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ABSTRACT. Let (X,0) C (R™,0) be the germ of a closed subanalytic set and consider two
subanalytic functions f and g : (X,0) — (R,0). Under some conditions, we relate the critical
points of g on the real Milnor fibre f~=1(8) N B¢, 0 < |§] < € < 1, to the topology of this fibre
and other related subanalytic sets. As an application, when g is a generic linear function,
we obtain an “asymptotic” Gauss-Bonnet formula for the real Milnor fibre of f. From this
Gauss-Bonnet formula, we deduce “infinitesimal” linear kinematic formulas.

1. INTRODUCTION

Let F' = (f1,..., fx) : (C",0) — (C*,0), 2 < k < n, be a complete intersection with isolated
singularity. The Lé-Greuel formula [21, 22] states that

H(F) + u(F) = dime

where F” : (C",0) — (C¥~1,0) is the map with components f, ..., fx_1, I is the ideal generated

by fi,..., fx—1 and the (k x k)-minors M and p(F) (resp. u(F")) is the Milnor number
(AR .

Lg
of F (resp. F’). Hence the Lé-Greuel formula gi\,;es an algebraic characterization of a topological
data, namely the sum of two Milnor numbers. However, since the right-hand side of the above
equality is equal to the number of critical points of fj, counted with multiplicity, on the Milnor
fibre of F’, the Lé-Greuel formula can be also viewed as a topological characterization of this
number of critical points.

Many works have been devoted to the search of a real version of the Lé-Greuel formula. Let
us recall them briefly. We consider an analytic map-germ F = (f1,..., fx) : (R™,0) — (R¥,0),
2 < k < n, and we denote by F’ the map-germ (fi,..., fr_1) : (R*,0) — (R¥=1 0). Some
authors investigated the following difference:

Dso = x(F'6) N {fr =6} NBe) — x(F~1(6)n{fe <’} N B.),

where (4,8’) is a regular value of F such that 0 < |§'] < |d] < e.
In [12], we proved that

Or= 0

D575/ = dim]R mod 2,

where Ogn ¢ is the ring of analytic function-germs at the origin and I is the ideal generated by
fi,--., fr—1 and all the k x k minors 0((;‘(1;3‘1173&7)1) This is only a mod 2 relation and we may
ask if it is possible to get a more precise relation.

When k =n and fy = 23 + -+ + 22, according to Aoki et al. ([1], [3]),

Dso = x(F'71(6) N B.) = 2deg, H
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and 2deg, H is the number of semi-branches of F'~1(0), where

8(fn7 fla R .fn—l)

8(x17...,xn) a.fla"'afn—l)'
They proved a similar formula in the case fr = z,, in [2] and Szafraniec generalized all these
results to any fj in [23].

When k = 2 and fo = 21, Fukui [18] stated that

Dj,0 = —sign(—4)"deg, H,

H=(

where H = (fy, 2L ... 201) Several generalizations of Fukui’s formula are given in [19], [11],

Oxo ) * ) Oz,
[20] and [13].

In all these papers, the general idea is to count algebraically the critical points of a Morse
perturbation of f; on F'~1(§) N B. and to express this sum in two ways: as a difference of
Euler characteristics and as a topological degree. Using the Eisenbud-Levine formula [16], this
latter degree can be expressed as a signature of a quadratic form and so, we obtain an algebraic
expression for Ds .

In this paper, we give a real and stratified version of the Lé-Greuel formula. We restrict
ourselves to the topological aspect and relate a sum of indices of critical points on a real Milnor
fibre to some Euler characteristics (this is also the point of view adopted in [7]). More precisely,
we consider a germ of a closed subanalytic set (X,0) C (R™,0) and a subanalytic function
f:(X,0) = (R,0). We assume that X is contained in a open set U of R™ and that f is the
restriction to X of a C2-subanalytic function F': U — R. We denote by X/ the set f~!(0) and
we equip X with a Thom stratification adapted to X7/. If 0 < |§| < € < 1 then the real Milnor
fibre of f is defined by

M€= f71(6) N X NB..
We consider another subanalytic function ¢g : (X,0) — (R,0) and we assume that it is the
restriction to X of a C%-subanalytic function G : U — R. We denote by X9 the set g=1(0).
Under two conditions on g, we study the topological behaviour of 9iarte-

We recall that if Z C R" is a closed subanalytic set, equipped with a Whitney stratification
and p € Z is an isolated critical point of a subanalytic function ¢ : Z — R, restriction to Z of a
C?-subanalytic function ®, then the index of ¢ at p is defined as follows:

ind(¢, Z,p) =1 —x(ZNn{¢ = é(p) —n} N Be(p)),

where 0 < n < e < 1 and Bc(p) is the closed ball of radius € centered at p. Let p‘ls’e, o, P2 be
the critical points of g on f~1(8) N B,, where B, denotes the open ball of radius e. We set

1(5,e,9) =Y _ind(g, f~(8),p{),
i=1

I(d,e,—g) = Zind(—g,f‘l(é),pf’ﬁ).
i=1
Our main theorem (Theorem 3.10) is the following;:

I((Sv 679) + 1(67 6 _g) = QX(M;}e) - X(f_l((s) n Se) - X(Xg N f_l((s) N Se)

As a corollary (Corollary 3.11), when f : (X,0) — (R,0) has an isolated stratified critical point
at 0, we obtain that

16,6,9) + 1(6, €, —g) = 2x(M3<) — x(Lk(X7)) — x(Lk(X” 1 X7)),
where Lk(—) denotes the link at the origin.
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Then we apply these results when g is a generic linear form to get an asymptotic Gauss-Bonnet
formula for M ?’6 (Theorem 4.5). In the last section, we use this asymptotic Gauss-Bonnet formula
to prove infinitesimal linear kinematic formulas for closed subanalytic germs (Theorem 5.5), that
generalize the Cauchy-Crofton formula for the density due to Comte [8].

The paper is organized as follows. In Section 2, we prove several lemmas about critical points
on the link of a subanalytic set. Section 3 contains real stratified versions of the Lé-Greuel
formula. In Section 4, we establish the asymptotic Gauss-Bonnet formula and in Section 5, the
infinitesimal linear kinematic formulas.

The author is grateful to Vincent Grandjean for a very useful discussion on generic distance
functions and to the referee for the valuable suggested improvements.

The author is partially supported by the program

“Catédras Lévi-Strauss—USP /French Embassy, no. 2012.1.62.55.7”.

This paper was written while the author was visiting the Instituto de Ciéncias Matemdticas e de
Computacgao, Universidade de Sdo Paulo - Campus de Sdo Carlos. He thanks this institution,
especially Raimundo Aratjo dos Santos and Nivaldo Grulha, for the hospitality.

2. LEMMAS ON CRITICAL POINTS ON THE LINK OF A STRATUM

In this section, we study the behaviour of the critical points of a C?-subanalytic function on
the link of stratum that contains 0 in its closure, for a generic choice of a C?-distance function
to the origin.

Let Y C R™ be a C?-subanalytic manifold such that 0 belongs to its closure Y. Let 6 : R™ — R
be a C2-subanalytic function such that 6(0) = 0. We will first study the behaviour of the critical
points of 6y : Y — R in the neighborhood of 0, and then the behaviour of the critical points of
the restriction of 8 to the link of 0 in Y.

Lemma 2.1. The critical points of 0}y lie in {6 = 0} in a neighborhood of 0.

Proof. By the Curve Selection Lemma, we can assume that there is a Cl-subanalytic curve
7 : [0,v[— Y such that y(0) = 0 and ~y(t) is a critical point of 6|y for ¢ €]0,v[. Therefore, we
have

(007)'(t) = (VO (+(1),7' (1)) =0,
since v/ (t) is tangent to Y at +(¢). This implies that 6 o y(t) = 8 o y(0) = 0. O

Let p : R® — R be another C2-subanalytic function such that a is a regular value of p and
p~Y(a) intersects Y transversally. Then the set Y N {p < a} is a manifold with boundary. Let
p be a critical point of 6y ~(,<,} which lies in Y N {p = a} and which is not a critical point of
0|y . This implies that

Voy (p) = Ap)Vpyy (p),
with A(p) # 0.

Definition 2.2. We say that p € Y N {p = a} is an outwards-pointing (resp. inwards-pointing)
critical point of Oy nip<ay if A(p) >0 (resp. A(p) <0).

Now let us assume that p : R®" — R is a C?-subanalytic function such that p > 0 and
p~1(0) = {0} in a neighborhood of 0. We call p a C*-distance function to the origin. By Lemma

2.1, we know that for € > 0 small enough, the level p~1(¢) intersects Y transversally. Let p¢ be
a critical point of |yn,-1() such that 6(p°) # 0. This means that there exists A(p) such that

Vy (0°) = Ap°) Vo (0°)-
Note that A(p©) # 0 because V) (p©) # 0 for 6(p°) # 0.
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Lemma 2.3. The point p° is an outwards-pointing (resp. inwards-pointing) for 0y n¢p<ey if and
only if 6(p¢) > 0 (resp. O(p°) < 0).

Proof. Let us assume that )\Q)E) > 0. By the Curve Selection Lemma, there exists a C'-
subanalytic curve v : [0,v[— Y passing through p¢ such that v(0) = 0 and for ¢t # 0, ~(t) is a
critical point of Oy n¢p—p(y(t))y With A(y(t)) > 0. Therefore we have

(009) () = (VOy (v(1),7' () = A(v )V oy (7(£), 7' (1))
But (po)’ > 0 for otherwise (po~)’ <0 and p o~y would be decreasing. Since p(y(t)) tends to
0 as t tends to 0, this would imply that p o ~(t) < 0, which is impossible. We can conclude that
(0 o) >0 and that 6 oy is strictly increasing. Since 6 o y(¢) tends to 0 as ¢t tends to 0, we see
that 6 o y(t) > 0 for ¢ > 0. Similarly if A(p¢) < 0 then 6(p°) < 0. O

Now we will study these critical points for a generic choice of the C2-distance function to
the origin. We denote by Sym(R"™) the set of symmetric n X n-matrices with real entries, by
Sym*(R™) the open dense subset of such matrices with non-zero determinant and by Sym™*(R")
the open subset of these invertible matrices that are positive definite or negative definite. Note
that these sets are semi-algebraic. For each A € Sym™*(R"), we denote by pa the following
quadratic form:

pa(z) = (Az,z).
We denote by I‘g’ 4 the following subanalytic polar set:
Fg)A = {J: €Y | rank [V@\y(ﬂ?),vp,qu(x)} < 2},
and by 2§ the set of critical points of 6jy. Note that ¥} C {# = 0} by Lemma 2.1.

Lemma 2.4. For almost all A in Sym™*(R"), F;jA \ (Z¥ u{0}) is a C'-subanalytic curve
(possible empty) in a neighborhood of 0.

Proof. We can assume that dim Y > 1. Let
Z = {(’JI,A) ER™ x Sym™*(R") | z € Y\ (X} U{0}) and rank [V0|y(w),VpA|Y(x)} < 2}.

Let (y, B) be a point in Z. We can suppose that around y, Y is defined by the vanishing of &
subanalytic functions fi, ..., fi of class C2. Hence in a neighborhood of (y, B), Z is defined be
the vanishing of fi,..., fr and the minors

3(f17"'7fk797pA)

8($i1, . 7$ik+2)

Furthermore, since y does not belong to X}, we can assume that

0 0
(f17 7f1<37 ) # O7
01, . Thy Thg1)
in a neighborhood of y. Therefore Z is locally defined by f; =--- = fr =0 and
a(f17"'7fk797pA) :._.:8(f1a~~'7fka9apz4):0
O(x1, ... X1, Tht) X1,y T, Tn)

: O(f1,--fx,0 : O(f1,e-fk,0,
L}ft us write M = 8(3651"173% and for i € {k+2,...,n}, m; = ﬁim If A= la;]
then

n
pa(r) = Z airs + 2 Z AT,
i=1

i#]
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and so %pT‘;(x) = 22};1 a;jzrj. Forie {k+1,...,n} and j € {1,...,n}, we have

8m7;

= 2z; M.

8aij i
Since y # 0, one of the z;’s does not vanish in the neighborhood of y and we can conclude that
the rank of

[Vfi(z),...,Vfi(x), Vma(x, A),...,Vm,(xz, A)]

is n — 1 and that Z is a C''-subanalytic manifold of dimension % + 1. Now let us consider
the projection my : Z — Sym™*(R"), (z, A) — A. Bertini-Sard’s theorem implies that the set
D, of critical values of 7y is a subanalytic set of dimension strictly less than %

for all A ¢ D,,, 7 '(A) is a C'-subanalytic curve (possibly empty). But this set is exactly
Dy a\ (35 U{o}). O

. Hence,

Let R C Y be a subanalytic set of dimension strictly less than dim Y. We will need the
following lemma.

Lemma 2.5. For almost all A in Sym™*(R"), Ty 4\ (Zy U{0}) N R is a subanalytic set of
dimension at most 0 in a neighborhood of 0.

Proof. Let us put [ = dim Y. Since R admits a locally finite subanalytic stratification, we can
assume that R is a C2-subanalytic manifold of dimension d with d < I. Let W be the following
subanalytic set:

W = {(;v,A) €R™ x Sym™*(R") | z € R\ (X} U{0}) and rank V9|y(x),VpA|Y(x)} < 2}.

Using the same method as in the previous lemma, we can prove that W is a Cl-subanalytic
n

manifold of dimension w + 14 d — 1 and conclude, remarking that d — [ < —1. (I

Now we introduce a new C2-subanalytic function 3 : R™ — R such that 3(0) = 0. We denote
by I‘;/”& 4 the following subanalytic polar set:

F;/,BA = {x €Y | rank [V0|y(x),Vﬁ‘y(x), VpA‘y(x)] < 3},
and by F({ 5 the following subanalytic polar set:
F;/ﬁ = {x €Y | rank [V9|y(a:),V6|y(x)] < 2}.

Lemma 2.6. For almost all A in Sym™*(R"), F}gfyﬁ_’A \ (F({ﬁ U {0}) is a C*-subanalytic set of
dimension at most 2 (possibly empty) in a neighborhood of 0.

Proof. We can assume that dim Y > 2. Let
Z = {(x,A) € R" x Sym™*(R") | z € Y, rank [Vy (), VBy (z)] =2

and rank {V9|y(x), VBy (x), VpA|Y(x)} < 3}.

Let (y, B) be a point in Z. We can suppose that around y, Y is defined by the vanishing of k
subanalytic functions fi, ..., fx of class C2. Hence in a neighborhood of (y, B), Z is defined by
the vanishing of f1,..., fr and the minors

8(f17"'7fk79757p14).

8(%1,...,%“3)
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Since y does not belong to sz’ 5, we can assume that

8(f1""7fk797/6)
# 0,
X1y Ty Thot 1, Thot2)
in a neighborhood of y. Therefore Z is locally defined by f1,..., fr =0 and
8(f17"'7fk707B7pA) — = a(fla'”vfkagaﬂapA) -0
a(xl,...,xk+2,f£k+3) a(x17"~7xk+27'rn)
It is clear that we can apply the same method as Lemma 2.4 to get the result. ([

3. LE-GREUEL TYPE FORMULA

In this section, we prove the Lé-Greuel type formula announced in the introduction.

Let (X,0) C (R™,0) be the germ of a closed subanalytic set and let f : (X,0) — (R,0) be a
subanalytic function. We assume that X is contained in a open set U of R™ and that f is the
restriction to X of a C?-subanalytic function F': U — R. We denote by X/ the set f~!(0) and
by [4], we can equip X with a subanalytic Thom stratification V = {V,}aeca adapted to X/.
This means that {V, € V | V, € X/} is a Whitney stratification of X \ X/ and that for any
pair of strata (Va, Vs) with V,, € X7/ and V3 C X/, the Thom condition is satisfied.

Let us denote by ¥y f the critical locus of f. It is the union of the critical loci of f restricted
to each stratum, i.e. Xy f = Us%(f}y,), where X(f)y,) is the critical set of fly, : Vo — R.
Since ¥y f C f71(0) (see Lemma 2.1), the fibre f~1(§) intersects the strata V,’s, Vo ¢ X7,
transversally if ¢ is sufficiently small. Hence f~!(§) is Whitney stratified with the induced
stratification {f~1(0) NV, | Vo € X7/}

By Lemma 2.1, we know that if € > 0 is sufficiently small then the sphere S, intersects X/
transversally. By the Thom condition, this implies that there exists §(e) > 0 such that for each
§ with 0 < |§] < §(e), the sphere S, intersects the fibre f~1(§) transversally as well. Hence the
set f~1(0) N B, is a Whitney stratified set equipped with the following stratification:

(71O NVan B, f7HO)NVa NS | Vo € XY
Definition 3.1. We call the set f~1(5) N B, where 0 < |§| < € < 1, a real Milnor fibre of f.

We will use the following notation: M;E’e = f~1(6) N B..

Now we consider another subanalytic function ¢ : (X,0) — (R,0) and we assume that it is
the restriction to X of a C?-subanalytic function G : U — R. We denote by X9 the set g=1(0).
Under some restrictions on g, we will study the topological behaviour of 9jarde-

f
First we assume that g satisfies the following Condition (A):
e Condition (A): g : (X,0) — (R,0) has an isolated stratified critical point at 0.
This means that for each strata V,, of V, g : V,, \ {0} — R is a submersion in a neighborhood of
the origin.

In order to give the second assumption on g, we need to introduce some polar sets. Let V,

be a stratum of V not contained in X/. Let F}/j; be the following set:

T = {x € Vo | rank[V fjy, (z), Vgv,, (z)] < 2},

and let I'y , be the union UFK‘*Q where V,, € X7. We call 'y, the relative polar set of f and g
with respect to the stratification V. We will assume that ¢ satifies the following Condition (B):

e Condition (B): the relative polar set 'y, is a 1-dimensional C''-subanalytic set (possibly
empty) in a neighborhood of the origin.
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Note that Condition (B) implies that I'y, N X/ C {0} in a neighborhood of the origin because
the frontiers of the FV"g’s are O-dimensional.
From Condition (A) and Condition (B), we can deduce the following result.

Lemma 3.2. We have I'y ; N X9 C {0} in a neighborhood of the origin.

Proof. If it is not the case then there is a C'-subanalytic curve v : [0,v[— s, N X9 such that
7(0) = 0 and ¥(]J0,v[) C X9\ {0}. We can also assume that v(]0, v[) is contained in a stratum
V. For t €]0,v], we have
0=(g07)(t) = (Vg (v(1),7'(1))-

Since 7(t) belongs to I'y ; and Vg ((t)) does not vanish for g : (X,0) — (R, 0) has an isolated
stratified critical point at 0, we can conclude that (V fiy/(v(t)),7/(t)) = 0 and that (fo~)'(t) =0
for all t €]0,v[. Therefore f oy = 0 because f(0) = 0 and ([0, 7[) is included in X/. This is
impossible by the above remark. (I

Let Bi,...,B; be the connected components of I'y g, i.e. I'yy = Lt_,B;. Bach B; is a C1-
subanalytic curve along which f is strictly increasing or decreasing and the intersection points
of the B;’s with the fibre M}S-’6 are exactly the critical points (in the stratified sense) of g on
f71(6) N B.. Let us write

3, J,
My AL B = {p)S, ..., p2<).
Note that r <.
Let us recall now the definition of the index of an isolated stratified critical point.

Definition 3.3. Let Z C R"™ be a closed subanalytic set, equipped with a Whitney stratification.
Let p € Z be an isolated critical point of a subanalytic function ¢ : Z — R, which is the restriction
to Z of a C?-subanalytic function ®. We define the index of ¢ at p as follows:

ind(¢, Z,p) =1 = x(Z N {¢ = é(p) — n} N Be(p)),
where 0 < n < € < 1 and Be(p) is the closed ball of radius € centered at p.

Our aim is to give a topological interpretation to the following sum:

Zmd (g, )+1nd( g,f,1(5)7p?,5).

For this, we will apply Stratlﬁed Morse theory to g, e Note that the points p;’s are not the

only critical points of Vs and other critical points can occur on the “boundary” M’ 3N S,
The next step is to study the behaviour of these “boundary” critical points for a generic choice
of the C*-distance function to the origin. Let p : R” — R be a subanalytic C*-distance function
to the origin. We denote by S, the level p~!(¢) and by B. the set {p < e}. We will focus on the
critical points of gy ;5. and g, ;-1 (5)n5,., With 0 <[] < e < 1.
For each stratum V of X7, let
I‘Vp = {z eV | rank[Vgy (), Vpjv(z)] < 2},

and let FXf = UycxsIy ,. By Lemma 2.4 and the fact that g : (Xf, 0) — (R, 0) has an isolated

stratified critical point at 0, we can assume that I‘X is a C'l-subanalytic curve in a neighborhood
of the origin.

Lemma 3.4. We have F;f; N X9 C {0} in a neighborhood of the origin.

Proof. Same proof as Lemma 3.2. O
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Therefore if € > 0 is small enough, 9)8.nx+ has a finite number of critical points. They do
not lie in the level {g = 0} so by Lemma 2.3, they are outwards-pointing for 9)xnB. if they lie
in {g > 0} and inwards-pointing if they lie in {g < 0}.

Let us study now the critical points of 9)1-1(5)n8. - We will need the following lemma.

Lemma 3.5. For every e > 0 sufficiently small, there exists d(€) > 0 such that for 0 < || < d(e),
the points pg’e lie in Bey.

Proof. Let
W= {(z,r,y) €U xR xR |p(x)=r,y=f(z)andz €Ty 4}.
Then W is a subanalytic set of R” x R x R and since it is a graph over I'y 4, its dimension is
less or equal to 1. Let
m : RPXRxR — RxR
(@,ry) = (1Y),
be the projection on the last two factors. Then 7y : W — m(W) is proper and 7(W) is a closed
subanalytic set in a neighborhood of the origin.
Let us write Y1 = R x {0} and let Y5 be the closure of (W) \ Y;. Since Y5 is a curve for W
is a curve, 0 is isolated in Y; NYs. By Lojasiewicz’s inequality, there exists a constant C' > 0
and an integer N > 0 such that |y| > Cr" for (r,y) in Y sufficiently close to the origin. So if
z €Ty, then |f(x)| > Cp(z)™ if p(x) is small enough.

Let us fix € > 0 small. If 0 < [§] < £(£)Y and @ € f~(6) NTy, then p(z) < O

€
Za
For each stratum V ¢ X7, let

F}/,g,p = {z € V | rank[V fjv (z), Vv (z), Vpv (2)] < 3},
andlet Ty g p = Uyg xs FXg)p. By Lemma 2.6, we can assume that I'y ; ,\I's ; is a C'-subanalytic

manifold of dimension 2. Let us choose ¢ > 0 small enough so that S, intersects ', , \ Ty,
transversally. Therefore (I'y 4, \ T's4) N Se is a subanalytic curve. By Lemma 3.4, we can find
6(e) > 0 such that f~1([=d(e),d(e)]) N Se N Ty, is empty and so

FH([=8(6),8(]) N (Tygp \Tpg) N Se = £ ([=6(€),8(6)]) NT 1,0 N S

Let Cy,...,C; be the connected components of f~!([—d(e),d(e)]) N T4, N Se whose closure
intersects X/ N S.. Note that by Thom’s (ay)-condition, for each i € {1,...,t}, C; N X/ is a
subset of Fgf;. Let z; be a point in C; N X7. Since C; N X/ = (), there exists 0 < d/(¢) < 6(e)
such that the fibre f=1(8), 0 < |6] < 8(e), intersects C; transversally in a neighborhood of z;.

Let us choose § such that 0 < |§| < Min{d(¢) | i = 1,...,t}. Then the fibre f~1(§) intersects
the C;’s transversally and f~1(6) N (U;C;) is exactly the set of critical points of 9)p-1(5)ns. - We
have proved:

Lemma 3.6. For 0 < |§] < e < 1, 915-1(5)nS. has a finite number of critical points, which are
exactly the points in L'y 4 , N S.N F710).
d
Let {s7,..., 55} be the set of critical points of 9 5-1(5)nS. -

Lemma 3.7. For i € {1,...,u}, g(s>%) # 0 and s> is outwards-pointing (resp. inwards-
pointing) if and only if g(s>°) > 0 (resp. g(s>) < 0).
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Proof. Note that s?’s is necessarily outwards-pointing or inwards-pointing because sf’e ¢l
Assume that for each § > 0 small enough, there exists a point 5?’5 such that g(sf’e) = 0. Then

we can construct a sequence of points (o, )nen such that g(o,) = 0 and o, is a critical point of

915-1(1)nxN3. " We can also assume that the points 0,,’s belong to the same stratum S and that

they tend to o € V where V C X/ and V C 9S. Therefore we have a decomposition:
Vg\S(Un) vf\S(an) VplS(Jn)

IVgis(on)l IV fis(on)ll Vs (an)ll
Now by Whitney’s condition (a), Tt,, S tends to a linear space T such that T,V C T'. So Vgs(on)
tends to a vector u in T' whose orthogonal projection on T,V is exactly Vg (o). Since gy oy

V!J\S(Un)
TVais(ony tends

to ﬁ Similarly Vp|s(o,) tends to a vector u’ # 0 in T', not orthogonal to 75V and whose

is a submersion, Vg (o) # 0 and so u # 0 and u is not orthogonal to 7, V. So

orthogonal projection on T,V is exactly Vpy (c). So ngﬁliigzin tends to m
vf\S(Un)

s IV ol tends to a vector w in T which is orthogonal to T, V. Since

’(w, ”Z—:w’ < 1, there exist C, 0 < C < 1, and ng such that for n > ng, we have

VflS(Un) VPIS(U”) <C
IV fis(@) [l IVps(on)] "] =
Vgis(on) Vgs(on)

NMEC NG )”> = 1, this implies that for n > ng, A2 + p2 + 20\, < 1 or

A2+ u2 — 20\, iy, < 1. Then it is not difficult to see that (AM)n>ne and (tn)n>n, are bounded.
Taking a subsequence if necessary, we can assume that A, tends to a real A and p,, tends to a
real p. Taking the limit in the above equality, we obtain

By Thom’s condition

Since (

!

U N+ u
T T AW T e
[lull [[w/]
and so lul
u

Projecting this equality on T, V', we see that Vgi/(0) and Vpjy (o) are colinear which means
that o is a critical point of g x5 . But since g(on) = 0, we find that g(o) = 0, which is
impossible by Lemma 3.4. This proves the first assertion.

To prove the second one, we use the same method. Assume that for each § > 0 small enough,
there exists a point s> such that g(s>) > 0 and s> is an inwards-pointing critical point for
91 5-1(5)n3. - Then we can construct a sequence of points (7,,)nen such that g(7,) > 0 and 7,
is an inwards-pointing critical point for 9if-1(1ynxN3. - We can also assume that the points
7n’s belong to the same stratum S and that they tend to 7 € V where V C X/ and V C 98S.
Therefore, we have a decomposition:

Vgs(Tn) Vis(Ta) Vs(ma)

= An Hn )
Vs (7)) IV fis(ma)ll Vs ()l
with p, < 0. Using the same arguments as above, we find that Vg (1) = uVpjs(7) with © <0
and g(7) > 0. This contradicts the remark after Lemma 3.4. Of course, this proof works for
6 <0. O

Let I'y , be the following polar set:
Iy, ={z €U |rank[Vg(z), Vp(z)] < 2}.
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By Lemma 2.5 and Lemma 2.1, we can assume that I'y , \ {g = 0} does not intersect X/ \ {0}
in a neighborhood of 0 and so I'y, \ {g = 0} does not intersect X/ N S, for ¢ > 0 sufficiently
small. Since the critical points of 9)xsn3. lie outside {g = 0}, they do not belong to I'; , N S,
and so the critical points of 9)f-1(5)nXNS. do not neither if § is sufficiently small. Hence at each
critical point of 9if-1(5)nxns.> 9|s. is a submersion. We are in position to apply Theorem 3.1
and Lemma 2.1 in [15]. For 0 < |§| < € < 1, we set

s

I(6,e,9) =Y _ind(g, f~1(8),p)"),

i=1

T

I<6’ 6 _g) = Zind(_ga f_1(6)7pf’6)'

i=1
Theorem 3.8. We have
1(8,¢,9) + (6,6, —9) = 2x(f’1(6) NB:) = x(f71(0)NS) —x(Xnf1(8) N Se).

Proof. Let us denote by {a ", (resp. {a; }$_,) the outwards-pointing (resp. inwards-pointing)
critical points of g : f~1(5) N S — R. Applying Morse theory type theorem ([15], Theorem 3.1)
and using Lemma 2.1 in [15], we can write

1(0,€,9) —I—Zlnd g, [t ﬂSe,aJ) x(f1(6) N By,) (1),
j=1
O(+
1(6,6,—g) + > _ind(—g, f 7' (6) N Se,af) = x(f () N Be) (2).
=1
Let us evaluate J
Zmd (g, f OSQa] Zmd —qg,f )OSE,CL] ).

Since the outwards-pointing critical points of 9)f-1(6)n8. lie in {g > 0} and the inwards-pointing
critical points of g ;-1 55, lie in {g < 0}, we have

at

XN SN {g =0 —x(fH ()N S.n{g=0}) = ind(g. /' (6) NSeaf)  (3),

j=1

and

M0 N8 g < 0D = x(F 1) NS g =0} = 3 ind(—g, /71(6) N Sevay) (4).
Therefore making (3) + (4) and using the Mayer-Vietoris sequence, we find

X(FHO) N Se) = x(FH @) NSen{g =0}) =

> ind(g, £71(8) N Se, af) +Zmd —g, 71 (6) N Se,a;)  (5).
=1
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Moreover we have

X(FH0) NS = ind(g, f71(0) N Se,af) + > ind(g, f1(6) N Seya;)  (6),
X(f7H) NS = ind(=g, f1(6) N Se,af )+ D ind(—g, fH(6) N Se,a;) (T)

The combination —(5) + (6) + (7) leads to
XU NS +x(fH(0) N Sen{g =0}) =

at

Zind(—g,f‘l( n S’maj + Zlnd g, f71o) N SE,aJ ).
j=1
O
Let us assume now that (X, 0) is equipped with a Whitney stratification W = U,e 4 W, and

f:(X,0) = (R,0) has an isolated critical point at 0. In this situation, our results apply taking
for V the following stratification:

{Wa\ f7H0),Wan f7H(0) \ {0}, {0} | Wo € W}
Corollary 3.9. If f: (X,0) — (R,0) has an isolated stratified critical point at 0, then
I(8,6,9) +1(6,6,—g) = 2x(f71(0) N Be) — x (X' nS) —x (X' nXx9n8S.).
Proof. For each stratum W of X, let
IV, = {z e W | rank[V fiw (z), Vow (z)] < 2},
and let I'y , = UWF?;. By Lemma 3.4 applied to X and f instead of X/ and g,
Ly {f=0}c{0}

in a neighborhood of the origin and so 0 is a regular value of f: X N S. — R for ¢ sufficiently
small. By Thom-Mather’s second isotopy lemma, f~1(0) N S is homeomorphic to f~1(5) NS,
for § sufficiently small.

Now let p be a stratified critical point of f : X9 — R. By Lemma 2.1, we know that p belongs

to f~1(0) N X9 and so p is also a critical point of g : X/ — R. Hence p = 0 by Condition
(A) and f: X9 — R has an isolated stratified critical point at 0. As above, we conclude that

X/ N X9n S, is homeomorphic to X9 N f~1(5) N S.. O
Let w(z) = y/a? + -+ + 22 be the euclidian distance to the origin. As explained by Durfee

n [10], Lemma 1.8 and Lemma 3.6, there is a neighborhood 2 of 0 in R"™ such that for every
stratum V of X/, Vwyy and Vp)y are non-zero and do not point in opposite direction in 2\ {0}.
Applying Durfee’s argument ([10], Proposition 1.7 and Proposition 3.5), we see that X/ N S, is
homeomorphic to X/ NS, for e, ¢’ > 0 sufficiently small. Similarly X/ NX9NS, and X/ NX9NSe
are homemorphic. Now let us compare f~1(6) N B. and f~'(§) N Ber. Let us choose ¢ and e
such that

fY0)NBo Cc f7YS NB. C .
If 6 is sufficiently small then, for every stratum V ¢ X7, Vwynr-1(5) and Vpyynp-1(5) are non-
zero and do not point in opposite direction in B, \BDE/. Otherwise, by Thom’s (ay)-condition, we
would find a point p in X/ N (B, \ Be) such that either Vws(p) or Vp s(p) vanish or Vwg(p)
and Vp s(p) point in opposite direction, where S is the stratum of X7 that contains p. This
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is impossible if we are sufficiently close to the origin. Now, applying the same arguments as
Durfee [10], Proposition 1.7 and Proposition 3.5, we see that f~1(d) N B, is homeomorphic to
f71(0) N B and that f=1(8) NS, is homeomorphic to f=*(§) N Ser.

Theorem 3.10. We have
I(0,6,9) + I(8,6,—g) = 2x(M}) = x(f~1(8) N Se) — x(X7 N f~1(8) N So).

Corollary 3.11. If f: (X,0) — (R,0) has an isolated stratified critical point at 0, then
1(6,6,9) + 1(5, ¢, —g) = 2¢(M?*) — \(LK(X/)) — x(Lk(X/ 1 X)),

O

Let us remark if dim X = 2 then in Theorem 3.10 and in Corollary 3.11, the last term of the

right-hand side of the equality vanishes. If dim X = 1 then in Theorem 3.10 and in Corollary
3.11, the last two terms of the right-hand side of the equality vanish.

4. AN INFINITESIMAL GAUSS-BONNET FORMULA

In this section, we apply the results of the previous section to the case of linear forms and we
establish a Gauss-Bonnet type formula for the real Milnor fibre.

We will first show that generic linear forms satisfy Condition (A) and Condition (B). For
v € S"71, let us denote by v* the function v*(z) = (v, z).

Lemma 4.1. There exists a subanalytic set ©; C S™ ' of positive codimension such that if
v ¢ Xy, {v* = 0} intersects X \ {0} transversally (in the stratified sense) in a neighborhood of
the origin.

Proof. Tt is a particular case of Lemma 3.8 in [14]. O

Corollary 4.2. Ifv ¢ X then vfy : (X,0) — (R,0) has an isolated stratified critical point at 0.

Proof. By Lemma 2.1, we know that the stratified critical points of vl*X lie in {v* = 0}. But since
{v* = 0} intersects X \ {0} transversally, the only possible critical point of vfy : (X,0) — (R, 0)
is the origin. O

Lemma 4.3. There ewists a subanalytic set o C S™ 1 of positive codimension such that if
v ¢ B, then Ty - is a Cl-subanalytic curve (possibly empty) in a neighborhood of 0.

Proof. Let V' be stratum of dimension e such that V ¢ X f. We can assume that e > 2. Let
My = {(2,y) € V x R" | rank[V fiv-(2), Vyiy, (2)] < 2} .

It is a subanalytic manifold of class C' and of dimension n 4 1. To see this, let us pick a point
(x,y) in My. In a neighborhood of x, V is defined by the vanishing of k = n — e C?-subanalytic

functions fi,..., fx. Since V is not included in X/, f:V — R is a submersion and we can
assume that in a neighborhood of z, the following (k 4+ 1) x (k + 1)-minor:
fr,- s S )
(1, Ty Thoa1)

does not vanish. Therefore, in a neighborhood of (z,y), My is defined by the vanishing of the
following (k + 2) x (k + 2)-minors:

8(f17"'7fk7f7y*) 8(f17'~'7fk37f7y*)

8(3)17.-.,mk,xk;.l,.l,l'k_i,_g)’.”’ a(xlyn-axkvxk-‘rl)xn).
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A simple computation of determinants shows that the gradient vectors of these minors are
linearly independent. As in previous lemmas, we show that ¥y, is one-dimensional considering
the projection

m™ o MV = R»
(z,y) = v

V ., we get the result. O

Since 'y o« = Uvg_X‘fFf’v*,

Let ¥ = 1 U, it is a subanalytic subset of S™~! of positive codimension and if v ¢ 3 then

v* satisfies Conditions (A) and (B). In particular, Urf—l(a)mxmég has a finite number of critical

points p‘ls’e, ..., p%¢. We recall that

I(S.ev7) =Y ind(v", f7(8),p2),
=1

I(0,6,—v*) =Y _ind(—v", f71(6), p)).
i=1
In this situation, Theorem 3.10 and Corollary 3.11 become
Corollary 4.4. Ifv ¢ ¥ then
1(0,6,v") + I(3,6,—v") = 2x(M}) = x(f 1 (6) N Se) — x(X* N FH(8) N S.).
Furthermore, if f:(X,0) = (R,0) has an isolated stratified critical point at 0, then

I(5,e,0") + I(0, €, —v") = 2x(M7) — x(Lk(X7)) — x (Lk(X' N X*")).

As an application, we give a Gauss-Bonnet formula for the Milnor fibre M}s’e.
Let Ao(f~1(8),—) be the Gauss-Bonnet measure on f~1(4) defined by
1
Ao(F1(0),U") = / S ind(v*, £71(6), 2)d,
Snfl

Sn-1 zeU’

where U’ is a Borel set of f=1(8) (see [6], page 299) and s,,_1 is the volume of the unit sphere
S"~1. Note that if z is not a critical point of Uff-1(5) then ind(v*, f~1(6),z) = 0. We are going
to evaluate

lim lim Ag(f~1(8), M%),
lim lim Ao (f7(6), M)

Theorem 4.5. We have

- - ¢ N N
lim im Ao (f74(8), M7) = x(My<) = ox(f71(8) N 5)
1

2851

/Snil x(FH() N {v* =0} N S, )dv.

Furthermore, if f : (X,0) — (R,0) has an isolated stratified critical point at 0, then

1
2871—1

tim lim Ao( £~ (5), MP) = x(M2*) ~ L x(LK(X7)) -

e—=06—0

/ x(Lk(X! N XY7))do.
Sn—l
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Proof. By definition, we have
1

Sn—1

Ao(f_l(é),M}S-’e) = /Snil Z ind(v*, f71(8), z)dv.

5,e
zEI\/If

It is not difficult to see that

_ e 1
Bo(f71(0). M) = 5——

/S [ > ind(v, f71(0),2) + ind(—v", £ (8), ) | dv.

zGM};’6
Note that if v ¢ 3 then
> ind(v*, f71(0),2) + ind(—v*, f71(0), 2)
weM};'e

is equal to I(d,¢€,v*)+1(0, €, —v*) and is uniformly bounded by Hardt’s theorem. By Lebesgue’s
theorem, we obtain

1
. . —1 e\ . . * ok
lim lim Ao (f77(0), M) = ST /SM lim lim[1(3, €, v") + 1(d, €, —v")]dv.

We just have to apply the previous corollary to conclude. [l

5. INFINITESIMAL LINEAR KINEMATIC FORMULAS

In this section, we apply the results of the previous section to the case of a linear function in
order to obtain “infinitesimal” linear kinematic formulas for closed subanalytic germs.
We start recalling known facts on the geometry of subanalytic sets. We need some notations:

e for k € {0,...,n}, G¥ is the Grassmann manifold of k-dimensional linear subspaces in
R"™ and gF is its volume,

e for k € N, by is the volume of the k-dimensional unit ball and s is the volume of the
k-dimensional unit sphere.

In [17], Fu developed integral geometry for compact subanalytic sets. Using the technology of the
normal cycle, he associated with every compact subanalytic set X C R™ a sequence of curvature
measures

Ao(X,—), ..., An (X, —),

called the Lipschitz-Killing measures. He proved several integral geometry formulas, among them
a Gauss-Bonnet formula and a kinematic formula. Later another description of the measures
using stratified Morse theory was given by Broecker and Kuppe [6] (see also [5]). The reader
can refer to [14], Section 2, for a rather complete presentation of these two approaches and for
the definition of the Lipschitz-Killing measures.

Let us give some comments on these Lipschitz-Killing curvatures. If dim X = d then

Ad-‘rl(Xa U/) == An(X7 U/) =0,

for any Borel set U’ of X and Ay(X,U’") = L4(U’), where L4 is the d-dimensional Lebesgue
measure in R”. Furthemore if X is smooth then for any Borel set U’ of X and for k € {0,...,d},
Ak (X, U’) is related to the classical Lipschitz-Killing-Weil curvature Ky_j through the following
equality:
1
Sn—k—1 Ju’

In [14], Section 5, we studied the asymptotic behaviour of the Lipschitz-Killing measures in the
neighborhood of a point of X. Namely we proved the following theorem ([14], Theorem 5.1).

Ak(X, U/) = Kd,k(x)dm
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Theorem 5.1. Let X C R"™ be a closed subanalytic set such that 0 € X. We have:

. 1 1
Furthermore for k € {1,...,n — 2}, we have:
A(X, X N B, 1
lim (X ) __ — / Y(Lk(X N H))dH
e—0 bkﬁk 292 k-1 qn—rk-1
1
_— Lk(X NL))dL
+2ggfk+1 /C;Zk+1 X( ( N ))d )
and: A1 (X,XNB) 1
_ N
lim —— <= Lk(X N H))dH
Jimy = 202 Joo X (Lk( ))dH,
A (X, X N B, 1
lim AKX B) L[ x A ).
e—0 bne" 29711 G},

In the sequel, we will use these equalities and Theorem 4.5 to establish linear kinematic types

formulas for the quantities lim,_,q %, k=1,...,n. Let us start with some lemmas. We

work with a closed subanalytic set X such that 0 € X, equipped with a Whitney stratification
{Wa}a€A~

Lemma 5.2. Let f be a C?-subanalytic function such that fix + X — R has an isolated stratified
critical point at 0. Then for 0 < § € € < 1, we have

X(MP€) + X (M%) = x(Lk(X) + x(Lk(X7)).

Proof. With the same technics and arguments as the ones we used in order to establish Corollary
3.11, we can prove that

ind(f, X,0) +ind(—f, X,0) = 2x(X N B.) — x(Lk(X)) — x(Lk(X7)).
We conclude thanks to the following equalities
ind(f7 X, 0) =1- X(MJ‘_576)7 ind(_f7 X, O) =1- X(M?GL and X(X N Be) =1
O

Corollary 5.3. There exist a subanalytic set X1 C S"~! of positive codimension such that if
v Y then for0 < dKe<k 1,

X(M) + (M) = x(LK(X)) + x(LK(X N {o* = 0})).
Proof. Apply Corollary 4.2 and Lemma 5.2. (]

Lemma 5.4. Let S C R be a C?-subanalytic manifold. Let H € G*%, k € {1,...,n}, such
that H intersects S\ {0} transversally and let G}, be the Grassmann manifold of lines in
the orthogonal complement H of H. There exists a subanalytic set Yy C G}{l of positive
codimension such that if v ¢ X'y then H @ v intersects S\ {0} transversally.

Proof. Assume that S has dimension e and that H is given by the equations 1 = ... =23 =0
so that H+ = R¥ with coordinate system (w1, ..., ;). Since H intersects S\ {0} transversally,
we just have to consider points outside H. Let W be defined by

W = {(x,vl,...,vk_l) ER x (R |z €S\ H and (z,v1) =--- = (z,v_1) = 0},

where v; € R¥ x {0} € R™. Let us show that W is a C2-subanalytic manifold of dimension
e+ (k—1)2. Let (y,w) be a point in W. We can assume that around y, S is defined by the
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vanishing of n — e C?-subanalytic functions fi, ..., fn_.. Hence in a neighborhood of (y,w), W
is defined by the equations:
filx)=...= fa_e(z) =0and (z,v1) = = (z,v5_1) = 0.

The gradient vectors of this n — e + k — 1 functions are linearly independent in a neighborhood
of (y,w). To see this, we observe that there exists j € {1,...,k} such that z; # 0 because y
does not belong to H. Therefore, writing v; = (vi17 .. ,vf, 0,...,0) fori e {1,...,k— 1}, we see
that

oz, v;)
——(x) #£0,
o )7
fori=1,...,k—1. This enables us to conclude that W is a C?-subanalytic manifold of dimension
e+ (k —1)2. Let ma be the following projection:
w9 W — (R”)”_k, (01, Vi) = (V1,00 oy V).
Bertini-Sard’s theorem implies that the set of critical values of w9 is a subanalytic set of positive
codimension. If (vy,...,vk_1) lies outside this subanalytic set then the (n — k + 1)-plane
{z e R" | (z,v1) =+ = (x,v5_1) = 0}

contains H and intersects S \ {0} transversally. O

Now we can present our infinitesimal linear kinematic formulas.

Let H € G" % ke {l,...,n}, and let Szzl be the unit sphere of the orthogonal complement
of H. Let v be an element in S’;Iil. For 6 > 0, we denote by H, s the (n — k)-dimensional affine
space H + dv and we set

Bo(H,v) = lim lim Ag(Hs, N X, Hs, N X N Be).

e—=05—0

Then we set 1
Bo(H) = Bo(H,v)dv.
Sk—1 Jsk 7

Theorem 5.5. For k € {1,...,n}, we have

A(X,XNB 1
TECSR AL . n,k/ _Bo(H)dH.
G-

e—0 bkEk B gn
Proof. We treat first the case k € {1,...,n —2}. By Theorem 5.1 , we know that
A(X, X N B, 1
lim 26X OB — Y(Lk(X N H))dH
e—0 b€k 29n k=1 Grk-1
1
+7292_k+1 /sz+1 X(Lk(X N L))dL.

By Lemma 3.8 in [14], we know that generically H intersects X \ {0} transversally in a neighbor-

hood of the origin. Let us fix H that satisfies this generic property. For any v € S’;I_f, let v be

the line generated by v and let L, be the (n — k 4+ 1)-plane defined by L, = H ® v. By Lemma
5.4, we know that for v generic in Sllflll, L, intersects X \ {0} transversally in a neighborhood
of the origin. Therefore, Ul*Xm 1, has an isolated singular point at 0 and we can apply Theorem
4.5. We have
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lime_m lim5_>0 Ao(X N LU N {1}* = 5},X N LU N {U* = 5} n BE) =
X(X N L, N {v* =6} N B.) — sx(Lk(X N L, N {v* =0}))
~ T fsﬁ;’“ X(Lk(X N Ly N {v* =0} N {w” = 0}))dw

where Sf;k is the unit sphere of L,. Let us remark that L, N {v* = 0} is exactly H, s and that
L,N{v* =0} is H. We can also apply Lemma 5.2 to U\*xva to obtain the following relation:

B0(H. ) + fo(H. =) = X(LK(X N L) = —— [ (LK(X 0 H O {w” = 0}

Sn—k

Since fo(H) is equal to

1
5 / [Bo(H,v) 4+ Bo(H, —v)] dv,

Sk—1 Jgk-1

H-L

we find that
1
Bo(H) = 5 / x(Lk(X N Ly))dv
Sk—1 5211

1
—_— Lk(X N HN{w" =0}))dwdwv.
. . / LK {w* = 0})

Replacing spheres with Grassman manifolds in this equality, we obtain

Bo(H) = i/1 X(Lk(X NH ®v))dv

291
/ / X(Lk(X N H N K))dKdv.
2gkgn k+1 G}

HG})
Therefore, we have

1

- k/ Bo(H)dH = 7/ / x(Lk(X N H @ v))dvdH—
gn " JapTk 29590 " Japr Jar |
1

. — / / / Y(Lk(X N H N K))dKdvdH.
290~ gkgn k+1 aitJal | Jayd,

Let us compute
1= 29k1/G /G X(LK(X N H @ v))dvdH.

Let H be the flag variety of pairs (L, H), L € G;; k1l and H € G}~ k¥ This variety is a bundle
over GI~* each fibre being a G}. Hence we have

/ / x(Lk(X NH @ v))dvdH = / / x(Lk(X NL))dHdL =
[elinty Gl Gnpktt JapTk

sk [ YOO

Finally, we get that

n—k

- M/ V(LK(X N L))dL = —
GTL k+1

W/ankﬂ X(Lk(X N L))dL.

n—k 1 29

29" " g5,
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Let us compute now

1

= ﬁ/ / / X(Lk(X NHNK))dKdvdH.
29 " Ikn—k1 JGu" Gl Jareh

First, as we have just done above, we can write

1
j:—/ / / X(Lk(XNHNK))dKdHdL.
29 gkgn ka1 Gn—k+1 el k el k
Then we remark (see [14], Corollary 3.11 for a similar argument) that
1 1
W/ X(Lk(X NHNK))dK = ﬁ/ X(Lk(X N J))dJ,
In—k+1 E In—k Gzikil

and so
1

= — x(Lk(X N J))dJdHAL.
29 gkgrz l]: 1 Azk+1 /sz /C;n;{kl ( ( ))

Considering the flag variety of pairs (H,J), H € G7™* and J € G ", and proceeding as
above, we find

/ / x(Lk(X N J))dJdH = g3 / x(Lk(X N J))dJ,
Gn—k ank‘fl Gvgfkfl

Y(Lk(X N .J))d.J.
29 gng I]z 1 Ln k41 /Gn k—1

To finish the computation, we consider the flag variety of pairs (L,J), L € G %+ and J €
G711t is a bundle over G271, each fibre being a G?_,. Hence we have

1
g
I N // N(LK(X 1.J))dJdM,
G a2,

SO

290 " gran_i
e / KX N )] = —— / (KX 1 T))d.
200 "grgn it Jank 2gn Gpkt

This ends the proof for the case k € {1,...,n — 2}. For k = n — 1 or n, the proof is the same.
We just have to remark that in these cases

/BO(Ha U) + BO(Hv _U) = X(Lk(X N LU))v
andif k=n—-1,dim L, =2 and if k = n, dim L, = 1. O

Let us end with some remarks on the limits lim._.q Ae(XX0B)

Tk . We already know that if
dim X = d then lim._,q % =0 for £k > d + 1. This is also the case if | < dg, where

do is the dimension of the stratum that contains 0. To see this let us first relate the limits

% to the polar invariants defined by Comte and Merle in [9]. They can be

defined as follows. Let H € G" % k € {1,...,n}, and let v be an element in SIk{Zl. For § > 0,
we set

lime—>0

Xo(H,v) = lim lim x(Hs, N X N Be),

e—=06—0

No(H) = — /SH No(H, v)do,

Sk—1

and then )
oh(X,0) = —— / No(H)dH.
gn Gnk
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Moreover, we put oo(X,0) = 1.
Theorem 5.6. For k € {0,...,n— 1}, we have

. A (X, X NB,
iy 5T = 0(X,0) — 00 (X,0)
Furthermore, we have
A (X, X N B,
lim ¥ =0,(X,0).
e—0 b,em

Proof. Tt is the same proof as Theorem 5.5. For example if k € {0,...,n — 1}, we just have to
remark that

>\0(va) + )‘O(Ha 7”) - X(Lk(X N Lv)) + X(Lk(X n H))v

by Lemma 5.2, which implies that

1 1
O
It is explained in [9] that 0% (X, 0) = 1if 0 < k < do, so if k < do then lim,_,o 25208 — 0,

(1]

2]

=
=
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