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A MCKAY CORRESPONDENCE FOR THE POINCARÉ SERIES OF SOME

FINITE SUBGROUPS OF SL3(C)

WOLFGANG EBELING

Dedicated to the memory of Egbert Brieskorn with great admiration

Abstract. A finite subgroup of SL2(C) defines a (Kleinian) rational surface singularity. The
McKay correspondence yields a relation between the Poincaré series of the algebra of invariants

of such a group and the characteristic polynomials of certain Coxeter elements determined

by the corresponding singularity. Here we consider some non-abelian finite subgroups G of
SL3(C). They define non-isolated three-dimensional Gorenstein quotient singularities. We

consider suitable hyperplane sections of such singularities which are Kleinian or Fuchsian

surface singularities. We show that we obtain a similar relation between the group G and the
corresponding surface singularity.

Introduction

In [E4] we showed that the Poincaré series of the coordinate algebra of a two-dimensional
quasihomogeneous singularity is the quotient of two polynomials one of which is related to the
characteristic polynomial of the monodromy of the singularity. There are two special cases of
this result. One is the case of a Kleinian singularity not of type A2n. The Kleinian singularities
are defined by quotients of C2 by finite subgroups of SL2(C). In this case, the relation means
that the Poincaré series is the quotient of the characteristic polynomials of the Coxeter element
and the affine Coxeter element of the corresponding root system of type ADE. We derived this
relation from the McKay correspondence. The other case is the case of a Fuchsian singularity. A
Fuchsian singularity is defined by the action of a Fuchsian group (of the first kind) Γ ⊂ PSL(2,R)
on the tangent bundle TH of the upper half plane H. For a Fuchsian hypersurface singularity (or
more generally for a Fuchsian singularity of genus 0 [EP]), we showed that the Poincaré series
is the quotient of two characteristic polynomials of Coxeter elements [E5].

Here we consider a similar relation for the Poincaré series of some non-abelian finite subgroups
of SL3(C). The non-abelian finite subgroups of SL3(C) define non-isolated three-dimensional
Gorenstein quotient singularities. We consider those groups where the natural three-dimensional
representation is irreducible and the corresponding quotient singularity has a certain hyperplane
section which is a Kleinian or Fuchsian singularity. We show, that in this way, we again obtain
relations between the Poincaré series of the algebra of invariants of the group and the charac-
teristic polynomials of certain Coxeter elements determined by the corresponding Kleinian or
Fuchsian singularity.

The famous paper [Br] of E. Brieskorn is fundamental for the study of Kleinian singularities.
The Kleinian singularities were a central theme in Brieskorn’s research and we owe Brieskorn
many beautiful and important results about these singularities. Therefore I would like to express
my great admiration for him in dedicating this paper to his memory.
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G |G| x, y, z cG R(x, y, z) Sing. α1, . . . , αm
C2n+1 2n+ 1 2, 2n+ 1, 2n+ 1 1 x2n+1 + y2 + z2 A2n 2n
C2n 2n 2, 2n, 2n 2 x2n + y2 + z2 A2n−1 2n− 1
Dn 4n 4, 2n, 2n+ 2 2 xn+1 + xy2 + z2 Dn+2 2, 2, n
T 24 6, 8, 12 2 x4 + y3 + z2 E6 2, 3, 3
O 48 8, 12, 18 2 x3y + y3 + z2 E7 2, 3, 4
I 120 12, 20, 30 2 x5 + y3 + z2 E8 2, 3, 5

Table 1. Subgroups of SL2(C) and surface singularities

1. Finite subgroups of SL2(C) and SL3(C) and normal surface singularities

Let G be a finite subgroup of SL2(C). The classification of finite subgroups of SL2(C) up to
linear equivalence is well-known, see e.g. [Kl]. There are up to conjugacy five classes of such
groups: the cyclic groups C`, the binary dihedral groups Dn, the binary tetrahedral group T ,
the binary octahedral group O, and the binary icosahedral group I. The quotients of C2 by
these groups were studied by E. Brieskorn [Br]. Equations for these singularities can be obtained
from generators and relations of the algebra of invariant polynomials with respect to G. This
algebra has three generators x, y, z in each case which satisfy an equation R(x, y, z) = 0. The
degrees of the generators and the equation R(x, y, z) = 0 are indicated in Table 1. (They can be
found, e.g., in [Sp].) The equations define isolated hypersurface singularities in C3, the so called
Kleinian singularities.

The finite subgroups of SL3(C) were classified up to linear equivalence by H. F. Blichfeldt,
G. A. Miller, and L. E. Dickson [Bl, MBD] with two missing cases (see [YY]). There are 12 types
of finite subgroups of SL3(C): (A)–(L). There are four infinite series (A)–(D). The groups of
type (A) are the diagonal abelian groups and the groups of type (B) are isomorphic to transitive
finite subgroups of GL2(C). Here the natural 3-dimensional representation is not irreducible.
Type (C) is the infinite series ∆(3n2) of groups and type (D) the series ∆(6n2) (for the notation
see [HH, LNR, EL]). Moreover, we have 8 exceptional subgroups (E)–(L).

We consider those subgroups of type (C)–(L) which admit a certain hyperplane section which
defines a Kleinian or Fuchsian singularity. Generators and relations for the algebra of invariant
polynomials with respect to G have been computed in [YY] (see also [We] for some cases).
They correspond to non-isolated Gorenstein quotient singularities C3/G. These singularities
are either hypersurface singularities in C4 or complete intersection singularities in C5. We
denote the coordinates of these spaces by w, x, y, z and w, x, y, z, u respectively. We consider
hyperplane sections of these singularities, namely we consider the restrictions of the equations to
the hyperplane w = 0. For the series (C) and (D) the hyperplane sections of the corresponding
singularities for the first few elements of these series are listed in Table 2. It turns out that
the singularities corresponding to the series (C) (∆(3n2)) belong to Arnold’s E-series whereas
those of type (D) (∆(6n2)) belong to Arnold’s Z-series (n even) or are complete intersection
singularities (n odd) (for the definition of these series see [Arn]). The subgroups which correspond
to Kleinian singularities are the tetrahedral group T = ∆(3 · 22) and the octahedral group
O = ∆(6·22) which correspond to the Kleinian singularities E6 and E7 respectively. Those which
correspond to Fuchsian singularities are ∆(3 · 42) (E14), ∆(6 · 42) (Z11), ∆(6 · 62) (Z1,0), and
∆(6 ·32) which corresponds to the elliptic complete intersection singularity δ1 in C. T. C. Wall’s
notation [Wa2]. (For a list of Fuchsian hypersurface and complete intersection singularities see
[E5].) These are 6 cases. The remaining 8 exceptional subgroups of types (E)–(L) all correspond
to Fuchsian singularities except in the case (H) which is the icosahedral group I corresponding
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G |G| w, x, y, z(, u) cG R(0, x, y, z(, u)) Sing.
∆(3 · 22) 12 2, 3, 4, 6 1 z2 + 4y3 + 27x4 E6

∆(3 · 32) 27 3, 3, 6, 9 3 z2 + 4y3 + 27x6 Ẽ8

∆(3 · 42) 48 4, 3, 8, 12 1 z2 + 4y3 + 27x8 E14

∆(3 · 52) 75 5, 3, 10, 15; 30 1 z2 + 4y3 + 27x10 E18

∆(6 · 22) 24 2, 4, 6, 9 1 z2 + 4xy3 + 27x3 E7

∆(6 · 32) 54 6, 6, 6, 6, 9 3

{
z2 − xy

u2 + 4xyz + 27x3

}
δ1

∆(6 · 42) 96 4, 6, 8, 15 1 z2 + 4xy3 + 27x5 Z11

∆(6 · 52) 150 10, 6, 8, 10, 15 1

{
z2 − xy

u2 + 4x2yz + 27x5

}
no name

∆(6 · 62) 216 6, 6, 12, 21 3 z2 + 4xy3 + 27x7 Z1,0

∆(6 · 72) 294 14, 6, 10, 14, 21 1

{
z2 − xy

u2 + 4x3yz + 27x7

}
no name

∆(6 · 82) 384 8, 6, 16, 27; 54 1 z2 + 4xy3 + 27x9 Z19

Table 2. The first subgroups of types (C) and (D) and surface singularities

G |G| w, x, y, z(, u) cG R(0, x, y, z(, u)) Sing.
(C): T 12 2, 3, 4, 6 1 z2 + 4y3 + 27x4 E6

∆(3 · 42) 48 4, 3, 8, 12 1 z2 + 4y3 + 27x8 E14

(D): O 24 2, 4, 6, 9 1 z2 + 4xy3 + 27x3 E7

∆(6 · 32) 54 6, 6, 6, 6, 9 3

{
z2 − xy

u2 + 4xyz + 27x3

}
δ1

∆(6 · 42) 96 4, 6, 8, 15 1 z2 + 4xy3 + 27x5 Z11

∆(6 · 62) 216 6, 6, 12, 21 3 z2 + 4xy3 + 27x7 Z1,0

(E) 108 6, 6, 9, 12, 12 3

{
9u2 − 12z2

432y2 − x3 − 36xz

}
K ′1,0

(F) 216 6, 9, 12, 12 3
4z3 − 144yz2

+1728y2z − 186624x4
U12

(G) 648 9, 12, 18, 18 6 4z3 − 9yz2 + 6y2z − y3 + 6912x3y U1,0

(H)=I 60 2, 6, 10, 15 1 z2 − y3 + 1728x5 E8

(I) 168 4, 6, 14, 21 1 z2 − y3 − 1728x7 E12

(J) 180 6, 6, 12, 15 3 y3 − xz2 + 64x2y2 Q2,0

(K) 504 6, 12, 18, 21 3 y3 − xz2 − 256x3y Q11

(L) 1080 6, 12, 30, 45 3
459165024z2 − 25509168y3

−(7558272− 2519424
√

15i)x5y
E13

Table 3. Subgroups of SL3(C) and surface singularities

to the Kleinian singularity E8. Altogether we have 14 cases which we will consider in this paper.
They are listed in Table 3. These singularities are surface singularities and they are isolated
except in the three cases ∆(6 · 32), (E) and (J). They correspond to Kleinian singularities in
the cases T , O and (H) (the icosahedral group I) and to Fuchsian singularities in the other
cases. They correspond to simple (T , O, I), unimodal (∆(3 · 42), ∆(6 · 42), (F), (I), (K),
(L)) and bimodal (∆(6 · 62), (G), (J)) hypersurface singularities, to the unimodal complete
intersection singularity of type K ′1,0 (type (E)) in Wall’s notation [Wa1], and to the elliptic
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complete intersection singularity δ1. The names of the hypersurface singularities according to
V. I. Arnold’s classification [Arn] are indicated in the last column of Table 3.

2. Poincaré series and Coxeter elements

We now consider the isolated singularities corresponding to these singularities. They are
quasihomogeneous. This means the following. A complex polynomial f(x1, . . . , xn) is called
quasihomogeneous, if there are positive integers w1, . . . , wn (called weights) and d (called de-
gree) such that f(λw1x1, . . . , λ

wnxn) = λdf(x1, . . . , xn) for λ ∈ C∗. A complete intersection
singularity given as the zero set of polynomials f1(x1, . . . , xn), . . . , fk(x1, . . . , xn) is called quasi-
homogeneous, if f1, . . . , fk are quasihomogeneous with respect to the same weights w1, . . . , wn
but degrees d1, . . . , dk respectively. We call the system W := (w1, . . . , wn; d1, . . . , dk) the weight
system corresponding to the set of polynomials. Let cW be the greatest common divisor of
w1, . . . , wn, d1, . . . , dk. The weight system is called reduced if cW = 1.

We assume that f1(0) = · · · = fk(0) = 0 and the system of equations f1 = · · · = fk = 0 has
an isolated singularity at the origin. The coordinate algebra Af := C[x1, . . . , xn]/(f1, . . . , fk) is
a Z-graded algebra with respect to the system of weights (w1, . . . , wn; d1, . . . , dk). Therefore we
can consider the decomposition of Af as a Z-graded C-vector space:

Af :=

∞⊕
k=0

Af,k, Af,k :=
{
g ∈ Af

∣∣ g(λw1x1, . . . , λ
wnxn) = λkg(x1, . . . , xn)

}
.

The formal power series pf (t) :=
∑∞
k=0(dimCAf.k)tk is called the Poincaré series of Af . It is

given by

pf (t) =

∏k
i=1(1− tdi)∏n
j=1(1− twj )

.

Let (X,x) be a Kleinian singularity. Then the minimal resolution of the singularity x has
an exceptional divisor with the dual graph depicted in Fig. 1 with m = 1 in the case of the
An-singularities and m = 3 in the other cases (see, e.g., [Br]). Here all vertices correspond to
rational curves of self-intersection number −2, the mutual intersection numbers are either 0 or 1,
and two vertices are joined by an edge if and only if the intersection number of the corresponding
rational curves is equal to 1. The values of the numbers α1, . . . , αm are indicated in Table 1.
They are the Dolgachev numbers of the singularity, see [ET]. It turns out that these graphs
are precisely the ordinary Coxeter-Dynkin diagrams of type ADE. (Note that the corresponding
intersection matrix is the Cartan matrix multiplied by −1.)

Now let (X,x) be a Fuchsian hypersurface or complete intersection singularity. A natural
compactification of X is given by X := Proj(Af [t]), where t has degree 1 for the grading of

Af [t] (see [P]). This is a normal projective surface with a C∗-action. The surface X may acquire

additional singularities on the boundary X∞ := X \X = Proj(Af ). Let g = g(X∞) be the genus

of the boundary. We assume g = 0. Let π : S → X be the minimal normal crossing resolution of

all singularities of X. The preimage X̃∞ of X∞ under π : S → X consists of the strict transform
δ0 of X∞ and m chains δi1, . . . , δ

i
αi−1, i = 1, . . . ,m, of rational curves of self-intersection −2

which intersect again according to the dual graph shown in Figure 1 (see, e.g., [D, E5]). By
the adjunction formula and g = 0, the self-intersection number of the rational curve δ0 is also
−2. The numbers α1, . . . , αm of the Fuchsian singularities corresponding to finite subgroups of
SL3(C) are indicated in Table 4. They are again the Dolgachev numbers of the singularity, see
[ET, E3].
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· · ·

•
δ21

· · · •
δ2α2−1

•
δ0

•
δm−1
αm−1−1

· · · •
δm−1
1

•
δ1α1−1

•
δmαm−1

· · · · · ·

•
δ11

•
δr1

Figure 1. The graph T−α1,...,αm

G Name Normal form Weights α1, . . . , αm
(C): T E6 z2 + y3 + x4 3,4,6;12 2, 3, 3

∆(3 · 42) E14 z2 + y3 + x8 3,8,12;24 3, 3, 4
(D): O E7 z2 + y3 + yx3 4,6,9;18 2, 3, 4

∆(6 · 32) δ1

{
xy + z2

x3 + y3 + z3 + w2

}
2,2,2,3;4,6 2, 2, 2, 2, 2, 2

∆(6 · 42) Z11 z2 + xy3 + x5 6,8,15;30 2, 3, 8
∆(6 · 62) Z1,0 z2 + xy3 + x7 2,4,7;14 2, 2, 2, 4

(E) K ′1,0

 xu+ y2

ax4 + xy2 + z2 + u2,
a 6= 0, 14

 2,3,4,4;6,8 2, 2, 4, 4

(F) U12 z3 + y3 + x4 3,4,4;12 4, 4, 4
(G) U1,0 z3 + yz2 + x3y 2,3,3;9 2, 3, 3, 3

(H)=I E8 z2 + y3 + x5 6,10,15;30 2, 3, 5
(I) E12 z2 + y3 + x7 6,14,21;42 2, 3, 7
(J) Q2,0 xz2 + y3 + x4y 2,4,5;12 2, 2, 2, 5
(K) Q11 xz2 + y3 + yx3 4,6,7;18 2, 4, 7
(L) E13 z2 + y3 + x5y 4,10,15;30 2, 4, 5

Table 4. Normal forms, reduced weight systems, and Dolgachev numbers

We call the graph T−α1,...,αm a Coxeter-Dynkin diagram. Let V− be the free Z-module with
the basis

δ11 , . . . , δ
1
α1−1, δ

2
1 , . . . , δ

2
α2−1, . . . , δ

m
1 , . . . , δ

m
αm−1, δ0

equipped with the symmetric bilinear form 〈−,−〉 given by the intersection matrix corresponding
to Fig. 1. This defines a lattice (V−, 〈−,−〉).

We consider two extensions of this lattice. Let V0 = V− ⊕ Zδ1 with the symmetric bilinear
form defined by Fig. 2. Here the double dashed line between δ0 and δ1 means 〈δ0, δ1〉 = −2. Let
V+ = V0 ⊕ Zδ2 with the symmetric bilinear form defined by Fig. 3.
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Figure 2. The graph Tα1,...,αm
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Figure 3. The graph T+
α1,...,αm

If (V, 〈−,−〉) is an arbitrary lattice and e ∈ V is a root, i.e. 〈e, e〉 = −2, then the reflection
corresponding to e is defined by

se(x) = x− 2〈x, e〉
〈e, e〉

e = x+ 〈x, e〉e for x ∈ V.

If B = (e1, . . . , en) is an ordered basis consisting of roots, then the Coxeter element τ corre-
sponding to B is defined by

τ = se1se2 · · · sen .
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For a Coxeter element τ , let ∆(t) = det(1 − τ−1t) be its characteristic polynomial, using a
suitable normalization.

If D is a Coxeter-Dynkin diagram, then we denote by ∆D(t) the characteristic polynomial of
the Coxeter element corresponding to the graph D. These polynomials can be computed as in
[E1] and one gets

∆T−α1,...,αm
(t) = (1 + t)

m∏
i=1

1− tαi
1− t

− t
m∑
i=1

1− tαi−1

1− t

m∏
j=1
j 6=i

1− tαj
1− t

,

∆Tα1,...,αm
(t) = (1− t)2−m(1− tα1) · · · (1− tαm),

∆T+
α1,...,αm

(t) = (1− 2t− 2t2 + t3)

m∏
i=1

1− tαi
1− t

+ t2
m∑
i=1

1− tαi−1

1− t

m∏
j=1
j 6=i

1− tαj
1− t

.

(The last two formulas can also be found in [E2, p. 98], but note that, unfortunately, there is a
misprint in [E2, p. 98].)

Now we can state the main result of [EP].

Theorem 1. (i) For a Kleinian singularity not of type A2n we have

pf (t) =
∆T−α1,...,αm

(t)

∆Tα1,...,αm
(t)
.

(ii) For a Fuchsian singularity with g = 0 we have

pf (t) =
∆T+

α1,...,αm
(t)

∆Tα1,...,αm
(t)
.

Remark 2. Unfortunately, the exclusion of the case A2n is only implicit in [EP] and was
forgotten in the statement of [EP, Theorem 1].

Remark 3. Note that we have T2,3,3 ∼ T−3,3,3, T2,3,4 ∼ T−2,4,4, T2,3,5 ∼ T−2,3,6, where ∼ means

equivalence under the braid group action, see [E6]. Similarly, one can show that the graphs
T2n−1, n ≥ 1, and T2,2,n, n ≥ 2, are equivalent under the braid group action to the extended
Coxeter-Dynkin diagrams of type A2n−1 and Dn+2 respectively.

3. Poincaré series of subgroups of SL2(C) and SL3(C)

LetG be a finite subgroup of SLn(C) for n = 2, 3. Consider the algebra of complex polynomials
C[x1, . . . , xn] graded by the degree for homogeneous ones. It is isomorphic to the symmetric
algebra

S := S(Cn) =

∞⊕
k=0

Sk(Cn),

where Sk(Cn) denotes the k-th symmetric power of Cn. Let SG be the algebra of invariant
polynomials with respect to G.

For n = 2, it is generated by 3 elements x, y, z which satisfy a relation R(x, y, z) = 0. The
elements x, y, z correspond to invariant polynomials and their degrees correspond to the weights
of these variables. Let cG denote the greatest common divisor of these weights. The weights of
the variables x, y, z, the number cG, and the polynomial R(x, y, z) are indicated in Table 1.

Now let G be one of the finite subgroups of SL3(C) of Table 3. Except in the cases (E)
and ∆(6 · 32), the algebra SG is generated by 4 elements w, x, y, z which satisfy a relation
R(w, x, y, z). In the cases (E) and ∆(6 · 32), SG is generated by 5 elements w, x, y, z, u which
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satisfy two relations R1(w, x, y, z, u) = 0 and R2(w, x, y, z, u) = 0. The degrees of the invariants
and the polynomials R(w, x, y, z) and R1(w, x, y, z, u), R2(w, x, y, z, u) respectively can be found
in [YY]. The degrees of the invariant polynomials and the restriction to the hyperplane w = 0
of the polynomials R(w, x, y, z) and R1(w, x, y, z, u), R2(w, x, y, z, u) respectively are indicated
in Table 3. Let cG be the greatest common divisor of the weights of the remaining variables
x, y, z(, u) (with the weight of w excluded). The number cG is also indicated in Table 3. Note
that, except in the case (G), cG also divides the weight of w.

For n = 2, the algebra AG := SG = C[x, y, z]/R(x, y, z) coincides with the coordinate algebra
Af of the corresponding singularity indicated in the last column of Table 1 up to the grading.
The grading is shifted by cG. For n = 3 and G one of the cases of Table 3 except the cases (E) and
∆(6·32), the algebra AG := C[x, y, z]/R(0, x, y, z) coincides with the coordinate algebra Af of the
corresponding singularity indicated in the last column of Table 3 with the grading shifted by cG.
In the cases (E) and ∆(6 · 32), the algebra AG := C[x, y, z, u]/(R1(0, x, y, z, u), R2(0, x, y, z, u))
coincides with the coordinate algebra Af of the complete intersection singularity K ′1,0 and δ1
respectively, again with the grading shifted by cG. Let pG(t) be the Poincaré series of the algebra
of AG. Then we have

pG(t) = pf (tcG) for G ⊂ SL2(C), pG(t) =
pf (tcG)

(1− tdegw)
for G ⊂ SL3(C).

The finite subgroups G ⊂ SLn(C) for n = 2, 3 under consideration have a natural n-
dimensional representation γ which is irreducible (except in the cases G = Cl). Let γ∗ be
its contragredient representation. Let γ0, . . . , γl be the irreducible representations of G, where
γ0 is the trivial representation. Let B = (bij) and B∗ = (b∗ij) be the (l + 1) × (l + 1)-matrices
defined by decomposing the tensor products

γj ⊗ γ =
⊕
i

bijγi and γj ⊗ γ∗ =
⊕
i

b∗ijγi

respectively into irreducible components.
For each integer k ≥ 0, let ρk be the representation of G on Sk(Cn) induced by its natural

action on Cn. We have a decomposition ρk =
∑l
i=0 vkiγi with vki ∈ Z. We associate to ρk the

vector vm = (vm0, . . . , vml)
t ∈ Zl+1. As in [K, p. 211] we define

PG(t) :=

∞∑
m=0

vmt
m.

This is a formal power series with coefficients in Zl+1. We also put PG(t)i :=
∑∞
m=0 vmit

m.
Note that PG(t)0 is the usual Poincaré series pG(t) of the group G. Let V denote the set of all
formal power series x =

∑∞
m=0 xmt

m with xm ∈ Zl+1. This is a free module of rank l + 1 over
the ring R of formal power series with integer coefficients.

Now let n = 2 and G ⊂ SL2(C) be a finite subgroup not of type C2n+1. Then cG = 2 and we
have

pf (t2) = PG(t)0.

Moreover, we have γ∗ = γ and therefore B∗ = B. The irreducible representations of SL2(C) are
of the form ρm, m a non-negative integer. The Clebsch-Gordon formula reads in this case

ρm ⊗ γ = ρm+1 ⊕ ρm−1
setting ρ−1 = 0 (cf., e.g., [FH, Exercise 11.11]). This yields the equation

Bvm = vm+1 + vm−1.
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Following [K, p. 222], one can easily derive from this equation that x = PG(t) is a solution of
the following linear equation in V :

((1 + t2)I − tB)x = v0.

Let M(t) be the matrix (1 + t2)I − tB and M0(t) be the matrix obtained by replacing the first
column of M(t) by v0 = (1, 0, . . . , 0)t. By Cramer’s rule we can derive the following theorem
[E4, Sect. 3] (see also [St]).

Theorem 4. For a finite subgroup G ⊂ SL2(C) not of type C2n+1 we have

pf (t2) = PG(t)0 =
detM0(t)

detM(t)
=

det(t2I − τ)

det(t2I − τa)
,

where τ is the Coxeter element and τa the affine Coxeter element of the corresponding root
system of type ADE associated to the singularity defined by the equation f = 0 with the same
name.

Now let n = 3 andG ⊂ SL3(C) be a finite subgroup. For a pair a, b of non-negative integers, let
Γa,b be the unique irreducible, finite-dimensional representation of SL3(C) of [FH, Theorem 13.1].
By [FH, Proposition 15.25] and [FH, (13.5)], we have for a non-negative integer m (setting
Γ−1,b = 0) the following Clebsch-Gordon formulas:

Γm,0 ⊗ γ = Γm+1,0 ⊕ Γm−1,1,

Γm,0 ⊗ γ∗ = Γm−1,0 ⊕ Γm,1.

Since Γm,0 = ρm, we can derive from these formulas

vm+2 = Bvm+1 −B∗vm + vm−1.

Therefore x = PG(t) is a solution of the following linear equation in V (see also [BI, BP]):

((1− t3)I − tB + t2B∗)x = v0.

Let M(t) be the matrix (1 − t3)I − tB + t2B∗ and M0(t) be the matrix obtained by replacing
the first column of M(t) by v0 = (1, 0, . . . , 0)t. Again Cramer’s rule yields

PG(t)0 =
detM0(t)

detM(t)
.

We have the following theorem:

Theorem 5. Let G ⊂ SL3(C) be one of the groups T , ∆(3 · 42), O, ∆(6 · 32), ∆(6 · 42),
∆(6 · 62), (E), (F), (G), (H)=I, (I), (J), (K), or (L), let cG be the greatest common divisor
of the weights of the variables x, y, z(, u), and let α1, . . . , αm be the Dolgachev numbers of the

singularity corresponding to G. Moreover, let q
(e)
a,b(t) = (1− t)a(1− te)b for a, b, e ∈ Z.

(i) For G = T,O, I (E6, E7, E8) we have cG = 1 and

detM0(t) = q
(2)
a,b(t)∆T−α1,α2,α3

(t), detM(t) = (1− t)q(2)a,b(t)∆T2,α1,α2,α3
(t),

where (a, b) = (3, 0), (3, 1), (4, 0) respectively.
(ii) For G=(I), ∆(3 · 42), ∆(6 · 42) (E12, E14, Z11) we have cG = 1 and

detM0(t) = q
(4)
a,b(t)∆T+

α1,α2,α3
(t), detM(t) = (1− t)q(4)a,b(t)∆T4,α1,α2,α3

(t).

where (a, b) = (3, 0), (3, 2), (2, 3) respectively.
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G detM0(t) detM(t)
T (1− t)3∆T−2,3,3

(t) (1− t)4∆T2,2,3,3
(t)

∆(3 · 42) (1− t)3(1− t4)2∆T+
3,3,4

(t) (1− t)4(1− t4)2∆T3,3,4,4(t)

O (1− t)3(1− t2)∆T−2,3,4
(t) (1− t)4(1− t2)∆T2,2,3,4

(t)

∆(6 · 32) (1−t3)10
(1−t6)3 ∆T+

2,2,2,2,2,2
(t3) (1−t3)9

(1−t6)3 ∆T2,2,2,2,2
(t3)

∆(6 · 42) (1− t)2(1− t4)3∆T+
2,3,8

(t) (1− t)3(1− t4)3∆T2,3,4,8
(t)

∆(6 · 62) (1− t3)7(1− t6)∆T+
2,2,2,4

(t3) (1− t3)8(1− t6)∆T2,2,2,2,4(t3)

(E) (1−t3)8
(1−t6)3 ∆T+

2,2,4,4
(t3) (1−t3)9

(1−t6)3 ∆T2,2,2,4,4(t3)

(F) (1−t3)7
(1−t6)2 ∆T+

4,4,4
(t3) (1−t3)8

(1−t6)2 ∆T2,4,4,4
(t3)

(G) (1−t3)4(1−t6)(1−t9)
(1−t18) ∆T+

2,3,3,3
(t6) (1−t3)4(1−t6)(1−t9)2

(1−t18) ∆T2,3,3,3
(t6)

(H)=I (1− t)4∆T−2,3,5
(t) (1− t)5∆T2,2,3,5(t)

(I) (1− t)3∆T+
2,3,7

(t) (1− t)4∆T2,3,4,7(t)

(J) (1−t3)8
(1−t6)2 ∆T+

2,2,2,5
(t3) (1−t3)9

(1−t6)2 ∆T2,2,2,2,5
(t3)

(K) (1−t3)6
(1−t6) ∆T+

2,4,7
(t3) (1−t3)7

(1−t6) ∆T2,2,4,7
(t3)

(L) (1−t3)7
(1−t6) ∆T+

2,4,5
(t3) (1−t3)8

(1−t6) ∆T2,2,4,5(t3)

Table 5. Determinants of the matrices M0(t) and M(t)

(iii) For G=(K), (L), (F), ∆(6 ·62), (J), (E) (Q11, E13, U12, Z1,0, Q2,0,K
′
1,0) we have cG = 3

and

detM0(t) = q
(2)
a,b(t

3)∆T+
α1,...,αm

(t3), detM(t) = (1− t3)q
(2)
a,b(t

3)∆T2,α1,...,αm
(t3),

where (a, b) = (6,−1), (7,−1), (7,−2), (7, 1), (8,−2), (8,−3) respectively.
(iv) For G = ∆(6 · 32) (δ1) we have cG = 3, m = 6, αi = 2 for i = 1, . . . ,m, and

detM0(t) = (1− t3)q
(2)
9,−3(t3)∆T+

2,α2,...,αm

(t3), detM(t) = q
(2)
9,−3(t3)∆Tα2,...,αm

(t3).

(v) For G=(G) (U1,0) we have cG = 6 and

detM0(t) = q(t3)∆T+
α1,α2,α3,α4

(t6), detM(t) = (1− t9)q(t3)∆Tα1,α2,α3,α4
(t6),

where q(t) = (1−t)4(1−t2)(1−t3)
(1−t6) .

Proof. The character tables of the tetrahedral and icosahedral group are given in [Art]. The
character table of the octahedral group can be found, e.g., in [HH]. From these tables, one can
calculate the matrices B. The matrices B for the remaining cases are given in [BP]. For the case
(D), only one example is treated. More complete results for the cases ∆(3n2) and ∆(6n2) can
be found in [LNR] and [EL] respectively. From these results, one can derive the corresponding
matrices B. The proof of the theorem is then obtained by a direct calculation from these matrices
using the computer algebra system Singular [DGPS]. �

The results are summarized in Table 5.

Remark 6. Let G be one of the groups T,O, I. In this case, the matrix B is symmetric and we
have B∗ = B. Therefore

M(t) = (1− t3)I − tB + t2B∗ = (1− t)((1 + t+ t2)I − tB).
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