ≥ 1, and hence Λ((α, γ)) ≥ l0 > Λ(βi). It follows that, with respect
to the total ordering in Nn induced by Λ, we have

expΛ(Gi) = βi, 1 ≤ i ≤ t.
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Pick F ∈ I. By Theorem 2.4, there are Q1, . . . , Qt ∈ K{x} such that F =
∑t
i=1QiGi and

αi + suppNkQi ⊂ ∆i, 1 ≤ i ≤ t. Then, βi + suppNnQi ⊂ ∆i × Nn−k; in particular,

βi + expΛQi ∈ ∆i × Nn−k, 1 ≤ i ≤ t.

It thus follows that the expΛ(QiGi) = βi + expΛQi lie in pairwise disjoint regions, and hence
are pairwise distinct. Consequently, expΛF = minΛ{expΛ(QiGi) : i = 1, . . . , t} belongs to
N(I(0))× Nn−k, which completes the proof. �

We finish this section with a little observation that will only be used in the proof of Proposi-
tion 6.7, but it fits naturally in the above setting.

Lemma 2.7. Let I be an ideal in K{x}, let 1 ≤ k < n, and let n denote the ideal in K{x}
generated by the variables x̃ = (xk+1, . . . , xn). Then, I ∩ n = I · n implies I ∩ nm = I · nm for all
m ≥ 1.

Proof. Suppose I ∩ n = I · n, and fix m ≥ 2. As in the proof of Proposition 2.5, we then have
that K{x}/I is flat as a K{x̃}-module. Hence, by Proposition 2.5(ii), there exists l0 such that,

for all l ≥ l0, the diagram NΛ(I) with respect to the linear form Λ(β) =
∑k
i=1 βi +

∑n
j=k+1lβj

satisfies NΛ(I) = NΛ(I(0)) × Nn−k. Fix G1, . . . , Gt ∈ I such that expΛ(Gi) = βi, where
βi = (αi, 0) ∈ Nk × {0}n−k, i = 1, . . . , t, are the vertices of NΛ(I).

Pick F ∈ I ∩ nm, and let F =
∑t
i=1QiGi be the unique Hironaka division of F (relative to

Λ). Set γi := expΛQi. Note that the Qi depend only on the partition of Nn determined by the
expΛGi. In particular, they are independent of the choice of l, so long as l ≥ l0. Therefore, by
choosing l large enough, we may assume that

(2.2) If βi0 + γi0 = minΛ{βi + γi : 1 ≤ i ≤ t} and xγ
i0 ∈ ns, then Qi ∈ ns for all i.

Indeed, let s0 be the least integer such that there exist 1 ≤ i∗ ≤ t and γ∗ ∈ suppQi∗ with
xγ
∗ ∈ ns0 \ ns0+1. Pick any i∗ and γ∗ with these properties. Write γ∗ = (κ∗, λ∗) ∈ Nk × Nn−k,

and set

l∗ := l0 + |κ∗|+ max
j=1,...,t

|αj |, and Λ∗(β) :=

k∑
i=1

βi +

n∑
j=k+1

l∗βj .

Then, for all 1 ≤ i ≤ t and γ = (κ, λ) ∈ suppQi with xγ ∈ ns0+1, we have |λ| ≥ |λ∗| + 1 and
hence

Λ∗(βi + γ) = |αi|+ |κ|+ l∗|λ| ≥ |αi|+ |κ|+ l∗(|λ∗|+ 1)

= |αi|+ |κ|+ l0 + max
j
|αj |+ |κ∗|+ l∗|λ∗| > Λ∗(βi

∗
+ γ∗) .

This proves that the minimum minΛ∗{βi+γi : 1 ≤ i ≤ t} is attained for some γi with xγ
i ∈ ns0 .

Now, the fact that expΛ(F ) = minΛ{expΛQiGi : 1 ≤ i ≤ t}, together with F ∈ nm and (2.2),
imply that Qi ∈ nm for all i, and so F ∈ I · nm. �

3. Standard bases and Becker’s s-series criterion

Let again Λ(β) =
∑n
j=1 λjβj be a positive linear form on Kn, and let Nn be given the

total ordering defined by the lexicographic ordering of the (n+ 1)-tuples (Λ(β), βn, . . . , β1). For
F ∈ K{x}, let as before expΛF = minΛ{β ∈ suppF} denote the initial exponent of F relative to
Λ.
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Let I be an ideal in K{x}. Following Becker [3], we will say that a collection

S = {G1, . . . , Gt} ⊂ I
forms a standard basis of I (relative to Λ), when for every F ∈ I there exists i ∈ {1, . . . , t} such
that expΛF ∈ expΛGi + Nn.

Remark 3.1. (1) It follows directly from definition that every standard basis S of I relative
to Λ contains representatives of all the vertices of the diagram NΛ(I) (that is, for every
vertex βi of NΛ(I) there exists Gi ∈ S with βi = expΛGi). Hence, by Corollary 2.3,
every standard basis of I is a set of generators of I.

(2) Note that the term “standard basis” in most of modern literature refers to a collection
defined by more restrictive conditions than the one above (see, e.g., [5, Cor. 3.9] or [6,
Cor. 3.19]). In particular, our standard basis is not unique and may contain elements
which do not represent vertices of the diagram.

For any F =
∑
β fβx

β and G =
∑
β gβx

β in K{x}, one defines their s-series S(F,G) with

respect to Λ as follows: If βF = expΛF , βG = expΛG, and xγ = lcm(xβF , xβG), then

S(F,G) := gβGx
γ−βF · F − fβF xγ−βG ·G .

GivenG1, . . . , Gt, F ∈ K{x}, we say that F has a standard representation in terms of {G1, . . . , Gt}
with respect to Λ, when there exist Q1, . . . , Qt ∈ K{x} such that

F =

t∑
i=1

QiGi and expΛF ≤ min{expΛ(QiGi) : i = 1, . . . , t} .

Here, we adopt a convention that expΛF < expΛ0, for any Λ and any non-zero F .

The following s-series criterion of Becker will be our main tool in establishing Hilbert-Samuel
equisingularity.

Theorem 3.2 ([3, Thm. 4.1]). Let S be a finite subset of K{x}. Then, S is a standard basis
(relative to Λ) of the ideal it generates if and only if for any G1, G2 ∈ S the s-series S(G1, G2)
has a standard representation in terms of S.

4. Nested parametrized algebraic approximation

Let x = (x1, . . . , xn), y = (y1, . . . , ym), and let K〈x〉 denote the ring of algebraic power series
in x. Recall that a convergent power series F ∈ K{x} is called an algebraic power series when
F is algebraic over the ring of polynomials K[x].

The following nested variant of P loski’s parametrized approximation theorem [15] is due to
Bilski, Parusiński and Rond [7]. The result itself follows from Spivakovsky’s nested approx-
imation [17, Thm. 11.4], which in turn is a corollary of the Néron-Popescu Desingularization
[16].

Theorem 4.1 ([7, Thm. 2.1]). Let f(x, y) = (f1(x, y), . . . , fp(x, y)) ∈ K〈x〉[y]p and let

ȳ(x) = (ȳ1(x), . . . , ȳm(x)) ∈ K{x}m

be such that f(x, ȳ(x)) = 0.
Suppose that ȳi(x) depends only on variables (x1, . . . , xσ(i)), where {i 7→ σ(i)} is an increasing

function. Then, there exist a new set of variables z = (z1, . . . , zs), an increasing function τ , an
m-tuple of algebraic power series ŷ(x, z) ∈ K 〈x, z〉m such that f(x, ŷ(x, z)) = 0, and for every i,

ŷi(x, z) ∈ K
〈
x1, . . . , xσ(i), z1, . . . , zτ(i)

〉
,
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as well as convergent power series z̄i(x) ∈ K{x} vanishing at 0 such that z̄1(x), . . . , z̄τ(i)(x)
depend only on (x1, . . . , xσ(i)) and ȳ(x) = ŷ(x, z̄(x)).

The classical Algebraic Artin Approximation follows immediately from the above.

Theorem 4.2 ([2, Thm. 1.10]). Let f(x, y) ∈ K〈x〉[y]p and let ȳ(x) ∈ K{x}m be such that

f(x, ȳ(x)) = 0.

Then, for any c ∈ N, there exists an m-tuple of algebraic power series ŷ(x) ∈ K 〈x〉m such that

f(x, ŷ(x)) = 0,

and ŷ coincides with ȳ up to degree c, that is, ȳ(x)− ŷ(x) ∈ (x)c+1.

Proof. Let ŷ(x, z) ∈ K 〈x, z〉m and the z̄i(x) ∈ K{x} be as in Theorem 4.1. Then, for a given
c ∈ N, the m-tuple ŷ(x, jc(z̄(x)) has the desired properties, where jcF denotes the c-jet of
F ∈ K{x}. �

5. Reduction of the maximal ideal

Let, as before, x = (x1, . . . , xn), and for k < n, let x[k] = (x1, . . . , xk) and x̃ = (xk+1, . . . , xn).
Let m denote the maximal ideal of K{x}. The purpose of this section is to find a suitable
reduction (in the sense of Northcott-Rees [12]) of the maximal ideal m/I in K{x}/I, for a given
ideal I in K{x}.

The following proposition is a simple consequence of the Weierstrass Preparation Theorem
(see, e.g., [11, Ch. III, Prop. 2]).

Proposition 5.1. Let I be a proper ideal in K{x}. After a generic linear change of coordinates
in Kn, there exists k ∈ {0, . . . , n− 1} such that the natural homomorphism K{x̃} → K{x}/I is
injective and makes K{x}/I into a finite K{x̃}-module.

Lemma 5.2. Let I be an ideal in K{x} with dimK{x}/I = n − k. Then, after a generic
linear change of coordinates in Kn, there is, for every j = 1, . . . , k, a distinguished polynomial
Pj ∈ K{x̃}[xj ] of degree dj such that Pj(xj , x̃) ∈ I ∩mdj , where x̃ = (xk+1, . . . , xn).

Proof. By Proposition 5.1, after a generic linear change of coordinates in Kn, there exists
k′ ≤ n− 1 and an injective homomorphism K{x̃} → K{x}/I such that K{x}/I is a finite K{x̃}-
module, where x̃ = (xk′+1, . . . , xn). Since for a finite injective homomorphism of Noetherian
rings A→ R we have dimR = dimA, it follows that k′ = k.

Suppose first that K = C. Let (X, 0) be the germ of an analytic space at 0 in Cn defined
by OX,0 = C{x}/I. Further, let C(X, 0) denote the tangent cone to (X, 0), in the sense of
Whitney [21]. Then, dim0 C(X, 0) = dim0X = n− k, and after another generic linear change of
coordinates if needed, we may assume that C(X, 0) has a proper and surjective projection onto
(an open neighbourhood of 0 in) Cn−k spanned by the variables x̃. Finiteness of C{x}/I as a
C{x̃}-module implies that the images of x1, . . . , xk in C{x}/I are integral over C{x̃}. Hence, for
every j = 1, . . . , k, there exist dj ∈ Z+ and a distinguished polynomial Pj ∈ C{x̃}[xj ] of degree

dj , such that Pj(xj , x̃) ∈ I. Write Pj(xj , x̃) = x
dj
j +

dj∑
r=1

ajr(x̃)x
dj−r
j , j = 1, . . . , k.

Fix j ∈ {1, . . . , k}. Let LF (Pj) denote the leading form of Pj (i.e., the homogeneous polyno-
mial consisting of the terms of Pj of lowest degree). By Whitney’s theory of tangent cones [21],
C(X, 0) is the set of common zeroes of leading forms LF (F ) for all F vanishing on (X, 0). In
particular, C(X, 0) ⊂ LF (Pj)

−1(0).
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To prove the lemma, it now suffices to show that x
dj
j is among the terms of LF (Pj). We argue

by induction on n − k, the number of variables x̃. If n − k = 1, then x̃ is a single variable xn.

If x
dj
j were not among the terms of LF (Pj) then xn would divide LF (Pj), and so the image of

C(X, 0) under the projection to Cn−k would be {0} = LF (Pj)
−1(0) ∩ {x[k] = 0}, contradicting

the surjectivity.

Suppose then that n−k ≥ 2, and consider P̃j := Pj(xj , xk+1, . . . , xn−1, 0). Then, P̃j vanishes

on X̃ := X ∩ {xn = 0}, and hence LF (P̃j) vanishes on C(X̃, 0). Since C(X̃, 0) has a surjective

projection onto (an open neighbourhood of 0 in) Cn−k−1, then, by induction, x
dj
j is among the

terms of LF (P̃j). If x
dj
j were not among the terms of LF (Pj), then we would have

degLF (Pj) < degLF (P̃j) = dj .

Hence, xn would divide LF (Pj), and so the image of C(X, 0) under projection to Cn−k would be
contained in the hypersurface {xn = 0}. This contradiction completes the proof in case K = C.

If K = R, the result follows by applying the above argument to the complexification XC of
X. Note that the linear changes of coordinates required at the beginning may be taken with
integral coefficients, and hence the distinguished polynomials Pj will have real coefficients. �

Let Pj(xj , x̃) = x
dj
j +

∑dj
r=1 a

j
r(x̃)x

dj−r
j , j = 1, . . . , k, be as above. Set d :=

∑k
j=1(dj − 1).

Corollary 5.3. We have (x[k])
d+1 ⊂ I + (x̃)·md, as ideals in K{x}.

Proof. Indeed, for any monomial xβ1

1 · · ·x
βk
k ∈ (x[k])

d+1, there exists j such that βj ≥ dj . By

Lemma 5.2, x
dj
j = Pj(xj , x̃)−

∑dj
r=1 a

j
r(x̃)x

dj−r
j is an element of I + (x̃)∩mdj = I + (x̃) ·mdj−1.

Consequently, xβ1

1 . . . xβkk ∈ I + (x̃) ·mN , where N = β1 + · · ·+ (βj − 1) + · · ·+ βk ≥ d. �

Remark 5.4. The above corollary implies that I + (x̃)/I is a reduction (with exponent d) of
the maximal ideal m/I in K{x}/I, in the sense of Northcott–Rees [12]. Indeed, one trivially has
I + (x̃) ⊂ I +m, and by above, I +md+1 ⊂ I + (x̃) ·md. It follows that I +md+1 = I + (x̃) ·md,
hence by induction

(5.1) I + md+m = I + (x̃)mmd, for any m ≥ 1.

6. Approximation of ideals and diagrams

Let, as before, Λ(β) =
∑n
j=1 λjβj be a positive linear form on Kn. For such Λ and µ ∈ N,

define nΛ,µ to be the ideal in K{x} generated by all the monomials xβ = xβ1

1 . . . xβnn with
Λ(β) ≥ µ. (Note that, by positivity of the linear form Λ, the ideals nΛ,µ are m-primary for every
µ. Moreover, for Λ(β) = |β| we have nΛ,µ = mµ.) For a natural number µ ∈ N and a power
series F ∈ K{x}, the µ-jet of F with respect to Λ, denoted jµΛ(F ), is the image of F under the
canonical epimorphism K{x} → K{x}/nΛ,µ+1. We will write jµ(F ) for µ-jets with respect to
Λ(β) = |β| = β1 + · · ·+ βn.

Remark 6.1. Given a power series F ∈ K{x}, suppose that µ ≥ Λ(expΛ(F )). Then, for every
G ∈ K{x} with jµΛ(G) = jµΛ(F ), we have that expΛ(F ) = expΛ(G).

The following lemma expresses the Hilbert-Samuel function of an ideal in terms of its diagram
of initial exponents.
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Lemma 6.2. Let λ1, . . . , λn > 0 be arbitrary, and let Λ(β) =
∑n
j=1 λjβj. Then, for any ideal I

in K{x} and for every η ≥ 1,

#{β ∈ Nn \NΛ(I) : Λ(β) ≤ η} = dimK
K{x}

I + nΛ,η+1
,

where the dimension on the right side is in the sense of K-vector spaces. In particular, the
Hilbert-Samuel function HI of K{x}/I satisfies

HI(η) = #{β ∈ Nn \N(I) : |β| ≤ η}, for all η ≥ 1 .

Proof. Fix η ≥ 1. Suppose that F ∈ K{x} satisfies

supp(F ) ⊂ {β ∈ Nn \NΛ(I) : Λ(β) ≤ η}

and pick G ∈ nΛ,η+1.
Then, expΛ(F +G) = expΛ(F ), by Remark 6.1, and hence expΛ(F +G) /∈ NΛ(I). It follows

that F +G /∈ I, and so F /∈ I + nΛ,η+1. This proves that the set of monomials

{xβ : β ∈ Nn \NΛ(I),Λ(β) ≤ η}

is linearly independent in K{x}/(I + nΛ,η+1), whence

dimK
K{x}

I + nΛ,η+1
≥ #{β ∈ Nn \NΛ(I) : Λ(β) ≤ η} .

Conversely, suppose that F /∈ I + nΛ,η+1. Let G1, . . . , Gt ∈ I be representatives of the vertices

of NΛ(I) and let F =
∑t
i=1QiGi +R be the unique Hironaka division of F by the Gi in K{x},

relative to Λ. Now, if R ∈ nΛ,η+1 then F ∈ I + nΛ,η+1; a contradiction. Therefore, we have
R = R1 + R2, with R2 ∈ nΛ,η+1, R1 6= 0, and supp(R1) ⊂ {β ∈ Nn \ NΛ(I) : Λ(β) ≤ η} (cf.

Theorem 2.1). Then, F − R1 =
∑t
i=1QiGi + R2 is in I + nΛ,η+1, which shows that F and R1

represent the same element of K{x}/(I + nΛ,η+1). Thus,

dimK
K{x}

I + nΛ,η+1
≤ #{β ∈ Nn \NΛ(I) : Λ(β) ≤ η} .

The last claim of the lemma now follows from the definition of the Hilbert-Samuel function as
HI(η) = dimK K{x}/(I + mη+1). �

Definition 6.3. For an ideal I = (F1, . . . , Fs) · K{x}, a positive linear form Λ and µ ≥ 1, we
define the family of ideals UµΛ(I) (or, more precisely, UµΛ(F1, . . . , Fs)) as

UµΛ(I) = {(G1, . . . , Gs) ·K{x} : jµΛ(Gi) = jµΛ(Fi), 1 ≤ i ≤ s}.

We will write simply Uµ(I) for UµΛ(I), when Λ(β) = |β|.

The following lemma shows that the reduction of the maximal ideal in K{x}/I is preserved
by its sufficiently close Taylor approximations.

Lemma 6.4. Let I = (F1, . . . , Fs) be an ideal in K{x} with dimK{x}/I = n − k. Then, after
a generic linear change of coordinates in Kn, there exists µ0 such that, for every µ ≥ µ0 and
Iµ ∈ Uµ(I), we have

(6.1) Iµ + md+m = Iµ + (x̃)mmd, for any m ≥ 1,

where d is the same as in (5.1).
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Proof. After a generic linear change of coordinates from Lemma 5.2, we may assume that
(x[k])

d+1 ⊂ I + (x̃) ·md, where d is as in (5.1). Set µ0 := d + 1. Pick µ ≥ µ0 and Iµ ∈ Uµ(I).

Then, I ⊂ Iµ + md+2, and hence (x[k])
d+1 ⊂ Iµ + md+2 + (x̃)md. It follows that

Iµ + md+1 ⊂ Iµ + md+2 + (x̃)md ⊂ Iµ + (x̃)md + (Iµ + md+1)m ,

hence Iµ +md+1 ⊂ Iµ + (x̃)md, by Nakayama’s lemma. The claim now follows as in Remark 5.4.
�

Let us recall now a results from [1] describing the connection between the diagram of initial
exponents of I and those of its approximations Iµ. We include a short proof for the reader’s
convenience.

Lemma 6.5 (cf. [1, Lem. 3.2]). Let I be an ideal in K{x} and let Λ be a positive linear form on
Kn. Let l0 = max{Λ(βi) : 1 ≤ i ≤ t}, where β1, . . . , βt are the vertices of the diagram NΛ(I).
Then:

(i) For every µ ≥ l0 and Iµ ∈ UµΛ(I), we have NΛ(Iµ) ⊃ NΛ(I).
(ii) Given l ≥ l0, for every µ ≥ l and Iµ ∈ UµΛ(I), we have

NΛ(Iµ) ∩ {β ∈ Nn : Λ(β) ≤ l} = NΛ(I) ∩ {β ∈ Nn : Λ(β) ≤ l} .

Proof. Fix µ ≥ l0 and let G1, . . . , Gs ∈ K{x} be such that Iµ = (G1, . . . , Gs) and

jµΛ(Gi) = jµΛ(Fi), 1 ≤ i ≤ s.

By Remark 2.2, for the proof of (i) it suffices to show that the vertices of NΛ(I) are contained
in NΛ(Iµ). Let then F ∈ I be a representative of a vertex of NΛ(I) (i.e., expΛ(F ) ∈ VΛ(I)). We
can write F =

∑s
i=1HiFi, for some Hi ∈ K{x}. Then,

jµΛ(F ) = jµΛ(

s∑
i=1

HiFi) = jµΛ(

s∑
i=1

Hi ·jµΛFi) = jµΛ(

s∑
i=1

Hi ·jµΛGi) = jµΛ(

s∑
i=1

HiGi) ,

and hence, by Remark 6.1, we have

expΛ(F ) = expΛ(

s∑
i=1

HiGi).

It follows that expΛ(F ) ∈ NΛ(Iµ), which proves (i).
For the proof of part (ii), fix l ≥ l0. Let µ ≥ l and let Iµ = (G1, . . . , Gs) with jµΛ(Gi) = jµΛ(Fi),

1 ≤ i ≤ s. By part (i), it now suffices to show that

NΛ(Iµ) ∩ {β ∈ Nn : Λ(β) ≤ l} ⊂ NΛ(I) ∩ {β ∈ Nn : Λ(β) ≤ l} .

Pick β∗ ∈ Nn \NΛ(I) with Λ(β∗) ≤ l. Suppose that β∗ ∈ NΛ(Iµ). Then, one can choose G ∈ Iµ
with expΛ(G) = β∗. Write G =

∑s
i=1HiGi for some Hi ∈ K{x}. We have

jµΛ(G) = jµΛ(

s∑
i=1

HiGi) = jµΛ(

s∑
i=1

Hi · jµΛGi) = jµΛ(

s∑
i=1

Hi · jµΛFi) = jµΛ(

s∑
i=1

HiFi) ,

and since µ ≥ l ≥ Λ(expΛ(G)), it follows that expΛ(G) = expΛ(
∑s
i=1HiFi), by Remark 6.1

again. Therefore β∗ ∈ NΛ(I); a contradiction. �

Corollary 6.6. Let I be an ideal in K{x} and let Λ be a positive linear form on Kn. Suppose
that the complement Nn \NΛ(I) is finite. Then, there exists µ0 ∈ N such that, for every µ ≥ µ0

and Iµ ∈ UµΛ(I), we have NΛ(Iµ) = NΛ(I).
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Proof. Let β1, . . . , βt be the vertices of NΛ(I). Since Nn \ NΛ(I) is finite, there exists
µ0 ≥ maxi Λ(βi) such that

Nn \NΛ(I) ⊂ {β ∈ Nn : Λ(β) ≤ µ0} .
By Lemma 6.5 part (i), for every µ ≥ µ0 and Iµ ∈ UµΛ(I), we have

Nn \NΛ(Iµ) ⊂ Nn \NΛ(I)

and by part (ii)

(Nn \NΛ(Iµ)) ∩ {β ∈ Nn : Λ(β) ≤ µ0} = (Nn \NΛ(I)) ∩ {β ∈ Nn : Λ(β) ≤ µ0} .
Thus, Nn \NΛ(Iµ) = Nn \NΛ(I), as required. �

The following proposition is a key tool in the proofs of Theorems 7.3 and 8.1. It will be used
to show that the equality of diagrams of an ideal I and its approximation Iµ with respect to
some ordering on Nn implies the equality of diagrams with respect to the standard ordering.

Proposition 6.7. Let I = (F1, . . . , Fs) be an ideal in K{x} with dimK{x}/I = n − k. Then,
after a generic linear change of coordinates in Kn, there exists µ0 such that, for every µ ≥ µ0

the following holds: If Iµ ∈ Uµ(I) is such that Iµ ∩ (x̃) = Iµ · (x̃) and

dimK K{x}/I + (x̃)m = dimK K{x}/Iµ + (x̃)m for all m ≥ 1,

then HI = HIµ (that is, the Hilbert-Samuel functions of I and Iµ coincide).

Proof. To simplify notation, we shall write n for the ideal (x̃) in K{x}. By Lemma 5.2, Re-
mark 5.4 and Lemma 6.4, after a generic linear change of coordinates in Kn, we may assume
that there exist positive integers d and µ0 such that

(6.2) I + md+m = I + nmmd, for all m ≥ 1 ,

and for every µ ≥ µ0 and Iµ ∈ Uµ(I)

(6.3) Iµ + md+m = Iµ + nmmd, for all m ≥ 1 .

By Lemmas 6.2 and 6.5, taking µ0 sufficiently large, we always have HI(η) ≥ HIµ(η) for all
η ≥ 1 and µ ≥ µ0. Moreover, by Lemma 6.5(ii), requiring further that µ0 ≥ d ensures that
HI(η) = HIµ(η) for all µ ≥ µ0 and η ≤ d. Therefore, to prove the equality HI = HIµ , it suffices
to show that HI(η) = HIµ(η) for all η ≥ d, or equivalently that

(6.4) dimK
K{x}

I + nmmd
= dimK

K{x}
Iµ + nmmd

for all m ≥ 1.

Fix µ ≥ µ0 and Iµ ∈ Uµ(I). We have, for m ≥ 1, the following exact sequences

0 → I + nm

I + nmmd
→ K{x}

I + nmmd
→ K{x}

I + nm
→ 0 ,

0 → Iµ + nm

Iµ + nmmd
→ K{x}

Iµ + nmmd
→ K{x}

Iµ + nm
→ 0 .

By assumption, dimK K{x}/(I+nm) = dimK K{x}/(Iµ+nm), and hence to prove (6.4), it suffices
to show that

dimK
I + nm

I + nmmd
= dimK

Iµ + nm

Iµ + nmmd
for all m ≥ 1.

Note that

(6.5)
I + nm

I + nmmd
∼=

nm

(I + nmmd) ∩ nm
=

nm

(I ∩ nm) + nmmd



EQUISINGULAR ALGEBRAIC APPROXIMATION OF ANALYTIC GERMS 301

and

(6.6)
Iµ + nm

Iµ + nmmd
∼=

nm

(Iµ + nmmd) ∩ nm
=

nm

(Iµ ∩ nm) + nmmd
.

Let λ be the Artin-Rees exponent of I relative to n. That is, we have I ∩ nm = (I ∩ nλ)nm−λ

for all m ≥ λ. For the remainder of the proof we are going to assume that µ0 ≥ d + λ. Then,
Iµ ⊂ I + mµ+1 ⊂ I + nλmd, by (6.2), and conversely, I ⊂ Iµ + mµ+1 ⊂ Iµ + nλmd, by (6.3),
whence

(6.7) I + nλmd = Iµ + nλmd, for any µ ≥ µ0.

We now claim that (I ∩ nm) + nmmd ⊂ (Iµ ∩ nm) + nmmd, for all m ≥ 1. Indeed, for m < λ, the
inclusion I ⊂ Iµ + nλmd implies

I + nmmd ⊂ Iµ + nλmd + nmmd = Iµ + nmmd ,

and hence

(I ∩ nm) + nmmd = (I + nmmd) ∩ nm ⊂ (Iµ + nmmd) ∩ nm = (Iµ ∩ nm) + nmmd .

If, in turn, m ≥ λ, then (6.7) yields

(I ∩ nm) + nmmd = (I ∩ nλ)nm−λ + nmmd = ((I ∩ nλ) + nλmd)nm−λ

= ((I + nλmd) ∩ nλ)nm−λ = ((Iµ + nλmd) ∩ nλ)nm−λ = ((Iµ ∩ nλ) + nλmd)nm−λ

= (Iµ ∩ nλ)nm−λ + nmmd ⊂ (Iµ ∩ nm) + nmmd .

By (6.5) and (6.6), the above implies that there is, for every m ≥ 1, a well-defined epimorphism

I + nm

I + nmmd
∼=

nm

(I + nmmd) ∩ nm
ϕm−→ nm

(Iµ ∩ nm) + nmmd
∼=

Iµ + nm

Iµ + nmmd
.

To complete the proof, it thus suffices to show that kerϕm = (0), or equivalently that

(Iµ ∩ nm) + nmmd ⊂ (I + nmmd) ∩ nm for all m ≥ 1.

The latter follows from the inclusion Iµ ∩ nm ⊂ I + nmmd proven below.
Recall that, by assumption, we have Iµ ∩ n = Iµn. By Lemma 2.7, we then have

Iµ ∩ nm = Iµn
m,

and hence Iµ∩(Iµ+n)m ⊂ Iµ(Iµ+n)m−1, for allm ≥ 1. Moreover, by (6.2), Iµ ⊂ I+mµ+1 ⊂ I+n,
and by (6.3), I ⊂ Iµ + mµ+1 ⊂ Iµ + n, hence I + n = Iµ + n. Finally, by (6.7), we also have
Iµ ⊂ I + nmd, hence the sequence of inclusions

Iµ ∩ nm ⊂ Iµ ∩ (Iµ + n)m ⊂ Iµ(Iµ + n)m−1 = Iµ(I + n)m−1

⊂ I + Iµn
m−1 ⊂ I + (I + nmd)nm−1 ⊂ I + nmmd .

�
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7. Approximation of complete intersections

Recall that an ideal I in a regular local ring A is called a complete intersection when I can
be generated by dimA− dimA/I elements. We say that an analytic germ (X, 0) in (Kn, 0) is a
complete intersection singularity when its local ring satisfies OX,0 ∼= K{x}/I with I a complete
intersection ideal. The main result of this section, Theorem 7.3 below, asserts that a complete
intersection singularity can be arbitrarily closely approximated by algebraic germs which are
also complete intersections and share the same Hilbert-Samuel function.

We begin with a simple but useful observation.

Proposition 7.1. For an ideal I in K{x}, the following conditions are equivalent:

(i) dim(K{x}/I) ≤ dimK{x} − k.
(ii) After a generic linear change of coordinates in Kn, the diagram N(I) has a vertex on

each of the first k coordinate axes in Nn.

Proof. Let as before x[k] = (x1, . . . , xk) and x̃ = (xk+1, . . . , xn), and let I(0) denote the ideal in
K{x[k]} obtained from I by evaluating the x̃ variables at zero.

Condition (ii) then implies that the diagram N(I(0)) has finite complement in Nk, and hence
dimK K{x[k]}/I(0) < ∞. By the Weierstrass Finiteness Theorem (see, e.g., [8, Thm. 1.10]), it
follows that dim(K{x}/I) ≤ dimK{x} − k.

On the other hand, by Lemma 5.2, condition (i) implies that after a generic linear change of
coordinates in Kn, for every j = 1, . . . , k, I contains a distinguished polynomial

Pj(xj , x̃) = x
dj
j +

dj∑
r=1

ajr(x̃)x
dj−r
j

such that Pj(xj , x̃) ∈ mdj . Since the total ordering of Nn is induced by the lexicographic ordering
of the (n+ 1)-tuples (|β|, βn, . . . , β1), it follows that exp(Pj) = (0, . . . , dj , 0 . . . , 0) with dj in the
j’th place. Hence (ii). �

Let M be a finitely generated module over a local Noetherian ring (A,m). Recall that a
sequence a1, . . . , al ∈ m is called M -regular if a1 is not a zero-divisor in M and ai+1 is not
a zero-divisor in M/(a1, . . . , ai)M for i = 1, . . . , l − 1. M is called Cohen-Macaulay when
depthA(M) = dimM , where depthA(M) is the maximum length of an M -regular sequence in
m. A local ring A is Cohen-Macaulay, when A is Cohen-Macaulay as an A-module. We will use
the following well known fact from local algebra (see, e.g., [8, Cor. B.8.12]).

Remark 7.2. Let I be a proper ideal in K{x} with dimK{x}/I = n − k, and suppose that
K{x}/I is a finite K{x̃}-module, where x̃ = (xk+1, . . . , xn). Then, K{x}/I is Cohen-Macaulay
if and only if it is a flat K{x̃}-module.

Theorem 7.3. Let I = (F1, . . . , Fk) be a complete intersection ideal in K{x} with

dimK{x}/I = n− k.

Then, there exists µ0 such that for every µ ≥ µ0 and for any G1, . . . , Gk ∈ K{x} satisfying
jµGi = jµFi, 1 ≤ i ≤ k, the ideal Iµ := (G1, . . . , Gk) is a complete intersection ideal in K{x}
and HIµ = HI .

Proof. By Proposition 7.1, after a generic linear change of coordinates in Kn, the diagram N(I)
has a vertex βi on each of the first k coordinate axes in Nn. Let H1, . . . ,Hk ∈ I be representatives

of these vertices, so that expHi = βi, 1 ≤ i ≤ k. LetQi,j ∈ K{x} be such thatHi =
∑k
j=1Qi,jFj .

Set µ1 := max{|β1|, . . . , |βk|}.
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Since N(I) has a vertex on each of the first k coordinate axes in Nn, the complement
Nk \N(I(0)) is finite. Hence, by Corollary 6.6, there exists µ2 ≥ 1 such that, for every µ ≥ µ2

and Iµ ∈ Uµ(I), N(I(0)) = N(Iµ(0)). Let then µ0 := max{µ1, µ2}.
Fix µ ≥ µ0 and G1, . . . , Gk ∈ K{x} satisfying jµGi = jµFi, 1 ≤ i ≤ k. Let Iµ = (G1, . . . , Gk).

Then, for every i,

jµHi = jµ(

k∑
j=1

Qi,jFj) = jµ(

k∑
j=1

Qi,jj
µFj) = jµ(

k∑
j=1

Qi,jj
µGj) = jµ(

k∑
j=1

Qi,jGj) ,

hence, by Remark 6.1, exp(
∑k
j=1Qi,jGj) = βi. It follows that βi ∈ N(Iµ), 1 ≤ i ≤ k, and thus

N(Iµ) has a vertex on each of the first k coordinate axes in Nn. By Proposition 7.1 again, we
get dimK{x}/Iµ ≤ n− k. Since Iµ is generated by k elements, it is thus a complete intersection
ideal.

Since complete intersections are Cohen-Macaulay, then by Remark 7.2, both K{x}/I and
K{x}/Iµ are flat over K{x̃}. Therefore, by Proposition 2.5 and Remark 2.6, there exists l ≥ 1
such that for the linear form

Λ(β) =

k∑
i=1

βi +

n∑
j=k+1

lβj ,

we have

NΛ(I) = N(I(0))× Nn−k and NΛ(Iµ) = N(Iµ(0))× Nn−k .
Thus, NΛ(I) = NΛ(Iµ), and hence

(7.1) dimK
K{x}

I + nΛ,η+1
= dimK

K{x}
Iµ + nΛ,η+1

for all η ∈ N ,

by Lemma 6.2. Note that nΛ,l = (x[k])
l + (x̃), and in general nΛ,ml = ((x[k])

l + (x̃))m, for
all m ∈ N. Also, since K{x}/I is a finite K{x̃}-module, then for l large enough one has
(x[k])

l ⊂ I + (x̃) (Corollary 5.3). It follows that I + (x̃) = I + nΛ,l, and hence by induction

I + (x̃)m = I + nΛ,ml for all m ∈ N .

Therefore, by (7.1), we get dimK
K{x}

I + (x̃)m
= dimK

K{x}
Iµ + (x̃)m

for all m ∈ N.

Note finally that Iµ ∩ (x̃) = Iµ· (x̃), by K{x̃}-flatness of K{x}/Iµ (see, e.g., [5, Cor. 7.6]). The
theorem thus follows from Proposition 6.7. �

Remark 7.4. It is always possible to choose polynomials G1, . . . , Gk ∈ K[x], satisfying the
hypotheses, and hence the conclusion of Theorem 7.3. This proves that every analytic complete
intersection singularity (A,m) can be approximated arbitrarily well in the m-adic topology by
algebraic complete intersection singularities having the same Hilbert-Samuel function as (A,m).

8. Approximation of Cohen-Macaulay singularities

We call an analytic germ (X, 0) in (Kn, 0) a Cohen-Macaulay singularity, when its local ring
OX,0 is Cohen-Macaulay. The polynomial approximation of analytic germs is, in general, not
possible beyond the complete intersection case (see Example 8.2 below). The next best thing is
an approximation by Nash germs. The following result shows that a Cohen-Macaulay singularity
can be arbitrarily closely approximated by Nash singularities which are also Cohen-Macaulay
and share the same Hilbert-Samuel function.
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Theorem 8.1. Let I = (F1, . . . , Fs) be an ideal in K{x} such that K{x}/I is Cohen-Macaulay
with dimK{x}/I = n−k. Then, there exist µ0 ∈ N, such that for any µ ≥ µ0 there are algebraic
power series G1, . . . , Gs ∈ K 〈x〉 with jµGi = jµFi, 1 ≤ i ≤ s, the ideal Iµ = (G1, . . . , Gs)
satisfies HIµ = HI , and K{x}/Iµ is Cohen-Macaulay with dimK{x}/Iµ = n− k.

Proof. By Proposition 7.1, after a generic linear change of coordinates in Kn, the diagram N(I)
has a vertex on each of the first k coordinate axes in Nn. It follows that K{x}/I is K{x̃}-finite,
and hence K{x̃}-flat (Remark 7.2). Therefore, by Proposition 2.5 and Remark 2.6, there exists
l ≥ 1 such that for the linear form

Λ(β) =

k∑
i=1

βi +

n∑
j=k+1

lβj ,

we have

NΛ(I) = N(I(0))× Nn−k .
We can extend the given set of generators {F1, . . . , Fs} by power series Fs+1, . . . , Fr ∈ I such
that the collection {F1, . . . , Fr} contains representatives of all the vertices NΛ(I). Since I is
generated by {F1, . . . , Fs}, there are Hq

p ∈ K{x} such that

Fs+p =

s∑
q=1

Hq
pFq , p = 1, . . . , r − s.

Then, {F1, . . . , Fr} is a set of generators of I and a standard basis of I relative to Λ (Corol-
lary 2.3). For i, j ∈ {1, . . . , r}, i < j, let Si,j = S(Fi, Fj) denote the s-series of the pair (Fi, Fj).
By Theorem 3.2, there exist Qi,jm ∈ K{x}, i, j,m ∈ {1, . . . , r}, such that

Si,j =

r∑
m=1

Qi,jm Fm and expΛSi,j ≤ min{expΛ(Qi,jm Fm) : m = 1, . . . , r} .

Recall that, for all 1 ≤ i < j ≤ r, there are monomials Pi,j , Pj,i ∈ K[x], which depend only on
the initial terms of Fi, Fj , such that Si,j = Pi,jFi − Pj,iFj . Consider a system

(8.1)


Pi,j(x)yi − Pj,i(x)yj −

r∑
m=1

zi,jm ym = 0

ys+p −
s∑
q=1

wqpyq = 0

of
(
r
2

)
+ r − s polynomial equations in variables

y = (y1, . . . , yr), z = (z1,2
1 , . . . , zr−1,r

r )

and w = (w1
1, . . . , w

s
r−s). The system has a convergent solution {Fi, Qi,jm , Hq

p}, and hence by

Theorem 4.2, for every µ ∈ N, an algebraic power series solution {Gi, Ri,jm ,Kq
p} with jµGi = jµFi,

jµRi,jm = jµQi,jm , and jµKq
p = jµHq

p for all i, j,m, p, q.

Let now µ0 := max{Λ(expΛQ
i,j
m ) + Λ(expΛFm)) : 1 ≤ i < j ≤ r, 1 ≤ m ≤ r}, and fix µ ≥ µ0.

Then, for any algebraic solution {Gi, Ri,jm ,Kq
p} to (8.1) which coincides with {Fi, Qi,jm , Hq

p} up
to degree µ, we have S(Gi, Gj) = Pi,jGi − Pj,iGj and

S(Gi, Gj) =

r∑
m=1

Ri,jm Gm, with expΛS(Gi, Gj) ≤ min{expΛ(Ri,jm Gm) : m = 1, . . . , r} .
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Hence the Gi form a standard basis for the ideal Iµ = (G1, . . . , Gr), by Theorem 3.2 again. In
particular, the set {G1, . . . , Gr} contains representatives of all the vertices of NΛ(Iµ) (see Re-
mark 3.1(1)). Since, by construction, expΛGi = expΛFi for all i, it follows that
NΛ(Iµ) = NΛ(I). Thus, NΛ(Iµ) = N(I(0)) × Nn−k and so K{x}/Iµ is K{x̃}-flat, by Proposi-
tion 2.5. Note also that Iµ is, in fact, generated by {G1, . . . , Gs}, since the remaining generators
Gs+1, . . . , Gr are combinations of the former, by (8.1).

The equality of diagrams NΛ(Iµ) = NΛ(I) implies, as in the proof of Theorem 7.3, that

we have dimK
K{x}

I + (x̃)m
= dimK

K{x}
Iµ + (x̃)m

, for all m ∈ N. Moreover, Iµ ∩ (x̃) = Iµ · (x̃), by

K{x̃}-flatness of K{x}/Iµ. The theorem thus follows from Proposition 6.7. �

In contrast with complete intersections, the Cohen-Macaulay singularities are not, in general,
finitely determined. This can be shown using Becker’s s-series criterion, as follows.

Example 8.2. Let I be an ideal in K{x, y, z} generated by

F1 = x8, F2 = y5 + y2z4ez, F3 = x2y3 + x2z4ez .

Let N3 be equipped with the standard ordering induced by lexicographic ordering of the 4-tuples
(|β|, β3, β2, β1).

We claim that {F1, F2, F3} are a standard basis of I. Indeed, the s-series of pairs (F1, F3) and
(F2, F3) are as follows:

S1,3 = y3F1 − x6F3 = (−z4ez)F1, S2,3 = x2F2 − y2F3 = 0 ,

which are standard representations in terms of {F1, F2, F3}. The S1,2, in turn, has a standard
representation in terms of F1 and F2, because their initial exponents are relatively prime (see
[4, Thm. 3.1]). The claim thus follows from Theorem 3.2.

The diagram N(I) contains vertices on the first two coordinate axes in N3, namely expF1

and expF2, hence K{x, y, z}/I is a finite K{z}-module. On the other hand, by Remark 3.1(1),
the only vertices of N(I) are the expF1, expF2, and expF3, which all lie in N2 × {0}. Thus, by
Proposition 2.5, K{x, y, z}/I is K{z}-flat, and hence Cohen-Macaulay (Remark 7.2).

Let now µ ≥ 8 be arbitrary, and let

G1 = x8, G2 = y5 + y2z4(ez + zµ−6h(z)), G3 = x2y3 + x2z4ez ,

where h(z) ∈ K{z} is an arbitrary non-zero series with h(0) = 0. Then, jµGi = jµFi for all
i, but for the ideal Iµ = (G1, G2, G3), the ring K{x, y, z}/Iµ is not Cohen-Macaulay. Indeed,
consider the s-series S(G2, G3). We have

S(G2, G3) = x2G2 − y2G3 = x2y2zµ−2h(z) ,

and hence x2y2 is a zero-divisor in K{x, y, z}/Iµ regarded as a K{z}-module. Thus, K{x, y, z}/Iµ
is not K{z}-flat, and hence not a Cohen-Macaulay ring, by Remark 7.2 again.

9. Zariski equisingularity and Varchenko theorem

In this section we recall a result of Varchenko on topological equisingularity of algebraically
equisingular families. This is a central tool in the proof of Mostowski’s theorem.

Let V be a complex analytic hypersurface in a neighbourhood U of the origin in Cl×Cn, and
let T = V ∩ (Cl × {0}). Suppose there is, for every 0 ≤ i ≤ n, a distinguished polynomial

Fi(t, x[i]) = xpii +

pi∑
j=1

ai−1,j(t, x[i−1])x
pi−j
i ,
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where t ∈ Cl, x[i] = (x1, . . . , xi) ∈ Ci, ai−1,j ∈ C{t, x[i−1]}, all such that the following hold:

(1) V = F−1
n (0).

(2) ai,j(t, 0) ≡ 0, for all i, j.
(3) Fi−1(t, x[i−1]) = 0 if and only if Fi(t, x[i−1], xi), regarded as a polynomial in xi with

(t, x[i−1]) fixed, has fewer roots than for generic (t, x[i−1]).
(4) Either Fi(t, 0) ≡ 0 or Fi ≡ 1, and in the latter case Fk ≡ 1 for all k ≤ i by convention.
(5) F0 ≡ 1.

A system of distinguished polynomials {Fi(t, x[i])} satisfying the above conditions is called al-
gebraically equisingular. Answering a question posed by Zariski [22], Varchenko showed that
algebraic equisingularity of a system {Fi(t, x[i])} implies topological equisingularity of V along
T . More precisely, we have the following.

Theorem 9.1 ([19, 20], cf. [13, Thms. 3.3, 4.3]). Under the above hypotheses, let

Vt = V ∩ ({t} × Cn) and Ut = U ∩ ({t} × Cn), for t ∈ T.

Then, for every t ∈ T , there exists a homeomorphism ht : U0 → Ut such that ht(V0) = Vt and
ht(0) = 0. Moreover, if Fn = G1 . . . Gr is a product of distinguished polynomials in xn, then

ht(G
−1
j (0) ∩ ({0} × Cn)) = G−1

j (0) ∩ ({t} × Cn) for all 1 ≤ j ≤ r .

Remark 9.2. The Parusiński-Păunescu [13] version of Theorem 9.1 is, in fact, considerably
stronger. By their result, the homeomorphisms ht can be assumed arc-analytic and subanalytic.
However, we have no need for these stronger properties in the present paper.

10. Mostowski theorem with Hilbert-Samuel equisingularity

The goal of this section is to prove a strong variant of Mostowski’s theorem [10], showing that
every analytic germ (X, 0) ⊂ (Kn, 0) can be arbitrarily closely approximated by a Nash germ

(X̂, 0) ⊂ (Kn, 0) with the same Hilbert-Samuel function, and such that the pairs (Kn, X) and

(Kn, X̂) are topologically equivalent near zero.

Theorem 10.1. Let g1, . . . , gs ∈ K{x} and let (X, 0) ⊆ (Kn, 0) be an analytic germ defined by
g1 = · · · = gs = 0. Then, there exists µ0 such that for all µ ≥ µ0 there are algebraic power series
ĝ1, . . . , ĝs ∈ K 〈x〉 and a homeomorphism germ h : (Kn, 0)→ (Kn, 0) such that:

(i) jµĝk = jµgk for k = 1, . . . , s

(ii) If (X̂, 0) is the Nash germ defined by ĝ1 = · · · = ĝs = 0, then HX̂,0 = HX,0

(iii) h((X, 0)) = (X̂, 0).

Our proof of Theorem 10.1 combines the exposition of [7] with the Becker s-series criterion
(Theorem 3.2). We include the details of the argument for the reader’s convenience.

10.1. Generalized discriminants. Let T = (T1, . . . , Tp) be variables. For j ≥ 1, consider

∆j =
∑

r1,...,rj−1

∏
k 6=l

k,l 6=r1,...,rj−1

(Tk − Tl).

The ∆j are symmetric in variables T , and hence each ∆j = ∆j(A0, . . . , Ap−1) is a polynomial
in the elementary symmetric functions A0 = T1 · · ·Tp, . . . , Ap−1 = T1 + · · · + Tp. We have: A
polynomial Xp + ap−1X

p−1 + · · · + a1X + a0 has precisely p − j distinct roots if and only if
∆1(a0, . . . , ap−1) = · · · = ∆j(a0, . . . , ap−1) = 0 and ∆j+1(a0, . . . , ap−1) 6= 0.
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10.2. Construction of a normal system of equations. Let g1, . . . , gs ∈ K{x} and let
I := (g1, . . . , gs) ·K{x}. After a generic linear change of coordinates, if needed, all the gk
become regular in variable xn. We may thus, without loss of generality, assume that each gk is
a distinguished polynomial in xn. That is,

(10.1) gk(x) = xrkn +

rk∑
j=1

an−1,k,j(x[n−1])x
rk−j
n ,

where an−1,k,j ∈ K{x[n−1]} and an−1,k,j(0) = 0.
The coefficients an−1,k,j can be arranged in a row vector an−1 ∈ K{x[n−1]}pn , where

pn =
∑
k rk. Set fn := g1 · · · gs. Then, the generalized discriminants ∆n,i of fn are polyno-

mials in an−1. Let jn be such that

∆n,i(an−1) ≡ 0 for i < jn ,

and ∆n,jn(an−1) 6≡ 0. Then, after a linear change of coordinates x[n−1], we may write

∆n,jn(an−1) = un−1(x[n−1])(x
pn−1

n−1 +

pn−1∑
j=1

an−2,j(x[n−2])x
pn−1−j
n−1 ) ,

where un−1(0) 6= 0, and for all j, an−2,j(0) = 0. Set

fn−1 := x
pn−1

n−1 +

pn−1∑
j=1

an−2,j(x[n−2])x
pn−1−j
n−1 ,

and denote the vector of its coefficients an−2,j by an−2 ∈ K{x[n−2]}pn−1 . Let jn−1 be such that
the first jn−1 − 1 generalized discriminants ∆n−1,i of fn−1 are identically zero and ∆n−1,jn−1

is not. Then, again, we define fn−2(x[n−2]) as the distinguished polynomial associated to
∆n−1,jn−1

, and so on.
By induction, we define a system of distinguished polynomials

fi ∈ K{x[i−1]}[xi], i = 1, . . . , n− 1,

such that fi = xpii +
∑pi
j=1 ai−1,j(x[i−1])x

pi−j
i is the distinguished polynomial associated to the

first non identically zero generalized discriminant ∆i+1,ji+1(ai) of fi+1:

(10.2) ∆i+1,ji+1
(ai) = ui(x[i])(x

pi
i +

pi∑
j=1

ai−1,j(x[i−1])x
pi−j
i ) , i = 0, ..., n− 1,

where, in general, ai = (ai,1, . . . , ai,pi+1
). Thus the vector of functions ai satisfies

(10.3) ∆i+1,k(ai) ≡ 0 for k < ji+1, i = 0, ..., n− 1.

This means in particular that

∆1,k(a0) ≡ 0 for k < j1 and ∆1,j1(a0) ≡ u0,

where u0 is a non-zero constant.
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10.3. Incorporating a standard basis. Consider now the diagram of initial exponents N(I) of
the ideal I in K{x} (with respect to the linear form Λ(β) = |β| on Nn). We can extend the given
set of generators {g1, . . . , gs} by power series gs+1, . . . , gr ∈ I such that the collection {g1, . . . , gr}
contains representatives of all the vertices of N(I). Since I is generated by {g1, . . . , gs}, there
are hqp ∈ K{x} such that

(10.4) gs+p(x) =

s∑
q=1

hqp(x) ·

xrqn +

rq∑
j=1

an−1,q,j(x[n−1])x
rq−j
n

 ,

for p = 1, . . . , r − s, by (10.1).
Now, {g1, . . . , gr} is a set of generators of I and a standard basis of I (Corollary 2.3). For

i, j ∈ {1, . . . , r}, i < j, let Si,j = S(gi, gj) denote the s-series of the pair (gi, gj). By Theorem 3.2,
there exist vi,jm ∈ K{x}, i, j,m ∈ {1, . . . , r}, such that

(10.5) Si,j =

r∑
m=1

vi,jm gm and expSi,j ≤ min{exp(vi,jm gm) : m = 1, . . . , t} .

Recall that, for all 1 ≤ i < j ≤ r, there are monomials Pi,j , Pj,i ∈ K[x], which depend only on
the initial terms of gi, gj , such that Si,j = Pi,jgi − Pj,igj . Therefore, the vi,jm , hqp, and an−1,q,j

satisfy the following system of
(
r
2

)
polynomial equations

(10.6) Pi,j(x)gi − Pj,i(x)gj −
r∑

m=1

vi,jm gm = 0 , 1 ≤ i < j ≤ r ,

in which the hqp and an−1,q,j are present via (10.1) and (10.4). We will denote the vector of

functions vi,jm by v ∈ K{x}r(
r
2), and the vector of hqp by h ∈ K{x}s(r−s), to simplify notation.

10.4. Approximation by Nash functions. Consider (10.2), (10.3), and (10.6) as a system of
polynomial equations in ai(x[i]), ui(x[i]), v(x), and h(x). By construction, this system ad-
mits a convergent solution. Therefore, by Theorem 4.1, there exist a new set of variables
z = (z1, . . . , zk), an increasing function τ : N → N, convergent power series zi(x) ∈ K{x} van-
ishing at zero, algebraic power series ûi(x[i], z) ∈ K

〈
x[i], z1, . . . , zτ(i)

〉
, and vectors of algebraic

power series âi(x[i], z) ∈ K
〈
x[i], z1, . . . , zτ(i)

〉pi
, v̂(x, z) ∈ K〈x, z〉r(

r
2), and ĥ(x, z) ∈ K〈x, z〉s(r−s)

all such that the following hold:

(a) z1(x), . . . , zτ(i)(x) depend only on variables x[i] = (x1, . . . , xi)

(b) ûi(x[i], z), âi(x[i], z), v̂(x, z), ĥ(x, z) are solutions of (10.2), (10.3), and (10.6)
(c) The convergent solutions satisfy: ui(x[i]) = ûi(x[i], z(x[i])), ai(x[i]) = âi(x[i], z(x[i])),

v(x) = v̂(x, z(x)), and h(x) = ĥ(x, z(x)).

10.5. Proof of Theorem 10.1. Let g1, . . . , gs ∈ K{x} and let (X, 0) ⊆ (Kn, 0) be an analytic
germ defined by g1 = · · · = gs = 0. Suppose first that K = C.

Let gs+1(x), . . . , gr(x), ui(x[i]), ai(x[i]), v(x), and h(x) be as in sections 10.2 and 10.3. Set

µ0 := max{|exp(vi,jm )|+ |exp(gm)| : 1 ≤ i < j ≤ r, 1 ≤ m ≤ r} ,

and fix µ ≥ µ0.
Let zi(x) ∈ C{x} be the convergent power series, and let ûi(x[i], z), âi(x[i], z), v̂(x, z), and

ĥ(x, z) be the (vectors of) algebraic power series constructed above. To simplify notation, we
will write z̄µi (x) for zi(x) − jµzi(x), where as before jµzi(x) denotes the µ-jet of zi as a power
series in variables x.
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For t ∈ C, we define

Fn(t, x) :=

s∏
k=1

Gk(t, x) ,

where

(10.7) Gk(t, x) := xrkn +

rk∑
j=1

ân−1,k,j(x[n−1], j
µz(x[n−1]) + tz̄µ(x[n−1]))·xrk−jn ,

and

Fi(t, x) := xpii +

pi∑
j=1

âi−1,j(x[i−1], j
µz(x[i−1]) + tz̄µ(x[i−1]))·xpi−ji , i = 1, . . . , n− 1.

Finally, we set F0(t) ≡ 1. Now, since ui(0, 0) = ûi(0, z(0)) 6= 0, i = 1, . . . , n − 1, it follows that
the family {Fi(t, x[i])} is algebraically equisingular (with |t| < R, for any R <∞).

Set ĝk(x) := Gk(0, x), and let (X̂, 0) be the Nash germ in (Cn, 0) defined by ĝ1 = · · · = ĝs = 0.
Note that gk = Gk(1, x), k = 1, . . . , s. Therefore, by Theorem 9.1, there is a homeomorphism

germ h : (Cn, 0)→ (Cn, 0) such that h((X, 0)) = (X̂, 0).
By construction, we have jµĝk = jµgk for k = 1, . . . , s. Finally, as in the proof of Theorem 8.1,

observe that the collection {ĝ1, . . . , ĝs, . . . , ĝr} forms a standard basis for the ideal Iµ that it
generates (by (10.5)). In particular, the set {ĝ1, . . . , ĝr} contains representatives of all the
vertices of the diagram N(Iµ) (see Remark 3.1(1)). Since, by construction and the choice of
µ0, we have exp(ĝk) = exp(gk) for all k, it follows that N(Iµ) = N(I). Hence, HX̂,0 = HX,0,

by Lemma 6.2. Note also that Iµ is, in fact, generated by {ĝ1, . . . , ĝs}, since the remaining
generators ĝs+1, . . . , ĝr are combinations of the former, by (10.4). This completes the proof in
the complex case.

The real case follows from the complex one, since by [19, §6], if the distinguished polynomials
Fi of Section 9 have real coefficients, then the homeomorphism h constructed in Varchenko’s
Theorem 9.1 is conjugation invariant. �

Remark 10.2. We are grateful to the anonymous referee for pointing out the analogy between
our Theorem 10.1 and the main result of the very recent work [14]. In [14], the authors have used
the Buchberger criterion for Gröbner bases, which is an analogue of Theorem 3.2 for polynomial
rings, in the form of equations analogous to (10.6), to conclude the equality of the Hilbert-Samuel
functions of a given algebraic set and its homeomorphic approximant defined over a number field.
In contrast to our work, in the polynomial setting of [14], the equations for Buchberger’s criterion
are satisfied automatically and need not be included in the system of equations to which the
approximation result is applied.
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14. A. Parusiński and G. Rond, Algebraic varieties are homeomorphic to varieties defined over number fields,

Comment. Math. Helv. 95 (2020), 339–359. DOI: 10.4171/cmh/490

15. A. P loski, Note on a theorem of M. Artin, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974),
1107–1109.
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