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Abstract. We discuss the Bethe ansatz in the Gaudin model on the tensor product of finite-

dimensional sl2-modules over the field Fp with p elements, where p is a prime number. We
define the Bethe ansatz equations and show that if (t01, . . . , t

0
k) is a solution of the Bethe ansatz

equations, then the corresponding Bethe vector is an eigenvector of the Gaudin Hamiltonians.

We characterize solutions (t01, . . . , t
0
k) of the Bethe ansatz equations as certain two-dimensional

subspaces of the space of polynomials Fp[x]. We consider the case when the number of pa-

rameters k equals 1. In that case we show that the Bethe algebra, generated by the Gaudin

Hamiltonians, is isomorphic to the algebra of functions on the scheme defined by the Bethe
ansatz equation. If k = 1 and in addition the tensor product is the product of vector repre-

sentations, then the Bethe algebra is also isomorphic to the algebra of functions on the fiber

of a suitable Wronski map.

1. Introduction

The Gaudin model is a certain collection of commuting linear operators on the tensor product
V = ⊗ni=1Vi of representations of a Lie algebra g. The operators are called the Gaudin Hamil-
tonians. The Bethe ansatz is a method used to construct common eigenvectors and eigenvalues
of the Gaudin operators. One looks for an eigenvector in a certain form W (t), where W (t) is
a V -valued function of some parameters t = (t1, . . . , tk). One introduces a system of equations
on the parameters, called the Bethe ansatz equations, and shows that if t0 is a solution of the
system, then the vector W (t0) is an eigenvector of the Gaudin Hamiltonians, see for example
[B, G, FFR, MV1, MV2, MTV1, MTV4, RV, SchV, SV1, V1, V2, V3]. The Gaudin model
has strong relations with the Schubert calculus and real algebraic geometry, see for example
[MTV2, MTV3, So].

All that is known in the case when the Lie algebra g is defined over the field C of complex
numbers. In the paper we consider the case of the field Fp with p elements, where p is a prime
number, cf. [SV3]. We carry out the first steps of the Bethe ansatz, the deeper parts of the
Gaudin model over a finite field remain to be developed. We consider the case of the Lie algeba
sl2, where the notations and constructions are shorter and simpler.

It is known that over C, the Gaudin model is a semi-classical limit of the KZ differential
equations of conformal field theory, and the construction of the multidimensional hypergeometric
solutions of the KZ differential equations lead, in that limit, to the Bethe ansatz construction
of eigenvectors of the Gaudin Hamiltonians, see [RV]. The Fp-analogs of the hypergeometric
solutions of the KZ differential equations were constructed recently in [SV3], see also [V5]. Thus
the constructions of this paper may be thought of as a semi-classical limit of the constructions
in [SV3].

In Section 2 we define the Bethe ansatz equations and show that if (t01, . . . , t
0
k) is a solution of

the Bethe ansatz equations, then the corresponding Bethe vector is an eigenvector of the Gaudin
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Hamiltonians. In Section 3 we characterize solutions (t01, . . . , t
0
k) of the Bethe ansatz equations

as certain two-dimensional subspaces of the space of polynomials Fp[x]. In Section 4 we consider
the case in which the number k of the parameters equals 1. In that case we show that the Bethe
algebra, generated by the Gaudin Hamiltonians, is isomorphic to the algebra of functions on the
scheme defined by the Bethe ansatz equation, see Theorem 4.2. If k = 1 and in addition the
tensor product is the product of vector representations, then the Bethe algebra is also isomorphic
to the algebra of functions on the fiber of a suitable Wronski map, see Corollary 4.9.

The author thanks W. Zudilin for useful discussions and the Hausdorff Institute for Mathe-
matics in Bonn for hospitality in May-July of 2017.

2. sl2 Gaudin model

2.1. sl2 Gaudin model over C. Let e, f, h be the standard basis of the complex Lie algeba sl2
with [e, f ] = h, [h, e] = 2e, [h, f ] = −2f . The element

Ω = e⊗ f + f ⊗ e+
1

2
h⊗ h ∈ sl2 ⊗ sl2(2.1)

is called the Casimir element. Given n, for 1 6 i < j 6 n let Ω(i,j) ∈ (U(sl2))⊗n be the element
equal to Ω in the i-th and j-th factors and to 1 in other factors. Let z0 = (z01 , . . . , z

0
n) ∈ Cn have

distinct coordinates. For s = 1, . . . , n introduce

Hs(z
0) =

∑
l 6=s

Ω(s,l)

z0s − z0l
∈ (U(sl2))⊗n,(2.2)

the Gaudin Hamiltonians, see [G]. For any s, l, we have[
Hs(z

0), Hl(z
0)
]

= 0,(2.3)

and for any x ∈ sl2 and s we have

[Hs(z
0), x⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗ · · · ⊗ 1⊗ x] = 0.(2.4)

Let V = ⊗ni=1Vi be a tensor product of sl2-modules. The commutative subalgebra of End(V )
generated by the Gaudin Hamiltonians Hi(z

0), i = 1, . . . , n, and the identity operator Id is called
the Bethe algebra of V . If W ⊂ V is a subspace invariant with respect to the Bethe algebra, then
the restriction of the Bethe algebra to W is called the Bethe algebra of W , denoted by B(W ).

The general problem is to describe the Bethe algebra, its common eigenvectors and eigenval-
ues.

2.2. Irreducible sl2-modules. For a nonnegative integer i denote by Li the irreducible i+ 1-
dimensional module with basis vi, fvi, . . . , f

ivi and action h.fkvi = (i−2k)fkvi for k = 0, . . . , i;
f.fkvi = fk+1vi for k = 0, . . . , i − 1, f.f ivi = 0; e.vi = 0, e.fkvi = k(i − k + 1)fk−1vi for
k = 1, . . . , i.

For m = (m1, . . . ,mn) ∈ Zn>0, denote |m| = m1 + · · ·+mn and L⊗m = Lm1 ⊗ · · · ⊗Lmn . For

J = (j1, . . . , jn) ∈ Zn>0, with js 6 ms for s = 1, . . . , n, the vectors

fJvm := f j1vm1 ⊗ · · · ⊗ f jnvmn(2.5)

form a basis of L⊗m. We have

f.fJvm =

n∑
s=1

fJ+1svm, h.fJvm = (|m| − 2|J |)fJvm,

e.fJvm =

n∑
s=1

js(ms − js + 1)fJ−1svm.
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For λ ∈ Z, introduce the weight subspace L⊗m[λ] = { v ∈ L⊗m | h.v = λv} and the singular
weight subspace SingL⊗m[λ] = { v ∈ L⊗m[λ] | h.v = λv, e.v = 0}. We have the weight

decomposition L⊗m = ⊕|m|k=0L
⊗m[|m| − 2k]. Denote

Ik = {J ∈ Zn>0 | |J | = k, js 6 ms, s = 1, . . . , n}.

The vectors (fJv)J∈Ik form a basis of L⊗m[|m| − 2k].

By (2.4), the Bethe algebra B(L⊗m) preserves each of the subspaces L⊗m[|m| − 2k] and
SingL⊗m[|m| − 2k]. If w ∈ L⊗m is a common eigenvector of the Bethe algebra, then for any
x ∈ sl2 the vector x.w is also an eigenvector with the same eigenvalues. These observations show
that in order to describe B(L⊗m), its eigenvectors and eigenvalues it is enough to describe for
all k the algebra B(SingL⊗m[|m| − 2k]), its eigenvectors and eigenvalues.

2.3. Bethe ansatz on SingL⊗m
[
|m|−2k

]
over C. Given k, n ∈ Z>0, m = (m1, . . . ,mn) ∈ Zn>0.

Let z0 = (z01 , . . . , z
0
n) ∈ Cn have distinct coordinates. The system of the Bethe ansatz equations

is the system of equations∑
j 6=i

2

ti − tj
−

n∑
s=1

ms

ti − z0s
= 0, i = 1, . . . , k,(2.6)

on t = (t1, . . . , tk) ∈ Ck. If (t01, . . . , t
0
k, z

0
1 , . . . , z

0
n) ∈ Ck+np has distinct coordinates, denote

λs(t
0, z0) =

∑
l 6=s

msml/2

z0s − z0l
−

k∑
i=1

ms

z0s − t0i
, s = 1, . . . , n.(2.7)

For any function or differential form F (t1, . . . , tk), denote

Symt[F (t1, . . . , tk)] =
∑
σ∈Sk

F (tσ1 , . . . , tσk
), Antt[F (t1, . . . , tk)] =

∑
σ∈Sk

(−1)|σ|F (tσ1 , . . . , tσk
).

For J = (j1, . . . , jn) ∈ Ik define the weight function

WJ(t, z) =
1

j1! . . . jn!
Symt

[
n∏
s=1

js∏
i=1

1

tj1+···+js−1+i − zs

]
.(2.8)

For example,

W(1,0,...,0) =
1

t1 − z1
, W(2,0,...,0) =

1

t1 − z1
1

t2 − z1
,

W(1,1,0,...,0) =
1

t1 − z1
1

t2 − z2
+

1

t2 − z1
1

t1 − z2
.

The function

Wk,n,m(t, z) =
∑
J∈Ik

WJ(t, z)fJvm(2.9)

is the L⊗m[|m| − 2k]-valued vector weight function.

Theorem 2.1 ([RV, B], cf. [SV1]). If (t0, z0) = (t01, . . . , t
0
k, z

0
1 , . . . , z

0
n) is a solution of the

Bethe ansatz equations (2.6), then the vector Wk,n,m(t0, z0) lies in SingL⊗m[|m| − 2k] and is an
eigenvector of the Gaudin Hamiltonians, moreover,

Hi(z
0).Wk,n,m(t0, z0) = λi(t

0, z0)Wk,n,m(t0, z0), i = 1, . . . , n.(2.10)
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The eigenvector Wk,n,m(t0, z0) is called the Bethe eigenvector. On the Bethe eigenvectors see,
for example, [SchV, MV1, MV2, V1, V2, V3].

The fact that Wk,n,m(t0, z0) in Theorem 2.1 lies in SingL⊗m[|m| − 2k] may be reformulated
as follows. For any J ∈ Ik−1, we have

n∑
s=1

(js + 1)(ms − js)WJ+1s
(t0, z0) = 0,(2.11)

where we set WJ+1s(t0, z0) = 0 if J + 1s /∈ Ik.

2.4. Proof of Theorem 2.1. We sketch the proof following [SV1]. The intermediate statements
in this proof will be used later when constructing eigenvectors of the Bethe algebra over Fp. The
proof is based on the following cohomological relations.

Given k, n ∈ Z>0 and a multi-index J = (j1, . . . , jn) with |J | 6 k, introduce a differential
form

ηJ =
1

j1! · · · jn!
Antt

[d(t1 − z1)

t1 − z1
∧ · · · ∧ d(tj1 − z1)

tj1 − z1
∧ d(tj1+1 − z2)

tj1+1 − z2
∧ . . .

∧
d(tj1+···+jn−1+1 − zn)

tj1+···+jn−1+1 − zn
∧ · · · ∧ d(tj1+···+jn − zn)

tj1+···+jn − zn

]
,

which is a logarithmic differential form on Cn × Ck with coordinates z, t. If |J | = k, then for
any z0 ∈ Cn we have on {z0} × Ck the identity

ηJ
∣∣
{z0}×Ck = WJ(t, z0)dt1 ∧ · · · ∧ dtk.(2.12)

Example 2.1. For k = n = 2 we have

η(2,0) =
d(t1 − z1)

t1 − z1
∧ d(t2 − z1)

t2 − z1
,

η(1,1) =
d(t1 − z1)

t1 − z1
∧ d(t2 − z2)

t2 − z2
− d(t2 − z1)

t2 − z1
∧ d(t1 − z2)

t1 − z2
.

Introduce the logarithmic differential 1-forms

α =
∑

16i<j6n

mimj

2

d(zi − zj)
zi − zj

+
∑

16i<j6k

2
d(ti − tj)
ti − tj

−
n∑
s=1

k∑
i=1

ms
d(ti − zs)
ti − zs

,

α′ =
∑

16i<j6k

2
d(ti − tj)
ti − tj

−
n∑
s=1

k∑
i=1

ms
d(ti − zs)
ti − zs

.

We shall use the following algebraic identities for logarithmic differential forms.

Theorem 2.2 ([SV1]). We have

α′ ∧ ηJ =

n∑
s=1

(js + 1)(ms − js)ηJ+1s
,(2.13)

for any J with |J | = k − 1, and

α ∧
∑
J∈Ik

ηJfJvm =
∑
i<j

Ω(i,j) d(zi − zj)
zi − zj

∧
∑
|J|=k

ηJfJvm.(2.14)

Proof. Identity (2.13) is Theorem 6.16.2 in [SV1] for the case of the Lie algebra sl2. Identity
(2.14) is Theorem 7.5.2” in [SV1] for the case of the Lie algebra sl2. �
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If (t0, z0) is a solution of the Bethe ansatz equations, then α′|(t0,z0) = 0 and formulas (2.13),

(2.12) give (2.11). Similarly, if (t0, z0) is a solution of the Bethe ansatz equations, then

α|(t0,z0) =

n∑
s=1

λs(t
0, z0)dzs

and formulas (2.14) and (2.12) give (2.18). Theorem 2.1 is proved.

2.5. Bethe ansatz on SingL⊗m
[
|m| − 2k

]
over Fp. Given

k, n ∈ Z>0, m = (m1, . . . ,mn) ∈ Zn>0,

let p be a prime number. Consider the Lie algebra sl2 as an algebra over the field Fp and the
sl2-modules Lms

, s = 1, . . . , n, over Fp. Let z0 = (z01 , . . . , z
0
n) ∈ Fnp have distinct coordinates.

The Gaudin Hamiltonians Hs(z
0) of formula (2.2) define commuting Fp-linear operators on the

Fp-vector space L⊗m = ⊗ns=1Lms
. By formula (2.4) the Gaudin Hamiltonians preserve the Fp-

subspaces SingL⊗m[|m| − 2k] and we may study eigenvectors of the Gaudin Hamiltonians on a
subspace SingL⊗m[|m| − 2k].

Consider the system of Bethe ansatz equations∑
j 6=i

2

ti − tj
−

n∑
s=1

ms

ti − z0s
= 0, i = 1, . . . , k,(2.15)

as a system of equations on t = (t1, . . . , tk) ∈ Fkp. If (t01, . . . , t
0
k, z

0
1 , . . . , z

0
n) ∈ Fk+np has distinct

coordinates, denote

λs(t
0, z0) =

∑
l 6=s

msml/2

z0s − z0l
−

k∑
i=1

ms

z0s − t0i
∈ Fp, s = 1, . . . , n.(2.16)

Theorem 2.3. Let p be a prime number and p > |m|. Let t0 ∈ Fkp be a solution of the Bethe

ansatz equations (2.15). Then the vector Wk,n,m(t0, z0) is well-defined and lies in the subspace
SingL⊗m[|m| − 2k], that is, the equations

n∑
s=1

(js + 1)(ms − js)WJ+1s
(t0, z0) = 0,(2.17)

hold, also the vector Wk,n,m(t0, z0) satisfies the equations

Hs(z
0).Wk,n,m(t0, z0) = λs(t

0, z0)Wk,n,m(t0, z0), s = 1, . . . , n.(2.18)

Proof. The proof of Theorem 2.3 is the same as the proof of Theorem 2.1 since identities (2.13)
and (2.14) hold over half integers and can be projected to Fp. �

3. Two-dimensional spaces of polynomials

3.1. Two-dimensional spaces of polynomials over C. For a function g(x) denote g′ = dg
dx .

For functions g(x), h(x) define the Wronskian

Wr(g(x), h(x)) = g′(x)h(x)− g(x)h′(x).

Theorem 3.1 ([SchV], cf. [MV2]). Let k ∈ Z>0, m = (m1, . . . ,mn) ∈ Zn>0. Let (t0, z0) ∈ Ck+n
have distinct coordinates. Denote

y(x) =

k∏
i=1

(x− t0i ), T (x) =

n∏
s=1

(x− z0s)ms .(3.1)

We have the following two statements.
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(i) If (t0, z0) is a solution of the Bethe ansatz equations (2.6), then k 6 |m|+1, 2k 6= |m|+1,
and there exists a polynomial ỹ(x) ∈ C[x] of degree |m|+ 1− k such that

Wr(ỹ(x), y(x)) = T (x).(3.2)

(ii) If there exists a polynomial ỹ(x) satisfying equation (3.2), then k 6 |m|+1, 2k 6= |m|+1
and (t0, z0) is a solution of the Bethe ansatz equations (2.6).

Proof. We will use the proof below in the proof of the p-version of Theorem 3.1. Equation (3.2)
is a first order differential equation with respect to ỹ(x). Then(

ỹ(x)

y(x)

)′
=
T (x)

y(x)2
(3.3)

and

ỹ(x) = y(x)

∫
T (x)

y(x)2
dx = y(x)

∫
T (x)∏k

i=1(x− t0i )2
dx.(3.4)

We have the unique presentation T (x) = Q(x)
∏k
i=1(x− t0i )2 +R(x) with P (x), Q(x) ∈ C[x] such

that Q(x) = 0 if 2k > |m| and Q(x) = a|m|−2kx
|m|−2k + · · ·+ a0 is of degree |m| − 2k otherwise;

degR(x) < 2k. We have the unique presentation

R(x)∏k
i=1(x− t0i )2

=

k∑
i=1

(
ai,2

(x− t0i )2
+

ai,1
x− t0i

)
,(3.5)

where

ai,2 =
T (x)∏k

j 6=i(x− t0j )2

∣∣∣∣
x=t0i

, ai,1 =
d

dx

(
T (x)∏k

j 6=i(x− t0j )2

)∣∣∣∣
x=t0i

.(3.6)

We have

d

dx

(
T (x)∏k

j 6=i(x− t0j )2

)∣∣∣∣
x=t0i

=

 n∑
s=1

ms

t0i − z0s
−
∑
j 6=i

2

t0i − t0j

 T (t0i )∏k
j 6=i(t

0
i − t0j )2

.

Since (t0, z0) has distinct coordinates we conclude that ai,1 = 0 for i = 1, . . . , k, if and only if
(t0, z0) is a solution of (2.6).

Let (t0, z0) be a solution of (2.6). By formula (3.4) we have

ỹ(x) =

k∏
i=1

(x− t0i )

(
c−

k∑
i=1

ai,2
x− t0i

)
, if 2k > |m|,(3.7)

ỹ(x) =

k∏
i=1

(x− t0i )

(
a|m|−2k

|m| − 2k + 1
x|m|−2k+1 + · · ·+ a0x+ c−

k∑
i=1

ai,2
x− t0i

)
,

if 2k 6 |m|, where c ∈ C is an arbitrary number. In each of the two cases we may choose c so
that deg ỹ(x) 6= deg y(x). Using the identity

Wr(xα, xβ) = (α− β)xλ+β−1(3.8)

we obtain in this case that

deg ỹ(x) + deg y(x) = |m|+ 1.(3.9)

Hence k 6 |m|+ 1 and k 6= |m|+ 1− k. The first part of the theorem is proved.
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Let there exist a polynomial ỹ(x) satisfying equation (3.2). Adding to ỹ(x) the polynomial
y(x) with a suitable coefficient if necessary we may assume that deg ỹ(x) 6= deg y(x). Then (3.9)
implies k 6 |m|+ 1 and k 6= |m|+ 1− k.

By formula (3.3) we have( ỹ(x)

y(x)

)′
= a|m|−2kx

|m|−2k + · · ·+ a0 +

k∑
i=1

( ai,2
(x− t0i )2

+
ai,1
x− t0i

)
if 2k 6 |m|(3.10)

and ( ỹ(x)

y(x)

)′
=

k∑
i=1

( ai,2
(x− t0i )2

+
ai,1
x− t0i

)
if 2k > |m|.(3.11)

The function ỹ(x)
y(x) has a unique decomposition into the sum of a polynomial and simple fractions.

The term by term derivative of that decomposition equals the right-hand side of (3.10) or (3.11).
Hence all of coefficients ai,1 must be zero. Hence the roots of y(x) satisfy the Bethe ansatz
equations. �

Remark. This construction assigns to a solution (t0, z0) of the Bethe ansatz equations the
two-dimensional subspace 〈ỹ(x), y(x)〉 of the space of polynomials C[x] such that deg y(x) =
k, deg ỹ(x) = |m| − k+ 1, Wr(y(x), ỹ(x)) = T (x). That subspace is a point of the Grassmannian
of two-dimensional subspaces of C[x].

3.2. Two-dimensional spaces of polynomials over Fp.

Theorem 3.2. Let k ∈ Z>0, m = (m1, . . . ,mn) ∈ Zn>0. Let p > |m| + 1, p > n + k. Let

(t0, z0) ∈ Fk+np have distinct coordinates. Denote

y(x) =

k∏
i=1

(x− t0i ), T (x) =

n∏
s=1

(x− z0s)ms ∈ Fp[x].(3.12)

We have the following two statements.

(i) If (t0, z0) is a solution of the Bethe ansatz equations (2.15), then k 6 |m|+1, 2k 6= |m|+1,
and there exists a polynomial ỹ(x) ∈ Fp[x] of degree |m|+ 1− k such that

Wr(ỹ(x), y(x)) = T (x).(3.13)

(ii) If there exists a polynomial ỹ(x) ∈ Fp[x] satisfying equation (3.13), then k 6 |m| + 1,
2k 6= |m|+ 1 and (t0, z0) is a solution of the Bethe ansatz equations (2.15).

Proof.

Lemma 3.3. Let p be a prime number. Let d1, . . . , dk ∈ Z>0 with di 6 2 for all i. Let
t01, . . . , t

0
k ∈ Fp be distinct and T (x) ∈ Fp[x]. Then there exists a unique presentation

T (x)∏k
i=1(x− t0i )di

= Q(x) +

k∑
i=1

di∑
j=1

ai,j
(x− t0i )j

,(3.14)

where Q(x) ∈ Fp[x] and

ai,j =
dj−1

dxj−1

(
T (x)∏k

l 6=i(x− t0l )dl

)∣∣∣∣
x=t0i

.(3.15)
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Proof. The uniqueness is clear. Let us show the existence. Lift t01, . . . , t
0
k, T (x) to t11, . . . , t

1
k ∈ Z,

T 1(x) ∈ Z[x]. We have

T 1(x)∏k
i=1(x− t1i )di

= Q1(x) +

k∑
i=1

di∑
j=1

a1i,j
(x− t1i )j

,(3.16)

where Q1(x) ∈ Z[x] and

a1i,j =
dj−1

dxj−1

(
T 1(x)∏k

j 6=i(x− t1j )dj

)∣∣∣∣
x=t0i

.(3.17)

It is easy to see that for j = 1, 2 and all i the coefficient a1i,j has a well-defined projection to Fp.
By projecting (3.16) to Fp we obtain a presentation of (3.14). �

The proof of Theorem 3.2 is based on Lemma 3.3 and is analogous to the proof of Theorem
3.1. If (t0, z0) is a solution of (2.15), then(

ỹ(x)

y(x)

)′
=

T (x)∏k
i=1(x− t0)2

= Q(x) +

k∑
i=1

ai,2
(x− t0i )2

,

where ai,2 are given by (3.15); Q(x) ∈ Fp[x], Q(x) = 0 if 2k > |m| and

Q(x) = a|m|−2kx
|m|−2k + · · ·+ a0

is of degree |m| − 2k + 1 if 2k 6 |m|, see Section 3.1.
If 2k 6 |m|, then

ỹ(x) =

k∏
i=1

(x− t0i )

(
a|m|−2k

|m| − 2k + 1
x|m|−2k+1 + · · ·+ a0x−

k∑
i=1

ai,2
x− t0i

)
is a polynomial of degree |m|−k+ 1 satisfying (3.2). Notice that the polynomial in the brackets
is well-defined since p > |m|+ 1. If 2k > |m|, then

ỹ(x) = −
k∏
i=1

(x− t0i )

(
k∑
i=1

ai,2
x− t0i

)
is a polynomial satisfying (3.13) of degree < k. Formula (3.8) and inequality p > k + n imply
(3.9). The first part of Theorem 3.2 is proved.

Let there exist a polynomial ỹ(x) satisfying equation (3.13). Adding to ỹ(x) a suitable
polynomial of the form c(xp)y(x) for some c(x) ∈ Fp[x] if necessary, we may assume that
deg ỹ(x)− deg y(x) 6≡ 0 mod p. Then (3.9) holds, k 6 |m|+ 1 and k 6= |m|+ 1− k.

By formula (3.3) and Lemma 3.3 we have( ỹ(x)

y(x)

)′
= a|m|−2kx

|m|−2k + · · ·+ a0 +

k∑
i=1

( ai,2
(x− t0i )2

+
ai,1
x− t0i

)
if 2k 6 |m|(3.18)

and ( ỹ(x)

y(x)

)′
=

k∑
i=1

( ai,2
(x− t0i )2

+
ai,1
x− t0i

)
if 2k > |m|.(3.19)

The function ỹ(x)
y(x) has a unique decomposition into the sum of a polynomial and simple fractions.

The term by term derivative of that decomposition equals the right-hand side of (3.18) or (3.19).
Hence all of coefficients ai,1 must be zero. Hence the roots of y(x) satisfy the Bethe ansatz
equations. �
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Remark. This construction assigns to a solution (t0, z0) of the Bethe ansatz equations (2.15)
the two-dimensional subspace 〈ỹ(x), y(x)〉 of the space of polynomials Fp[x] such that

deg y(x) = k, deg ỹ(x) = |m| − k + 1, Wr(y(x), ỹ(x)) = T (x).

That subspace is a point of the Grassmannian of two-dimensional subspaces in Fp[x].

4. Example: the case k = 1

4.1. Gaudin model on SingL⊗m[|m| − 2]. Let m = (m1, . . . ,mn) ∈ Zn>0 and p > |m| + 1.
Consider the Gaudin model on SingL⊗m[|m| − 2] over Fp . That means that k = 1 in the
notations of the previous sections. A basis of L⊗m[|m| − 2] is formed by the vectors

f (s) = vm1
⊗ · · · ⊗ vs−1 ⊗ fvms

⊗ vs+1 ⊗ · · · ⊗ vmn
, s = 1, . . . , n.(4.1)

We have

SingL⊗m[|m| − 2] =
{ n∑
s=1

csf
(s) | cs ∈ Fp and

n∑
s=1

mscs = 0
}
.(4.2)

For s = 1, . . . , n, define the vectors ws ∈ SingL⊗m[|m| − 2] by the formula

ws = f (s) − ms

|m|

n∑
l=1

f (l).(4.3)

We have

w1 + · · ·+ wn = 0.(4.4)

By [V4, Lemma 4.2], any n− 1 of these vectors form a basis of SingL⊗m[|m| − 2].
Let z0 = (z01 , . . . , z

0
n) ∈ Fnp have distinct coordinates. For i = 1, . . . , n, the Gaudin Hamilton-

ian Hi(z
0) acts on L⊗m[|m| − 2] by the formulas:

f (s) 7→
∑
j 6=i

mimj/2

z0i − z0j
f (s) +

1

z0i − z0s
(msf

(i) −mif
(s)), s 6= i,(4.5)

f (i) 7→
∑
j 6=i

mimj/2

z0i − z0j
f (i) +

∑
j 6=i

1

z0i − z0j
(mif

(j) −mjf
(i)).

Hence

ws 7→
∑
j 6=i

mimj/2

z0i − z0j
ws +

1

z0i − z0s
(mswi −miws), s 6= i,(4.6)

wi 7→
∑
j 6=i

mimj/2

z0i − z0j
wi +

∑
j 6=i

1

z0i − z0j
(miwj −mjwi).

Recall that the Bethe algebra of SingL⊗m[|m| − 2] is the subalgebra of End(SingL⊗m[|m| − 2])
generated by the Gaudin Hamiltonians Hi(z

0), i = 1, . . . , n, and the identity operator. We
denote it by B(z0,m).
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4.2. Bethe ansatz equation and algebra A(z0,m). Let m = (m1, . . . ,mn) ∈ Zn>0 and
p > |m| + 1. Let z0 = (z01 , . . . , z

0
n) have distinct coordinates. The Bethe ansatz equations

of SingL⊗m[|m| − 2] is the single equation

m1

t− z01
+ · · ·+ mn

t− z0n
= 0.(4.7)

Write

m1

t− z01
+ · · ·+ mn

t− z0n
=

P (t)∏n
s=1(t− z0s)

,(4.8)

where

P (t) = P (t, z0,m) =

n∑
s=1

ms

∏
l 6=s

(t− z0l ).(4.9)

Let AFp
be the affine line over Fp with coordinate t. Denote U = AFp

− {z01 , . . . , z0n}. Let
O(U) be the ring of rational functions on the affine line AFp regular on U . Introduce the algebra

A(z0,m) = O(U)/(P (t)), dimFp A(z0,m) = n− 1.(4.10)

Here (P (t)) is the ideal generated by P (t). Let us ∈ A(z0,m), s = 1, . . . , n, be the image of
ms

t−z0s
in A(z0,m). The elements us span A(z0,m) as a vector space and

u1 + · · ·+ un = 0.(4.11)

We have

uius =
1

z0i − z0s
(msui −mius), s 6= i,(4.12)

uiui =
∑
j 6=i

1

z0i − z0j
(miuj −mjui).

For a function g(t) ∈ O(U) denote [g(u)] its image in A(z0,m). The elements [1], [t], . . . , [tn−2]
form a basis of A(z0,m) over Fp. The defining relation in A(z0,m) is P ([t]) = 0. The following
formulas express the elements [ti] in terms of the elements us.

Lemma 4.1. We have

[1] =
−1

|m|
(z01u1 + · · ·+ z0nun),(4.13)

[t] =
1

|m|2

(
n∑
s=1

z0sms

)(
n∑
s=1

z0sus

)
+
−1

|m|

(
n∑
s=1

(z0s)2us

)
,

[ti] =
−1

|m|

i∑
j=1

n∑
s=1

(z0s)jms[t
i−j ] +

−1

|m|

n∑
s=1

(z0s)i+1us, i > 0.

�

These formulas are related to formulas for the ŝl2-action on tensor products of modules dual
to Verma modules, see [SV2] and in particular to formula (11) in [SV2].
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4.3. Isomorphism of A(z0,m) and B(z0,m). Define the isomorphism of vectors spaces

α : A(z0,m) → SingL⊗m[|m| − 2], us 7→ ws, s = 1, . . . , n,(4.14)

in particular, we have

〈1〉 := α([1]) =
−1

|m|
(z01w1 + · · ·+ z0nwn).(4.15)

Theorem 4.2. The map

[1] 7→ Id, us 7→ Hs(z
0)−

∑
j 6=s

msmj/2

z0s − z0j
Id, s = 1, . . . , n,(4.16)

extends to an algebra isomorphism

β : A(z0,m)→ B(z0,m),(4.17)

such that α(gh) = β(g).α(h) for any g, h ∈ A(z0,m).

Proof. The proof follows from comparing (4.6) and (4.12). �

Remark. Theorem 4.2 says that the isomorphism α of vector spaces and the isomorphism β
of algebras establish an isomorphism between the B(z0,m)-module SingL⊗m[|m| − 2] and the
regular representation of the algebra A(z0,m).

Example 4.1. Theorem 4.2 in particular says that if P (t) is irreducible then B(z0,m) ∼= Fpn−1 ,
where Fpn−1 is the field with pn−1 elements.

For example, if n = 3, m = (1, 1, 1), then

P (t, z0) = 3t2 − 2(z01 + z02 + z03)t+ z01z
0
2 + z01z

0
3 + z02z

0
3 .

If p = 5, then P (t, z0) is irreducible in F5[t] for all distinct z01 , z
0
2 , z

0
3 ∈ F5 and B(z0,m) ∼= F25.

Corollary 4.3. We have

dimFp
B(z0,m) = n− 1.(4.18)

Corollary 4.4. The operators β([1]) = Id, β([ti]), i = 1, . . . , n − 2, form a basis of the vector
space B(z0,m) over Fp. The operator

{t} := β([t]) =
1

|m|2

(
n∑
s=1

z0sms

) n∑
s=1

z0s

Hs(z
0)−

∑
j 6=s

msmj/2

z0s − z0j
Id

(4.19)

+
−1

|m|

 n∑
s=1

(z0s)2

Hs(z
0)−

∑
j 6=s

msmj/2

z0s − z0j
Id


generates B(z0,m) as an algebra with defining relation P ({t}) = 0.

Corollary 4.5. We haveHs(z
0)−

∑
j 6=s

msmj/2

z0s − z0j
Id

 .〈1〉 = ws, s = 1, . . . , n.(4.20)
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4.4. Eigenvectors of B(z0,m) and the polynomial P (t). The elements of the algebraA(z0,m)
have the form Q([t]), where Q(t) ∈ Fp[t], degQ(t) < n−1. An element Q([t]) is an eigenvector of
all multiplication operators of A(z0,m) if and only if Q([t]) is an eigenvector of the multiplication
by [t]. If t0 ∈ Fp is the eigenvalue, then ([t]− t0)Q([t]) = 0, that is,

(t− t0)Q(t) = const P (t), const ∈ Fp.(4.21)

Hence the set of eigenlines of all multiplication operators of A(z0,m) is in one-to-one correspon-
dence with the set of distinct roots of the polynomial P (t), namely, a root t0 with decomposition
(t− t0)Q(t) = P (t) corresponds to the line generated by the element Q([t]).

Corollary 4.6. The set of eigenlines of B(z0,m) are in one-to-one correspondence with the set
of distinct roots of the polynomial P (t), namely, a root t0 with decomposition (t− t0)Q(t) = P (t)
for some Q(t) ∈ Fp[t] corresponds to the line generated by the vector

ω(t0, z0) := Q({t}).〈1〉 ∈ SingL⊗m[|m| − 2].(4.22)

�

Thus we have two ways to construct the eigenlines of B(z0,m) from roots t0 of the polynomial
P (t). The first is given by Theorem 2.1 and the eigenline is generated by the vector

W1,n,m(t0, z0) =

n∑
s=1

1

t0 − zs
f (s) =

n∑
s=1

1

t0 − zs
ws.(4.23)

The second is given by Corollary 4.6 and the eigenline is generated by the vector Q({t}).〈1〉.

Theorem 4.7. The two eigenlines coincide, more precisely, we have

W1,n,m(t0, z0) = constQ({t}).〈1〉, const ∈ Fp.(4.24)

Proof. We need to show that ([t]− t0)α−1(W1,n,m(t0, z0)) = 0 in A(z0,m). Indeed

([t]− t0)α−1(W1,n,m(t0, z0)) =

n∑
s=1

ms

t0 − zs

[ t− t0
t− zs

]
=

n∑
s=1

ms

t0 − zs
[1]−

n∑
s=1

[ ms

t− zs

]
= 0

due to the Bethe ansatz equation (4.7) and formula (4.11).
�

4.5. Algebra C(T ). In this section, p is a prime number, p > n+ 1. Fix a monic polynomial

T (x) = xn + σ1x
n−1 + σ2x

n−2 + · · ·+ σn ∈ Fp[x].(4.25)

We consider the two-dimensional subspaces V ⊂ Fp[x] consisting of polynomials of degree n and
1 such that Wr(g1(x), g2(x)) = constT (x), where g1(x), g2(x) is any basis of V and const ∈ Fp.
Such a subspace V has a unique basis of the form

g1(x) = xn + a1x
n−1 + · · ·+ an−2x

2 + a0, g2 = x− t(4.26)

with

Wr(g1(x), g2(x)) = (n− 1)T (x).(4.27)

Equation (4.27) is equivalent to the system of equations

(n− r − 1)ar − (n− r + 1)ar−1t− (n− 1)σr = 0, r = 1, . . . , n− 1,(4.28)

an − (n− 1)σn = 0,
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where a0 = 1. Expressing a1 from the first equation in terms of t, then expressing a2 from
the first and second equations in terms of t and so on, we can reformulate system (4.28) as the
system of equations

ar −
n− 1

2
(ntr + (n− 1)σ1t

r−1 + · · ·+ (n− r)σr) = 0, r = 1, . . . , n− 2,(4.29)

ntn−1 + (n− 2)σ1t
n−2 + · · ·+ 2σ2t+ σ1 = 0,(4.30)

an + σn = 0.(4.31)

Notice that equation (4.30) is the equation dT
dt (t) = 0, where T (x) is defined in (4.25).

Let I ⊂ Fp[t, a1, . . . , an−2, an] be the ideal generated by n polynomials staying in the left-hand
sides of the equations of the system (4.28). Define the algebra

C(T ) = Fp[t, a1, . . . , an−2, an]/I.(4.32)

Let J ⊂ Fp[t] be the ideal generated by dT
dt (t). Define the algebra

C̃(T ) = Fp[t]/J.(4.33)

Lemma 4.8. We have an isomorphism of algebras

C̃(T )→ C(T ), [t] 7→ [t].(4.34)

�

Let m0 = (1, . . . , 1) ∈ Zn>0. Let z0 = (z01 , . . . , z
0
n) ∈ Fnp be a point with distinct coordinates.

The Bethe ansatz for SingL⊗m
0

[|m0| − 2] has the form

1

t− z01
+ · · ·+ 1

t− z0n
=
R(t)

T (t)
= 0,(4.35)

where

T (t) =

n∏
s=1

(t− z0s), R(t) =
dT

dt
(t).(4.36)

Hence for this T (x) we have

C̃(T ) = A(z0,m0).(4.37)

Corollary 4.9. For T (t) and R(t) as in (4.36) we have

A(z0,m0) ∼= B(z0,m0) ∼= C(T )(4.38)

and the B(z0,m)-module SingL⊗m
0

[|m0| − 2] is isomorphic to the regular representation of the
algebra C(T ).

4.6. Wronski map. Let Xn be the affine space of all two-dimensional subspaces V ⊂ Fp[x],
each of which consists of polynomials of degree n and 1. The space Xn is identified with the
space of pairs of polynomials given by formula (4.26). Let Fp[x]n ⊂ Fp[x] be the affine subspace
of monic polynomials of degree n. Introduce the Wronski map

Wn : Xn → Fp[x]n, 〈g1(x), g2(x)〉 7→ 1

n− 1
Wr(g1(x), g2(x)),(4.39)

cf. [MTV3]. The algebra C(T ) is the algebra of functions on the fiber W−1(T ) of the Wronski
map.
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Example 4.2. Let n = 3 and T (x) = x3+σ1x
2+σ2x+σ3. Then W−13 (T ) consists of one point if

the discriminant σ2
1−3σ2 of dTdx (x) equals zero; W−13 (T ) consists of two points if the discriminant

is a nonzero square, and is empty otherwise. Thus, p2 points of X3 have one preimage, p−1
2 p2

points have two preimages, and p−1
2 p2 points have none. Cf. Example 4.1.
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