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ON THE SMOOTHINGS OF NON-NORMAL ISOLATED SURFACE

SINGULARITIES

PATRICK POPESCU-PAMPU

Abstract. We show that isolated surface singularities which are non-normal may have Milnor
fibers which are non-diffeomorphic to those of their normalizations. Therefore, non-normal

isolated singularities enrich the collection of Stein fillings of links of normal isolated singular-

ities. We conclude with a list of open questions related to this theme.

1. Introduction

Let (S, 0) be a germ of irreducible complex analytic space with isolated singularity. Varchenko
[50] proved that there is a well-defined isomorphism class of contact structures on its link (or
boundary, as we prefer to call it in this paper). Following the terminology introduced in [6], we
say that a contact manifold which appears in this way is Milnor fillable. We use the same name if
we forget the contact structure: namely, an oriented odd-dimensional manifold is Milnor-fillable
if and only if it is orientation-preserving diffeomorphic to the boundary of an isolated singularity.

If (S, 0) is smoothable, that is, if there exist deformations of it with smooth generic fibers,
then there exist representatives of such fibers – the so-called Milnor fibers of the deformation –
which are Stein fillings of the contact boundary of the singularity. Milnor fibers associated to
arbitrary smoothings were mainly studied till now for normal surface singularities. When they
are rational homology balls, they are used for the operation of rational blow-down introduced
by Fintushel and Stern [7] and generalized by Stipsicz, Szabó, Wahl [49]. Due to the efforts of
several researchers, the normal surface singularities which have smoothings whose Milnor fibers
are rational homology balls are now completely classified. See [36] and [4] for details on this
direction of research.

In another direction, there are results which classify all the possible Stein fillings (indepen-
dently of their homology) up to diffeomorphisms, for special kinds of singularities: Ohta and
Ono did this for simple elliptic singularities [32] and simple singularities [33], Lisca for cyclic
quotient singularities [23], Bhupal and Ono [3] for the remaining quotient surface singularities.

If (S, 0) is fixed, the existence of a holomorphic versal deformation, proved by Grauert [8],
shows that, up to diffeomorphisms, there is only a finite number of Stein fillings of its contact
boundary which appear as Milnor fibers of its smoothings. For all the previous classes of singular-
ities, there is also a finite number of Stein fillings and even of strong symplectic fillings. This fact
is not general. Ohta and Ono [34] showed that there exist Milnor fillable contact 3-manifolds
which admit an infinite number of minimal strong symplectic fillings, pairwise not homotopy
equivalent. Later, Akhmedov and Ozbagci [1] proved that there exist Milnor fillable contact
3-manifolds which admit even an infinite number of Stein fillings pairwise non-diffeomorphic,
but homeomorphic. Moreover, by varying the contact 3-manifold, the fundamental groups of
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such fillings exhaust all finitely presented groups. For details on this direction of research, one
may consult Ozbagci’s survey [35].

For simple singularities (see [33]) and for cyclic quotients (see [31]), all Stein fillings are
diffeomorphic to the Milnor fibers of the smoothings of a singularity with the given contact
link (in each case there is only one such singularity, up to isomorphisms). By contrast, for
simple elliptic singularities, there exist Stein fillings of their contact boundary which are not
diffeomorphic to a Milnor fiber, but to the total space of their minimal resolution.

For instance, in the case of those simple elliptic singularities which are not smoothable (which
means, by a theorem of Pinkham [37], that the exceptional divisor of the minimal resolution is an
elliptic curve with self-intersection ≤ −10), there is only one Stein filling, which is diffeomorphic
to the total space of the minimal resolution.

We explain here (see Section 5), that this total space is diffeomorphic to the Milnor fiber of
a smoothing of a non-normal isolated surface singularity, whose normalization is the given non-
smoothable simple elliptic singularity. We do this by using the simplest technique of construction
of smoothings, which was called “sweeping out the cone by hyperplane sections” by Pinkham [37].
This has the advantage of showing that those Milnor fibers are in fact diffeomorphic to affine
algebraic surfaces.

More generally, the results of Laufer [21] and Bogomolov and de Oliveira [5] show that, for any
normal surface singularity (S, 0), there is a smoothing of an isolated surface singularity whose
Milnor fiber is diffeomorphic to the minimal resolution of (S, 0) (see Proposition 5.8).

We wrote this paper in order to emphasize the problem of the topological study of the smooth-
ings of non-normal isolated singularities. Let us mention that Jan Stevens has a manuscript [47]
which emphasizes the algebraic aspects of the deformation theory of such singularities.

We have in mind as potential readers graduate students specializing either in singularity
theory or in contact/symplectic topology, therefore we explain several notions and facts which
are well-known to specialists of either field, but maybe not to both.

Let us describe briefly the contents of the various sections. In Section 2 we explain basic facts
about normal surface singularities, their resolutions and the classes of rational, minimally elliptic
and simple elliptic singularities. In Section 3 we explain the basic notions about deformations
needed in the sequel. In Section 4 we explain the technique of sweeping out a cone by hyperplane
sections and the reason why one does not necessarily get in this way a normal singularity, even
if the starting singularity is normal. In Section 5 we continue with material about very ample
curves on ruled surfaces, and we apply it to the construction of the desired smoothings. In the
last section, we list a series of open questions which we consider to be basic for the knowledge
of the topology of deformations of isolated non-normal singularities. By a theorem of Kollár
explained in Remark 5.10, the case of rational surface singularities is special, in that one does
not obtain new Milnor fibers from non-normal representatives of their topological type (see
Remark 6.1).

Acknowledgements. I benefited from conversations with Burak Ozbagci, Jan Stevens and
Jean-Yves Welschinger. I am grateful also to the referee for his remarks and to János Kollár who,
after seeing the first version of this paper put on ArXiv, communicated me a list of papers dealing
at least partially with smoothings of non-normal isolated surface singularities (see Remark 5.10).
This research was partially supported by the grant ANR-12-JS01-0002-01 SUSI and by Labex
CEMPI (ANR-11-LABX-0007-01).
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2. Generalities on normal surface singularities

In this section we recall the basic properties and classes of normal surface singularities which
are needed in the sequel. More detailed introductions to the study of normal surface singularities
are contained in [41], [28], [29], [51], [38].

Recall first the basic definition, valid in arbitrary dimension:

Definition 2.1. Let (X,x) be a germ of reduced complex analytic space. It is called normal if
and only if its local ring of holomorphic functions is integrally closed in its total ring of fractions.

Normality may be characterized also in the following ways (see [52, Page 81]):

Proposition 2.2. Let (X,x) be a germ of reduced complex analytic space. The following state-
ments are equivalent:

(1) (X,x) is normal.
(2) The singular locus S(X) of X is of codimension at least 2 and any holomorphic function

on X \ S(X) extends to a holomorphic function on X.
(3) Every bounded holomorphic function on X \S(X) extends to a holomorphic function on

X.

Using this proposition, it is easy to show that:

Corollary 2.3. If the reduced germ (X,x) is normal, then every continuous function

f : (X,x)→ (Y, y),

where (Y, y) is another holomorphic germ, is necessarily holomorphic whenever it is holomorphic
on the complement of a nowhere dense closed analytic subspace (X ′, x) ⊂ (X,x).

Any reduced germ has a canonical normalization, whose multilocal ring (direct sum of a finite
collection of local rings) is the integral closure of the initial local ring in its total ring of fractions.
It may be characterized in the following way:

Proposition 2.4. Let (X,x) be a germ of reduced complex analytic space. There exists, up to

unique isomorphism above (X,x), a unique finite morphism ν : (X̃, x̃) → (X,x) from a finite
disjoint union of germs to (X,x) (here x̃ denotes a finite set of points), such that:

• ν is an isomorphism outside the non-normal locus of X.
• X̃ is normal.

Therefore, normal germs are necessarily irreducible. The normalization separates the irre-
ducible components and eliminates the components of their singular loci which are of codi-
mension 1. In particular, normal curve singularities are precisely the smooth ones and normal
surface singularities are necessarily isolated. The converse is not true in any dimension (see
the explanations given in the proof of Proposition 4.3). Nevertheless, complete intersection
isolated singularities of dimension 2 or higher are necessarily normal (being Cohen-Macaulay,
see the same proof). This is the reason why it is more difficult to exhibit examples of isolated
non-normal singularities in dimension 2 or higher than in dimension 1.

Normal singularities are of fundamental importance even if one is interested in non-normal
ones: a way to study them is through their morphism ν of normalization, characterized in the
previous proposition. For much more details about normal varieties and the normalization maps,
one may consult Greco’s book [9].

One has a preferred family of representatives of any germ with isolated singularity:
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Definition 2.5. Let (X,x) be a germ of reduced and irreducible complex analytic space with
isolated singularity. Choose a representative of it embedded in (Cn, 0). Consider the euclidean
sphere S2n−1(r) ⊂ Cn of radius r > 0, centered at 0. Denote by B2n(r) the ball bounded by it.
A ball B2n(r0) is called a Milnor ball if all the spheres of radius r ∈ (0, r0] are transversal to
the representative. In this case, the intersection X ∩B2n(r0) is called a Milnor representative
of the germ and X ∩ S2n−1(r0) is the boundary of the germ.

The boundary is independent, up to diffeomorphisms preserving the orientation, of the choices
done in this construction (see Looijenga [24]). We will denote its oriented diffeomorphism type,
or a representative of it, by ∂(X,x). One may show, moreover, that the boundary of an isolated
singularity is isomorphic to the boundary of its normalization. This may seem obvious intuitively,
as the normalization morphism is in this case an isomorphism outside the singular point, but
one has to work more, because the lift to the normalization of the euclidean distance function
serving to define the intersections with spheres for the initial germ are not euclidean distance
functions for the normalization. For a detailed treatment of this issue, see [6].

Let us fix a Milnor ball B2n(r0). At each point of the representative X ∩S2n−1(r0) of ∂(X,x),
consider the maximal subspace of the tangent space which is invariant by the complex multipli-
cation. It is a (real) hyperplane, canonically oriented by the complex multiplication. This field
of hyperplanes is moreover a contact structure, as a consequence of the fact that the spheres by
which we intersect are strongly pseudoconvex. In fact, this oriented contact manifold is also in-
dependent of the choices. We call it the contact boundary (∂(X,x), ξ(X,x)) of the singularity
(X,x) (for details, see [6]). In the same reference, we introduced the following terminology:

Definition 2.6. An oriented (contact) manifold is called Milnor fillable if it is isomorphic to
the (contact) boundary of an isolated singularity.

From now on, we will restrict to surfaces. One of the most important tools to study them is:

Definition 2.7. Let (S, 0) be a normal surface singularity which is not smooth. A resolution
of it is a morphism π : (Σ, E)→ (S, 0), where E denotes the preimage of 0 by π, such that:

• π is proper;
• Σ is smooth;
• π is an isomorphism from Σ \ E to S \ 0.

The subset E of Σ, which is always a connected divisor, is called the exceptional divisor of Σ.
If E is a divisor with normal crossings whose irreducible components are smooth, we say that
π is a simple normal crossings (snc) resolution. In this last case, the dual graph of the
resolution has as vertices the irreducible components of E, the edges being in bijection with the
intersection points of those components.

Note that the hypothesis of having simple normal crossings prohibits the existence of loops
in the dual graphs, but not that of multiple edges. In fact, the number of edges between two
vertices is equal to the intersection number of the corresponding components.

There always exist resolutions. Moreover, there is always a minimal snc resolution, unique
up to unique isomorphism above (S, 0), the minimality meaning that any other snc resolution
factors through it. It is this resolution which is most widely used for the topological study of
the boundary of the singularity. Nevertheless, for its algebraic study, sometimes it is important
to work with the minimal resolution, in which we don’t ask any more the exceptional resolution
to have normal crossings or smooth components (see an example in Theorem 2.15). It is again
a theorem that such a resolution also exists up to unique isomorphism.

If π is a resolution of (S, 0), denote by Eff(π) the free abelian semigroup generated by the
irreducible components of its exceptional divisor, that is, the additive semigroup of the integral
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effective divisors supported by E. If Z1, Z2 ∈ Eff(π), we say that Z1 is less than Z2 if Z2 −Z1

is also effective and Z1 6= Z2. We write then Z1 < Z2.

Proposition 2.8. Let π be any resolution of the normal surface singularity (S, 0). There exists a
non-zero cycle Znum ∈ Eff(π), called the numerical cycle of π, which intersects non-positively
all the irreducible components of E, and which is less than all the other cycles having this
property.

By definition, the numerical cycle is unique, once the resolution is fixed. It was defined first
by M. Artin [2], and Laufer [19] gave an algorithm to compute it.

We will need a second cycle supported by E, this time with rational coefficients, possibly
non-integral.

Proposition 2.9. Let π : (Σ, E) → (S, 0) be any resolution of the normal surface singularity
(S, 0). There exists a unique cycle ZK supported by E, with rational coefficients, such that
ZK ·Ei = −KΣ ·Ei for any component Ei of E. It is called the anticanonical cycle of π. Here
KΣ denotes any canonical divisor of Σ.

The canonical divisors on Σ are the divisors of the meromorphic 2-forms on a neighborhood
of E in Σ. Such forms are precisely the lifts of the meromorphic 2-forms on a neighborhood of 0
in S. Of special importance are the normal surface singularities admitting such a 2-form which,
moreover, is holomorphic and does not vanish on S \ 0:

Definition 2.10. An isolated surface singularity (S, 0) is Gorenstein if it is normal and if it
admits a non-vanishing holomorphic form of degree 2 on S \ 0.

In fact, isolated complete intersection surface singularities are not only normal, but also
Gorenstein. We remark that the topological types of Gorenstein isolated surface singularities
are known by [40], but it is an open question to describe the topological types of those which
are complete intersections or hypersurfaces.

Both the anticanonical cycle and the notion of Gorenstein singularity are defined using dif-
ferential forms of degree 2. Such forms are also useful to define several important notions of
genus:

Definition 2.11. Let (S, 0) be a normal surface singularity. Its geometric genus pg(S, 0) is
equal to the dimension of the space of holomorphic 2-forms on S \ 0, modulo the subspace of
forms which extend holomorphically to a resolution of S.

If Z is a compact divisor on a smooth complex surface Σ, its arithmetic genus pa(Z) is

equal to 1 +
1

2
Z · (Z +KΣ).

In the same way as the rational curves are those of smooth algebraic curves of genus (in the
usual Riemannian sense) 0, M. Artin [2] defined:

Definition 2.12. A normal surface singularity is rational if its geometric genus is 0.

By contrast with the case of curves, there is an infinite set of topological types of rational
surface singularities. A basic property of them is that their minimal resolutions are snc, that
all of the irreducible components of their exceptional divisors are rational curves, and that their
dual graphs are trees. But this is not enough to characterize them. In fact, as proved by M.
Artin [2]:

Proposition 2.13. Let (S, 0) be a normal surface singularity and let π : (Σ, E)→ (S, 0) be any
resolution of it. Then (S, 0) is rational if and only if pa(Znum) = 0.
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The reader interested in the combinatorics of rational surface singularities may consult Lê
and Tosun’s paper [22] and Stevens’ paper [48].

The singularities on which we focus in the sequel are not rational, as their resolutions contain
non-rational exceptional curves:

Definition 2.14. A normal surface singularity is called simple elliptic if the exceptional divisor
of its minimal resolution is an elliptic curve.

Simple elliptic singularities are necessarily Gorenstein, as a consequence of the following the-
orem of Laufer [20, Theorems 3.4 and 3.10]:

Theorem 2.15. Let (S, 0) be a normal surface singularity. Working with its minimal resolution,
the following facts are equivalent:

(1) One has pa(Znum) = 1 and pa(D) < 1 for all 0 < D < Znum.
(2) The fundamental and anticanonical cycles are equal: Znum = ZK .
(3) One has pa(Znum) = 1 and any connected proper subdivisor of E contracts to a rational

singularity.
(4) pg(S, 0) = 1 and (S, 0) is Gorenstein.

Laufer introduced a special name (making reference to condition (3)) for the singularities
satisfying one of the previous conditions:

Definition 2.16. A normal surface singularity satisfying one of the equivalent conditions stated
in Theorem 2.15 is called a minimally elliptic singularity.

In fact, as may be rather easily proved using characterization (3) of minimally elliptic sin-
gularities, the simple elliptic singularities are precisely the minimally elliptic ones which admit
resolutions whose exceptional divisors have at least one non-rational component.

3. Generalities on deformations and smoothings of isolated singularities

In this section we recall the basic definitions and properties about deformations of isolated
singularities which are needed in the sequel. For more details, one may consult Looijenga [24],
Looijenga & Wahl [25], Stevens [46], Greuel, Lossen & Shustin [10] and Némethi [30].

Definition 3.1. Let (X,x) be a germ of a complex analytic space. A deformation of (X,x)
is a germ of flat morphism ψ : (Y, y)→ (S, s) together with an isomorphism between (X,x) and
the special fiber ψ−1(s). The germ (S, s) is called the base of the deformation.

For example, when X is reduced, f ∈ mX,x is flat as a morphism (X,x)
f→ (C, 0) if and

only if f does not divide zero, that is, if and only if f does not vanish on a whole irreducible
component of (X,x). Such deformations over germs of smooth curves are called 1-parameter
deformations. The simplest example is obtained when X = Cn. Then one gets the prototypical
situation considered by Milnor [26].

In general, to think about a flat morphism as a “deformation” means to see it as a family
of continuously varying fibers (in the sense that their dimension is locally constant, without
blowing-up phenomena) and to concentrate on a particular fiber, the nearby ones being seen as
“deformations” of it. From such a family, one gets new families by rearranging the fibers, that is,
by base change. One is particularly interested in the situations where there exist families which
generate all other families by such base changes. The following definition is a reformulation of
[10, Definition 1.8, page 234]:

Definition 3.2. (1) A deformation of (X,x) is complete if any other deformation is ob-
tainable from it by a base-change.
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(2) A complete deformation ψ of (X,x) is called versal if for any other deformation over a
base (T, t) and identification of the induced deformation over a subgerm (T ′, t) ↪→ (T, t)
with a pull-back from ψ, one may extend this identification with a pull-back from ψ over
all (T, t).

(3) A versal deformation is miniversal if the Zariski tangent space of its base (S, s) has the
smallest possible dimension.

When the miniversal deformation exists, its base space is unique up to non-unique isomor-
phism (only the tangent map to the isomorphism is unique). For this reason, one does not
speak about a universal deformation, and was coined the word “miniversal”, with the variant
“semi-universal”.

In many references, versal deformations are defined as the complete ones in the previous
definition. Then is stated the theorem that the base of a versal deformation is isomorphic to
the product of the base of a miniversal deformation and a smooth germ. But with this weaker
definition the result is false. Indeed, starting from a complete deformation, by doing the product
of its base with any germ (not necessarily smooth) and by taking the pull-back, we would get
again a complete deformation. This shows that a complete deformation is not necessarily versal.
Nevertheless, the theorem stated before is true if one uses the previous definition of versality.

Not all germs admit versal deformations. But those with isolated singularity do admit, as
was proved by Schlessinger [43] for formal deformations (that is, over spectra of formal analytic

algebras), then by Grauert [8] for holomorphic ones (an important point of this theorem being
that one has to work with general analytic spaces, possibly non-reduced):

Theorem 3.3. Let (X,x) be an isolated singularity. Then the miniversal deformation exists
and is unique up to (non-unique) isomorphism.

One may extend the notion of deformation by allowing bases of infinite dimension. Then even
the germs with non-isolated singularity have versal deformations (see Hauser’s papers [14], [15]).

In the sequel we will be interested in deformations with smooth generic fibers:

Definition 3.4. A smoothing of an isolated singularity (X,x) is a 1-parameter deformation
whose generic fibers are smooth. A smoothing component of (X,x) is an irreducible compo-
nent of the reduced miniversal base space over which the generic fibers are smooth.

Isolated complete intersection singularities have a miniversal deformation (Y, y)
ψ→ (S, s)

such that both Y and S are smooth, therefore irreducible (see [24]). In general, the reduced
miniversal base (Sred, s) may be reducible. The first example of this phenomenon was discovered
by Pinkham [37, Chapter 8]:

Proposition 3.5. The germ at the origin of the cone over the rational normal curve of degree
4 in P4 has a reduced miniversal base space with two components, both being smoothing ones.

Not all isolated singularities are smoothable. The most extreme case is attained with rigid
singularities, which are not deformable at all in a non-trivial way. For example, quotient singu-
larities of dimension ≥ 3 are rigid (Schlessinger [44]).

In [39] we proved a purely topological obstruction to smoothability for singularities of dimen-
sion ≥ 3. In dimension 2 no such criterion is known for all normal singularities. But there exist
such obstructions for Gorenstein normal surface singularities as a consequence of the following
theorem of Steenbrink [45]:

Theorem 3.6. Let (X,x) be a Gorenstein normal surface singularity. If it is smoothable, then:

(3.1) µ− = 10 pg(X,x)− b1(∂(X,x)) + (Z2
K + |I|).
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In the preceding formula, µ− denotes the negative part of the index of the intersection form
on the second homology group of any Milnor fiber (see Theorem 3.8 below) and b1(∂(X,x))
denotes the first Betti number of the boundary of (X,x). It may be computed from any snc
resolution with exceptional divisor E =

∑
i∈I Ei as:

b1(∂(X,x)) = b1(Γ) + 2
∑
i∈I

pi,

where pi denotes the genus of Ei and Γ denotes the dual graph of E. The term Z2
K + |I| may

also be computed using any snc resolution, and is again a topological invariant of the singularity.
The previous theorem implies that the expression in the right-hand side of (3.1) is ≥ 0, which

gives non-trivial obstructions on the topology of smoothable normal Gorenstein singularities.
For example, it shows that:

Proposition 3.7. Among simple elliptic singularities, the smoothable ones have minimal reso-
lutions whose exceptional divisor is an elliptic curve with self-intersection ∈ {−9,−8, ...,−1}.

Proposition 3.7 has been proved first in another way by Pinkham [37, Chapter 7].

Let us look now at the topology of the generic fibers above a smoothing component. We want
to localize the study of the family in the same way as Milnor localized the study of a function
on Cn near a singular point. This is possible (see Looijenga [24]):

Theorem 3.8. Let (X,x) be an isolated singularity. Let (Y, y)
ψ→ (S, s) be a miniversal defor-

mation of it. There exist (Milnor) representatives Yred and Sred of the reduced total and base
spaces of ψ such that the restriction ψ : ∂Yred ∩ ψ−1(Sred) → Sred is a trivial C∞-fibration.
Moreover, one may choose those representatives such that over each smoothing component Si,
one gets a locally trivial C∞-fibration ψ : Yred ∩ ψ−1(Si)→ Si outside a proper analytic subset.

Hence, for each smoothing component Si, the oriented diffeomorphism type of the oriented
manifold with boundary (π−1(s) ∩ Yred, π−1(s) ∩ ∂Yred) does not depend on the choice of the
generic element s ∈ Si: it is called the Milnor fiber of that component. Moreover, its boundary
is canonically identified with the boundary of (X,x) up to isotopy. In particular, the Milnor
fiber of a smoothing component is diffeomorphic to a Stein filling of the contact boundary
(∂(X,x), ξ(X,x)).

Greuel and Steenbrink [11] proved the following topological restriction on the Milnor fibers
of normal isolated singularities (of any dimension):

Theorem 3.9. Let (X,x) be a normal isolated singularity. Then all its Milnor fibers have
vanishing first Betti number.

This is not true for non-normal isolated surface singularities, as may be seen for instance from
the examples we give in the last section (see Remark 5.7).

For singularities which are not complete intersections, it is in general difficult even to construct
non-trivial deformations or to decide if there exist smoothings. There is nevertheless a general
technique of construction of smoothings, applicable to germs of affine cones at their vertices.
Next section is dedicated to it.

4. Sweeping out the cone with hyperplane sections

In this section we recall Pinkham’s method of construction of smoothings by “sweeping out the
cone with hyperplane sections”. It may be applied to the germs of affine cones at their vertices.
The reader may follow the explanations on Figure 1.
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Figure 1. Sweeping the cone with hyperplane sections

Let V be a complex vector space, whose projectivisation is denoted P(V ): set-theoretically, it
consists of the lines of V . More generally, we define the projectivisation P(V) of a vector bundle
V as the set of lines contained in the various fibers of the bundle. This notion will be used in
the next section (see Remark 5.4).

Let A be a smooth subvariety of P(V ). Denote by CA ↪→ V the affine cone over it, and
by CA ↪→ V the associated projective cone. Here V denotes the projective space of the same
dimension as V , obtained by adjoining P(V ) to V as hyperplane at infinity. That is:

V = P(V ⊕ C) = V ∪ P(V ).

The projective cone CA = CA ∪ A is the Zariski closure of CA in V . The vertex of either cone
is the origin O of V .

Assume now that H ↪→ P(V ) is a projective hyperplane which intersects A transversally.
Denote by:

B := H ∩A
the corresponding hyperplane section of A. The affine cone CH over H is the linear hyperplane
of V whose projectivisation is H. The associated projective cone CH ↪→ V is a projective
hyperplane of V .

Let L be the pencil of hyperplanes of V generated by P(V ) and CH . That is, it is the pencil
of hyperplanes of V passing through the “axis” H. In restriction to V , it consists in the levels
of any linear form f : V → C whose kernel is CH . The 0-locus of f |CA

is the affine cone CB over
B.

As an immediate consequence of the fact that H intersects A transversally, we see that CB
has an isolated singularity at 0 and that all the non-zero levels of f |CA

are smooth. This shows
that:

Lemma 4.1. The map f |CA
: CA → C gives a smoothing of the isolated singularity (CB , O).
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Such are the smoothings obtained by “sweeping out the cone with hyperplane sections”, in
the words of Pinkham [37, Page 46]. It is probably the easiest way to construct smoothings,
which explains why a drawing similar to the one we include here was represented on the cover
of Stevens’ book [46].

Since the complement CA \O of the vertex in the cone CA is homogeneous under the natural
C∗-action by scalar multiplication on V , the Milnor fibers of f |CA

: (CA, O) → (C, 0) are
diffeomorphic to the global (affine) fibers of f |CA

: CA → C. Those fibers are the complements
(W ∩ CA) \ B, for the members W of the pencil L different from CH and P(V ). But the only
member of this pencil which intersects CA non-transversally is CH , which shows that the pair
(W ∩ CA, B) is diffeomorphic to (P(V ) ∩ CA, B) = (A,B). Therefore:

Proposition 4.2. The Milnor fibers of the smoothing f |CA
: (CA, O)→ (C, 0) of the singularity

(CB , O) are diffeomorphic to the affine subvariety A \B of the affine space P(V ) \H.

The previous method may be applied to construct smoothings of germs of affine cones CB at
their vertices. In order to apply it, one has therefore to find another subvariety A of the same
projective space, containing B, and such that B is a section of A by a hyperplane intersecting
it transversally. In general, this is a difficult problem.

The important point to be understood here is that, even if (CA, O) is normal, this is not nec-
essarily the case for its hyperplane section (CB , O). More generally, if (Y, y) is a normal isolated
singularity and f : (Y, y) → (C, 0) is a holomorphic function such that the germ (f−1(0), y) is
reduced and with isolated singularity, it is not necessarily normal. In dimension 3, in which we
are especially interested in here, something special happens:

Proposition 4.3. Assume that (Y, y) is a normal germ of 3-fold, with isolated singularity, and
that (f−1(0), y) has also an isolated singularity. Then (f−1(0), y) is normal if and only if (Y, y)
is Cohen-Macaulay.

Proof. Let us explain first basic intuitions about Cohen-Macaulay germs. This notion appears
naturally if one studies singularities using successive hyperplane sections. Intrinsically speaking,
a hyperplane section of a germ (Y, y) is defined as the zero-locus of a function f ∈ m, where m
is the maximal ideal of the local ring O of the germ, endowed with the analytic structure given
by the quotient local ring O/(f). This section is of dimension at least dim(Y, y)− 1. Dimension
drops necessarily if f is not a divisor of 0 in O. Do such functions exist? Not necessarily.
But if they exist, we take the hyperplane section and we repeat the process. (Y, y) is called
Cohen-Macaulay if it is possible to drop in this way iteratively the dimension till arriving at an
analytical space of dimension 0 (that is, set-theoretically, at the point y).

For the basic properties of the previous notion, one may consult [52] or [9]. Here we will need
only the following facts:

(1) If a germ is Cohen-Macaulay, then for any f ∈ m non-dividing 0, the associated hyper-
plane section (f−1(0), y) is also Cohen-Macaulay.

(2) An isolated surface singularity is normal if and only if it is Cohen-Macaulay.

Assume now that (Y, y) satisfies the hypothesis of the proposition.

• If (Y, y) is Cohen-Macaulay and if the hyperplane section (f−1(0), y) has an isolated
singularity, property (1) implies that (f−1(0), y) is also Cohen-Macaulay. Property (2)
implies then that it is normal.

• Conversely, if (f−1(0), y) is normal, then it is Cohen-Macaulay by property (2), which
implies by definition that (Y, y) is also Cohen-Macaulay.

�
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Let us come back to the smooth projective varieties B ⊂ A ⊂ P(V ). The cone CB is therefore
not necessarily normal, even if CA is. But its normalization is easy to describe:

Proposition 4.4. The normalization of CB is the algebraic variety obtained by contracting the
zero-section of the total space of the line bundle O(−1)|B, which is isomorphic to the conormal
line bundle of B in A.

Proof. The isomorphism of the two line bundles follows from the fact that B is the vanishing
locus of a section of O(1)|A. Here, as is standard in algebraic geometry, O(−1) denotes the dual
of the tautological line bundle on P(V ). Its fiber above a point of P(V ) is the associated line.

Denote by C̃B the space obtained by contracting the zero-section of O(−1)|B , and by Õ ∈ C̃B
the image of the 0-section. By the definition of contractions, C̃B is normal (see [52]). As the
fiber of O(−1)|B over a point b ∈ B ↪→ P(V ) is the line of V whose projectivisation is b, we see
that there is a morphism:

ν : C̃B → CB

which induces an isomorphism C̃B \ Õ ' CB \ O. As C̃B is normal, by Corollary 2.3 and
Proposition 2.4 we see that ν is a normalization morphism. �

5. Isolated singularities with simple elliptic normalization

In this section we apply the method of sweeping out the cone with hyperplane sections in order
to show that the total space of the minimal resolution of any non-smoothable simple elliptic
surface singularity is diffeomorphic to the Milnor fiber of some non-normal isolated surface
singularity with simple elliptic normalization. We recall first several known properties of ruled
surfaces over elliptic curves, following Hartshorne’s presentation done in [13, Chapter V.2]. We
conclude with a generalization valid for any normal surface singularity, using results of Laufer
and Bogomolov & de Oliveira.

In order to apply the method of the previous section to singularities with simple elliptic
normalization, we want to find surfaces embedded in some projective space which admit a
transversal hyperplane section which is an elliptic curve. Moreover, because of Propositions
4.4 and 3.7, we would like to get an elliptic curve whose self-intersection number in the surface
is ≥ 10. As a consequence of the following theorem of Hartshorne [12], this forces us to take a
ruled surface:

Theorem 5.1. Let C be a smooth compact curve of genus g on a smooth compact complex
algebraic surface S. If S \ C is minimal (that is, it does not contain smooth rational curves of
self-intersection (−1)) and C2 ≥ 4g + 6, then S is a ruled surface and C is a section of the
ruling.

Ruled surfaces are those swept by lines (smooth rational curves):

Definition 5.2. A ruled surface above a smooth projective curve C is a smooth projective
surface X together with a surjective morphism π : X → C, such that all (scheme-theoretic)
fibers are isomorphic to P1.

It is a theorem that all ruled surfaces admit regular sections.
The following theorem is basic for the classification of ruled surfaces (see [13, Prop. V.2.8,

V.2.9]):

Theorem 5.3. If π : X → C is a ruled surface, it is possible to write X ' P(E∗), where
E is a plane bundle on C with the property that H0(E) 6= 0, but for all line bundles L on C
with degL < 0, we have H0(E ⊗ L) = 0. In this case the integer e = −deg E is an invariant
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of X. Furthermore, in this case there is a section σ0 : C → X with image C0, such that
OX(C0) ' OX(1). One has C2

0 = −e.

In the sequel, we will say that e is the numerical invariant of the ruled surface.

Remark 5.4. In fact, Hartshorne writes P(E) instead of P(E∗). The reason is that his definition
of projectivisation is dual to the one we use in this paper: instead of taking the lines in a
vector space or vector bundle, he takes the hyperplanes, that is, the lines in the dual vector
space/bundle.

We want to find sections of ruled surfaces which appear as hyperplane sections for some
embedding in a projective space, that is, according to a standard denomination of algebraic
geometry, very ample sections. The following proposition combines results contained in [13,
Theorems 2.12, 2.15, Exercice 2.12 of Chapter V]:

Proposition 5.5. Assume that C is an elliptic curve and that X is a ruled surface above C
with numerical invariant e. Then:

(1) When X varies for fixed C, the invariant e takes all the values in Z ∩ [−1,∞).
(2) Consider a fixed such ruled surface and let F be one of its fibers. Take a ∈ Z. Then the

divisor C0 + aF is very ample on X if and only if a ≥ e+ 3.

Fix now an integer a ≥ e+ 3. By Proposition 5.5, the divisor C0 + aF is very ample. Denote
by X ↪→ P(V ) the associated projective embedding. Let H be a hyperplane which intersects it
transversally, and let B := H ∩X. Therefore B is linearly equivalent to C0 +aF on X. We have
the following intersection numbers on X:{

B · F = (C0 + aF ) · F = C0 · F = 1
B2 = (C0 + aF )2 = C2

0 + 2aC0 · F = −e+ 2a.

We have used the facts that:

• F is a fiber, which implies that F 2 = 0;
• C0 is a section, which implies that C0 · F = 1;
• C2

0 = −e, by Theorem 5.3.

The first equality above implies that B is again a section of the ruled surface. The second
equality shows that a tubular neighborhood of B in X is diffeomorphic to a disc bundle over C
with Euler number −e+2a. As B is a section of the ruling, such a disc bundle may be chosen as
a differentiable sub-bundle of the ruling. As the fibers of the ruling π : X → C are spheres, its
complement is again a disc bundle, necessarily of opposite Euler number. Proposition 4.2 shows
then that:

Proposition 5.6. The Milnor fiber of the smoothing f |CA
: (CX , 0) → (C, 0) of the isolated

surface singularity (CB , 0) is diffeomorphic to the disc bundle over C with Euler number e− 2a.

Remark 5.7. This shows that the first Betti number of the Milnor fiber of this smoothing is 2.
Greuel and Steenbrink’s theorem 3.9 implies that the surface singularity (CB , 0) which is being
smoothed is non-normal.

By Proposition 5.5, we see that the integer e− 2a takes any value in Z ∩ (−∞,−5] (because
for fixed e, it takes all the integral values in (−∞,−e−6] which have the same parity as −e−6).
Therefore:

• this construction applies to simple elliptic singularities whose minimal resolution has an
exceptional divisor with self-intersection any number in Z ∩ (−∞,−5];

• the Milnor fiber is diffeomorphic to the minimal resolution, both being diffeomorphic to
the disc bundle over C with Euler number e− 2a.



176 PATRICK POPESCU-PAMPU

More generally, as an easy consequence of results of Laufer [21] and Bogomolov and de Oliveira
[5], we have:

Proposition 5.8. Let (S, 0) be any normal surface singularity. Then there exists an isolated
surface singularity with normalization isomorphic to (S, 0), which has a smoothing whose Milnor
fibers are diffeomorphic to the minimal resolution of (S, 0).

Proof. Choose a Milnor representative of (S, 0) (see Definition 2.5). Therefore its boundary is
strongly pseudo-convex. Take the minimal resolution π : (Σ, E)→ (S, 0). As π is an isomorphism
outside 0, the boundary of Σ is also strongly pseudo-convex. By the extensions done in [5] of
Laufer’s results of [21], there exists a 1-parameter deformation:

ψ : (Σ̃,Σ)→ (Dε, 0)

of Σ over a disc Dε of radius ε > 0, such that the fibers Σt of ψ above any point t ∈ Dε \ 0
do not contain compact curves. If we choose the disc Dε small enough, the boundaries of those
fibers are also strongly pseudoconvex, by the stability of this property. Therefore, the fibers of
ψ above Dε \ 0 are all Stein.

Consider now the Remmert reduction (see [52, Page 229]):

ρ : Σ̃→ S̃.

By definition, it contracts all the maximal connected compact analytic subspaces of Σ̃ to points,
and it is normal. The only compact curve of Σ̃ is E, therefore ρ contracts E to a point P , S̃ is
a normal 3-fold and ρ is an isomorphism above S̃ \ P . As S̃ is normal, Corollary 2.3 shows that
the map ψ descends to it, giving us a family:

ψ′ : (S̃, S′)→ (Dε, 0).

Here S′ denotes the fiber of ψ′ above the origin. The map ρ being an isomorphism in restriction
to Σ̃ \ E, it gives an isomorphism:

Σ \ E ' S′ \ P.
Composing it with the isomorphism π−1 : S \ 0→ Σ \E, we get an isomorphism S \ 0 ' S′ \ P
which extends by continuity to S. As S is normal, we see that (S, 0) is indeed the normalization
of (S′, P ).

The map ψ′ gives therefore a smoothing with the desired properties:

• Its central fiber (S′, P ) has normalization isomorphic to (S, 0).
• Its Milnor fibers are diffeomorphic to the total space of the minimal resolution of (S, 0).

Indeed, by construction they are isomorphic to the fibers of ψ. But ψ is a deformations
of a smooth surface, therefore, by Ehresmann’s theorem, all its fibers are diffeomorphic,
and the central fiber is the minimal resolution Σ of S.

�

Compared with the general result 5.8, the advantage of the construction explained before for
simple elliptic singularities, using the method of sweeping a cone with hyperplane sections, is
that it shows that in that case the minimal resolution is diffeomorphic to an affine algebraic
surface.

Remark 5.9. Laufer proved that one can find a 1-parameter deformation of the total space
of the minimal resolution which destroys any irreducible component of the exceptional divisor.
As for simple elliptic singularities the exceptional divisor is irreducible, we could use his result
and proceed as in the previous proof, in order to get the proposition for this special class of
singularities.
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Remark 5.10. After seeing the first version of this paper put on ArXiv, János Kollár com-
municated me some information I did not know about papers dealing, at least partially, with
the smoothability of non-normal isolated singularities. One of the earliest papers he may think
about concerned with this problem is [27, Section 4]. There, Mumford gives examples of such
surface singularities with simple elliptic normalizations (without looking at their Milnor fibers).
Extending a result of Mumford’s paper, Kollár proved in [16, Lemma 14.2] that all smoothings
of isolated surface singularities with rational normalization lift to smoothings of the normaliza-
tion: more precisely, with this hypothesis, if their total space is normal, then the special fiber is
rational. This shows that for rational surface singularities, one cannot obtain new Milnor fibers
by the method of the present paper. In higher dimensions, Kollár proved in [16, Theorem 3 (2)]
that, if X0 is a non-normal isolated singularity of dimension at least 3 whose normalization is
log canonical, then X0 is not smoothable: it does not even have normal deformations. He also
indicated [18, Section 3.1] as a reference for basic material about singularities of cones.

6. Open questions

The following questions are basic for the understanding of the topology of the Milnor fibers
of isolated, not necessarily normal surface singularities:

(1) Given a Milnor fillable contact 3-manifold, determine whether, up to diffeomorphisms/
homeomorphisms relative to the boundary, there is always a finite number of Milnor
fibers corresponding to smoothings of not-necessarily normal isolated surface singularities
filling it.

(2) Given a Milnor fillable contact 3-manifold (M, ξ), determine whether there exists an
isolated surface singularity which fills it, such that its Milnor fibers exhaust, up to
diffeomorphisms/ homeomorphisms, the Milnor fibers of the various isolated singularities
which fill (M, ξ).

(3) Given a Milnor fillable contact 3-manifold (M, ξ), determine whether there exists an
isolated surface singularity which fills it, such that its Milnor fibers exhaust, up to
diffeomorphisms/homeomorphisms, the Stein fillings of (M, ξ).

(4) Given a Milnor fillable contact 3-manifold (M, ξ), classify, up to diffeomorphisms/homeo-
morphisms relative to the boundary, the Milnor fibers of the isolated singularities filling
it, and determine the subset of those which appear as Milnor fibers of normal singular-
ities.

(5) Determine bounds on the first Betti number of the Milnor fibers of an isolated non-
normal surface singularity in terms of its analytic invariants.

Remark 6.1. For cyclic quotient singularities, Lisca [23] proved that there is a finite number of
Stein fillings of their contact boundaries and he classified them up to diffeomorphisms relative
to the boundary. He conjectured that they are diffeomorphic to the Milnor fibers of the corre-
sponding singularity. Némethi and the present author proved this conjecture in [31]. Therefore,
in this case the answers of the first three questions are positive and the fourth question is also
answered. It would be interesting to understand if the fact that the first three questions have a
positive answer is rather an exception or the rule for rational surface singularities. In this case,
one does not need to look at non-normal representatives of the topological types, by Kollár’s
result [16, Lemma 14.2] cited in Remark 5.10.
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Université Lille 1, UFR de Maths., Bâtiment M2, Cité Scientifique, 59655, Villeneuve d’Ascq

Cedex, France.
E-mail address: patrick.popescu@math.univ-lille1.fr

http://arxiv.org/abs/1311.1929
http://dx.doi.org/10.1215/00127094-1433412
http://dx.doi.org/10.1007/BF01389749
http://dx.doi.org/10.1090/S0002-9947-1968-0217093-3
http://dx.doi.org/10.1090/S0002-9947-1968-0217093-3
http://dx.doi.org/10.1007/BF01418741

	1. Introduction
	2. Generalities on normal surface singularities
	3. Generalities on deformations and smoothings of isolated singularities
	4. Sweeping out the cone with hyperplane sections
	5. Isolated singularities with simple elliptic normalization
	6. Open questions
	References

