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ON THE  LOJASIEWICZ EXPONENTS OF QUASI-HOMOGENEOUS

FUNCTIONS

ALAIN HARAUX AND TIEN SON PHA. M

Abstract. Quasi-homogeneous functions, and especially polynomials, enjoy some specific
properties around the origin which allow to estimate the so-called  Lojasiewicz exponents in

a way quite similar to homogeneous functions. In particular we generalize a previous result

for polynomials of two variables concerning the optimal  Lojasiewicz gradient inequality at the
origin.

1. Introduction

In his pioneering papers [13], [14],  Lojasiewicz established that any analytic function f of n
real variables satisfies an inequality of the form

(1.1) ‖∇f(x)‖ ≥ c|f(x)− f(a)|β

for ‖x − a‖ small enough with c > 0, β ∈ (0, 1). This inequality, known as the  Lojasiewicz
gradient inequality, is useful to establish trend to equilibrium of the general solutions of gradient
systems

(1.2) u′ +∇f(u) = 0

and can also be used to evaluate the rate of convergence. It is therefore of interest to know as
precisely as possible the connection between f and its gradient and in particular to determine
the best(smallest) possible value of β in (1.1) when a is a critical point of f . This value is
called the  Lojasiewicz exponent at a. In [7] for instance, it was shown that if f is a homogeneous
polynomial with degree d ≥ 2, the  Lojasiewicz exponent at the origin is exactly 1 − 1

d when
n = 2. This property is no longer true if n > 2.

On the other hand, Gwoździewicz [6] (see also [16]) considered the case of a real analytic
function at an isolated zero and also found, in this case, an interesting relationship between
various  Lojasiewicz exponents, relative to different  Lojasiewicz inequalities. In addition the case
of general polynomials has been thoroughly investigated by D’Acunto and Kurdyka in [2] (see
also [11, 12, 17]).

Our paper is concerned to the extension of the result from [7] and several estimates of
 Lojasiewicz exponents at the origin when f is a quasi-homogeneous map (see, for example,
[1]). It is divided in 5 sections. In Section 2, we state and prove some preliminary results,
mainly concerning the local behavior of quasi-homogeneous maps near the origin. Section 3
contains more information in the specific case where the origin is an isolated zero of f. Section
4 deals with the  Lojasiewicz gradient exponent of quasi-homogeneous polynomials, in particular
we generalize the main result of [7] (see also [4, 5, 9] for related results). Section 5 contains
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more precise estimates for quasi-homogeneous polynomials of two variables. These results are
illustrated by typical examples and completed by a few remarks.

2. Definitions and preliminary results

We first recall the concept of a quasi-homogeneous map. Let K = C or R. We say that
f : Kn → Kk is a (positively) quasi-homogeneous map with weight

w := (w1, w2, . . . , wn) ∈ (R+ − {0})n

and quasi-degree d := (d1, d2, . . . , dk) ∈ (R+ − {0})k if

(2.1) fi(t
w1x1, t

w2x2, . . . , t
wnxn) = tdifi(x1, x2, . . . , xn)

for each i = 1, 2, . . . , k, and all t > 0. Note that if wj = 1 for j = 1, 2, . . . , n then the above
definition means that the components fi are homogeneous functions of degree di. When k = 1,
a scalar function f = f1 satisfying (2.1) is called a (positively) quasi-homogeneous function
with weight w = (w1, w2, . . . , wn) and quasi-degree d = d1. In the sequel we shall drop for
simplicity the word “positively”. Note that any monomial xα := xα1

1 xα2
2 . . . xαn

n is a quasi-
homogeneous function with arbitrary weight w = (w1, w2, . . . , wn) ∈ (N− {0})n and quasi-
degree 〈w,α〉 := w1α1 + w2α2 + · · ·+ wnαn. Moreover, we have

Proposition 2.1. Let f : Kn → K be a polynomial function. Then f is quasi-homogeneous with
weight w ∈ (N− {0})n and quasi-degree m ∈ N− {0} if and only if all its constitutive monomials
are quasi-homogeneous functions with weight w and quasi-degree m.

Proof. Suppose that f is a quasi-homogeneous polynomial with weight w and quasi-degree m.
We have the following finite expansion

f(x) :=
∑
α

aαx
α.

Then ∑
α

aαt
〈w,α〉xα = tm

∑
α

aαx
α.

This gives ∑
α

aα[t〈w,α〉−m − 1]xα = 0

for all x ∈ Kn and for all t > 0. Since the field K is of characteristic 0, we get

〈w,α〉 −m = 0

for all α provided aα 6= 0. In other words, all constitutive monomials of f are quasi-homogeneous
functions with weight w and quasi-degree m. The converse is clear. �

For a fixed weight w := (w1, w2, . . . , wn) ∈ (R+ − {0})n we set

‖x‖w := max
j=1,2,...,n

|xj |
1

wj

for x := (x1, x2, . . . , xn) ∈ Kn. In the special case w = w0 = (1, ...1) , we recover the usual l∞

norm on Kn and we set

‖x‖ := ‖x‖w0
= max
j=1,2,...,n

|xj |.
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Remark 2.2. (i) It is worth noting that, except in the special case w = w0 = (1, ...1), ‖ · ‖w is
not a norm since it is not homogeneous of degree 1.

(ii) It is easy to see that ‖ · ‖w is a quasi-homogeneous function with weight w and with
quasi-degree 1.

The following basic properties will be used throughout the text.

Proposition 2.3. Let

w∗ := min
j=1,2,...,n

wj ,

w∗ := max
j=1,2,...,n

wj .

Then the following hold

(i) For all ‖x‖ ≥ 1 we have

‖x‖
1

w∗ ≥ ‖x‖w ≥ ‖x‖
1

w∗ .

In particular, ‖x‖ → ∞ if and only if ‖x‖w →∞.
(ii) For all ‖x‖ ≤ 1 we have

‖x‖
1

w∗ ≤ ‖x‖w ≤ ‖x‖
1

w∗ ,

In particular, ‖x‖ → 0 if and only if ‖x‖w → 0.

Proof. The proof of the proposition is straightforward from the definitions. �

In the sequel for t > 0, for any w := (w1, w2, . . . , wn) ∈ (R+ − {0})n and

x := (x1, x2, . . . , xn) ∈ Kn

we denote

t • x := (tw1x1, t
w2x2, . . . , t

wnxn),

and for d := (d1, d2, . . . , dk) ∈ (R+ − {0})k we set

d∗ := min
i=1,2,...,k

di,

d∗ := max
i=1,2,...,k

di.

Let f : Kn → Kk be quasi-homogeneous with weight w := (w1, w2, . . . , wn) ∈ (R+ − {0})n
and quasi-degree d := (d1, d2, . . . , dk) ∈ (R+ − {0})k. If fi ≡ 0 for some i ∈ {1, 2, . . . , k}, then
di can be replaced by any positive number. In the sequel we shall assume

(2.2) ∀i ∈ {1, 2, . . . , k}, fi 6≡ 0.

It is easy to check that in this case di is uniquely defined by (2.1) for all i ∈ {1, 2, . . . , k}. Then
d∗ and d∗ are well defined.

The next two results summarize some important consequences of the quasi homogeneity prop-
erty.

Proposition 2.4. Let f := (f1, f2, . . . , fk) : Kn → Kk be a quasi-homogeneous map with weight
w := (w1, w2, . . . , wn) and quasi-degree d := (d1, d2, . . . , dk) satisfying (2.2). Then the following
properties are equivalent.

(i) The origin is an isolated zero of f .
(ii) f−1(0) = {0}.
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Proof. It is clear that (ii) implies (i). Conversely if (ii) is not satisfied, let a 6= 0 be such that
f(a) = 0. This implies that f1(a) = f2(a) = · · · = fk(a) = 0. Hence

fi(t • a) = tdifi(a) = 0

for i = 1, 2, . . . , k and all t > 0. Note that ‖t • a‖ → 0 as t → 0. Thus, the origin is not an
isolated zero of f, which is a contradiction. �

Proposition 2.5. Let f : Rn → R be a continuous quasi-homogeneous function with weight w
and quasi-degree m. Suppose that n ≥ 2. Then the following conditions are equivalent

(i) f−1(0) = {0}.
(ii) f has a strict global extremum at the origin.
(iii) For each ε ≥ 0, {x ∈ Rn | |f(x)| = ε} is a non-empty compact set.
(iv) min‖x‖=1 |f(x)| > 0.

Proof. (i) ⇒ (ii) If f−1(0) = {0}, then by connectedness f has a constant sign (for instance
f > 0) on the unit Euclidian sphere Sn−1 := {x ∈ Rn | ‖x‖ = 1} of dimension (n− 1) if n > 1.
But for any x 6= 0, there is clearly t > 0 such that y := t • x is in Sn−1. Indeed the euclidian
norm of t • x is 0 for t = 0, tends to infinity with t and is a continuous function of t, hence it
must take the value 1 for some finite positive t. Then f(x) = f(t−1 • y) = t−mf(y) > 0, which
proves (ii).

(ii) ⇒ (iv) Suppose, by contradiction, that min‖x‖=1 |f(x)| = 0. Then there exists a point
a ∈ Rn such that ‖a‖ = 1 and f(a) = 0. This implies that f(t • a) = 0 for all t > 0, which
contradicts (ii).

(iv) ⇒ (iii) By contradiction, assume that the set {x ∈ Rn | |f(x)| = ε} is not compact for
some ε ≥ 0. This means that there exists a sequence xp ∈ Rn, p ∈ N, such that ‖xp‖ → ∞ as
p → ∞ and |f(xp)| = ε. Let tp := 1

‖xp‖w → 0. Then the sequence |f(tp • xp)| = tmp ε tends to

zero as p → ∞. From the sequence of points tp • xp lying on the compact set {‖x‖w = 1} one
can choose a subsequence convergent to some a, ‖a‖w = 1. Clearly, f(a) = 0 and a 6= 0, which
contradicts (iv).

(iii) ⇒ (i) If f(a) = 0 for some a 6= 0, then f(t • a) = 0 for all t > 0. Consequently, by letting
t tend to infinity, we obtain that the set {x ∈ Rn | |f(x)| = 0} is not compact, which contradicts
(iii). �

3. The  Lojasiewicz inequality for a quasi-homogeneous map which vanishes only
at the origin

In this section we are interested in the first  Lojasiewicz inequality which relates in general the
size of f(u) and the distance of u to the set f−1(0). However we essentially restrict our study to
the case where this set is reduced to 0.

Proposition 3.1. Let f := (f1, f2, . . . , fk) : Kn → Kk be a continuous quasi homogeneous map
with weight w := (w1, w2, . . . , wn) and quasi-degree d := (d1, d2, . . . , dk). Then the following
statements hold.

(i) There exists a positive constant c1 such that

‖f(x)‖ ≤ c1‖x‖d∗w , as ‖x‖ ≤ 1.

(ii) If f−1(0) = {0}, then there exists a positive constant c2 such that

c2‖x‖d
∗

w ≤ ‖f(x)‖, as ‖x‖ ≤ 1.
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Proof. Consider the family of topological closed spheres

St := {(x1, x2, . . . , xn) ∈ Kn | ‖x‖w = t}.
Then, by Proposition 2.3(i), for each t > 0 we have that St is a compact set. Let x ∈ Kn be such
that x 6= 0 and ‖x‖ ≤ 1. By Proposition 2.3(ii), we have t := 1

‖x‖w ≥ 1. Note that t • x ∈ S1.

(i) Let

c1 := max
i=1,2,...,k

max
y∈S1

|fi(y)|.

We have

c1 ≥ |fi(t • x)| = |tdifi(x)| for i = 1, 2, . . . , k.

It follows that

c1‖x‖diw ≥ |fi(x)| for i = 1, 2, . . . , k.

Consequently,

c1‖x‖d∗w = c1 max
i=1,2,...,k

‖x‖diw ≥ ‖f(x)‖.

which proves (i).
(ii) Let c2 := miny∈S1 ‖f(y)‖ > 0. By definition, we have

c2 ≤ ‖f(t • x)‖ = max
i=1,2,...,k

|tdifi(x)| ≤ max
i=1,2,...,k

|tdi | max
i=1,2,...,k

|fi(x)|

≤ |td
∗
|‖f(x)‖ =

1

‖x‖d∗w
‖f(x)‖,

which proves (ii). The proposition is proved. �

Theorem 3.2. Let f := f0 +f1 + · · ·+f l : Kn → Kk, where f0, f1, . . . , f l are continuous quasi-
homogeneous maps with weight w = (w1, w2, . . . , wn) and quasi-degrees d0, d1, . . . , dl respectively
such that

(d0)∗ < (d1)∗ ≤ (d2)∗ ≤ · · · ≤ (dl)∗.

If the origin is an isolated zero of f0 then there exists a positive constant c such that

c‖x‖(d
0)∗

w ≤ ‖f(x)‖, as ‖x‖ � 1.

Proof. By Proposition 3.1(ii), there exists a positive constant c0 such that

c0‖x‖(d
0)∗

w ≤ ‖f0(x)‖, as ‖x‖ � 1.

On the other hand, from Proposition 3.1(i), there exist positive constants c1, c2, . . . , cl such that
for i = 1, 2, . . . , l,

‖f i(x)‖ ≤ ci‖x‖(d
i)∗

w , as ‖x‖ � 1.

We have for ‖x‖ � 1 the next estimate

‖f1(x) + f2(x) + · · ·+ f l(x)‖ ≤ ‖f1(x)‖+ ‖f2(x)‖+ · · ·+ ‖f l(x)‖

≤ c1‖x‖(d
1)∗

w + c2‖x‖(d
2)∗

w + · · ·+ cl‖x‖(d
l)∗

w .

Thus it follows from (d0)∗ < (d1)∗ ≤ (d2)∗ ≤ · · · ≤ (dl)∗ that

‖f1(x) + f2(x) + · · ·+ f l(x)‖ � ‖x‖(d
0)∗

w , as ‖x‖ � 1.

Therefore, we have for ‖x‖ � 1 the next inequality

‖f(x)‖ ≥ ‖f0(x)‖ − ‖f1(x) + f2(x) + · · ·+ f l(x)‖
≥ c0‖x‖(d

0)∗

w − c′‖x‖(d
0)∗

w (0 < c′ � c0).
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This gives

‖f(x)‖ ≥ (c0 − c′)‖x‖(d
0)∗

w , as ‖x‖ � 1,

which proves the theorem. �

The following is a direct consequence from Proposition 3.1 and Theorem 3.2:

Corollary 3.3. Under the hypothesis of Theorem 3.2, there exists a positive constant c such
that

c‖x‖
(d0)∗
w∗ ≤ ‖f(x)‖, as ‖x‖ � 1.

We define the  Lojasiewicz exponent α0(f) of the map f at the origin 0 ∈ Kn as the infimum
of the set of all real numbers l > 0 which satisfy the condition: there exists a positive constant
c such that

c‖x‖l ≤ ‖f(x)‖, as ‖x‖ � 1.

If the set of all the exponents is empty we put α0(f) := +∞.

Corollary 3.4. Let f := (f1, f2, . . . , fk) : Kn → Kk be a continuous quasi-homogeneous map with
weight w := (w1, w2, . . . , wn) and quasi-degree d := (d1, d2, . . . , dk). Suppose that f−1(0) = {0}.
Then

d∗
w∗
≤ α0(f) ≤ d∗

w∗
.

Proof. It follows from Corollary 3.3 that

α0(f) ≤ d∗

w∗
.

In order to prove the left inequality, let i, j be such that di = d∗ and wj = w∗. Take a ∈ Kn
with the property that ajfi(a) 6= 0. Then, asymptotically as t→ 0, we have1

‖f(t • a)‖ ' td∗ ,

‖t • a‖ ' tw∗ .

Consequently,

‖f(t • a)‖ ' ‖t • a‖
d∗
w∗ .

By the definition of the  Lojasiewicz exponent α0(f), we find that

d∗
w∗
≤ α0(f).

�

Example 3.5. (i) Let f := (f1 := x2 + y4, f2 := (x2 − y4)2) : R2 → R2. It is easy to check
that f is a positive quasi-homogeneous map with weight w := (2, 1) and quasi-degree d := (4, 8).
Moreover, α0(f) = 4 (= d∗

w∗
).

(ii) Let f := (f1 := x2 − y4, f2 := (x2 + y4)2) : R2 → R2. Then f is a positive quasi-
homogeneous map with weight w := (2, 1) and quasi-degree d := (4, 8). Moreover,

α0(f) = 8 (=
d∗

w∗
).

Corollary 3.6. Let f : Kn → K be a continuous quasi-homogeneous function with weight w and
quasi-degree m. If f−1(0) = {0} then

α0(f) =
m

w∗
.

1Where A ' B means that A/B lies between two positive constants.
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Proof. The claim comes from d∗ = d∗ = m. �

4. The  Lojasiewicz gradient inequality for quasi-homogeneous polynomials

We now consider the case k = 1 and let f : Kn → K be a C1 quasi-homogeneous function
with weight w := (w1, w2, . . . , wn) and quasi-degree m :

f(tw1x1, t
w2x2, . . . , t

wnxn) = tmf(x1, x2, . . . , xn).

We define the  Lojasiewicz gradient exponent β0(f) of the map f at the origin 0 ∈ Kn as the
infimum of the set of all real numbers l > 0 which satisfy the condition: there exists a positive
constant c such that

c|f(x)|l ≤ ‖∇f(x)‖ for ‖x‖ � 1.

If the set of all the exponents is empty we put β0(f) := +∞. It is well-known (see [14]) that if
f is analytic, then β0(f) < 1.

We start with a general result valid for C1 functions.

Theorem 4.1. Let f : Kn → K be a C1 quasi-homogeneous function with weight w and quasi-
degree m. Then

max{0, 1− w∗

m
} ≤ β0(f) ≤ 1.

Proof. Since f is a C1-positive quasi-homogeneous function with weight w and quasi-degree
m ≥ w∗,

mtm−1f(x) =

n∑
j=1

wjt
wj−1xj

∂f

∂xj
(t • x).

In particular, we have the generalized Euler identity

mf(x) =

n∑
j=1

wjxj
∂f

∂xj
(x).(4.1)

As a consequence, there exists a positive constant c1 such that

c1|f(x)| ≤ ‖x‖‖∇f(x)‖ for all ‖x‖ � 1.

This implies that β0(f) ≤ 1.
Next, let l > 0 and c2 > 0 be such that

c2|f(x)|l ≤ ‖∇f(x)‖ for all ‖x‖ � 1.(4.2)

We have for all t > 0 the following relation

twj
∂f

∂xj
(t • x) = tm

∂f

∂xj
(x) for j = 1, 2, . . . , n.

This shows that

∂f

∂xj
(t • x) = tm−wj

∂f

∂xj
(x) for j = 1, 2, . . . , n.(4.3)

Then we have for all t > 0 the following equations

f(t • x) = tmf(x),

∂f

∂xj
(t • x) = tm−wj

∂f

∂xj
(x) for j = 1, 2, . . . , n.
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Since f 6≡ 0 there is a ∈ Kn such that 0 6= ∇f2(a) = 2f(a)∇f(a). This implies f(a) 6= 0 and
∇f(a) 6= 0. Then, asymptotically as t→ +0, we have

|f(t • a)| ' tm,

‖∇f(t • a)‖ ' tm−wj for some j ∈ {1, 2, . . . , n},

Therefore (4.2) implies the existence of c3 > 0 such that

c3t
ml ≤ tm−wj ≤ tm−w

∗

as t→ +0. This in turn implies that ml ≥ m− w∗, which is equivalent to

l ≥ 1− w∗

m
.

This, together with the definition of β0(f), implies the desired result. �

In the special case where 0 is the only critical point of f we have a more precise estimation
as follows.

Corollary 4.2. Let f : Kn → K be a C1 quasi-homogeneous function with weight w and quasi-
degree m ≥ w∗. Suppose that ∇f−1(0) = {0}. Then

1− w∗

m
≤ β0(f) ≤ 1− w∗

m
.

Proof. One has only to show that

β0(f) ≤ 1− w∗
m
.

Indeed, by the generalized Euler identity (4.1), there exists a positive constant c1 such that

|f(x)| ≤ c1‖∇f(x)‖‖x‖.

On the other hand, it follows from (4.3) that the following

∇f(x) : Kn → Kn, x 7→
(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

)
,

is a continuous quasi-homogeneous map with weight w and quasi-degree

(m− w1,m− w2, . . . ,m− wn).

Therefore, by Proposition 2.3 and then Proposition 3.1(ii), for all ‖x‖ � 1 we have

|f(x)| ≤ c1‖∇f(x)‖‖x‖w∗
w

≤ c2‖∇f(x)‖‖∇f(x)‖
w∗

m−w∗ = c2‖∇f(x)‖1+ w∗
m−w∗ ,

for some c2 > 0. Hence there exists a positive constant c such that

c|f(x)|1−
w∗
m ≤ ‖∇f(x)‖ for ‖x‖ � 1.

Consequently, by the definition of the  Lojasiewicz gradient exponent β0(f), we obtain

β0(f) ≤ 1− w∗
m
,

which completes the proof. �
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Example 4.3. (i) (see [10]). Let f : C2 → C, (x, y) 7→ x3+3xyk, k ≥ 3, be a complex polynomial.
It is clear that f is a quasi-homogeneous polynomial with weight w = (k, 2) and quasi-degree
m = 3k. A direct computation shows that the origin in C2 is an isolated critical point of f.
Moreover, it follows from the results in [10] and [18] that

α0(∇f) =
3k

2
− 1,

β0(f) =
α0(∇f)

1 + α0(∇f)
= 1− 2

3k
.

(ii) Let f : C2 → C, (x, y) 7→ x4 − 4xy, be a complex polynomial. It is clear that f is a quasi-
homogeneous polynomial with weight w = (1, 3) and quasi-degree m = 4. A direct computation
shows that the origin in C2 is an isolated critical point of f. Moreover, it follows from the results
in [10] and [18] that

α0(∇f) = 1,

β0(f) =
α0(∇f)

1 + α0(∇f)
=

1

2
.

Remark 4.4. Let f : Cn → C be a complex polynomial function with an isolated singularity at
0. Then from the works of Teissier [18, Corollary 2] we have the following equation

β0(f) =
α0(∇f)

1 + α0(∇f)
.

Moreover, Gwoździewicz has remarked, [6], that the above relation fails to hold for some real
polynomial functions with an isolated singularity at 0. However, we have the following.

Corollary 4.5. (see also [6, Theorem 1.3]) Let f : Rn → R be a quasi-homogeneous polynomial
function with weight w and quasi-degree m ≥ w∗. If f−1(0) = {0}, then

α0(f) =
m

w∗
,

α0(∇f) = α0(f)− 1 =
m

w∗
− 1,

β0(f) =
α0(∇f)

1 + α0(∇f)
= 1− w∗

m
.

Proof. In fact, by Corollary 3.6, we have

α0(f) =
m

w∗
.

Then the remained relations follow from [6, Theorem 1.3]. We will give below a direct proof in
order to keep our paper self-contained.

We first note that the origin is an isolated critical point of f. Indeed, if ∇f(a) = 0 for some
a 6= 0, then it follows easily from the generalized Euler identity (4.1) that f(a) = 0, which is a
contradiction.

Without loss of generality, we may suppose that f(x) ≥ 0 for all x ∈ Rn with equality if and
only if x = 0. For each δ > 0, the restriction of f to the sphere {x ∈ Rn | ‖x‖E = δ} attains its

minimum at least one point, where ‖x‖E :=
√∑n

i=1 x
2
i . Let

Γ := {u ∈ Rn | f(u) = min
‖x‖E=‖u‖E

f(x)}.

It follows from the Tarski-Seidenberg theorem (see, for example, [3, Theorem 2.3.4]), that Γ is
semi-algebraic. Hence the Curve Selection Lemma [15] is applicable. Together with Lagrange’s
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Multipliers Theorem, this implies that there exists an analytic map

(λ, ϕ) : (−ε, ε)→ R× Rn, τ 7→ (λ(τ), ϕ(τ)),

such that

(i) ϕ(τ) = 0 if and only if τ = 0;
(ii) ϕ(τ) ∈ Γ for all τ ∈ [0, ε); and
(iii) ∇f(ϕ(τ)) = λ(τ)ϕ(τ) for all τ ∈ [0, ε).

Let atp, a > 0, be the leading term of the Taylor expansion of ‖ϕ(τ)‖2, and btq, b 6= 0, be that
of |f(ϕ(τ))|2. Then, asymptotically as t→ 0, we have

|f(ϕ(τ))| ' ‖ϕ(τ)‖
q
p .

Consequently, by the definition of α0(f), we get

α0(f) ≥ q

p
.

On the other hand, we may assume (taking ε > 0 small enough if necessary) that the func-
tion τ 7→ ‖ϕ(τ)‖ is strictly increasing. Together with the condition (i), we find that for each
x ∈ Rn, ‖x‖ � 1, there exists a positive number τ ∈ [0, ε) satisfying the relation ‖ϕ(τ)‖E = ‖x‖E .
Hence,

|f(x)| = f(x) ≥ min
‖u‖E=‖x‖E

f(u) = f(ϕ(τ)) ' ‖ϕ(τ)‖
q
p = ‖x‖

q
p .

By the definition, thus

α0(f) ≤ q

p
.

Therefore,

α0(f) =
q

p
.

Moreover, it follows from the generalized Euler identity (4.1) that

mf(ϕ(τ)) =

n∑
j=1

wjϕj(τ)
∂f

∂xj
(ϕ(τ)).

By the condition (iv), hence

|mf(ϕ(τ))| = |λ(τ)|
n∑
j=1

wj [ϕj(τ)]2

=
‖∇f(ϕ(τ))‖
‖ϕ(τ)‖

n∑
j=1

wj [ϕj(τ)]2

' ‖ϕ(τ)‖‖∇f(ϕ(τ))‖.
In particular, we get

‖∇f(ϕ(τ))‖ ' ‖ϕ(τ)‖
q
p−1 ' |f(ϕ(τ))|1−

p
q .

By definitions, hence

α0(∇f) ≥ q

p
− 1 = α0(f)− 1 =

m

w∗
− 1,

β0(f) ≥ 1− p

q
= 1− 1

α0(f)
= 1− w∗

m
.

Then the corollary follows immediately from Corollaries 3.4 and 4.2. �
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The following result is of general interest but we shall only use it to prove Theorem 4.7 below.

Lemma 4.6. Let f : Kn → K be a C1-function. For each k positive integer, consider the function

f̃ : Kn → K, x 7→ [f(x)]k. Suppose that there exist c > 0 and θ ∈ (0, 1] such that

c|f̃(x)|1−θ ≤ ‖∇f̃(x)‖ for ‖x‖ � 1.

Then
c

k
|f(x)|1−kθ ≤ ‖∇f(x)‖ for ‖x‖ � 1.

Proof. We have

∇f̃(x) = k[f(x)]k−1∇f(x).

Hence
c|[f(x)]k|1−θ ≤ k|[f(x)]k−1|‖∇f(x)‖.

This implies
c

k
|f(x)|1−kθ ≤ ‖∇f(x)‖,

concluding the proof of the lemma. �

The following is a generalization of [7, Theorem 2.1].

Theorem 4.7. Let f : R2 → R be a quasi-homogeneous polynomial function with weight
w := (w1, w2) and quasi-degree m. Then there exists a positive constant c such that

(4.4) c|f(x, y)|1−
w∗
m ≤ ‖∇f(x, y)‖, as ‖(x, y)‖ � 1.

Proof. Without loss of generality, we may suppose that

1 ≤ w∗ = w1 ≤ w2.

There are two cases to be considered.

Case 1. m is divisible by w1; i.e., q := m
w1

is a positive integer number.

Consider the following function

g(x, y) := f(x, y
w2
w1 ).

Then, by Proposition 2.1, we can see that g is a homogeneous polynomial on R× R+ of degree
q = m

w1
. Indeed we can write for some finite set S ⊂ N× N :

f(x, y) =
∑

α:=(α1,α2)∈S

aαx
α1yα2

with
w1α1 + w2α2 = m = qw1.

Hence
α2 = (q − α1)

w1

w2
;

and therefore
f(x, y) =

∑
α∈S

aαx
α1y(q−α1)

w1
w2

which provides

g(x, y) =
∑
α∈S

aαx
α1yq−α1 .

It now follows from [7, Theorem 2.1] that there exists a positive constant c such that

c|g(x, y)|1−
w1
m ≤ ‖∇g(x, y)‖, as ‖(x, y)‖ � 1 and y ≥ 0.
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On the other hand, by the definition

∂g

∂x
(x, y) =

∂f

∂x
(x, y

w2
w1 ),

∂g

∂y
(x, y) =

w2

w1
y

w2
w1
−1 ∂f

∂y
(x, y

w2
w1 ).

Therefore, asymptotically as (x, y)→ (0, 0) and y ≥ 0,

c|f(x, y
w2
w1 )|1−

w1
m ≤

∥∥∥∥(∂f∂x (x, y
w2
w1 ),

w2

w1
y

w2
w1
−1 ∂f

∂y
(x, y

w2
w1 )

)∥∥∥∥ .
≤

∥∥∥∥(∂f∂x (x, y
w2
w1 ),

∂f

∂y
(x, y

w2
w1 )

)∥∥∥∥ ,
because w2 ≥ w1.

Let u := y
w2
w1 ≥ 0. Then

c|f(x, u)|1−
w1
m ≤

∥∥∥∥(∂f∂x (x, u),
∂f

∂y
(x, u)

)∥∥∥∥ .
By an entirely analogous argument but replacing g(x, y) = f(x, y

w2
w1 ) by f(x,−y

w2
w1 ) we can show

that the above inequality also holds for all u ≤ 0. These prove the theorem in Case 1.

Case 2. m is not divisible by w1.

Let f̃(x, y) := [f(x, y)]w1 . Then it is clear that f̃(x, y) is a positive quasi-homogeneous poly-
nomial with weight (w1, w2) and quasi-degree m̃ := mw1. Since m̃

w1
= m is an integer number,

by applying Case 1 for the polynomial f̃ we get

c̃|f̃(x, y)|1−
w1
m̃ ≤ ‖∇f̃(x, y)‖, as ‖(x, y)‖ � 1,

for some c̃ > 0.
By Lemma 4.6, we get

c̃

w1
|f(x, y)|1−

w1
m ≤ ‖∇f(x, y)‖,

which completes the proof of the theorem. �

Remark 4.8. As we see in the next proposition, the result of Theorem 4.7 is no longer valid in
dimensions n > 2.

Proposition 4.9. (Compare with [7, Remark 2.4]) Let f : R3 → R be given by

f(x, y, z) := x4 + x2z2 − 2xy2z + y4 = x4 + (xz − y2)2.

Then there exists a curve ϕ : [0, ε)→ Rn, t 7→ ϕ(t), such that

‖∇f [ϕ(t)]‖ � |f [ϕ(t)]|1− 1
4 for 0 < t� 1.

In particular, β0(f) > 1− w∗
m = 1− 1

4 .

Proof. It is clear that f is a weighted quasi-homogeneous polynomial with weight w = (1, 1, 1)
and quasi-degree m = 4. Moreover, f has non-isolated zero at the origin; namely,

f−1(0) = {(0, 0, t) | t ∈ R}.
Define the polynomial curve ϕ : [0, ε)→ R3, t 7→ (x(t), y(t), z(t)), by

x(t) := t2,
y(t) := t+ t5,
z(t) := 1.
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One easily verifies that

f [ϕ(t)] = t8 + 4t12 + 4t16 + t20,

∂f

∂x
[ϕ(t)] = −2t10,

∂f

∂y
[ϕ(t)] = 8t7 + 12t11 + 4t15,

∂f

∂z
[ϕ(t)] = −4t8 − 2t12.

Hence, asymptotically as t→ 0,

‖∇f [ϕ(t)]‖ ' t7 � t6 ' |f [ϕ(t)]|1− 1
4 .

This completes the proof. �

Remark 4.10. The polynomial x4 + x2z2 − 2xy2z + y4 in the above proposition is a homog-
enization of x4 + (x − y2)2 by the new variable z. The last one is a polynomial in the class of
polynomials which was considered by János Kollár ([8]).

The following is a direct consequence of Theorem 4.1 and Theorem 4.7.

Corollary 4.11. Let f : R2 → R be a quasi-homogeneous polynomial function with weight
w := (w1, w2) and quasi-degree m. Then

max{0, 1− w∗

m
} ≤ β0(f) ≤ 1− w∗

m
.

5. Additional results, remarks and examples in dimension 2

In this section we will denote by f : R2 → R a quasi-homogeneous polynomial with weight
w = (w1, w2) and quasi-degree m such that

w∗ = w1 ≤ w2 = w∗ ≤ m.
We now apply Corollary 4.11 in special cases.

Corollary 5.1. If the origin is an isolated zero of fy then

β0(f) = 1− w2

m
.

Proof. It is well known that fy is quasi-homogeneous polynomial with weight w = (w1, w2) and
quasi-degree m − w2. Since f−1

y (0) = {0}, it follows from Proposition 2.5 that the polynomial
fy has a strict global extremum at the origin. Thus we can assume that fy > 0 on Rn−{0}. By
again Proposition 2.5, the set {fy = 1} is nonempty compact. Hence

∞ > c := max
fy(u,v)=1

|f(u, v)| > 0.

Take any (x, y) ∈ R2. Let ε := [fy(x, y)]
1

m−w2 . Then {(u, v) ∈ R2 | fy(u, v) = εm−w2} is a
non-empty compact set. Moreover,

|f(x, y)| ≤ max
fy(u,v)=εm−w2

|f(u, v)| = max
fy(ε−w1u,ε−w2v)=1

|f(u, v)|

= max
fy(ũ,ṽ)=1

|f(εw1 ũ, εw2 ṽ)|

= max
fy(ũ,ṽ)=1

|f(ũ, ṽ)|εm

= c[fy(x, y)]
m

m−w2 .
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This gives

fy(x, y) ≥ c′|f(x, y)|1−
w2
m ,

here c′ := c1−
w2
m > 0. Therefore

‖∇f(x, y)‖ ≥ |fy(x, y)| ≥ c′|f(x, y)|1−
w2
m .

By the definition of β0(f), we get

β0(f) ≤ 1− w2

m
.

Then, by Corollary 4.11, β0(f) = 1− w2

m . �

Example 5.2. Let f : R2 → R, (x, y) 7→ y3 + 3x4y + 2x6 be a real polynomial. It is clear that
f is a quasi-homogeneous polynomial with weight w = (1, 2) and quasi-degree m = 6. A direct
computation shows that f−1

y (0) = {(0, 0)}. Hence β0(f) = 1− 2
6 = 2

3 .

Corollary 5.3. Suppose that the origin is not an isolated zero of fy. If there exists (a, b) ∈ R2

such that f(a, b) 6= 0, fx(a, b) 6= 0 and fy(a, b) = 0, then

β0(f) = 1− w1

m
.

Proof. By the hypothesis, we have for all t > 0

f(tw1a, tw2b) ' tm,

fx(tw1a, tw2b) ' tm−w1 ,

fy(tw1a, tw2b) ≡ 0.

Asymptotically as t→ 0, hence

|f(tw1a, tw2b)| ' tm,

‖∇f(tw1a, tw2b)‖ ' tm−w1 .

This implies that

‖∇f(tw1a, tw2b)‖ ' |f(tw1a, tw2b)|1−
w1
m .

Then, by the definition of β0(f),

β0(f) ≥ 1− w1

m
.

On the other hand, by Corollary 4.11, β0(f) ≤ 1− w1

m . Therefore β0(f) = 1− w1

m . �

Example 5.4. Let f : R2 → R, (x, y) 7→ x2y − y2 be a real polynomial. It is clear that f
is a quasi-homogeneous polynomial with weight w = (1, 2) and quasi-degree m = 4. A direct
computation shows that f−1

y (0) = {x2 − 2y = 0} and the origin in R2 is an isolated critical
point of f. Moreover, it is easy to see that the conditions of Corollary 5.3 are satisfied. Hence,
β0(f) = 1− 1

4 = 3
4 .

Remark 5.5. (i) All results in this paper allow to compute the  Lojasiewicz exponents for some
functions which are not quasi-homogeneous, for instance, the function f(x) := P (Ax), where P
is a quasi-homogeneous polynomial of two variables and A a nonsingular 2×2 square matrix. As
an example the polynomial P (x, y) := ax4 + by2 + cx2y is quasi-homogeneous with weight (1, 2)
and quasi-degree 4. The polynomial Q(x, y) = P (x, x+ y) is not quasi-homogeneous if bc 6= 0.

(ii) On the other hand, there are of course polynomials of two variables which cannot be put in
the form = P (Ax) with, P,A as above. For instance the polynomial Q(x, y) := x2(1 + y) is such
that no polynomial P = Q ◦A with A a nonsingular 2× 2 square matrix is quasi-homogeneous.
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