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                        Preface by proceedings editors 

 

This% 12
th
% edition% of% the% Workshop% on% Real% and% Complex%

Singularities% was% organized% by% both% the% Brazilian% group% of%

singularities%and%the%Japanese%researchers%community,%and%had%

the% great% pleasure% to% celebrate% the% 60
th
% birthday% of% Professor%

Shyuichi%Izumiya%from%Hokkaido%University,%Sapporo,%Japan.%%

For%the%first%time,%the%workshop%was%held%in%two%weeks,%where%

in%the%first%week%(July%16—20,%2012)%elementary%and%basic%miniO

courses%were%delivered%for%PhD%students,%postOdocs%and%young%

researchers,% by% Lê% D.% Tráng,% David% Mond,% Nicolas% Dutertre,%

Hans%Schönemann%and%Valery%Romanovsky.%In%the%second%week%

(July%23—27,%2012),%in%addition%to%the%plenary%and%parallel%talks%

on% specialized% topics,% two% miniOcourses% on% current% topics% of%

researches% were% also% delivered% by% Toru% Ohmoto% and% Anne%

Pichon.%

We% thank% all% members% of% the% scientific% and% organizing%

committees%for%their%contributions%and%help%for%building%fruitful%

and%high%level%school%and%workshop%during%the%two%weeks.%

We%especially%thank%the%Fapesp%agency,%Capes,% INCTOMat,%USP%

(Brazil)% and% JSPS% (Japan)% for% their% fundamental% financial%

support.%Without% their% help% it%would%have%been% impossible% to%

develop%these%important%scientific%meetings.%%%

Also,%we%would% like% to% thank%all%administrative% staffs%of% ICMCO

USP%for%their%important%and%fundamental%technical%supports.%%

O.% Saeki,% V.H.% Jorge% Pérez,% T.% Nishimura% and% R.% Araújo% dos%

Santos%%

 
 



 
Preface by Goo Ishikawa 

 
 
Professor%Shyuichi%Izumiya%is%our%leader,%collaborator,%colleague%

and% our% friend.% He% has% written% over% 100% papers% and% enjoyed%

over% 460% citations% by% 142% authors% (up% to% 21% July% 2012).% He%

supervised%lots%of%graduate%students%(Doctors%and%Masters)%and%

undergraduate%students%as%well.%

%

Shyuichi% Izumiya% was% born% on% 7
th
% July% 1952% at% Sapporo% city,%

Hokkaido%prefecture,% Japan.% % 7
th
% July% is% the%day%of% “Tanabata”%

(the% star% festival).% He% lived% in% Takikawa% city,% in% Hokkaido,% and%

studied% at% Nishi% Elementary% School% in% Takikawa% until% the%

autumn%of%his%6
th
%grade%year.%Then%he%moved%back%to%Sapporo%

and% graduated% at% Misono% Elementary% School% in% Sapporo% city,%

Ryoyo% Junior% High% School% and% Asahigaoka% High% School% also% in%

Sapporo.%

%

From%1971%to%1975,%he%studied%in%Department%of%Mathematics,%

Faculty% of% Science,% Hokkaido% University,% and% he%was% awarded%

the% degree% of% BSc% in% Mathematics.% From% 1976% to% 1978,% he%

studied% and% got% the% degree% of% MSc% in% Mathematics% in%

Department% of% Mathematics,% Faculty% of% Science,% Hokkaido%

University,% for% the% thesis% entitled% “Homotopy% classification% of%

regular% sections% which% are% equivariant% with% respect% to% finite%

group% actions”,% which% was% a% work% supervised% by% Professor%

Haruo% Suzuki.% Then% from% 1978% to% 1984,% he% studied% in%

Department% of% Mathematics,% Faculty% of% Science,% Hokkaido%

University,% where% he% was% awarded% the% degree% of% DSc% in%

Mathematics% for% the% thesis% entitled% “Generic% bifurcation% of%

varieties”,%supervised%by%Professor%Haruo%Suzuki.%

%

As% for% the% research% and% professional% experience% of% Shyuichi%

Izumiya,% he% was% an% assistant% professor% at% the% Department% of%

Mathematics,% Faculty% of% Science,% Nara% Women’s% University,%



from%1978% to%1985.% % From%1985% to%1987,%he%was%a% lecturer%at%

the%Department%of%Mathematics,% Faculty%of%Science,%Hokkaido%

University,% where% from% 1987% to% 1995,% he% was% an% associate%

professor%and%after%1995%he%became%a%professor.%Currently,%he%

is%a%professor%at%Research%Center%for% Integrative%Mathematics,%

Hokkaido%University.%%

%

A%partial%list%of%academic%activities%follows:%

%

1990.9%Visiting%fellow%at%the%Chinese%Academy%of%Science.%

1991.4–1992.2% Visiting% fellow% at% the% Department% of% Pure%

Mathematics,%Liverpool%University,%UK.%

1993.2% Visiting% fellow% at% the% center% for% nonOlinear% analysis,%

Carnegie%Mellon%University,%USA.%

1995.4–5% Visiting% fellow% at% the% Banach% International%

Mathematical%Center,%Warsaw,%Poland.%

1996.8%Visiting%fellow%at%the%Department%of%Pure%Mathematics,%

Liverpool%University,%UK.%

2000.9–12% Researcher% at% Isaac% Newton% Institute% for%

Mathematical%Sciences,%University%of%Cambridge,%UK.%

2010.3% Honorary% professor% at% Northeast% Normal% University,%

China.%

%

A% partial% list% of% Shyuichi’s% students% supervised% during% the%

master%degree:%

%

Asayama,% Mikuri% /% Ashino,% Takashi% /% Chino,% Sachiko% /% Fusho,%

Takesi% /% Hayashi,% Ryota% /% Ichiwara,% Hisatoshi% /% Ito,% Hiroki% /%

Kikuchi,%Makoto%/%Kanazawa,%Sunao%/%Kogo,%Yasuko%/%Kurokawa,%

Hitoshi% /% Kurokawa,% Yasuhiro% /% Maruyama,% Kunihide% /%

(Matsuoka,% Sachiko)% /% (Minami,% Tatsuya)% /% Miyawaki% Norio% /%

Murata% Yusuke% /% Nagai,% Takayuki% /% (Nakai,% Hitoshi)% /% Ohtani,%

Saki% /% Sano,% Takashi% /% Sato,% Takami% /% Takahashi,%Masatomo% /%

Takiyama,% Akihiro% /% Tamaoki,% Aiko% /% Torii,% Erika% /% (Watanabe,%

Kazuo)%/%(Yamamoto,%Takahiro)%/%(with%a%lot%of%omission).%



%

OOO%Mother’s%teaching%OOO%

%

Shyuichi% remembers% that% his% mother% said% to% him% in% his%

Childhood:%“Be%gentle%to%girls%!”%Following%her%saying,%Shyuichi%

keeps% to% support% women’s% activities% and% women%

mathematicians.%He%is%proud%of%that.%

%

Shyuichi% supervised% the% following% students% during% the% PhD%

degree:%

%

Yasuhiro%Kurokawa%/%Takashi%Sano%/%WeiOZhi%Sun%/%Donghe%Pei%/%

Nobuko%Takeuchi%/%Takaharu%Tsukada%/%Masatomo%Takahashi%/%

Liang%Chen%/%Masaki%Kasedou%/%Takayuki%Nagai%/%Yang%Jiang%

%

Shyuichi's%mathematical%works%cover%the%following%three%major%

areas:%

%

—%Basic%Singularity%Theory%

—%Applications%to%Differential%Equations%

—%Applications%to%Differential%Geometry%

%

Shyuichi% started% his% mathematical% carrier% by% Equivariant%

Topology% and% Singularity% Theory,% and% then% he% studied% on%

generic%bifurcation%of%varieties%and%global%theory,%characteristic%

classes% and% obstructions.% Shyuichi% says% that% the%motivation% to%

study%new% topics%was% just% to%provide%problems% for%his%Master%

Students.%Then%always,%he%completes%the%jointOwork%by%writing%

joint%papers.%

%

Then% Shyuichi% showed% that% stability% in% the% tangent% sense% for%

mappings% between% foliated% manifolds,% implies% infinitesimal%

stability% in% the% tangent% sense,% (the% converse% of% L.% A.% Favaro’s%

theorem).%After%that,%Shyuichi%began%to%make%good%connections%

with%São%Carlos’s%singularity%group%in%São%Paulo,%Brazil.%



%

In%the%paper%with%Sachiko%Matsuoka,%Shyuichi%studied%functions%

on% varieties% from% the% viewpoint% of% ThomOMather’s% theory.%He%

continued% to% study% on% topology% of% Legendre% singularities,%

Legendrian% unfoldings% and% differential% equations,% and% how% to%

define% singular% solutions,% Complete% integrability% and% ClairautO

type%equations%and%Geometric%singularities%of%weak%solutions%of%

PDE.%

%

In% the% paper% with% Georgios% T.% Kossioris,% Shyuichi% classified%

generic% bifurcations% of% singularities% of% viscosity% solutions% to%

HamiltonOJacobi% equations% (shock% waves).% In% particular,% he%

discovered% the% phenomena% that% viscosity% solutions% are% not%

necessarily% covered% by% characteristic% curves% starting% from% the%

initial%fronts.%The%discovery%gave%shocks%to%specialists%of%PDE%for%

several%years.%

%

Then% Shyuichi% started% to% apply% singularity% theory% to%affine%

differential% geometry.% Frederic% Gauss% used% “Gauss%maps”% and%

height% functions% for% his% famous% surface% theory.% Then% René%

Thom% suggested% Ian% Porteous% to% apply% singularity% theory% to%

submanifold% theory% in% Euclidean% geometry:% I.R.% Porteous,% The%

normal% singularities% of% a% submanifold,% J.%Diff.%Geom.% 5% (1971),%

543–564.%Moreover,%by%applying%Arnol’dOZakalyukin’s%Lagrange%

and%Legendre%singularity%theory%and%its%improvements%to%those%

situations,% Shyuichi% has% found% that% geometric% meanings% of%

singularities% of% families% of% functions% become% clearer.% Then%

Shyuichi%began%to%develop%ThomOPorteous’s%idea%by%applying%to%

affine% geometry,% hyperbolic% geometry,% Minkowski% geometry%

and%so%on.%%

%

In% the% joint% paper% with% Takashi% Sano,% Shyuichi% has% found% the%

relation% of% affine% curvature,% sextactic% points% etc.% with%

singularities% of% affineOcubed% functions% or% affine% height%

functions.%Then%Shyuichi%had%many%works%on%timeOlike%surfaces%



in%Minkowski%space,%lightOcone%Gauss%maps,%special%curves%and%

special%surfaces,%hyperbolic%Gauss%maps,%and%so%on.%%

%

After% the% investigation% in% those% paper,% Shyuichi% discovered% a%

new% geometry,% horospherical% geometry,% in% the% hyperbolic%

space.%In%horospherical%geometry,%horospheres%are%regarded%as%

the% totally% umbilic% flat% surfaces.% Moreover,% Shyuichi% wrote% a%

joint%paper%with%S.%Janeczko%on%gravitational%lensing.%

%

Shyuichi's% coOauthors% are:% Asayama,%Mikuri% /% Buosi,%Marcelo% /%

Chen,%Liang%/%Chino,%Sachiko%/%Davydov,%Aleksey%/%Fusho,%Takesi%

/% Hayakawa,% Atsushi% /% Honda,% Atsufumi% /% Ishikawa,% Goo% /%

Janeczko,% Stanisław% /% Jiang,% Yang% /% Katsumi,%Haruyo% /% Kikuchi,%

Makoto% /% Kogo,% Yasuko% /% Kossioris,% Georgios% T.% /% Kossowski,%

Marek%/%Kurokawa,%Yasuhiro%/%Li,%Bing%/%Makrakis,%George%N.%/%

Marar,% Washington% Luiz% /% Maruyama,% Kunihide% /% Nagai,%

Takayuki%/%Nishimori,%Toshiyuki%/%Nuño%Ballesteros,%Juan%José%/%

Pei,%Dong%He%/%Romero%Fuster,%Maria%del%Carmen%/%Ruas,%Maria%

Aparecida%Soares%/%Saito,%Sachiko%/%Saji,%Kentaro%/%Sano,%Takashi%

/% Sato,% Takami% /% Sun,% Wei% Zhi% /% Takahashi,% Masatomo% /%

Takeuchi,% Nobuko% /% Takiyama,% Akihiro% /% Tamaoki,% Aiko% /% Tari,%

Farid% /% Torii,% Erika% /% Watanabe,% Kazuo% /% Yamaguchi,% Keizo% /%

Yamasaki,%Takako%/%Yıldırım,%Handan%/%Yu,%Jian%Ming%/%(over%43%

mathematicians).%

%

Shyuichi%has%projects%(ongoing%and%in%near%future):%

%

(1)%To%construct%lightlike%geometry%in%LorentzOMinkowski%space%

(with%several%people).%To%study%on%tightness%which%depends%on%

causality.%

%

(2)%To%obtain%mathematical%interpretations%and%generalisations%

of% RandallOSundrum%model% and% KarchORandall%model% in% brane%

world%scenario%by%applied%singularity%theory.%

%



(3)%Recurrence%to%applications%of%singularity%theory%to%nonlinear%

partial%differential%equations.%

%

Shyuichi%Izumiya%wrote%the%following%books:%

%

OOOMatrices% and% Systems% of% Linear% Equations% (Japanese,% with%

Rentaro% Agemi,% Goo% Ishikawa,% Atsuro% Sannami,% Ungou% Chin,%

Toshiyuku%Nishimori),%Kyoritsu%Shuppan%Co.,%Ltd.%(1996).%

%

OOOLinear% Mappings% and% Eigen% Values% (Japanese,% with% Goo%

Ishikawa,% Rentaro% Agemi,% Atsuro% Sannami,% Ungou% Chin,%

Toshiyuku%Nishimori)%Kyoritsu%Shuppan%Co.,%Ltd.%(1996).%

%

OOOApplied% Singularity% Theory% (Japanese,% with% Goo% Ishikawa),%

Kyoritsu%Shuppan%Co.,%Ltd.%(1998).%

%

OOOGeometry% and% Singularities% (Japanese,% with% Takashi% Sano,%

Osamu% Saeki,% Kazuhiro% Sakuma),% Kyoritsu% Shuppan% Co.,% Ltd.%

(2001).%

%

Mathematics% on% Shapes% Understandable% by% Cutting,% Looking%

and% Touching% (Japanese,% with% Nobuko% Takeuchi),% JUSE% Press.%

Ltd.%(2005).%

%

OOOElementary%Linear%Algebra%(Japanese),%Kyoritsu%Shuppan%Co.,%

Ltd.%(2008).%

%

OOOCoordinates% Geometry—An% Introduction% to% Analytic%

Geometry% (Japanese,% with% Nobuko% Takeuchi,% Mitsutaka%

Murayama),%JUSE%Press.%Ltd%(2008).%

%

OOOExercises% of% Coordinates% Geometry% (Japanese,% Nobuko%

Takeuchi,%Mitsutaka%Murayama),%JUSE%Press.%Ltd%(2008).%

%

Moreover,% Shyuichi% is% now% preparing% a% book% on% singularity%



theory% and% applications,% with% Maria% Aparecida% Soares% Ruas,%

Maria%Carmen%Romero%Fuster%and%Farid%Tari.%

%

Shyuichi% is% an% editor% of% several% Journals% and% contributes% as%

referees%of%lots%of%papers.%

%

Shyuichi%has%sent%me%a%message%on%his%dream%(future%plan):%

%%%

— Shyuichi’s%Dream%—%

%

“I% (Shyuichi)% am% observing% the% restoration% of% submanifold%

theory%in%physics%by%recent%movements%in%brane%cosmology%and%

particle%physics.% I% suppose%that,%also% in%mathematics,% it% should%

be% the% time% to% reconstruct% the% extrinsic% geometry.% The%

approach%by%singularity%theory%should%be%most%appropriate%for%

that.% Through% my% recent% investigations% along% this% direction,% I%

feel%that%several%analogies%to%Gauss’%idea%of%extrinsic%geometry%

have% appeared% in% theoretical% physics,% like% AdS/CFT%

correspondence,% covariant% entropy% bound,% the% holographic%

principle% etc..% Then% I% hope% to% clarify,% mathematically,% such%

correspondences%between%extrinsic%geometry%and%physics.%It% is%

my%present%dream.%

%

I%would% be% happy% if% I% could% continue% to% extend% the% areas% and%

viewpoints% of% my% investigations% by% the% communications% with%

worldwide%mathematicians.”%

%

The%60th%birthday%is%called%“Kanreki”%in%Japan.%“Kanreki”%means%

a%“cycle%of%calendar”.%It%is%regarded%that%one%will%be%reOborn%at%

his/her% 60th% birthday.% % Shyuichi,% please% keep,% even% after%

Kanreki,% being% attractive,% friendly,% young,% active,% gentle% and%

mad%on%Mathematics%!%

%

Happy%Birthday%to%Shyuichi%!%Thank%you.%Obrigado.%%

Goo%Ishikawa%
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GEOMETRY AND SINGULARITIES OF THE PRONY MAPPING

DMITRY BATENKOV AND YOSEF YOMDIN

Abstract. The Prony mapping provides the global solution of the Prony system of equations

Σni=1Aix
k
i = mk, k = 0, 1, . . . , 2n− 1.

This system appears in numerous theoretical and applied problems arising in Signal Re-
construction. The simplest example is the problem of reconstruction of linear combina-
tion of δ-functions of the form g(x) =

∑n
i=1

aiδ(x − xi), with the unknown parameters
ai, xi, i = 1, . . . , n, from the “moment measurements” mk =

´
xkg(x)dx.

The global solution of the Prony system, i.e., the inversion of the Prony mapping, encoun-
ters several types of singularities. One of the most important ones is a collision of some of
the points xi. The investigation of this type of singularities has been started in [21] where the
role of finite differences was demonstrated.

In the present paper we study this and other types of singularities of the Prony mapping,
and describe its global geometry. We show, in particular, close connections of the Prony
mapping with the “Vieta mapping” expressing the coefficients of a polynomial through its
roots, and with hyperbolic polynomials and “Vandermonde mapping” studied by V. Arnold.

1. Introduction

Prony system appears as we try to solve a very simple “algebraic signal reconstruction” prob-
lem of the following form: assume that the signal F (x) is known to be a linear combination of
shifted δ-functions:

F (x) =
d∑
j=1

ajδ (x− xj) . (1.1)

We shall use as measurements the polynomial moments:

mk = mk (F ) =

ˆ
xkF (x) dx. (1.2)

After substituting F into the integral defining mk we get

mk(F ) =

ˆ
xk

d∑
j=1

ajδ(x− xj) dx =
d∑
j=1

ajx
k
j .

Considering aj and xj as unknowns, we obtain equations

mk (F ) =
d∑
j=1

ajx
k
j , k = 0, 1, . . . . (1.3)
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This infinite set of equations (or its part, for k = 0, 1, . . . , 2d− 1), is called Prony system. It can
be traced at least to R. de Prony (1795, [19]) and it is used in a wide variety of theoretical and
applied fields. See [2] for an extensive bibligoraphy on the Prony method.

In writing Prony system (1.3) we have assumed that all the nodes x1, . . . , xd are pairwise
different. However, as the left-hand side µ = (m0, . . . ,m2d−1) of (1.3) is provided by the actual
measurements of the signal F , we cannot guarantee a priori, that this condition is satisfied for
the solution. Moreover, we shall see below that multiple nodes may naturally appear in the
solution process. In order to incorporate possible collisions of the nodes, we consider “confluent
Prony systems”.

Assume that the signal F (x) is a linear combination of shifted δ-functions and their derivatives:

F (x) =
s∑
j=1

dj−1∑
`=0

aj,`δ
(`) (x− xj) . (1.4)

Definition 1.1. For F (x) as above, the vector D (F )
def
= (d1, . . . , ds) is the multiplicity vector

of F , s = s (F ) is the size of its support, T (F )
def
= (x1, . . . , xs), and rank (F )

def
=
∑s
j=1 dj is its

rank. For avoiding ambiguity in these definitions, it is always understood that aj,dj−1 6= 0 for
all j = 1, . . . , s (i.e. dj is the maximal index for which aj,dj−1 6= 0).

For the moments mk = mk(F ) =
´
xkF (x) dx we now get

mk =
s∑
j=1

dj−1∑
`=0

aj,`
k!

(k − `)!
xk−`j .

Considering xi and aj,` as unknowns, we obtain a system of equations

s∑
j=1

dj−1∑
`=0

k!

(k − `)!
aj,`x

k−`
j = mk, k = 0, 1, . . . , 2d− 1, (1.5)

which is called a confluent Prony system of order d with the multiplicity vector D = (d1, . . . , ds).
The original Prony system (1.3) is a special case of the confluent one, with D being the vector
(1, . . . , 1) of length d.

The system (1.5) arises also in the problem of reconstructing a planar polygon P (or even an
arbitrary semi-analytic quadrature domain) from its moments

mk(χP ) =

¨
R2

zkχP dx d y, z = x+ ıy,

where χP is the characteristic function of the domain P ⊂ R2. This problem is important in
many areas of science and engineering [11]. The above yields the confluent Prony system

mk =
s∑
j=1

dj−1∑
i=0

ci,jk(k − 1) · · · (k − i+ 1)zk−ij , ci,j ∈ C, zj ∈ C \ {0} .

Definition 1.2. For a given multiplicity vector D = (d1, . . . , ds), its order is
∑s
j=1 dj .

As we shall see below, if we start with the measurements µ(F ) = µ = (m0, . . . ,m2d−1), then
a natural setting of the problem of solving the Prony system is the following:

Problem 1.3 (Prony problem of order d). Given the measurements

µ = (m0, . . . ,m2d−1) ∈ C2d
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in the right hand side of (1.5), find the multiplicity vector D = (d1, . . . , ds) of order

r =
s∑
j=1

dj ≤ d,

and find the unknowns xj and aj,`, which solve the corresponding confluent Prony system (1.5)
with the multiplicity vector D (hence, with solution of rank r).

It is extremely important in practice to have a stable method of inversion. Many research
efforts are devoted to this task (see e.g. [3, 7, 10, 17, 18, 20] and references therein). A basic
question here is the following.

Problem 1.4 (Noisy Prony problem). Given the noisy measurements

µ̃ = (m̃0, . . . , m̃2d−1) ∈ C2d

and an estimate of the error |m̃k −mk| ≤ εk, solve Problem 1.3 so as to minimize the recon-
struction error.

In this paper we study the global setting of the Prony problem, stressing its algebraic structure.
In Section 2 the space where the solution is to be found (Prony space) is described. It turns out
to be a vector bundle over the space of the nodes x1, . . . , xd. We define also three mappings:
“Prony”, “Taylor”, and “Stieltjes” ones, which capture the essential features of the Prony problem
and of its solution process.

In Section 3 we investigate solvability conditions for the Prony problem. The answer leads
naturally to a stratification of the space of the right-hand sides, according to the rank of the
associated Hankel-type matrix and its minors. The behavior of the solutions near various strata
turns out to be highly nontrivial, and we present some initial results in the description of the
corresponding singularities.

In Section 4, we study the multiplicity-restricted Prony problem, fixing the collision pattern
of the solution, and derive simple bounds for the stability of the solution via factorization of the
Jacobian determinant of the corresponding Prony map.

In Section 5 we consider the rank-restricted Prony problem, effectively reducing the dimension
to 2r instead of 2d, where r is precisely the rank of the associated Hankel-type matrix. In this
formulation, the Prony problem is solvable in a small neighborhood of the exact measurement
vector.

In Section 6 we study one of the most important singularities in the Prony problem: collision
of some of the points xi. The investigation of this type of singularities has been started in [21]
where the role of finite differences was demonstrated. In the present paper we introduce global
bases of finite differences, study their properties, and prove that using such bases we can resolve
in a robust way at least the linear part of the Prony problem at and near colliding configurations
of the nodes.

In Section 7 we discuss close connections of the Prony problem with hyperbolic polynomials
and “Vandermonde mapping” studied by V.I.Arnold in [1] and by V.P.Kostov in [13, 14, 15], and
with “Vieta mapping” expressing the coefficients of a polynomial through its roots. We believe
that questions arising in theoretical study of Prony problem and in its practical applications
justify further investigation of these connections, as well as further applications of Singularity
Theory.

Finally, in Appendix A we describe a solution method for the Prony system based on Padé
approximation.
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2. Prony, Stieltjes and Taylor Mappings

In this section we define “Prony”, “Taylor”, and “Stieltjes” mappings, which capture some
essential features of the Prony problem and of its solution process. The main idea behind
the spaces and mappings introduced in this section is the following: associate to the signal
F (x) =

∑d
i=1 aiδ(x − xi) the rational function R(z) =

∑d
i=1

ai
z−xi . (In fact, R is the Stieltjes

integral transform of F ). The functions R obtained in this way can be written as R(z) = P (z)
Q(z)

with degP ≤ degQ− 1, and they satisfy R(∞) = 0. Write R as

R(z) =
d∑
i=1

ai
z(1− xi/z)

.

Developing the summands into geometric progressions we conclude that R(z) =
∑∞
k=0mk( 1

z )k+1,
with

mk =
d∑
i=1

aix
k
i ,

so the moment measurements mk in the right hand side of the Prony system (1.3) are exactly
the Taylor coefficients of R(z). We shall see below that this correspondence reduces solution of
the Prony system to an appropriate Padé approximation problem.

Definition 2.1. For each w = (x1, . . . , xd) ∈ Cd, let s = s (w) be the number of distinct
coordinates τj , j = 1, . . . , s, and denote T (w) = (τ1, . . . , τs). The multiplicity vector is

D = D (w) = (d1, . . . , ds) ,

where dj is the number of times the value τj appears in {x1, . . . , xd} . The order of the values in
T (w) is defined by their order of appearance in w.

Example 2.2. For w = (3, 1, 2, 1, 0, 3, 2), we have

s (w) = 4, T (w) = (3, 1, 2, 0) , and D (w) = (2, 2, 2, 1) .

Remark 2.3. Note the slight abuse of notations between Definition 1.1 and Definition 2.1. Note
also that the order of D (w) equals to d for all w ∈ Cd.

Definition 2.4. For each w ∈ Cd, let s = s (w) , T (w) = (τ1, . . . , τs) and D (w) = (d1, . . . , ds)
be as in Definition 2.1.

(1) Vw is the vector space of dimension d containing the linear combinations

g =
s∑
j=1

dj−1∑
`=0

γj,`δ
(`) (x− τj) (2.1)

of δ-functions and their derivatives at the points of T (w). The “standard basis” of Vw is
given by the distributions

δj,` = δ(`) (x− τj) , j = 1, . . . , s (w) ; ` = 0, . . . , dj − 1. (2.2)

(2) Ww is the vector space of dimension d of all the rational functions with poles T (w) and
multiplicities D (w), vanishing at ∞ :

R (z) =
P (z)

Q (z)
, Q (z) =

s∏
j=1

(z − τj)dj , degP (z) < degQ 6 d.
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The “standard basis” of Ww is given by the elementary fractions

Rj,` =
1

(z − τj)`
, j = 1, . . . , s; ` = 1, . . . , dj .

Now we are ready to formally define the Prony space Pd and the Stieltjes space Sd as certain
(trivial) vector bundles over Cd.

Definition 2.5. The Prony space Pd is the vector bundle over Cd, consisting of all the pairs

(w, g) : w ∈ Cd, g ∈ Vw.
The topology on Pd is induced by the natural embedding Pd ⊂ Cd ×D, where D is the space of
distributions on C with its standard topology.

Definition 2.6. The Stieltjes space Sd is the vector bundle over Cd, consisting of all the pairs

(w, γ) : w ∈ Cd, γ ∈Ww.

The topology on Sd is induced by the natural embedding Sd ⊂ Cd ×R, where R is the space of
complex rational functions with its standard topology.

Definition 2.7. The Stieltjes mapping SM : Pd → Sd is defined by the Stieltjes integral
transform: for (w, g) ∈ Pd

SM ((w, g)) = (w, γ) , γ (z) =

ˆ ∞
−∞

g (x) dx

z − x
.

Sometimes we abuse notation and write for short SM (g) = γ, with the understanding that SM
is also a map SM : Vw →Ww for each w ∈ Cd.

The following fact is immediate consequence of the above definitions.

Proposition 2.8. SM is a linear isomorphism of the bundles Pd and Sd (for each w ∈ Cd, SM
is a linear isomorphism of the vector spaces Vw and Ww). In the standard bases of Vw and Ww,
the map SM is diagonal, satisfying

SM (δj,`) = (−1)
`
`!Rj,` (z) .

Furthermore, for any (w, g) ∈ Pd

SM (g) =
P (z)

Q (z)︸ ︷︷ ︸
irreducible

, degP < degQ = rank (g) 6 d. (2.3)

Definition 2.9. The Taylor space Td is the space of complex Taylor polynomials at infinity of
degree 2d − 1 of the form

∑2d−1
k=0 mk( 1

z )k+1. We shall identify Td with the complex space C2d

with the coordinates m0, . . . ,m2d−1.

Definition 2.10. The Taylor mapping TM : Sd → Td is defined by the truncated Taylor
development at infinity:

TM ((w, γ)) =
2d−1∑
k=0

αk

Å
1

z

ãk+1

, where γ (z) =
∞∑
k=0

αk

Å
1

z

ãk+1

.
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We identify TM ((w, γ)) as above with (α0, . . . , α2d−1) ∈ C2d. Sometimes we write for short
TM (γ) = (α0, . . . , α2d−1).

Finally, we define the Prony mapping PM which encodes the Prony problem.

Definition 2.11. The Prony mapping PM : Pd → C2d for (w, g) ∈ Pd is defined as follows:

PM ((w, g)) = (m0, . . . ,m2d−1) ∈ C2d, mk = mk (g) =

ˆ
xkg (x) dx.

By the above definitions, we have

PM = TM ◦ SM. (2.4)

Solving the Prony problem for a given right-hand side (m0, . . . ,m2d−1) is therefore equivalent to
inverting the Prony mapping PM . As we shall elaborate in the subsequent section, the identity
(2.4) allows us to split this problem into two parts: inversion of TM , which is, essentially, the
Padé approximation problem, and inversion of SM , which is, essentially, the decomposition of
a given rational function into the sum of elementary fractions.

3. Solvability of the Prony problem

3.1. General condition for solvability. In this section we provde a necessary and sufficient
condition for the Prony problem to have a solution (which is unique, as it turns out by Proposition
3.2). As mentioned in the end of the previous section, our method is based on inverting (2.4)
and thus relies on the solution of the corresponding (diagonal) Padé approximation problem [4].

Problem 3.1 (Diagonal Padé approximation problem). Given µ = (m0, . . . ,m2d−1) ∈ C2d, find
a rational function Rd(z) = P (z)

Q(z) ∈ Sd with degP < degQ 6 d, such that the first 2d Taylor

coefficients at infinity of Rd(z) are {mk}2d−1
k=0 .

Proposition 3.2. If a solution to Problem 3.1 exists, it is unique.

Proof. Writing R (z) = P (z)
Q(z) , R1 (z) = P1(z)

Q1(z) , with degP < degQ 6 d and degP1 < degQ1 6 d,
we get

R−R1 =
PQ1 − P1Q

QQ1
,

and this function, if nonzero, can have a zero of order at most 2d− 1 at infinity. �

Let us summarize the above discussion with the following statement.

Proposition 3.3. The tuple{
s, D = (d1, . . . , ds), r =

s∑
j=1

dj ≤ d, X = {xj}sj=1 , A = {aj,`}j=1,...,s; `=0,...,dj−1

}
is a (unique, up to a permutation of the nodes {xj}) solution to Problem 1.3 with right-hand
side

µ = (m0, . . . ,m2d−1) ∈ C2d

if and only if the rational function

RD,X,A (z) =
s∑
j=1

dj∑
`=1

(−1)
`−1

(`− 1)!
aj,`−1

(z − xj)`
=

2d−1∑
k=0

mk

zk+1
+O

(
z−2d−1

)
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is a (unique) solution to Problem 3.1 with input µ. In that case,

RD,X,A (z) =

ˆ ∞
−∞

g (x) dx

z − x
where g (x) =

s∑
j=1

dj−1∑
`=0

aj,`δ
(`) (x− xj) ,

i.e., RD,X,A (z) is the Stieltjes transform of g (x).

Proof. This follows from the definitions of Section 2, (2.4), Proposition 3.2 and the fact that the
problem of representing a given rational function as a sum of elementary fractions of the specified
form (i.e., inverting SM) is always uniquely solvable up to a permutation of the poles. �

The next result provides necessary and sufficient conditions for the solvability of Problem 3.1.
It summarizes some well-known facts in the theory of Padé approximation, related to “normal
indices” (see, for instance, [4]). However, these facts are not usually formulated in the literature
on Padé approximation in the form we need in relation to the Prony problem. Consequently, we
give a detailed proof of this result in Appendix A. This proof contains, in particular, some facts
which are important for understanding the solvability issues of the Prony problem.

Definition 3.4. Given a vector µ = (m0, . . . ,m2d−1), let M̃d denote the d × (d+ 1) Hankel
matrix

M̃d =


m0 m1 m2 . . . md

m1 m2 m3 . . . md+1

. .. . .. . .. . .. . ..

md−1 md md+1 . . . m2d−1

 . (3.1)

For each e 6 d, denote by M̃e the e × (e+ 1) submatrix of M̃d formed by the first e rows and
e+ 1 columns, and let Me denote the corresponding square matrix.

Theorem 3.5. Let µ = (m0, . . . ,m2d−1) be given, and let r 6 d be the rank of the Hankel matrix
M̃d as in (3.1). Then Problem 3.1 is solvable for the input µ if and only if the upper left minor
|Mr| of M̃d is non-zero.

As an immediate consequence of Theorem 3.5 and Proposition 3.3, we obtain the following
result.

Theorem 3.6. Let µ = (m0, . . . ,m2d−1) be given, and let r 6 d be the rank of the Hankel matrix
M̃d as in (3.1). Then Problem 1.3 with input µ is solvable if and only if the upper left minor
|Mr| of M̃d is non-zero. The solution, if it exists, is unique, up to a permutation of the nodes
{xj}. The multiplicity vector D = (d1, . . . , ds), of order

∑s
j=1 dj = r, of the resulting confluent

Prony system of rank r is the multiplicity vector of the poles of the rational function RD,X,A (z),
solving the corresponding Padé problem.

As a corollary we get a complete description of the right-hand side data µ ∈ C2d for which
the Prony problem is solvable (unsolvable). Define for r = 1, . . . , d sets Σr ⊂ C2d (respectively,
Σ′r ⊂ C2d) consisting of µ ∈ C2d for which the rank of M̃d = r and |Mr| 6= 0 (respectively,
|Mr| = 0). The set Σr is a difference Σr = Σ1

r \ Σ2
r of two algebraic sets: Σ1

r is defined by
vanishing of all the s× s minors of M̃d, r < s ≤ d, while Σ2

r is defined by vanishing of |Mr|. In
turn, Σ′r = Σ

′1
r \Σ

′2
r , with Σ

′1
r = Σ1

r ∩Σ2
r and Σ

′2
r defined by vanishing of all the r× r minors of

M̃d. The union Σr ∪ Σ′r consists of all µ for which the rank of M̃d = r, which is Σ1
r \ Σ

′2
r .

Corollary 3.7. The set Σ (respectively, Σ′) of µ ∈ C2d for which the Prony problem is solvable
(respectively, unsolvable) is the union Σ = ∪dr=1Σr (respectively, Σ′ = ∪dr=1Σ′r). In particular,
Σ′ ⊂ {µ ∈ C2d,detMd = 0}.
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So for a generic right hand side µ we have |Md| 6= 0, and the Prony problem is solvable. On
the algebraic hypersurface of µ for which |Md| = 0, the Prony problem is solvable if |Md−1| 6= 0,
etc.

Let us now consider some examples.

Example 3.8. Let us fix d = 1, 2, . . . . Consider µ = (m0, . . . ,m2d−1) ∈ C2d, the right hand
sides of the Prony problem, to be of the form µ = µ` = (δk`) = (0, . . . , 0, 1︸︷︷︸

position `+1

, 0, . . . , 0),

with all the mk = 0 besides m` = 1, ` = 0, . . . , 2d− 1, and let M̃ `
d be the corresponding matrix.

Proposition 3.9. The rank of M̃ `
d is equal to `+ 1 for ` ≤ d− 1, and it is equal to 2d− ` for

` ≥ d. The corresponding Prony problem is solvable for ` ≤ d− 1, and it is unsolvable for ` ≥ d.

Proof. For d = 5 and ` = 2, 4, 5, 9, the corresponding matrices M̃d
` are as follows.

M̃2
5 =


0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , M̃4
5 =


0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

 , (solvable)

M̃5
5 =


0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0

 , M̃9
5 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

 . (unsolvable)

In general, the matrices M̃ `
d have the same pattern as in the special cases above, so their rank is

`+ 1 for ` 6 d− 1, and 2d− ` for ` > d, as stated above. Application of Theorem 3.6 completes
the proof. �

In fact, µ` is a moment sequence of

F (x) =
1

`!
δ(`) (x) ,

and this signal belongs to Pd if and only if ` 6 d− 1. In notations of Corollary 3.7 we have

µ` ∈ Σ`+1, ` 6 d− 1,

µ` ∈ Σ′2d−`, ` > d.

It is easy to provide various modifications of the above example. In particular, for

µ = µ̃` = (0, . . . , 0, 1, 1, . . . , 1) ,

the result of Proposition 3.9 remains verbally true.

Example 3.10. Another example is provided by µ`1,`2 , with all the mk = 0 besides

m`1 = 1, m`2 = 1, 0 ≤ `1 < d ≤ `2 ≤ 2d− 1.

For `1 < `2−d+1 the rank of the corresponding matrix M̃d is r = 2d+`1−`2 +1 while |Mr| = 0,
so the Prony problem for such µ`1,`2 is unsolvable. For d = 5 and `1 = 2, `2 = 8 the matrix is
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as follows:

M̃
(2,8)
5 =


0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

 .
3.2. Near-singular inversion. The behavior of the inversion of the Prony mapping near the
unsolvability stratum Σ′ and near the strata where the rank of M̃d drops, turns out to be pretty
complicated. In particular, in the first case at least one of the nodes tends to infinity. In the
second case, depending on the way the right-hand side µ approaches the lower rank strata, the
nodes may remain bounded, or some of them may tend to infinity. In this section we provide
one initial result in this direction, as well as some examples. We believe that a comprehensive
description of the inversion of the Prony mapping near Σ′ and near the lower rank strata is
important both in theoretical study and in applications of Prony-like systems, and consider it
to be an important direction for future research.

Theorem 3.11. As the right-hand side µ ∈ C2d \ Σ′ approaches a finite point µ0 ∈ Σ′, at least
one of the nodes x1, . . . , xd in the solution tends to infinity.

Proof. By assumptions, the components m0, . . . ,m2d−1 of the right-hand side

µ = (m0, . . . ,m2d−1) ∈ C2d

remain bounded as µ→ µ0. By Theorem 6.17, the finite differences coordinates of the solution
PM−1(µ) remain bounded as well. Now, if all the nodes are also bounded, by compactness we
conclude that PM−1(µ) → ω ∈ Pd. By continuity in the distribution space (Lemma 6.9) we
have PM(ω) = µ0. Hence the Prony problem with the right-hand side µ0 has a solution ω ∈ Pd,
in contradiction with the assumption that µ0 ∈ Σ′. �

Example 3.12. Let us consider an example: d = 2 and µ0 = (0, 0, 1, 0). Here the rank ` of M̃2

is 2, and |M2| = 0, so by Theorem 3.6 we have µ0 ∈ Σ′2 ⊂ Σ′. Consider now a perturbation
µ(ε) = (0, ε, 1, 0) of µ0. For ε 6= 0 we have µ(ε) ∈ Σ2 ⊂ Σ, and the Prony system is solvable for
µε. Let us write an explicit solution: the coefficients c0, c1 of the polynomial Q(z) = c0 +c1z+z2

we find from the system (A.??): ï
0 ε
ε 1

ò ï
c0
c1

ò
=

ï
−1
0

ò
,

whose solution is c1 = − 1
ε , c0 = 1

ε2 . Hence the denominator Q(z) of R(z) is Q(z) = 1
ε2 −

1
ε z+z2,

and its roots are x1 = 1+ı
√

3
2ε , x2 = 1−ı

√
3

2ε . The coefficients b0, b1 of the numerator P (z) = b0+b1z
we find from (A.?): ï

0 0
0 ε

ò ï
− 1
ε

1

ò
=

ï
b1
b0

ò
,

i.e., b1 = 0, b0 = ε. Thus the solution of the associated Padé problem is

R(z) =
P (z)

Q(z)
=

ε

(z − x1)(z − x2)
=

ε2

ı
√

3

1

(z − x1)
− ε2

ı
√

3

1

(z − x2)
.

Finally, the (unique up to a permutation) solution of the Prony problem for µε is

a1 =
ε2

ı
√

3
, a2 = − ε2

ı
√

3
, x1 =

1 + ı
√

3

2ε
, x2 =

1− ı
√

3

2ε
.

As ε tends to zero, the nodes x1, x2 tend to infinity while the coefficients a1, a2 tend to zero.
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As it was shown above, for a given µ ∈ Σ (say, with pairwise different nodes) the rank of the
matrix M̃d is equal to the number of the nodes in the solution for which the corresponding δ-
function enters with a non-zero coefficients. So µ approaches a certain µ0 belonging to a stratum
of a lower rank of M̃d if and only if some of the coefficients aj in the solution tend to zero. We
do not analyze all the possible scenarios of such a degeneration, noticing just that if µ0 ∈ Σ′,
i.e., the Prony problem is unsolvable for µ0, then Theorem 3.11 remains true, with essentially
the same proof. So at least one of the nodes, say, xj , escapes to infinity. Moreover, one can show
that ajx2d−1

j cannot tend to zero - otherwise the remaining linear combination of δ-functions
would provide a solution for µ0.

If µ0 ∈ Σ, i.e., the Prony problem is solvable for µ0, all the nodes may remain bounded, or
some xj may escape to infinity, but in such a way that ajx2d−1

j tends to zero.

4. Multiplicity-restricted Prony problem

Consider Problem 1.4 at some point µ0 ∈ Σ. By definition, µ0 ∈ Σr0 for some r0 ≤ d. Let
µ0 = PM ((w0, g0)) for some (w0, g0) ∈ Pd. Assume for a moment that the multiplicity vector
D0 = D (g0) = (d1, . . . ds0),

∑s0
j=1 dj = r0, has a non-trivial collision pattern, i.e., dj > 1 for at

least one j = 1, . . . , s0. It means, in turn, that the function RD0,X,A (z) has a pole of multiplicity
dj . Evidently, there exists an arbitrarily small perturbation µ̃ of µ0 for which this multiple pole
becomes a cluster of single poles, thereby changing the multiplicity vector to some D′ 6= D0.
While we address this problem in Section 6 via the bases of divided differences, in this section
we consider a “multiplicity-restricted” Prony problem.

Definition 4.1. Let x = (x1, . . . , xs) ∈ Cs and D = (d1, . . . , ds) with d =
∑s
j=1 dj be given.

The d× d confluent Vandermonde matrix is

V = V (x, D) = V (x1, d1, . . . , xs, ds) =


v1,0 v2,0 . . . vs,0

v1,1 v2,1 . . . vs,1

. . .
v1,d−1 v2,d−1 . . . vs,d−1

 (4.1)

where the symbol vj,k denotes the following 1× dj row vector

vj,k
def
=
î
xkj , kxk−1

j , . . . , k (k − 1) · · · (k − dj)x
k−dj+1
j

ó
.

Proposition 4.2. The matrix V defines the linear part of the confluent Prony system (1.5) in
the standard basis for Vw, namely,

V (x1, d1, . . . , xs, ds)



a1,0

...
a1,d1−1

...

as,ds−1


=



m0

m1

...

md−1

 . (4.2)

Definition 4.3. Let PM (w0, g0) = µ0 ∈ Σr0 with D (g0) = D0 and s (g0) = s0. Let PD0 denote
the following subbundle of Pd of dimension s0 + r0:

PD0
= {(w, g) ∈ Pd : D (g) = D0} .

The multiplicity-restricted Prony mapping PM∗D0
: PD0 → Cs0+r0 is the composition

PM∗D0
= π ◦ PM �PD0

,

where π : C2d → Cs0+r0 is the projection map on the first s0 + r0 coordinates.
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Inverting this PM∗D0
represents the solution of the confluent Prony system (1.5) with fixed

structure D0 from the first k = 0, 1, . . . , s0 + r0 − 1 measurements.

Theorem 4.4 ([7]). Let µ∗0 = PM∗D0
((w0, g0)) ∈ Cs0+r0 with the unperturbed solution

g0 =

s0∑
j=1

dj−1∑
`=0

aj,`δ
(`) (x− τj) .

In a small neighborhood of (w0, g0) ∈ PD0
, the map PM∗D0

is invertible. Consequently, for
small enough ε, the multiplicity-restricted Prony problem with input data µ̃∗ ∈ Cr0+s0 satisfying
‖µ̃∗ − µ∗0‖ ≤ ε has a unique solution. The error in this solution satisfies

|∆aj,`| ≤
2

`!

Å
2

δ

ãs0+r0 Å1

2
+
s0 + r0

δ

ãdj−`Ç
1 +

|aj,`−1|∣∣aj,dj−1

∣∣
å
ε,

|∆τj | ≤
2

dj !

Å
2

δ

ãs0+r0 1∣∣aj,dj−1

∣∣ε,
where δ def

= mini 6=j |τi − τj | (for consistency we take aj,−1 = 0 in the above formula).

Proof outline. The Jacobian of PM∗D0
can be easily computed, and it turns out to be equal to

the product
JPM∗

D0
= V (τ1, d1 + 1, . . . , τs0 , ds0 + 1) diag {Ej}

where V is the confluent Vandermonde matrix (4.1) on the nodes (τ1, . . . , τs0), with multiplicity
vector

D̃0 = (d1 + 1, . . . , ds0 + 1) ,

while E is the (dj + 1)× (dj + 1) block

Ej =


1 0 0 · · · 0
0 1 0 · · · aj,0
...

...
...

. . .
...

0 0 0 · · · aj,dj−1

 .
Since µ0 ∈ Σr, the highest order coefficients aj,dj−1 are nonzero. Furthermore, since all the τj
are distinct, the matrix V is nonsingular. Local invertibility follows. To estimate the norm of
the inverse, use bounds from [6]. �

Remark 4.5. Note that as two nodes collide (δ → 0), the inversion of the multiplicity-restricted
Prony mapping PM∗D0

becomes ill-conditioned proportionally to δ−(s0+r0).

Let us stress that we are not aware of any general method of inverting PM∗D0
, i.e., solving

the multiplicity-restricted confluent Prony problem with the smallest possible number of mea-
surements. As we demonstrate in [5], such a method exists for a very special case of a single
point, i.e., s = 1.

5. Rank-restricted Prony problem

Recall that the Prony problem consists in inverting the Prony mapping PM : Pd → Td. So,
given µ = (m0, . . . ,m2d−1) ∈ Td we are looking for (w, g) ∈ Pd such that

mk(g) =

ˆ
xkg(x)dx = mk,

with k = 0, 1, . . . , 2d− 1. If µ ∈ Σr with r < d, then in fact any neighborhood of µ will contain
points from the non-solvability set Σ′. Indeed, consider the following example.



12 DMITRY BATENKOV AND YOSEF YOMDIN

Example 5.1. Slightly modifying the construction of Example 3.10, consider µ`1,`2,ε ∈ C2d with
all the mk = 0 besides m`1 = 1 and m`2 = ε, such that `2 > `1 + d − 1. For example, if d = 5
and `1 = 2, `2 = 8, the corresponding matrix is

M̃
(2,8,ε)
5 =


0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 ε
0 0 0 0 ε 0

 .
For ε = 0 the Prony problem is solvable, while for any small perturbation ε 6= 0 it becomes
unsolvable. However, if we restrict the whole problem just to d = 3, it remains solvable for any
small perturbation of the input.

We therefore propose to consider the rank-restricted Prony problem analogous to the con-
struction of Section 4, but instead of fixing the multiplicity D (g) we now fix the rank r (recall
Definition 1.1).

Definition 5.2. Denote by Pr the following vector bundle:

Pr = {(w, g) : w ∈ Cr, g ∈ Vw} ,
where Vw is defined exactly as in Definition 2.4, replacing d with r.

Likewise, we define the Stieltjes bundle of order r as follows.

Definition 5.3. Denote by Sr the following vector bundle:

Sr = {(w, γ) : w ∈ Cr, γ ∈Ww} ,
where Ww is defined exactly as in Definition 2.4, replacing d with r.

The Stieltjes mapping acts naturally as a map SM : Pr → Sr with exactly the same definition
as Definition 2.7.

The restricted Taylor mapping TMr : Sr → C2r is, as before, given by the truncated devel-
opment at infinity to the first 2r Taylor coefficients.

Definition 5.4. Let π : C2d → C2r denote the projection operator onto the first 2r coordinates.
Denote Σ∗r

def
= π (Σr). The rank-restricted Prony mapping PM∗r : Pr → Σ∗r is given by by

PM∗r ((w, g)) = (m0, . . . ,m2r−1) , mk = mk (g) =

ˆ
xkg (x) dx.

Remark 5.5. Pr can be embedded in Pd, for example by the map Ξr : Pr → Pd

Ξr : (w, g) ∈ Pr 7−→ (w′, g′) ∈ Pd : w′ =

Ö
x1, . . . , xr, 0, . . . 0︸ ︷︷ ︸

×(d−r)

è
, g′ = g.

With this definition, PM∗r can be represented also as the composition

PM∗r = π ◦ PM ◦ Ξr.

Proposition 5.6. The rank-restricted Prony mapping satisfies

PM∗r = TMr ◦ SM.

Inverting PM∗r represents the solution of the rank-restricted Prony problem. Unlike in the
multiplicity-restricted setting of Section 4, here we allow two or more nodes to collide (thereby
changing the multiplicty vector D (g) of the solution).

The basic fact which makes this formulation useful is the following result.
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Theorem 5.7. Let µ∗0 ∈ Σ∗r. Then in a small neighborhood of µ∗0 ∈ C2r, the Taylor mapping
TMr is continuously invertible.

Proof. This is a direct consequence of the solution method to the Padé approximation problem
described in Appendix A. Indeed, if the rank of M̃r is full, then it remains so in a small neigh-
borhood of the entire space C2r. Therefore, the system (A.??) remains continuously invertible,
producing the coefficients of the denominator Q (z). Consequently, the right-hand side of (A.?)
depends continuously on the moment vector µ∗ = (m0, . . . ,m2r−1) ∈ C2r. Again, since the rank
always remains full, the polynomials P (z) and Q (z) cannot have common roots, and thereby
the solution R = P

Q = TM−1
r (µ∗) depends continuously on µ∗ (in the topology of the space of

rational functions). �

In the next section, we consider the remaining problem: how to invert SM in this setting.

6. Collision singularities and bases of finite differences

6.1. Introduction. Collision singularities occur in Prony systems as some of the nodes xi in the
signal F (x) =

∑d
i=1 aiδ(x−xi) approach one another. This happens for µ near the discriminant

stratum ∆ ⊂ C2d consisting of those (m0, . . . ,m2d−1) for which some of the coordinates {xj} in
the solution collide, i.e., the function RD,X,A (z) has multiple poles (or, nontrivial multiplicity
vector D). As we shall see below, typically, as µ approaches µ0 ∈ ∆, i.e. some of the nodes xi col-
lide, the corresponding coefficients ai tend to infinity. Notice, that all the moments mk = mk(F )
remain bounded. This behavior creates serious difficulties in solving “near-colliding” Prony sys-
tems, both in theoretical and practical settings. Especially demanding problems arise in the
presence of noise. The problem of improvement of resolution in reconstruction of colliding nodes
from noisy measurements appears in a wide range of applications. It is usually called a “super-
resolution problem” and a lot of recent publications are devoted to its investigation in various
mathematical and applied settings. See [8] and references therein for a very partial sample.

Here we continue our study of collision singularities in Prony systems, started in [21]. Our
approach uses bases of finite differences in the Prony space Pr in order to “resolve” the linear
part of collision singularities. In these bases the coefficients do not blow up any more, even as
some of the nodes collide.

Example 6.1. Let r = 2, and consider the signal F = a1δ (x− x1) + a2δ (x− x2) with

x1 = t, x2 = t+ ε,

a1 = −ε−1, a2 = ε−1.

The corresponding Prony system is

(
a1x

k
1 + a2x

k
2 =
)
mk = ktk−1 +

k∑
j=2

Ç
k

j

å
tk−jεj−1

︸ ︷︷ ︸
def
= ρk(t,ε)

, k = 0, 1, 2, 3.

As ε→ 0, the Prony system as above becomes ill-conditioned and the coefficients {aj} blow up,
while the measurements remain bounded. Note that

M̃2 =

ï
0 1 2t+ ρ2 (t, ε)
1 2t+ ρ2 (t, ε) 3t2 + ρ3 (t, ε)

ò
,

therefore rank M̃2 = 2 and |M2| = 1 6= 0, i.e. the Prony problem with input (m0, . . . ,m3)
remains solvable for all ε. However, the standard basis {δ (x− x1) , δ (x− x2)} degenerates, and
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in the limit it is no more a basis. If we represent the solution

Fε (x) = −1

ε
δ (x− t) +

1

ε
δ (x− t− ε)

in the basis

∆1 (x1, x2) = δ (x− x1) ,

∆2 (x1, x2) =
1

x1 − x2
δ (x− x1) +

1

x2 − x1
δ (x− x2) ,

then we have
Fε (x) = 1 ·∆2 (t, t+ ε) ,

i.e., the coefficients in this new basis are just {b1 = 0, b1 = 1}. As ε→ 0, in fact we have

∆2 (t, t+ ε)→ δ′ (x− t) ,

where the convergence is in the topology of the bundle Pr.

Our goal in this section is to generalize the construction of Example 6.1 and [21] to handle
the general case of colliding configurations.

6.2. Divided finite differences. For modern treatment of divided differences, see e.g. [9, 12,
16]. We follow [9] and adopt what has become by now the standard definition.

Definition 6.2. Let an arbitrary sequence of points w = (x1, x2, . . . , ) be given (repetitions
are allowed). The (n-1 )-st divided difference ∆n−1 (w) : Π → C is the linear functional on the
space Π of polynomials in one variable x, associating to each p ∈ Π its (uniquely defined) n-th
coefficient in the Newton form

p (x) =
∞∑
j=1

{
∆j−1 (x1, . . . , xj) p

}
· qj−1,w (x) , qi,w (x)

def
=

i∏
k=1

(x− xk) . (6.1)

Example 6.3. For n = 1, we have ∆0 (x1) p = p (x1), and the 0-th order Newton interpolation
polynomial is the constant

P1 (x) = p (x1) · 1︸︷︷︸
=q0,w(x)

.

Example 6.4. For n = 2 consider two cases.

(1) If x1 6= x2, we have ∆1 (x1, x2) p = p(x2)−p(x1)
x2−x1

, and the first order Newton interpolation
polynomial is

P2 (x) = p (x1) · 1︸︷︷︸
=qo,w(x)

+
p (x2)− p (x1)

x2 − x1
· (x− x1)︸ ︷︷ ︸

=q1,w(x)

.

It can be readily verified that P2 (xk) = p (xk) for k = 1, 2.
(2) If x1 = x2, then ∆1 (x1, x1) p = p′ (x1), and so

P2 (x) = p (x1) + p′ (x1) (x− x1) .

It can be readily verified that P2 (x1) = p (x1) and P ′2 (x1) = p′ (x1).
It turns out that this definition can be extended to all sufficiently smooth functions for which
the interpolation problem is well-defined.
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Definition 6.5 ([9]). For any smooth enough function f , defined at least on x1, . . . , xn, the
divided finite difference ∆n−1 (x1, . . . , xn) f is the n-th coefficient in the Newton form (6.1) of
the Hermite interpolation polynomial Pn, which agrees with f and its derivatives of appropriate
order on x1, . . . , xn :

f (`) (xj) = P (`)
n (xj) : 1 6 j 6 n, 0 6 ` < dj

def
= # {i : xi = xj} . (6.2)

Example 6.6. Consider the rational function depending on a parameter z ∈ C :

fz (x) =
1

z − x
.

The 0th divided difference is ∆0 (x1) f = f (x1) = 1
z−x1

, and the Newton interpolation polyno-
mial is

P1 (x) =
1

z − x1
.

For n = 2 and x1 6= x2, we have ∆1 (x1, x2) = 1
(z−x1)(z−x2) , and

P2 (x) =
1

z − x1
+

x− x1

(z − x1) (z − x2)
,

thus P2 (xk) = f (xk) for k = 1, 2. If x1 = x2 then ∆1 (x1, x1) = f ′z (x1) = 1
(z−x1)2

, and so

P2 (x) =
1

z − x1
+

x− x1

(z − x1)
2 .

Again, P2 (x1) = fz (x1) and P ′2 (x1) = f ′z (x1).

Therefore, each divided difference can be naturally associated with an element of the Prony
space (see Item 5 in Proposition 6.7 and Definition 6.8 below for an accurate statement).

Let us now summarize relevant properties of the functional ∆ which we shall use later on.

Proposition 6.7. For w = (x1, . . . , xn) ∈ Cn, let s (w) , T (w) and D (w) be defined according
to Definition 2.1. Let qn,w (z) =

∏s
j=1 (z − τj)dj be defined as in (6.1).

(1) The functional ∆n−1 (x1, . . . , xn) is a symmetric function of its arguments, i.e., it de-
pends only on the set {x1, . . . , xn} but not on its ordering.

(2) ∆n−1 (x1, . . . , xn) is a continuous function of the vector (x1, . . . , xn). In particular, for
any test function f

lim
(x1,...,xn)→(t1,...,tn)

∆n−1 (x1, . . . , xn) f = ∆n−1 (t1, . . . , tn) f.

(3) ∆ may be computed by the recursive rule

∆n−1 (x1, . . . , xn) f =

{
∆n−2(x2,...,xn)f−∆n−2(x1,...,xn−1)f

xn−x1
x1 6= xn,¶

d
d ξ ∆n−2 (ξ, x2, . . . , xn−1) f

©
|ξ=xn , x1 = xn,

(6.3)

where ∆0 (x1) f = f (x1) .

(4) (Generalization of Example 6.6) Let fz (x) = (z − x)
−1. Then for all z /∈ {x1, . . . , xn}

∆n−1 (x1, . . . , xn) fz =
1

qn,w (z)
. (6.4)

(5) By (6.2), ∆n−1 (x1, . . . , xn) is a linear combination of the functionals

δ(`) (x− τj) , 1 6 j 6 s, 0 6 ` < dj .
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In fact, using (6.4) we obtain the Chakalov’s expansion (see [9])

∆n−1 (x1, . . . , xn) =
s∑
j=1

dj−1∑
`=0

aj,`δ
(`) (x− τj) , (6.5)

where the coefficients {aj,`} are defined by the partial fraction decomposition1

1

qn,w (z)
=

s∑
j=1

dj−1∑
`=0

`!aj,`

(z − τj)`+1
. (6.6)

(6) By (6.5) and (6.6)

∆n−1

Ñ
t, . . . , t︸ ︷︷ ︸
×n

é
=

1

(n− 1)!
δ(n−1) (x− t) . (6.7)

(7) Popoviciu’s refinement lemma [9, Proposition 23]: for every index subsequence

1 6 σ (1) < σ (2) < · · · < σ (k) 6 n,

there exist coefficients α (j) such that

∆k−1
(
xσ(1), . . . , xσ(k)

)
=

σ(k)−k∑
j=σ(1)−1

α (j) ∆k−1 (xj+1, xj+2, . . . , xj+k) . (6.8)

Based on the above, we may now identify ∆ with elements of the bundle Pr.

Definition 6.8. Let w = (x1, . . . , xr) ∈ Cr, and X = {n1, n2, . . . , nα} ⊆ {1, 2, . . . , r} of size
|X| = α be given. Let the elements of X be enumerated in increasing order, i.e.

1 6 n1 < n2 < · · · < nα 6 r.

Denote by wX the vector

wX
def
= (xn1

, xn2
, . . . , xnα) ∈ Cα.

Then we denote
∆X (w)

def
= ∆α−1 (wX) .

We immediately obtain the following result.

Lemma 6.9. For all w ∈ Cr and X ⊆ {1, 2, . . . , r}, we have ∆X (w) ∈ Vw. Moreover, letting
α = |X| we have

SM (∆X (w)) = ∆α−1 (wX)
1

z − x
=

1

qα,wX (z)
. (6.9)

Finally, (w,∆X (w)) is a continuous section of Pr.

1The coefficients
{
aj,`
}

may be readily obtained by the Cauchy residue formula

aj,` =
1

(dj − 1 − `)!
lim
z→τj

(
d

d z

)dj−1−`
ß

(z − τj)
`+1

qn,w (z)

™
.
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6.3. Constructing a basis. The following result is well-known, see e.g. [9, Proposition 35].

Theorem 6.10. Denote Nj = {1, 2, . . . , j} for j = 1, 2, . . . , r. Then for every w ∈ Cr, the
collection {

∆Nj (w)
}r
j=1

is a basis for Vw.

There are various proofs of this statement. Below we show how to construct sets which do
not necessarily remain basis for all w ∈ Cr, but only for w in a small neighborhood of a given
w0 ∈ Cr. Theorem 6.10 will then follow as a special case of this construction.

Informally, if two coordinates xi and xj can collide, then it is necessary to allow them to be
glued by some element of the basis, i.e., we will need ∆X (w) where i, j ∈ X (in Theorem 6.10
all coordinates might be eventually glued into a single point because w is unrestricted.) In order
to make this statement formal, let us introduce a notion of configuration, which is essentially a
partition of the set of indices.

Definition 6.11. A configuration C is a partition of the set Nr = {1, 2, . . . , r} into s = s (C)
disjoint nonempty subsets

tsi=1Xi = Nr, |Xi| = di > 0.

The multiplicity vector of C is
T (C) = (d1, . . . , ds) .

Every configuration defines a continuous family of divided differences as follows.

Definition 6.12. Let a configuration C = {Xj}s(C)j=1 . Enumerate each Xj in increasing order of
its elements

Xj =
¶
nj1 < nj2 < . . . njdj

©
and denote for every m = 1, 2, . . . , dj

Xj,m
def
=
¶
njk : k = 1, 2, . . . ,m

©
.

For every w ∈ Cr, the collection BC (w) ⊂ Vw is defined as follows:

BC (w)
def
=
{

∆Xj,m (w)
}m=1,...,dj

j=1,...,s(C) .

Now we formally define when a partition is “good” with respect to a point w ∈ Cr.

Definition 6.13. The point w = (x1, . . . , xr) ∈ Cr is subordinated to the configuration

C = {Xj}s(C)j=1

if whenever xk = x` for a pair of indices k 6= `, then necessarily k, ` ∈ Xj for some Xj .

Now we are ready to formulate the main result of this section.

Theorem 6.14. For a given w0 ∈ Cr and a configuration C, the collection BC (w0) is a basis
for Vw0

if and only if w0 is subordinated to C. In this case, BC (w) is a continuous family of
bases for Vw in a sufficiently small neighborhood of w0.

Let us first make a technical computation.

Lemma 6.15. For a configuration C and a point w ∈ Cr, consider for every fixed j = 1, . . . , s (C)
the set

Sj
def
=
{

∆Xj,m (w)
}dj
m=1

. (6.10)
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(1) Define for any pair of indices 1 6 k 6 ` 6 dj the index set

Xj,k:`
def
=
¶
njk < njk+1 < · · · < nj`

©
⊆ Xj = Xj,1:dj = Xj,dj .

Then
∆Xj,k:` (w) ∈ spanSj .

(2) For an arbitrary subset Y ⊆ Xj (and not necessarily containing segments of consecutive
indices), we also have

∆Y (w) ∈ spanSj .

Proof. For clarity, we denote yi = xnj
i
and [k : `] = ∆Xj,k:` (w). By (6.3) we have in all cases

(including repeated nodes)

(y` − yk) [k : `] = [k + 1 : `]− [k : `− 1] . (6.11)

The proof of the first statement is by backward induction on n = ` − k. We start from
n = dj , and obviously [1 : dj ] ∈ Sj . In addition, by definition of Sj we have [1 : m] ∈ Sj for all
m = 1, . . . , dj . Therefore, in order to obtain all [k : `] with `−k = n−1, we apply (6.11) several
times as follows.

[2 : n] = (yn − y1) [1 : n] + [1 : n− 1]

[3 : n+ 1] = (yn+1 − y2) [2 : n+ 1]
←−−−−−→

+ [2 : n]

. . .

[dj − n+ 2 : dj ] =
(
ydj − ydj−n+1

)
[dj − n+ 1 : dj ]←−−−−−−−−−−→

+ [dj − n+ 1 : dj − 1]

Here the symbol · · · under a term means that the term is taken directly from the previous line,
while · · ·←→ indicates that the induction hypothesis is used. In the end, the left-hand side terms
are shown to belong to spanSj .

In order to prove the second statement, we employ the first statement, (6.8) and Proposition
6.7, Item 1. �

Proof of Theorem 6.14. In one direction, assume that w0 = (x1, . . . , xr) is subordinated to C. It
is sufficient to show that every element of the standard basis (2.2) belongs to span {BC (w0)}.

Let τj ∈ T (w0), let dj be the corresponding multiplicity, and let Yj ⊆ Nr denote the index
set of size dj

Yj
def
= {i : xi = τj} .

By the definition of subordination, there exists an element in the partition of C, say Xk, for
which Yj ⊆ Xk. By Lemma 6.15 we conclude that for all subsets Z ⊆ Yj ,

∆Z (w0) ∈ span
{

∆Xk,m (w0)
}|Xk|
m=1

⊆ span {BC (w0)} .

By (6.7), ∆Z (w0) is nothing else but

∆Z (w0) = ∆|Z|−1

Ö
τj , . . . , τj︸ ︷︷ ︸
×|Z|

è
=

1

(|Z| − 1)!
δ(|Z|−1) (x− τj) .

This completes the proof of the necessity. In the other direction, assume by contradiction that
xk = x` = τ but nevertheless there exist two distinct elements of the partition C, say Xα and
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Xβ such that k ∈ Xα and ` ∈ Xβ . Let the sets {Sj}s(C)j=1 be defined by (6.10). Again, by Lemma
6.15 and (6.7) we conclude that

δ (x− τ) ∈ spanSα ∩ spanSβ .

But notice that BC (w0) =
⋃s(C)
j=1 Sj and

∑s
j=1 |Sj | = d, therefore by counting dimensions we

conclude that
dim span {BC (w0)} < d,

in contradiction to the assumption that BC (w0) is a basis.
Finally, one can evidently choose a sufficiently small neighborhood U ⊂ Cr of w0 such that

for all w ∈ U , no new collisions are introduced, i.e., w is still subordinated to C. The continuity
argument (Lemma 6.9) finishes the proof. �

Remark 6.16. Another possible method of proof is to consider the algebra of elementary fractions
in the Stieltjes space Sr, and use the correspondence (6.9).

As we mentioned, Theorem 6.10 follows as a corollary of Theorem 6.14 for the configuration
C consisting of a single partition set Nr.

6.4. Resolution of collision singularities. Let µ∗0 ∈ Σ∗r ⊂ C2r be given, and let (w0, g0) ∈ Pr
be a solution to the (rank-restricted) Prony problem. The point w0 is uniquely defined up to a
permutation of the coordinates, so we just fix a particular permutation. Let T (w0) = (τ1, . . . , τs).

Our goal is to solve the rank-restricted Prony problem for every input µ∗ ∈ C2r in a small
neighborhood of µ∗0. According to Theorem 5.7, this amounts to a continuous representation of
the solution Rµ∗ (z) =

Pµ∗ (z)

Qµ∗ (z) = TM−1
r (µ∗) to the corresponding diagonal Padé approximation

problem as an element of the bundle Pr.
Define δ = mini 6=j |τi − τj | to be the “separation distance” between the clusters. Since the

roots of Qµ∗ depend continuously on µ∗ and the degree of Qµ∗ does not drop, we can choose
some µ∗1 sufficiently close to µ∗0, for which

(1) all the roots of Qµ∗1 (z) are distinct, and
(2) these roots can be grouped into s clusters, such that each of the elements of the j-th

cluster is at most δ/3 away from τj .

Enumerate the roots of Qµ∗1 within each cluster in an arbitrary manner. This choice enables us
to define locally (in a neighborhood of µ∗1) r algebraic functions x1 (µ∗) , . . . , xr (µ∗), satisfying

Qµ∗ (z) =
s∏
j=1

(z − xj (µ∗)) .

Then we extend these functions by analytic continuation according to the above formula into
the entire neighborhood of µ∗0. Consequently,

w (µ∗)
def
= (x1 (µ∗) , . . . , xr (µ∗))

is a continuous (multivalued) algebraic function in a neighborhood of µ∗0, satisfying

w (µ∗0) = w0.

After this “pre-processing” step, we can solve the rank-restricted Prony problem in this neigh-
borhood of µ∗0, as follows.
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Algorithm 1 Solving rank-restricted Prony problem with collisions.
Let µ∗0 ∈ Σ∗r ⊂ C2r be given, and let (w0, g0) ∈ Pr be a solution to the (rank-restricted) Prony
problem. Let w0 be subordinated to some configuration C.
The input to the problem is a measurement vector µ∗ = (m0, . . . ,m2r−1) ∈ C2r, which is in a
small neighborhood of µ∗0.

(1) Construct the function w = w (µ∗) as described above.
(2) Build the basis BC (w) =

{
∆Xj,` (w)

}`=1,...,dj

j=1,...,s(C) for Vw.

(3) Find the coefficients {βj,`}
`=1,...,dj
j=1,...,s(C) such that

SM

Ñ∑
j,`

βj,`∆Xj,` (w)

é
= R (z) ,

by solving the linear system∑
j,`

βj,` (w) ∆Xj,` (w)︸ ︷︷ ︸
=g(w)

(
xk
)

= mk

Å
=

ˆ
xkg (w) (x) dx

ã
, k = 0, 1, . . . , 2r − 1. (6.12)

Theorem 6.17. The coordinates {βj,`} of the solution to the rank-restricted Prony problem,
given by Algorithm 6.4, are (multivalued) algebraic functions, continuous in a neighborhood of
the point µ∗0 .

Proof. Since the divided differences ∆j,` (w) are continuous in w, then clearly for each

k = 0, 1, . . . , 2r − 1

the functions
νj,`,k (w) = ∆j,` (w)

(
xk
)

= ∆`−1
(
wXj,`

) (
xk
)

are continuous2 in w, and hence continuous, as multivalued functions, in a neighborhood of µ∗0.
Since BC (w (µ∗)) remains a basis in a (possibly smaller) neighborhood of µ∗0, the system (6.12),
taking the form ∑

j,`

νj,`,k (w)βj,` (w) = mk, k = 0, 1, . . . , 2r − 1,

remains non-degenerate in this neighborhood. We conclude that the coefficients {βj,` (w (µ∗))}
are multivalued algebraic functions, continuous in a neighborhood of µ∗0. �

7. Real Prony space and hyperbolic polynomials

In this section we shall restrict ourselves to the real case. Notice that in many applications
only real Prony systems are used. On the other hand, considering the Prony problem over
the real numbers significantly simplifies some constructions. In particular, we can easily avoid
topological problems, related with the choice of the ordering of the points x1, . . . , xd ∈ C. So in
a definition of the real Prony space RPd we assume that the coordinates x1, . . . , xd are taken
with their natural ordering x1 ≤ x2 ≤ · · · ≤ xd. Accordingly, the real Prony space RPd is
defined as the bundle (w, g), w ∈

∏
d ⊂ Rd, g ∈ RVw. Here

∏
d is the prism in Rd defined by

the inequalities x1 ≤ x2 ≤ · · · ≤ xd, and RVw is the space of linear combinations with real
coefficients of δ-functions and their derivatives with the support {x1, . . . , xd}, as in Definition

2In fact, νj,`,k (w) are symmetric polynomials in some of the coordinates of w.
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2.4. The Prony, Stieltjes and Taylor maps are the restrictions to the real case of the complex
maps defined above.

In this paper we just point out a remarkable connection of the real Prony space and map-
ping with hyperbolic polynomials, and Vieta and Vandermonde mappings studied in Singularity
Theory (see [1, 13, 14, 15] and references therein).

Hyperbolic polynomials (in one variable) are real polynomials Q(z) = zd+
∑d
j=1 λjz

d−j , with
all d of their roots real. We denote by Γd the space of the coefficients Λ = (λ1, . . . , λd) ⊂ Rd of all
the hyperbolic polynomials, and by Γ̂d the set of Λ ∈ Γd with λ1 = 0, |λ2| ≤ 1. Recalling (2.3), it
is evident that all hyperbolic polynomials appear as the denominators of the irreducible fractions
in the image of RPd by SM . This shows, in particular, that the geometry of the boundary ∂Γ of
the hyperbolicity domain Γ is important in the study of the real Prony map PM : it is mapped
by PM to the boundary of the solvability domain of the real Prony problem. This geometry
has been studied in a number of publications, from the middle of 1980s. In [13] V. P. Kostov
has shown that Γ̂ possesses the Whitney property: there is a constant C such that any two
points λ1, λ2 ∈ Γ̂ can be connected by a curve inside Γ̂ of the length at most C‖λ2−λ1‖. “Vieta
mapping” which associates to the nodes x1 ≤ x2 ≤ · · · ≤ xd the coefficients of Q(z) having these
nodes as the roots, is also studied in [13]. In our notations, Vieta mapping is the composition
of the Stieltjes mapping SM with the projection to the coefficients of the denominator.

In [1] V.I.Arnold introduced and studied the notion of maximal hyperbolic polynomial, rel-
evant in description of Γ̂. Furthermore, the Vandermonde mapping V : Rd → Rd was defined
there by


y1 = a1x1 + . . .+ adxd,

. . .

yd = a1x
d
1 + . . .+ adx

d
d,

with a1, . . . , ad fixed. In our notations V is the restriction of the Prony mapping to the pairs
(w, g) ∈ RPd with the coefficients of g in the standard basis of RVw fixed. It was shown in [1]
that for a1, . . . , ad > 0 V is a one-to-one mapping of

∏
d to its image. In other words, the first d

moments uniquely define the nodes x1 ≤ x2 ≤ · · · ≤ xd. For a1, . . . , ad with varying signs, this is
no longer true in general. This result is applied in [1] to the study of the colliding configurations.

Next, the “Vandermonde varieties” are studied in [1], which are defined by the equations


a1x1 + . . .+ adxd = α1,

. . .

a1x
`
1 + . . .+ adx

`
d = α`.

` 6 d.

It is shown that for a1, . . . , ad > 0 the intersections of such varieties with
∏
d are either con-

tractible or empty. Finally, the critical points of the next Vandermonde equation on the Van-
dermond variety are studied in detail, and on this base a new proof of Kostov’s theorem is
given.

We believe that the results of [1, 13] and their continuation in [14, 15] and other publications
are important for the study of the Prony problem over the reals, and we plan to present some
results in this direction separately.
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Appendix A. Proof of Theorem 3.5

Recall that we are interested in finding conditions for which the Taylor mapping TM : Sd → Td
is invertible. In other words, given

S (z) =
2d−1∑
k=0

mk

Å
1

z

ãk+1

,

we are looking for a rational function R (z) ∈ Sd such that

S (z)−R (z) =
d1

z2d+1
+

d2

z2d+2
+ . . . . (A.1)

Write R (z) = P (z)
Q(z) with Q (z) =

∑d
j=0 cjz

j and P (z) =
∑d−1
i=0 biz

i. Multiplying (A.1) by
Q (z), we obtain

Q (z)S (z)− P (z) =
e1

zd+1
+

e2

zd+2
+ . . . . (A.2)

Proposition A.1. The identity (A.2), considered as an equation on P and Q with

degP < degQ ≤ d,

always has a solution.

Proof. Substituting the expressions for S, P and Q into (A.2) we get(
c0 + c1z + · · ·+ cdz

d
) (m0

z
+
m1

z2
+ . . .

)
− b0 − · · · − bd−1z

d−1 =
e1

zd+1
+ . . . . (A.3)

The highest degree of z in the left hand side of (A.3) is d−1. So equating to zero the coefficients
of zs in (A.3) for s = d− 1, . . . ,−d we get the following systems of equations:

0 0 0 m0

0 0 m0 m1

. .. . ..

m0 m1 . . . md−1



c1
c2
...
cd

 =


bd−1

bd−2

...
b0

 . (A.?)

From this point on, the equations become homogeneous:
m0 m1 . . . md

m1 m2 . . . md+1

. .. . ..

md−1 md . . . m2d−1



c0
c1
...
cd

 =


0
0
...
0

 . (A.??)

The homogeneous system (A.??) has the Hankel-type d × (d+ 1) matrix M̃d = (mi+j) with
0 6 i 6 d − 1 and 0 6 j 6 d. This system has d equations and d + 1 unknowns c0, . . . , cd.
Consequently, it always has a nonzero solution c0, . . . , cd. Now substituting these coefficients
c0, . . . , cd of Q into the equations (A.?) we find the coefficients b0, . . . , bd−1 of the polynomial
P , satisfying (A.?). Notice that if cj = 0 for j > `+ 1 then it follows from the structure of the
equations (A.?) that bj = 0 for j ≥ `. Hence these P,Q provide a solution of (A.2), satisfying
degP < degQ ≤ d, and hence belonging to Sd. �

However, in general (A.2) does not imply (A.1). This implication holds only if degQ = d.
The following proposition describes a possible “loss of accuracy” as we return from (A.2) to (A.1)
and degQ < d:



GEOMETRY AND SINGULARITIES OF THE PRONY MAPPING 23

Proposition A.2. Let (A.2) be satisfied with the highest nonzero coefficient of Q being c`, ` ≤ d.
Then

S(z)− P (z)

Q(z)
=

d1

zd+`+1
+

d2

zd+`+2
+ . . . . (A.4)

Proof. We notice that if the leading nonzero coefficient of Q is c` then we have
1

Q
=

1

z`
(

1

c` + c`−1

z + . . .
) =

1

z`
(f0 + f1

1

z
+ . . . ).

So multiplying (A.2) by 1
Q we get (A.4). �

Proof of Theorem 3.5. Assume that the rank of M̃d is r ≤ d, and that |Mr| 6= 0. Let us find
a polynomial Q(z) of degree r of the form Q(z) = zr +

∑r−1
j=0 cjz

j , whose coefficients satisfy
system (A.??). Put cr = (c0, . . . , cr−1, 1)T and consider a linear system M̃rcr = 0. Since by
assumptions |Mr| 6= 0, this system has a unique solution. Extend this solution by zeroes, i.e.,
put cd = (c0, . . . , cr−1, 1, 0, . . . , 0)T . We want cd to satisfy (A.??), which is M̃dcd = 0. This fact
is immediate for the first r rows of M̃d. But since the rank of M̃d is r by the assumption, its
other rows are linear combinations of the first r ones. Hence cd satisfies (A.??).

Now the equations (A.?) produce a polynomial P (z) of degree at most r− 1. So we get a ra-
tional function R(z) = P (z)

Q(z) ∈ Sr ⊆ Sd which solves the Padé problem (A.2), with degQ(z) = r.
Write R(z) =

∑∞
k=0 αk( 1

z )k+1. By Proposition A.2 we have mk = αk till k = d+ r − 1.
Now, the Taylor coefficients αk of R(z) satisfy a linear recurrence relation

mk = −
r∑
s=1

csmk−s, k = r, r + 1, . . . . (A.5)

Considering the rows of the system M̃dcd = 0 we see thatmk satisfy the same recurrence relation
(A.5) till k = d+ r − 1 (we already know that mk = αk till k = d+ r − 1). We shall show that
in fact mk satisfy (A.5) till k = 2d− 1.

Consider a d× r matrix M̄d formed by the first r columns of Md, and denote its row vectors
by vi = (mi,0, . . . ,mi,r−1), i = 1, . . . , d− 1. The vectors vi satisfy

vi = −
r∑
s=1

csvi−s, i = r, . . . , d− 1, (A.6)

since their coordinates satisfy (A.5) till k = d+r−1. Now v0, . . . ,vr−1 are linearly independent,
and hence each vi, i = r, . . . , d− 1, can be expressed as

vi =
r−1∑
s=0

γi,svs. (A.7)

Denote by ṽi = (mi,0, . . . ,mi,d), i = 1, . . . , d − 1 the row vectors of M̃d. Since by assumptions
the rank of M̃d is r, the vectors ṽi can be expressed through the first r of them exactly in the
same form as vi:

ṽi =
r−1∑
s=0

γi,sṽs, i = r, . . . , d− 1. (A.8)

Now the property of a system of vectors to satisfy the linear recurrence relation (A.6) depends
only on the coefficients γi,s in their representation (A.7) or (A.8). Hence from (A.6) we conclude
that the full rows ṽi of M̃d satisfy the same recurrence relation. Coordinate-wise this implies
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that mk satisfy (A.5) till k = 2d − 1, and hence mk = αk till k = 2d − 1. So R(z) solves the
original Problem 3.1.

In the opposite direction, assume that R(z) solves Problem 3.1, and that the representation
R(z) = P (z)

Q(z) ∈ Sr ⊂ Sd is irreducible, i.e., degQ = r. Write Q(z) = zr +
∑r−1
j=0 cjz

j . Then mk,
being the Taylor coefficients of R(z) till k = 2d − 1, satisfy a linear recurrence relation (A.5):
mk = −

∑r
s=1 csmk−s, k = r, r + 1, . . . , 2d − 1. Applying this relation coordinate-wise to the

rows of M̃d we conclude that all the rows can be linearly expressed through the first r ones. So
the rank of M̃d is at most r.

It remains to show that the left upper minor |Mr| is non-zero, and hence the rank of M̃d is
exactly r.

By Proposition 3.3, if the decomposition of R (z) in the standard basis is

R (z) =
s∑
j=1

dj∑
`=1

aj,`−1
(−1)

`−1
(`− 1)!

(z − xj)`
,

where
∑s
j=1 dj = r and {xj} are pairwise distinct, then the Taylor coefficients of R (z) are

given by (1.5). Clearly, we must have aj,dj−1 6= 0 for all j = 1, . . . , s, otherwise degQ < r, a
contradiction. Now consider the following well-known representation ofMr as a product of three
matrices (see e.g. [7]):

Mr = V (x1, d1, . . . , xs, ds)× diag {Aj}sj=1 × V (x1, d1, . . . , xs, ds)
T
, (A.9)

where V (. . . ) is the confluent Vandermonde matrix (4.1) and each Aj is the following dj × dj
block:

Aj
def
=


aj,0 aj,1 · · · · · · aj,dj−1

aj,1
(dj−1
dj−2

)
aj,dj−1 0

· · · · · · 0(
dj−1

2

)
aj,dj−1 0 · · · 0

aj,dj−1 0 · · · · · · 0

 .
The formula (A.9) can be checked by direct computation. Since {xj} are pairwise distinct and
aj,dj−1 6= 0 for all j = 1, . . . , s, we immediately conclude that |Mr| 6= 0.

This finishes the proof of Theorem 3.5. �
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NAIVE MOTIVIC DONALDSON–THOMAS TYPE HIRZEBRUCH CLASSES
AND SOME PROBLEMS

VITTORIA BUSSI(∗) AND SHOJI YOKURA(∗∗)

ABSTRACT. Donaldson-Thomas invariant is expressed as the weighted Euler characteristic of the so-called
Behrend (constructible) function. In [2] Behrend introduced a Donaldson-Thomas type invariant for a mor-
phism. Motivated by this invariant, we extend the motivic Hirzebruch class to naive Donaldson-Thomas type
analogues. We also discuss a categorification of the Donaldson-Thomas type invariant for a morphism from
a bivariant-theoretic viewpoint, and we finally pose some related questions for further investigations.

1. INTRODUCTION

The Donaldson–Thomas invariant χDT (M) (abbr. DT invariant) is the virtual count of the moduli
spaceM of stable coherent sheaves on a Calabi–Yau threefold over k. Here k is an algebraically closed
field of characteristic zero. Foundational materials for DT invariants can be found in [36], [2], [20],
[23]. In [2] Behrend made the important observation that the Donaldson–Thomas invariant χDT (M)
is described as the weighted Euler characteristic χ(M, νM) of the so-called Behrend (constructible)
function νM. For a scheme X of finite type, the Donaldson–Thomas type invariant χDT (X) is defined
as χ(X, νX). The Euler characteristic χ defined by using the compactly-supported `-adic cohomol-
ogy groups (see §2 for more details) satisfies the scissor formula χ(X) = χ(Z) + χ(X \ Z) for a
closed subvariety Z ⊂ X . This scissor formula implies that χ can be considered as a homomorphism
from the Grothendieck group of varieties χ : K0(V) → Z, and furthermore it can be extended to the
relative Grothendieck group, χ : K0(V/X) → Z for each scheme X . The Grothendieck–Riemann–
Roch version of the homomorphism χ : K0(V/X) → Z is the motivic Chern class transformation
T−1∗ : K0(V/X)→ HBM

∗ (X)⊗Q. Namely we have that
• When X is a point, T−1∗ : K0(V/X)→ HBM

∗ (X)⊗Q equals the homomorphism
χ : K0(V)→ Z ↪→ Q.
• The composite

∫
X
◦T−1∗ = χ : K0(V/X)→ Z ↪→ Q.

Here T−1∗ : K0(V/X) → HBM
∗ (X) ⊗ Q is the specialization to y = −1 of the motivic Hirzebruch

class transformation Ty∗ : K0(V/X)→ HBM
∗ (X)⊗Q[y] (see [5]).

On the other hand the Donaldson–Thomas type invariant χDT (X) does not in general satisfy the
scissor formula χDT (X) 6= χDT (Z) + χDT (X \ Z). Namely, χDT (−) cannot be captured as a homo-
morphism χDT : K0(V)→ Z. Instead the following scissor formula holds:

(1.1) χDT (X
idX−−→ X) = χDT (Z

iZ,X−−−→ X) + χDT (X \ Z
iX\Z,X−−−−−→ X).

Here iZ,X and iX\Z,X are the inclusions. For this formula to make sense, we need a Donaldson–Thomas

type invariant χDT (X
f−→ Y ) for a morphism f : X → Y , which is also introduced in [2] and simply

defined as χ(X, f∗νY ). Then χDT can be considered as a homomorphism χDT : K0(V/X)→ Z. Note

(*) Funded by EPSRC
(**) Partially supported by JSPS KAKENHI Grant Number 24540085.
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that in the case when X is a point, χDT : K0(V/pt) = K0(V) → Z is the usual Euler characteristic
homomorphism χ : K0(V)→ Z.

In this paper we consider Grothendieck–Riemann–Roch type formulas for χDT , using the motivic
Hirzebruch class transformation Ty∗ ([5]). One of the key features on constructible functions and el-
ements of K0(V/X) when we state such Grothendieck–Riemann–Roch type formulas is that they are
stable under morphisms. For example, δ assigning to each variety X a constructible function δX is said
to be stable under a morphism f : X → Y if δX = f∗δY . The 11 assigning to each variety X the
characteristic function 11X is stable under a (in fact, any) morphism and ν̃ assigning to each variety X
the signed Behrend function ν̃X := (−1)dimXνX is stable under a smooth morphism.

We also propose to consider a bivariant-theoretic aspect for the “categorification” of the DT invariant.
By this we mean a graded vector space encoding an appropriate cohomology theory whose Euler char-
acteristic is equal to DT invariant. Naive reasons for the latter are the following. The categorification of
the Euler characteristic is nothing but

χ(X) :=
∑
i

(−1)i dimRH
i
c(X;R).

Note that the compact-support-cohomology Hi
c(X;R) is isomorphic to the Borel–Moore homology

HBM
i (X;R). The categorification of the Hirzebruch χy-genus is

χy(X) =
∑

(−1)i dimCGr
p
F (Hi

c(X;C))(−y)p

with F being the Hodge filtration of the mixed Hodge structure of Hi
c(X;C). Since the DT type in-

variant of a morphism satisfies the scissor formula (1.1) due to its definition, we propose to intro-

duce some bivariant-theoretic homology theory Θ∗(X
f−→ Y ) “categorifying” χDT (X

f−→ Y ), that is

χDT (X
f−→ Y ) =

∑
i(−1)i dim Θi(X

f−→ Y ). (Here we denote it “symbolically”; as described in the
case of χy-genus, the above alternating sum of the dimensions might be complicated involving some
other ingredients such as mixed Hodge structures.)

2. DONALDSON–THOMAS TYPE INVARIANTS OF MORPHISMS

Let K be an algebraically closed field of characteristic p, which is not necessarily zero. Let X be a
K-scheme of finite type. For a prime number ` such that ` 6= p and the field Q` of `-adic numbers, the
following Euler characteristic

χ(X) :=
∑
i

(−1)i dimQ` H
i
c(X,Q`)

is independent on the choice of the prime number `. In fact the following properties hold (e.g., see [17,
Theorem 3.10]):

Theorem 2.1. Let K be an algebraically closed field and X,Y be separated K -schemes of finite type.
Then

(1) If Z is a closed subscheme of X , then χ(X) = χ(Z) + χ(X \ Z).
(2) χ(X × Y ) = χ(X)χ(Y ).
(3) χ(X) is independent of the choice of ` in the above definition
(4) If K = C, χ(X) is the usual Euler characteristic with the analytic topology.
(5) χ(Km) = 1 and χ(KPm) = m+ 1 for ∀m > 0

For a constructible function α : X → Z on X the weighted Euler characteristic χ(X,α) is defined by

χ(X,α) :=
∑
m

mχ(α−1(m)).
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Let X be embeddable in a smooth scheme M and let CMX be the normal cone of X in M and let
π : CMX → X be the projection and CMX =

∑
miCi, where mi ∈ Z are multiplicities and Ci’s are

irreducible components of the cycle. Then the following cycle

CX/M :=
∑

(−1)dim(π(Ci))miπ(Ci) ∈ Z(X)

is in fact independent of the choice of the embedding of X into a smooth M ([1, Lemma 1.1] and [2,
Proposition 1.1], also see [11, Example 4.2.6.]), thus simply denoted by CX without referring to the
ambient smooth M and is called the distinguished cycle of the scheme. Then consider the isomorphism
from the abelian groups Z(X) of cycles to the abelian group F(X) of constructible functions

Eu : Z(X)
∼=−→ F(X)

which is defined by Eu(
∑
imi[Zi]) :=

∑
imi EuZi , where EuZ denotes the local Euler obstruction sup-

ported on the subscheme Zi. Then the image of the distinguished cycle CX under the above isomorphism
Eu defines a canonical integer valued constructible function

νX := Eu(CX),

which is called the Behrend function. The fundamental properties of the Behrend function are the fol-
lowing.

Theorem 2.2. (1) For a smooth point x of a scheme X of dimension n, νX(x) = (−1)n. In partic-
ular, if X is smooth of dimension n, then νX = (−1)n11X .

(2) νX×Y = νXνY .
(3) If f : X → Y is smooth of relative dimension n, then νX = (−1)nf∗νY .
(4) In particular, if f : X → Y is étale, then νX = f∗νY .
(5) (see also [32]) If Y is the critical scheme of a regular function f on a smooth scheme M , i.e.,

Y = Z(df), then for y ∈ Y

νY (y) = (−1)dimM (1− χ(Fy)) (= (−1)dimX(χ(Fy)− 1)),

where X := f−1(0) is the hypersurface, thus Y is the singularity subscheme of X defined by
the partial derivatives of f , and Fy is the Milnor fiber of X at the point y.

Remark 2.3. In [1, §1 Weighted Chern–Mather Classes] Paolo Aluffi introduces the weighted Chern–
Mather class of Y ⊂M , denoted by cwMa(Y ), as follows:

cwMa(Y ) :=
∑
i

(−1)dimY−dimπ(Ci)mic
Ma
∗ (π(Ci)),

where cMa
∗ (π(Ci)) is the Chern–Mather class of π(Ci), i.e. cMa

∗ (π(Ci)) = c∗(Euπ(Ci)). Therefore we
get the following:

cwMa(Y ) :=
∑
i

(−1)dimY−dimπ(Ci)mic
Ma
∗ (π(Ci))

=
∑
i

(−1)dimY−dimπ(Ci)mic∗(Euπ(Ci))

= c∗

(
(−1)dimY

∑
i

(−1)dimπ(Ci)mi Euπ(Ci)

)
= c∗

(
(−1)dimY νY

)
.
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In other words, Aluffi introduces the distinguished constructible function, i.e. the signed Behrend func-
tion (−1)dimY νY =: ν̃Y . In [1, Theorem 1.2.] he proves that if X is defined as the zero-scheme of a
nonzero section of a line bundle L over M , then

(2.4) c∗(ν̃Y ) = (−1)dimX−dimY c(L) ∩ (cFJ(X)− c∗(X)),

where Y is the singularity subscheme of the hypersurface X , i.e. the subscheme locally defined by the
partial derivatives of an equation for X , and cFJ(X) is Fulton–Johnson class of X or the canonical class
of X (see [11, Example 4.2.6.] and [12]). In this hypersurface case he furthermore shows the following
[1, Theorem 1.5.]: As in (5) of the above Theorem 2.2, if µY is the constructible function defined by
µY (y) := (−1)dimX(χ(Fy)− 1), then c∗(ν̃Y ) = (−1)dimY c∗(µY ).

It follows from (2.4) and (−1)dimY c∗(ν̃Y ) = c∗(νY ) that we get

c(L)−1 ∩ c∗(νY ) = (−1)dimX(cFJ(X)− c∗(X)).

The right-hand-sided invariant (−1)dimX(cFJ(X)−c∗(X)) is the so-called Milnor class ofX (supported
on the singular locus Y ). Hence, in particular, in the case when the line bundle L is trivial, i.e., in the
case of (5) of Theorem 2.2, we have that c∗(νY ) = c∗(µY ) is nothing but the Milnor class of X .

The weighted Euler characteristic of the above Behrend function is called the Donaldson–Thomas
type invariant and denoted by χDT (X):

χDT (X) := χ(X, νX).

Remark 2.5. We would like to emphasize that using the Aluffi function ν̃X we have that

χDT (X) = χ(X, νX) = (−1)dimXχ(X, ν̃X).

In [2, Definition 1.7] Kai Behrend defined the following.

Definition 2.6. The DT-invariant or virtual count of a morphism f : X → Y is defined by

χDT (X
f−→ Y ) := χ(X, f∗νY ),

where νY is the Behrend function of the target scheme Y .

Remark 2.7. Here we emphasize that χDT (X
f−→ Y ) is defined by the constructible function f∗νY on

the source scheme X . From the definition we can observe the following:

(1) χDT (X
idX−−→ X) = χ(X, νX) = χDT (X) is the DT-invariant of X .

(2) χDT (X
πX−−→ pt) = χ(X, f∗νpt) = χ(X, 11X) = χ(X) is the topological Euler-Poincaré

characteristic of X .
(3) If Y is smooth, whatever the morphism f : X → Y is, we have

χDT (X
f−→ Y ) = (−1)dimY χ(X).

The very special case is that Y = pt, which is the above (2).

The Euler characteristic χ(−) satisfies the additivity χ(X) = χ(Z) + χ(X \ Z) for a closed sub-
scheme Z ⊂ X . Hence, χ is considered as a homomorphism from the Grothendieck group of varieties
χ : K0(V)→ Z and furthermore as a homomorphism from the relative Grothendieck group of varieties
over a fixed variety X ([28])

χ : K0(V/X)→ Z,
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which is defined by χ([V
h−→ X]) = χ(V ) = χ(V, 11V ) = χ(V, h∗11X) = χ(X,h∗11V ). Moreover, the

following diagram commutes:

(2.8) K0(V/X)

χ
$$

f∗ // K0(V/Y )

χ
zz

Z.

On the other hand we have that χDT (X) 6= χDT (Z) + χDT (X \ Z). Thus χDT (−) cannot be captured
as a homomorphism χDT : K0(V)→ Z. However, we have that

χDT (X
idX−−→ X) = χDT (Z

iZ,X−−−→ X) + χDT (X \ Z
iX\Z,X−−−−−→ X).

Lemma 2.9. If we define χDT ([V
h−→ X]) := χ(V, h∗νX), then we get the homomorphism

χDT : K0(V/X)→ Z.

Proof. The definition χDT ([V
h−→ X]) := χ(V, h∗νX) is independent of the choice of the representative

of the isomorphism class [V
h−→ X]. Indeed, let V ′ h′−→ X be another representative of [V

h−→ X], i.e.,
we have the following commutative diagram, where ι : V ′

∼=−→ V is an isomorphism:

V ′

h′ !!

ι // V

h~~
X.

Then we have that χ(V ′, h′
∗
νX) = χ(V ′, ι∗(h∗νX)) = χ(V, h∗νX).

For a closed subvariety W ⊂ V , we have

χDT ([V
h−→ X] = χ(V, h∗νX)

= χ(W,h∗νX) + χ(V \W,h∗νX)

= χ(W, (h|W )∗νX) + χ(V \W, (h|V \W )∗νX)

= χDT ([W
h|W−−→ X]) + χDT ([V \W

h|V \W−−−−→ X]).

Thus we get the homomorphism χDT : K0(V/X)→ Z. �

Lemma 2.10. If f : X → Y satisfies the condition that νX = f∗νY (such a morphism shall be called a
“Behrend morphism”) , then the following diagram commutes:

K0(V/X)

χDT $$

f∗ // K0(V/Y )

χDTzz
Z.
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Proof. It is straightforward:

χDT ◦ f∗([V
h−→ X]) = χDT ([V

f◦h−−→ X])

= χ(V, (f ◦ h)∗νY )

= χ(V, h∗f∗νY )

= χ(V, h∗νX) (since νX = f∗νY )

= χDT ([V
h−→ X]).

. �

Remark 2.11. An étale map is a typical example of a Behrend morphism.

Remark 2.12. For a general morphism f : X → Y , we have that

f∗νY = (−1)reldim fνX + Θ(Xsing ∪ f−1(Ysing)),

where reldim f := dimX − dimY is the relative dimension of f and Θ(Xsing ∪ f−1(Ysing)) is some
constructible functions supported on the singular locus Xsing of X and the inverse image of the singular
locus Ysing of Y . As

νX = (−1)dimX11X + some constructible function supported on Xsing,

then

f∗νY = (−1)dimXf∗11Y + f∗(some constructible function supported on Ysing).

Hence in general we have

(χDT ◦ f∗)([V
h−→ X]) = (−1)reldim fχDT ([V

h−→ X]) + extra terms.

Here the extra terms are supported on the singular locus Xsing .

To avoid taking care of the sign, we use the signed Behrend function, i.e., the Aluffi function

ν̃X = (−1)dimXνX ,

which will be used later again. Note that if X is smooth, ν̃X = 11X . Then we define the signed

Donaldson–Thomas type invariant χ̃DT (X) by χ̃DT (X
f−→ Y ) := χ(X, f∗ν̃Y ). (In other words, this

invariant could be called an Aluffi–Behrend–Euler characteristic of a morphism f .) Then for a morphism
f : X → Y we have f∗ν̃Y = ν̃X + Θ̃(Xsing ∪ f−1(Ysing)). In particular the above lemma is modified
as follows:

Lemma 2.13. If f : X → Y satisfies the condition that ν̃X = f∗ν̃Y (such a morphism shall be called
a “signed Behrend morphism”; a smooth morphism is a typical example for ν̃X = f∗ν̃Y ) , then the
following diagram commutes:

K0(V/X)

χ̃DT $$

f∗ // K0(V/Y )

χ̃DTzz
Z.
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3. GENERALIZED DONALDSON–THOMAS TYPE INVARIANTS OF MORPHISMS

Mimicking the above definition of χDT (X
f−→ Y ) and ignoring the geometric or topological interpre-

tation, we define the following.

Definition 3.1. For a morphism f : X → Y and a constructible function δY ∈ F(Y ) we define

χδY (X
f−→ Y ) := χ(X, f∗δY ).

Lemma 3.2. For a morphism f : X → Y and a constructible function α ∈ F(X) we have

χ(X,α) = χ(Y, f∗α).

Corollary 3.3. For a morphism f : X → Y and a constructible function δY ∈ F(Y ) we have

χδY (X
f−→ Y ) = χ(Y, f∗f

∗δY ).

Remark 3.4. For the constant map πX : X → pt, the pushforward homomorphism

πX∗ : F(X)→ F(pt) = Z

is nothing but the fact that πX∗(α) = χ(X,α) (by the definition of the pushforward). Hence, the above
equality χ(X,α) = χ(Y, f∗α) is rephrased as the commutativity of the following diagram:

F(X)

πX∗ %%

f∗ // F(Y )

πY ∗yy
F(pt) = Z.

Namely, πX∗ = (πY ◦ f)∗ = πY ∗ ◦ f∗. This might suggest that F(−) is a covariant functor, but we
need to be a bit careful. F(−) is a covariant functor provided that the ground field K is of characteristic
zero. However, if it is not of characteristic zero, then it may happen that (g ◦ f)∗ 6= g∗ ◦ f∗, for which
see Schürmann’s example in [17].

Remark 3.5. If we define 11∗ : K0(V/X) → F(X) by 11∗([V
h−→ X]) := h∗11V , then for a morphism

f : X → Y we have the following commutative diagrams:

K0(V/X)

11∗

��

f∗ // K0(V/Y )

11∗

��
F(X)

πX∗ &&

f∗

// F(Y )

πY ∗xx
F(pt) = Z.

(πX∗ ◦ 11∗)([V
h−→ X]) = χ([V

h−→ X]) and the outer triangle is nothing but the commutative diagram
(2.8) mentioned before.

Here we emphasize that the above equality χδY (X
f−→ Y ) = χ(Y, f∗f

∗δY ) have the following two
aspects:

• The invariant on LHS for a morphism f : X → Y is defined on the source space X .
• The invariant on RHS for a morphism f : X → Y is defined on the target space Y .
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So, in order to emphasize the distinction, we introduce the following notation:

χδY (X
f−→ Y ) := χ(Y, f∗f

∗δY ).

Since we want to deal with higher class versions of the Donaldson–Thomas type invariants and use
the functoriality of the constructible function functor F(−), we assume that the ground field K is of
characteristic zero. We consider MacPherson’s Chern class transformation c∗ : F(X) → HBM

∗ (X),
which is due to Kennedy [21].

For a morphism h : V → X and for a constructible function δX ∈ F(X) on the target space X , we
have ∫

V

c∗(h
∗δX) = χ(V, h∗δX) = χδX (V

h−→ X),∫
X

c∗(h∗h
∗δX) = χ(X,h∗h

∗δX) = χδX (V
h−→ X).

Here c∗(h∗δX) ∈ HBM
∗ (V ) on the side of the source space V and c∗(h∗h∗δX) ∈ HBM

∗ (X) on the side
of the target space X . Hence when we want to deal with them as the homomorphism from K0(V/X) to
HBM
∗ (X), we should consider the higher analogues c∗(h∗h∗δX), which we denote by

cδX∗ (V
h−→ X) := c∗(h

∗δX) ∈ HBM
∗ (V ).

On the other hand we denote

cδX∗ (V
h−→ X) := c∗(h∗h

∗δX) ∈ HBM
∗ (X).

Note that
• cδX∗ (V

h−→ X) = h∗(c
δX
∗ (V

h−→ X)),
• for an isomorphism idX : X → X , these two classes are identical and denoted simply by
cδX∗ (X) := c∗(δX) = cδX∗ (X

idX−−→ X) = cδX∗ (X
idX−−→ X).

In the following sections we treat these two objects cδX∗ (V
h−→ X) and cδX∗ (V

h−→ X) separately, since
they have different natures.

4. MOTIVIC ALUFFI-TYPE CLASSES

In [2] the Chern class cνX∗ (X) for the Behrend function νX is called the Aluffi class, in which case∫
X
cνX∗ (X) = χDT (X). However, in this paper, for the signed Behrend function ν̃X the Chern class

cν̃X∗ (X) shall be called the Aluffi class and denoted by cA`∗ (X), since this is the class which Aluffi
introduced in [1] as pointed out in [2, §1.4 The Aluffi class]. Note that

∫
X
cA`∗ (X) = (−1)dimXχDT (X).

In this sense, the Chern class cδX∗ (V
h−→ X) defined above shall be called a generalized Aluffi class of a

morphism h : V → X associated to a constructible function δX ∈ F(X). So the original Aluffi class is

cν̃X∗ (X
idX−−→ X).

Lemma 4.1. The following formulae hold:

(1) If (V
h−→ X) ∼= (V ′

h′−→ X), i.e., there exists an isomorphism k : V
∼=−→ V ′ such that h = h′ ◦ k,

then we have cδX∗ (V
h−→ X) = cδX∗ (V ′

h′−→ X).
(2) For a closed subvariety W ⊂ V ,

cδX∗ (V
h−→ X) = cδX∗ (W

h|W−−−→ X) + cδX∗ (V \W
h|V \W−−−−→ X).

(3) For morphisms hi : Vi → Xi (i = 1, 2),

c
δX1
×δX2

∗ (V1 × V2
h1×h2−−−−→ X1 ×X2) = c

δX1
∗ (V1

h1−→ X1)× cδX2
∗ (V2

h2−→ X2).
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(4) cδpt∗ (pt→ pt) = δpt(pt) ∈ Z.
Corollary 4.2. Let δX ∈ F(X) be a constructible function. Then the following hold:

(1) The map cδX∗ : K0(V/X)→ HBM
∗ (X) defined by

cδX∗ ([V
h−→ X]) := cδX∗ (V

h−→ X) = c∗(h∗h
∗δX)

and linearly extended is a well-defined homomorphism.
(2) cδX∗ commutes with the exterior product, i.e. for constructible functions δXi ∈ F(Xi) and for

αi ∈ K0(V/Xi),

c
δX1
×δX2

∗ (α1 × α2) = c
δX1
∗ (α1)× cδX2

∗ (α2).

Remark 4.3. If δX is some function defined on X , such as the characteristic function 11X , the Behrend
function νX , the signed Behrend function ν̃X , and if it is multiplicative, i.e. δX×Y = δX × δY , then the
above Corollary 4.2 (2) can be simply rewritten as cδX1×X2

∗ (α1 × α2) = c
δX1
∗ (α1)× cδX2

∗ (α2).

Remark 4.4. If X is smooth and h : V → X is proper (here properness is required since we use the
pushforward h∗ of the Borel–Moore homology groups), then we have

cA`∗ ([V
h−→ X]) = c∗(h∗h

∗νX) = h∗c∗(h
∗11X) = h∗c∗(11V ) = h∗c

SM
∗ (V )

is the pushforward of the Chern–Schwartz–MacPherson class of V , thus it depends on the morphism
h : V → X , although the degree zero part of it, i.e. the signed Donaldson–Thomas type invariant is
nothing but the Euler characteristic of V , thus it does not depend on the morphism at all. Therefore the
higher class version is more subtle.

The part h∗h∗δX can be formulated as follows. Given a constructible function δX ∈ F(X), we define

[δX ] : K0(V/X)→ F(X)

by [δX ]([V
h−→ X]) := h∗h

∗δX and extend it linearly, i.e.,

[δX ]

(∑
h

mh[V
h−→ X]

)
:=
∑
h

mh (h∗h
∗δX).

If (V
h−→ X) ∼= (V ′

h′−→ X), i.e., there exists an isomorphism k : V
∼=−→ V ′ such that h = h′ ◦ k, then we

have
(h′)∗(h

′)∗δX = h∗k∗k
∗h∗δX = h∗h

∗δX

because k∗k∗ = idF(X). For a morphism h : V → X and for a closed subvariety W ⊂ V , we have

h∗h
∗δX = (h|W )∗(h|W )∗δX + (h|V \W )∗(h|V \W )∗δX ,

that is, we have that [δX ]

(
[V

h−→ X]− [W
h|W−−−→ X]− [V \W

h|V \W−−−−→ X]

)
= 0. Therefore the homo-

morphism [δX ] : K0(V/X)→ F(X) is well-defined.
Note that 11∗ : K0(V/X) → F(X) is nothing but [11X ] : K0(V/X) → F(X). It is straightforward

to see the following.

Lemma 4.5. For any morphism g : X → Y and any constructible function δY ∈ F(Y ), the following
diagrams commute:

K0(V/X)
[g∗δY ]−−−−→ F(X)

g∗

y yg∗
K0(V/Y ) −−−−→

[δY ]
F(Y ).

,

K0(V/Y )
[δY ]−−−−→ F(Y )

g∗
y yg∗

K0(V/X) −−−−→
[g∗δY ]

F(X).
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The following corollary follows from MacPherson’s theorem [29] and our previous results [34, 38],
and here we need the properness of the morphism g : X → Y , since we deal with the pushforward
homomorphism for the Borel–Moore homology. cδX∗ : K0(V/X)→ HBM

∗ (X) is the composite of

[δX ] : K0(V/X)→ F(X)

and MacPherson’s Chern class c∗, in particular cA`∗ : K0(V/X)→ HBM
∗ (X) is cA`∗ = c∗ ◦ [ν̃X ]. Hence

we have the following corollary:

Corollary 4.6. (1) For a proper morphism g : X → Y and any constructible function δY ∈ F(Y ),
the following diagram commutes:

K0(V/X)
c
g∗δY
∗−−−−→ HBM

∗ (X)

g∗

y yg∗
K0(V/Y ) −−−−→

c
δY
∗

HBM
∗ (Y ).

(2) For a smooth morphism g : X → Y with c(Tg) being the total Chern cohomology class of the
relative tangent bundle Tg of the smooth morphism and g∗ : HBM

∗ (Y ) → HBM
∗ (X) the Gysin

homomorphism ([11, Example 19.2.1]) , the following diagram commutes:

K0(V/Y )
c
δY
∗−−−−→ HBM

∗ (Y )

g∗
y yc(Tg)∩g∗

K0(V/X) −−−−→
c
g∗δY
∗

HBM
∗ (X).

Therefore, if δ assigning to each variety X a constructible function δX ∈ F(X) is stable under a
proper morphism g : X → Y , then we have the following commutative diagrams:

K0(V/X)
c
δX
∗−−−−→ HBM

∗ (X)

g∗

y yg∗
K0(V/Y ) −−−−→

c
δY
∗

HBM
∗ (Y ),

K0(V/Y )
c
δY
∗−−−−→ HBM

∗ (Y )

g∗
y yc(Tg)∩g∗

K0(V/X) −−−−→
c
δX
∗

HBM
∗ (X).

In particular we get the following theorem for the Aluffi class cA`∗ : K0(V/−)→ HBM
∗ (−):

Theorem 4.7. For a smooth proper morphism g : X → Y the following diagrams commute:

K0(V/X)
cA`∗−−−−→ HBM

∗ (X)

g∗

y yg∗
K0(V/Y ) −−−−→

cA`∗

HBM
∗ (Y ),

K0(V/Y )
cA`∗−−−−→ HBM

∗ (Y )

g∗
y yc(Tg)∩g∗

K0(V/X) −−−−→
cA`∗

HBM
∗ (X).

They are respectively Grothendieck–Riemann–Roch type and a Verdier–Riemann–Roch type formulas.

Remark 4.8. In the above theorem the smoothness of the morphism g : X → Y is crucial and the Aluffi
class homomorphism cAl∗ : K0(V/X) → HBM

∗ (X) cannot be captured as a natural transformation in a
full generality, i.e. natural for any morphism. Indeed, if it were the case, then

cAl∗ : K0(V/−)→ HBM
∗ (−) ↪→ HBM

∗ (−)⊗Q
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becomes a natural transformation such that for any smooth variety X we have

cA`∗ ([X
idX−−→ X]) = c(TX) ∩ [X].

Let Ty∗ : K0(V/−) → HBM
∗ (−) ⊗ Q[y] be the motivic Hirzebruch class transformation [5], which is

the unique natural transformation satisfying the normalization condition that for a smooth X ,

Ty∗([X
idX−−→ X]) = tdy(TX) ∩ [X],

where [X] is the fundamental class and tdy(TX) is Hirzebruch characteristic cohomology class of the
tangent bundle TX . Here the Hirzebruch class tdy(E) of the complex or algebraic vector bundle E over
X is defined to be (see [15, 16]):

tdy(E) :=

rankE∏
i=1

(
α(1 + y)

1− e−α(1+y)
− αy

)
.

Here αi’s are the Chern roots of E, i.e., c(E) =

rank(E)∏
i=1

(1 + αi). Then tdy(E) is a unification of the

following three well-known characteristic cohomology classes:

• td−1(E) =

rank(E)∏
i=1

(1 + α) = c(E), the total Chern class,

• td0(E) =

rank(E)∏
i=1

α

1− e−α
= td(E), the total Todd class,

• td1(E) =

rank(E)∏
i=1

α

tanhα
= L(E), the total Thom–Hirzebruch L-class.

Then cA`∗ is equal to T−1∗ : K0(V/−)→ HBM
∗ (−)⊗Q, since T−1∗ : K0(V/−)→ HBM

∗ (−)⊗Q
is the unique natural transformation satisfying the normalization condition that

T−1∗([X
idX−−→ X]) = c(TX) ∩ [X]

for a smooth X . Thus for any variety X , singular or non-singular, we have

cA`∗ ([X
idX−−→ X]) = cSM∗ (X) = c∗(11X)

In particular
∫
X
c∗(11X) = χ(X) the topological Euler–Poincaré characteristic, which is a contradiction

to the fact that ∫
X

cA`∗ ([X
idX−−→ X]) = (−1)dimXχDT (X).

Remark 4.9. In fact c11X∗ is equal to the motivic Chern class transformation

T−1∗ : K0(V/X)→ HBM
∗ (X) ↪→ HBM

∗ (X)⊗Q.

K0(V/X) is a ring with the following fiber product

[V
h−→ X] · [W k−→ X] := [V ×X W

h×Xk−−−−→ X].

Proposition 4.10. The operation h∗h∗δX of pullback followed by pushforward of a constructible func-
tion makesF(X) aK0(V/X)-module with the product [V

h−→ X]·δX := h∗h
∗δX . Namely, the following

properties hold:

• [V
h−→ X] · (δ′X + δ′′X) = [V

h−→ X] · δ′X + [V
h−→ X] · δ′′X .

• ([V
h−→ X] + [W

k−→ X]) · δX = [V
h−→ X] · δX + [W

k−→ X] · δX .
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• ([V
h−→ X] · [W k−→ X]) · δX = [V

h−→ X] · ([W k−→ X] · δX).

• [X
idX−−→ X] · δX = δX .

Then the operation h∗h∗δX gives rise to a map Φ : K0(V/X)⊗F(X)→ F(X) and the composition
Φc∗ := c∗ ◦Φ : K0(V/X)⊗F(X)→ HBM

∗ (X) of Φ and MacPherson’s Chern class transformation c∗
is a kind of extension of c∗.

Lemma 4.11. For any morphism g : X → Y the following diagram commutes:

K0(V/Y )⊗F(Y )
Φ−−−−→ F(Y )

g∗⊗g∗
y yg∗

K0(V/X)⊗F(X) −−−−→
Φ

F(X).

Corollary 4.12. For a smooth morphism g : X → Y the following diagram commutes:

K0(V/Y )⊗F(Y )
Φc∗−−−−→ HBM

∗ (Y )

g∗⊗g∗
y yc(Tg)∩g∗

K0(V/X)⊗F(X) −−−−→
Φc∗

HBM
∗ (X).

Remark 4.13. Fix δY ∈ F(Y ), the composite of the inclusion homomorphism

iδY : K0(V/Y )→ K0(V/Y )⊗F(Y )

defined by iδY (α) := α⊗ δY and the map Φ : K0(V/Y )⊗F(Y )→ F(Y ) is the homomorphism [δY ];

Φ ◦ iδY = [δY ] : K0(V/F )→ F(Y ).

The right-hand-sided commutative diagram in Lemma 4.5 is the outer square of the following commuta-
tive diagrams:

K0(V/Y )
iδY−−−−→ K0(V/Y )⊗F(Y )

Φ−−−−→ F(Y )

g∗
y yg∗⊗g∗ yg∗

K0(V/X) −−−−→
ig∗δY

K0(V/X)⊗F(X) −−−−→
Φ

F(X).

Furthermore, if g : X → Y is smooth, we get the following commutative diagrams:

K0(V/Y )
iδY−−−−→ K0(V/Y )⊗F(Y )

Φ−−−−→ F(Y )
c∗−−−−→ HBM

∗ (Y )

g∗
y yg∗⊗g∗ yg∗ yc(Tg)∩g∗

K0(V/X) −−−−→
ig∗δY

K0(V/X)⊗F(X) −−−−→
Φ

F(X) −−−−→
c∗

HBM
∗ (X),

the outer square of which is the commutative diagram in Corollary 4.6 (2).

Remark 4.14. As to the pushforward we do knot know if there exists a reasonable pushforward “?” :
K0(V/X)⊗F(X)→ K0(V/Y )⊗F(Y ) such that the following diagram commutes:

K0(V/X)⊗F(X)
Φ−−−−→ F(X)

“?”

y yg∗
K0(V/Y )⊗F(Y ) −−−−→

Φ
F(Y ).
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Indeed, for [V
h−→ X]⊗ δX ∈ K0(V/X)⊗F(X) we have that g∗Φ([V

h−→ X]⊗ δX) = g∗h∗h
∗δX . But

we do not know how to define “?” : K0(V/X)⊗F(X)→ K0(V/Y )⊗F(Y ) such that

Φ(“?”([V
h−→ X]⊗ δX)) = g∗h∗h

∗δX .

One possibility would be

“?” = (g∗⊗?∗)([V
h−→ X]⊗ δX) = [V

gh−→ Y ]⊗?∗(δX) = (gh)∗(gh)∗(?∗(δX)) = g∗h∗h
∗g∗(?∗(δX)),

but here we do not know how to define ?∗ : F(X) → F(Y ) so that g∗(?∗(δX)) = δX . At the moment
we can see only that the following diagrams commute:

K0(V/X)

g∗

��

ig∗δY // K0(V/X)⊗F(X)
Φ // F(X)

g∗

��

c∗ // HBM
∗ (X)

g∗

��
K0(V/Y )

iδY

// K0(V/Y )⊗F(Y )
Φ
// F(Y )

c∗
// HBM
∗ (Y )

Indeed, in the left long square, we do have that

(g∗ ◦ Φ ◦ ig∗δY ) ([V
h−→ X]) = g∗

(
Φ([V

h−→ X]⊗ g∗δY )
)

= g∗(h∗h
∗(g∗δY )) = (gh)∗(gh)∗δY ,

(Φ ◦ iδY ◦ g∗) ([V
h−→ X]) = Φ

(
iδY ([V

gh−→ Y ])
)

= Φ([V
gh−→ Y ]⊗ δY ) = (gh)∗(gh)∗δY .

Thus the left long square is commutative.

5. NAIVE MOTIVIC DONALDSON–THOMAS TYPE HIRZEBRUCH CLASSES

In this section we give a further generalization of the above generalized Aluffi class cδ∗(X), using the
motivic Hirzebruch class transformation Ty∗ : K0(V/−)→ HBM

∗ (−)⊗Q[y].
In the above argument, a key part is the operation of pullback-followed-by-pushforward h∗h∗ for

a morphism h : V → X on a fixed or chosen constructible function δX of the target space X . It is
quite natural to do the same operation on K0(V/X) itself. For that purpose we need to define a motivic
element δmotX ∈ K0(V/X) corresponding to the constructible function δX ; in particular we need to define
a reasonable motivic element νmotX ∈ K0(V/X) corresponding to the Behrend function νX ∈ F(X).

By considering the isomorphism 11 : Z(X)
∼=−→ F(X), 11 (

∑
V nV [V ]) :=

∑
V nV 11V , we define

another distinguished integral cycle: DX := 11−1(νX)
(
= 11−1 ◦ Eu(CX)

)
. Then we set

νmotX := [DX → X].

This can be put in as follows. Let s : F(X) → K0(V/X) be the section of 11∗ : K0(V/X) → F(X)
defined by s(11S) := [S ↪→ X]. Then νmotX = s(νX). Another way is νmotX :=

∑
n n[ν−1

X (n) ↪→ X]
(see [10]).

Remark 5.1. Obviously the homomorphism [11X ] = 11∗ : K0(V/X) → F(X) is not injective and its
kernel is infinite. In the case when X is the critical set of a regular function f : M → C, then there is a
notion of “motivic element” (which is called the “motivic Donaldson–Thomas invariant”) corresponding
to the Behrend function (which is in this case described via the Milnor fiber), using the motivic Milnor
fiber, due to Denef–Loeser. In our general case, we do not have such a sophisticated machinery available,
thus it seems to be natural to define a motivic element νmotX naively as above.

Let Ψ : K0(V/X)⊗K0(V/X)→ K0(V/X) be the fiber product mentioned before:

Ψ
(

[V
h−→ X]⊗ [W

k−→ X]
)

:= [V
h−→ X] · [W k−→ X] = [V ×X W

h×Xk−−−−→ X].
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Since [δX ] = Φ ◦ iδX : K0(V/X)
iδX−−→ K0(V/X) ⊗ F(X)

Φ−→ F(X) with δX ∈ F(X), we consider
its “motivic” analogue, which means the following homomorphism

[γX ] : K0(V/X)
iγX−−→ K0(V/X)⊗K0(V/X)

Ψ−→ K0(V/X),

where γX ∈ K0(V/X) and iγX : K0(V/X)→ K0(V/X)⊗K0(V/X) is defined by iγX (α) := α⊗γX .

Proposition 5.2. Let γX ∈ K0(V/X). Then the following diagram commutes:

K0(V/X)

[11∗(γX)] %%

[γX ] // K0(V/X)

11∗yy
F(X).

Proof. Let γX := [S
hS−−→ X]. Then it suffices to show the following(

11∗ ◦
[
[S

hS−−→ X]
])

([V
h−→ X]) =

[
11∗

(
[S

hS−−→ X]
)]

([V
h−→ X]).

This can be proved using the fiber square

V ×X S
h̃−−−−→ S

h̃S

y yhS
V −−−−→

h
X.(

11∗ ◦
[
[S

hS−−→ X]
])

([V
h−→ X]) = 11∗

([
[S

hS−−→ X]
]

([V
h−→ X])

)
= 11∗([V ×X S

h◦h̃S−−−→ X])

= (h ◦ h̃S)∗11V×XS (by the definition of 11∗)

= h∗h̃S∗11V×XS

= h∗h̃S∗h̃
∗11S

= h∗h
∗(hS)∗11S (since h̃S∗h̃

∗ = h∗(hS)∗)

= h∗h
∗
(

11∗([S
hS−−→ X])

)
=
[
11∗

(
[S

hS−−→ X]
)]

([V
h−→ X]).

�

Corollary 5.3. (1) Let δX ∈ F(X) and let δmotX ∈ K0(V/X) be such that 11∗(δ
mot
X ) = δX . Then

we have

K0(V/X)

[δX ] %%

[δmotX ] // K0(V/X)

11∗yy
F(X).

The motivic element δmotX is called a naive motivic lift of δX .
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(2) In particular, we have

K0(V/X)

[νX ] %%

[νmotX ] // K0(V/X)

11∗yy
F(X).

Remark 5.4. Here we emphasize that the following diagrams commutes:

K0(V/X)

[νX ] %%

[νmotX ] // K0(V/X)

11∗yy

T−1∗

''
F(X)

c∗⊗Q
// HBM
∗ (X)⊗Q.

Thus, modulo the torsion and the choices of motivic elements νmotX , the composite T−1∗ ◦ [νmotX ] is a
higher class analogue of the Donaldson–Thomas type invariant. Thus it would be natural to generalize
the Donaldson–Thomas type invariant using the motivic Hirzebruch class Ty∗.

Let γX ∈ K0(V/X), γY ∈ K0(V/Y ). Then for any morphism g : X → Y the following diagrams
commute:

K0(V/X)
[γX ]−−−−→ K0(V/X)

g∗

y yg∗
K0(V/Y ) −−−−→

[g∗γX ]
K0(V/Y ),

or

K0(V/X)
iγX−−−−→ K0(V/X)⊗K0(V/X)

Ψ−−−−→ K0(V/X)

g∗

y yg∗⊗g∗ yg∗
K0(V/Y ) −−−−→

ig∗γX

K0(V/Y )⊗K0(V/Y ) −−−−→
Ψ

K0(V/Y )

K0(V/Y )
[γY ]−−−−→ K0(V/Y )

g∗
y yg∗

K0(V/X) −−−−→
[g∗γY ]

K0(V/X),

or

K0(V/Y )
iγY−−−−→ K0(V/Y )⊗K0(V/Y )

Ψ−−−−→ K0(V/Y )

g∗
y yg∗⊗g∗ yg∗

K0(V/X) −−−−→
ig∗γY

K0(V/X)⊗K0(V/X) −−−−→
Ψ

K0(V/X)

K0(V/X)
[g∗γY ]−−−−→ K0(V/X)

g∗

y yg∗
K0(V/Y ) −−−−→

[γY ]
K0(V/Y ).

The last commutative diagram is a bit more precisely the following

K0(V/X)

g∗

��

ig∗γY // K0(V/X)⊗K0(V/X)
Ψ // K0(V/X)

g∗

��
K0(V/Y )

iγY

// K0(V/Y )⊗K0(V/Y )
Ψ
// K0(V/Y )

Here we do not know how to define a homomorphism in the middle so that the diagrams commute, just
like in the case discussed in Remark 4.14.
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Corollary 5.5. (1) Let γX ∈ K0(V/X), γY ∈ K0(V/Y ). For a proper morphism g : X → Y the
following diagrams commute:

K0(V/X)
Ty∗◦ [γX ]
−−−−−−→ HBM

∗ (X)⊗Q[y]

g∗

y yg∗
K0(V/Y ) −−−−−−−→

Ty∗◦ [g∗γX ]
HBM
∗ (Y )⊗Q[y],

K0(V/X)
Ty∗◦ [g∗γY ]
−−−−−−−→ HBM

∗ (X)⊗Q[y]

g∗

y yg∗
K0(V/Y ) −−−−−−→

Ty∗◦ [γY ]
HBM
∗ (Y )⊗Q[y],

(2) For a proper smooth morphism g : X → Y and for γY ∈ K0(V/Y ) the following diagrams are
commutative:

K0(V/Y )
Ty∗◦ [γY ]
−−−−−−→ HBM

∗ (Y )⊗Q[y]

g∗
y ytdy(Tg)∩g∗

K0(V/X) −−−−−−−→
Ty∗◦ [g∗γY ]

HBM
∗ (X)⊗Q[y].

(3) Let ν̃motX := (−1)dimXνmotX , the signed one. Let TyDT∗ := Ty∗ ◦ [ν̃motX ]. For a proper smooth
morphism g : X → Y the following diagrams are commutative:

K0(V/X)
Ty
DT
∗−−−−→ HBM

∗ (X)⊗Q[y]

g∗

y yg∗
K0(V/Y ) −−−−→

TyDT∗

HBM
∗ (Y )⊗Q[y],

K0(V/Y )
Ty
DT
∗−−−−→ HBM

∗ (Y )⊗Q[y]

g∗
y ytdy(Tg)∩g∗

K0(V/X) −−−−→
TyDT∗

HBM
∗ (X)⊗Q[y].

Remark 5.6. The commutative diagram in Proposition 5.2 can be described in more details as follows:

K0(V/X)
iγX // K0(V/X)⊗K0(V/X)

Ψ //

id⊗i11X
��

K0(V/X)

i11X
��

K0(V/X)⊗K0(V/X)⊗F(X)
Ψ⊗id //

id⊗Φ

��

K0(V/X)⊗F(X)

Φ

��
K0(V/X)⊗F(X)

Φ
// F(X)

If we denote Φ(α ⊗ δX) simply by α · δX , then the bottom square on the right-hand-side commutative
diagrams means that (α · β) · δX = α · (β · δX), i.e. the associativity.

Remark 5.7. We remark that the following diagrams commute:

(1) for a proper marphism g : X → Y

n︷ ︸︸ ︷
K0(V/X)⊗ · · · ⊗K0(V/X)

Ψn−1

−−−−→ K0(V/X)
Ty∗−−−−→ HBM

∗ (X)⊗Q[y]yg∗⊗···⊗g∗ yg∗ yg∗
K0(V/Y )⊗ · · · ⊗K0(V/Y )︸ ︷︷ ︸

n

−−−−→
Ψn−1

K0(V/Y ) −−−−→
Ty∗

HBM
∗ (Y )⊗Q[y],
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(2) for a proper smooth morphism g : X → Y

n︷ ︸︸ ︷
K0(V/Y )⊗ · · · ⊗K0(V/Y )

Ψn−1

−−−−→ K0(V/Y )
Ty∗−−−−→ HBM

∗ (Y )⊗Q[y]yg∗⊗···⊗g∗ yg∗ yc(Tg)∩g∗

K0(V/X)⊗ · · · ⊗K0(V/X)︸ ︷︷ ︸
n

−−−−→
Ψn−1

K0(V/X) −−−−→
Ty∗

HBM
∗ (X)⊗Q[y],

Here Ψn−1([V → X]) := [V → X] · · · · · [V → X] is the fiber product of n copies of [V → X]. When
n = 1, Ψ0 := idK0(V/X) is understood to be the identity. Let P (t) :=

∑
ait

i ∈ Q[t] be a polynomial.
Then we define the polynomial transformation ΨP (t) : K0(V/X)→ K0(V/X) by

ΨP (t)([V
h−→ X]) :=

∑
aiΨ

i−1([V → X]).

Then we have the following commutative diagrams.

(1) for a proper morphism g : X → Y

K0(V/X)
ΨP (t)−−−−→ K0(V/X)

Ty∗−−−−→ HBM
∗ (X)⊗Q[y]yg∗ yg∗ yg∗

K0(V/Y ) −−−−→
ΨP (t)

K0(V/Y ) −−−−→
Ty∗

HBM
∗ (Y )⊗Q[y],

(2) for a proper smooth morphism g : X → Y

K0(V/Y )
ΨP (t)−−−−→ K0(V/Y )

Ty∗−−−−→ HBM
∗ (Y )⊗Q[y]yg∗ yg∗ yc(Tg)∩g∗

K0(V/X) −−−−→
ΨP (t)

K0(V/X) −−−−→
Ty∗

HBM
∗ (X)⊗Q[y],

These are a “motivic” analogue of the corresponding case of constructible functions:

(1) for a proper morphism g : X → Y

F(X)
FP (t)−−−−→ F(X)

c∗−−−−→ HBM
∗ (X)yg∗ yg∗ yg∗

F(Y ) −−−−→
FP (t)

F(Y ) −−−−→
c∗

HBM
∗ (Y )

(2) for a proper smooth morphism g : X → Y

F(Y )
FP (t)−−−−→ F(Y )

c∗−−−−→ HBM
∗ (Y )yg∗ yg∗ yc(Tg)∩g∗

F(X) −−−−→
FP (t)

F(X) −−−−→
c∗

HBM
∗ (X)
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Here FP (t)(β) :=
∑
aiβ

i. Note also that the following diagram commutes

K0(V/X)
ΨP (t)−−−−→ K0(V/X)y11∗

y11∗

F(X) −−−−→
FP (t)

F(X).

Definition 5.8. (1) We refer to the following class

Ty
DT
∗ (X) :=

(
Ty

DT
∗
)

([X
idX−−→ X]) = Ty∗([ν̃

mot
X ])

as the naive motivic Donaldson–Thomas type Hirzebruch class of X .
(2) The degree zero of the naive motivic Donaldson–Thomas type Hirzebruch class is called the

naive motivic Donaldson–Thomas type χy-genus of X:

χDTy (X) :=

∫
X

Ty
DT
∗ (X).

Remark 5.9. The cases of the three special values y = −1, 0, 1 are the following.
(1) For y = −1, T−1

DT
∗ (X) = T−1∗([ν̃

mot
X ]) = cA`∗ (X).

(2) For y = 0, T0
DT
∗ (X) = T0∗([ν̃

mot
X ]) =: tdA`∗ (X), which we call an “Aluffi-type” Todd class of

X .
(3) For y = 1, T1

DT
∗ (X) = T1∗([ν̃

mot
X ]) =: LA`∗ (X), which we call an “Aluffi-type” Cappell–

Shaneson L-homology class of X .
The degree zero part of these three motivic classes are respectively:

(1) for y = −1, χDT−1 (X) = (−1)dimXχDT (X), the original Donaldson–Thomas type invariant
(i.e. Euler characteristic) of X with the sign;

(2) for y = 0, χDT0 (X) =: χDTa (X), which we call a naive Donaldson–Thomas type arithmetic
genus of X and

(3) for y = 1, χDT−1 (X) = σDT (X) , which we call a naive Donaldson–Thomas type signature of
X .

Remark 5.10. Since ν̃X(x) = 1 for a smooth point x ∈ X , we have that ν̃X = 11X + αXsing for
some constructiblee functions αXsing supported on the singular locus Xsing . For example, consider the
simplest case that X has one isolated singularity x0, say ν̃X = 11X + a011x0 . Then

ν̃motX = [X
idX−−→ X] + a0[x0

ix0−−→ X] ∈ K0(V/X).

Here x0

ix0−−→ X is the inclusion. Hence we have

Ty
DT
∗ (X) = Ty∗(ν̃

mot
X )

= Ty∗([X
idX−−→ X] + a0[x0

ix0−−→ X])

= Ty∗(X) + a0(ix0)∗Ty∗(x0)

= Ty∗(X) + a0.

Thus the difference between the motivic DT type Hirzebruch class TyDT∗ (X) and the motivic Hirzebruch
class Ty∗(X) is just a0, independent of the parameter y. Of course, if dimXsing ≥ 1, then the difference
does depend on the parameter y. For example, for the sake of simplicity, assume that ν̃X = 11X+a11Xsing .
Then the difference is

Ty
DT
∗ (X)− Ty∗(X) = a(iXsing )∗Ty∗(Xsing),

which certainly depends on the parameter y, at least for the degree zero part χy(Xsing).
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If we take a different motivic element νmotX = [X
idX−−→ X] + [V

h−→ X] such that

11∗([V
h−→ X]) = a011x0

and dimV ≥ 1, then the difference TyDT∗ (X) − Ty∗(X) = h∗(Ty∗(V )), thus it does depend on the
parameter y, at least for the degree zero part, again.

In the case when X is the critical locus of a regular function f : M → C, the motivic DT invariant
νmotivicX which DT-theory people consider, using the motivic Milnor fiber, is the latter case, simply due
to the important fact that the Behrend function can be expressed using the Milnor fiber. For example,
as done in [9], even for an isolated singularity x0, the difference TyDT∗ (X) − Ty∗(X) is, up to sign,
the χy-genus of (the Hodge structure of) the Milnor fiber at the singularity x0, so does depend on the
parameter y.

So, as long as the Behrend function has some geometric or topological descriptions, e.g., such as
Milnor fibers, then one could think of the corresponding motivic elements in a naive or canonical way.

We will hope to come back to properties of these two classes tdA`∗ (X), LA`∗ (X) and χDTa (X),
σDT (X) and discussion on some relations with other invariants of singularities.

Remark 5.11. In [9] Cappell et al. use the Hirzebruch class transformation

MHMTy∗ : K0(MHM(X))→ HBM
∗ (X)⊗Q[y, y−1]

from the Grothendieck group K0(MHM(X)) of the category of mixed Hodge modules (introduced
by Morihiko Saito), instead of the Grothendieck group K0(V/X). We could do the same things on
MHMTy∗ : K0(MHM(X))→ HBM

∗ (X)⊗Q[y, y−1] and get MHM-theoretic analogues of the above.
We hope to get back to this calculation.

Remark 5.12. In [14] Göttsche and Shende made an application of the above motivic Hirzebruch class
MHMTy∗. A bit more precisely, for a family π : C → B of plane curves they introduce certain invariants
N i
C/B ∈ K0(MHM(B)) and apply the above functor

MHMTy∗ : K0(MHM(B))→ HBM
∗ (B)⊗Q[y, y−1]

to these invariant N i
C /B :

Ni
C/B(y) := MHMTy∗(N

i
C/B),

which are used to make some formulations and some conjectures.

Remark 5.13. In a successive paper, we intend to apply the motivic Hirzebruch transformation to the
motivic vanishing cycle constructed on the Donaldson–Thomas moduli space and announced in [6, 8].
This will hopefully provide the “right” motivic Donaldson–Thomas type Hirzebruch class.

6. A BIVARIANT GROUP OF PULLBACKS OF CONSTRUCTIBLE FUNCTIONS AND A
BIVARIANT-THEORETIC PROBLEM

In the above section we mainly dealt with the class cδX∗ (V
h−→ X) of h : V → X supported on the

target space X . In this section we deal with the class cδX∗ (V
h−→ X) of h : V → X supported on the

source space V .
The class cδX∗ (V

h−→ X) is by definition c∗(h∗h
∗δX) = h∗c∗(h

∗δX) ∈ HBM
∗ (X), and can be

captured as the image of a homomorphism between two abelian groups assigned to the space X , as done
in the previous sections. However, when it comes to the case of cδX∗ (V

h−→ X) ∈ HBM
∗ (V ), one cannot

do so, i.e. one cannot capture it as the image of a homomorphism between two abelian groups assigned
to the space V . So we approach this class from a bivariant-theoretic viewpoint as follows.
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For a morphism f : X → Y and a constructible function δY ∈ F(Y ), we define FδY (X
f−→ Y ) as

follows:

FδY (X
f−→ Y ) :=

{∑
S

aSiS∗i
∗
Sf
∗δY

∣∣∣S are closed subvarieties of X, aS ∈ Z

}
⊂ F(X),

where iS : S → X is the inclusion map. Thus, using this notation, for a morphism h : V → X and for a
constructible function δX ∈ F(X), we have that h∗δX ∈ FδX (V

h−→ X) ⊂ F(V ).
For the sake of simplicity, unless some confusion is possible, we simply denote iS∗(iS)∗f∗δY by

(f |S)∗δY (= (iS)∗f∗δY ). In particular, let us consider the signed Behrend function ν̃Y as δY , i.e.,

Fν̃Y (X
f−→ Y ), which shall be denoted by FBeh(X

f−→ Y ). It is easy to prove the following lemma.

Lemma 6.1. (1) If Y is smooth, then FBeh(X
f−→ Y ) = F(X).

(2) FBeh(X
π−→ pt) = F(X).

(3) If X is smooth, FBeh(X
idX−−→ X) = F(X).

(4) If Y is singular and f(X) ∩ Ysing = ∅, FBeh(X
f−→ Y ) = F(X).

(5) If Y is singular, f(X) ∩ Ysing 6= ∅ and there exists a point y ∈ f(X) ∩ Ysing such that

|νY (y)| > 1, FBeh(X
f−→ Y ) $ F(X).

Remark 6.2. In an earlier version of the paper, in the above lemma we stated “ If X is singular, then
FBeh(X

idX−−→ X) $ F(X) and in particular, the characteristic function 11X 6∈ FBeh(X
idX−−→ X).”

However the referee pointed out that this is not obvious, and we have realized that

FBeh(X
idX−−→ X) = F(X)

is also possible. If X is a plane curve with a node x0, then νX(x0) = EuX(x0) = 2, in which case we

get FBeh(X
idX−−→ X) $ F(X). Let X be the union of a reduced surface Y with an isolated singular

point x0 such that EuY (x0) = m with |m| > 1 and a reduced curve C with the isolated singular point
being the same x0 such that EuC(x0) = m − 1, where we assume that Y ∩ C = {x0}. For example,
the following is such a (non-pure dimensional) surface: Let Y be a projective cone of a non-singular
curve of degree d(> 3) with the cone point x0. Then EuY (x0) = 2d − d2 (see [29, p. 426]). Hence
νY = (−1)2 EuY = EuY . Now let C be a plane curve with x0 being a (2d − d2 + 1)-ple point such
that Y ∩ C = {x0}. Then let us set X = Y ∪ C. Then we have νX = (−1)2 EuY +(−1)1 EuC , hence
νX(x0) = 2d − d2 − (2d − d2 + 1) = −1, and νX(y) = 1 for y ∈ Y − {x0} and νX(y) = −1 for
y ∈ C − {x0}. Then we have

11X = iY ∗iY
∗νX + (−1)iC∗iC

∗νX + ix0∗ix0

∗νX ∈ FBeh(X
idX−−→ X).

If 11X ∈ FBeh(X
idX−−→ X), then any constructible function belongs to FBeh(X

idX−−→ X), thus we get

FBeh(X
idX−−→ X) = F(X). In passing, at the moment we do not know an example of a pure dimensional

singular variety X which satisfies FBeh(X
idX−−→ X) = F(X).

In order to show that FBeh(X
f−→ Y ) is a bivariant theory in the sense of Fulton and MacPherson [13],

first we quickly recall some basics about Fulton–MacPherson’s bivariant theory.

Definition 6.3. A bivariant theory B on a category C assigns to each morphism X
f−→ Y in the category

C a (graded) abelian group B(X
f−→ Y ).

This bivariant theory is equipped with the following three basic operations:



46 VITTORIA BUSSI(∗) AND SHOJI YOKURA(∗∗)

(i) for morphisms X
f−→ Y and Y

g−→ Z, the product operation

• : B(X
f−→ Y )⊗ B(Y

g−→ Z)→ B(X
gf−→ Z)

is defined;
(ii) for morphisms X

f−→ Y and Y
g−→ Z with f proper, the pushforward operation

f∗ : B(X
gf−→ Z)→ B(Y

g−→ Z)

is defined;

(iii) for a fiber square

X ′
g′−−−−→ X

f ′
y yf
Y ′ −−−−→

g
Y,

the pullback operation

g∗ : B(X
f−→ Y )→ B(X ′

f ′−→ Y ′)

is defined.
These three operations are required to satisfy the seven axioms which are natural properties to make

them compatible each other:
(B1) product is associative;
(B2) pushforward is functorial;
(B3) pullback is functorial;
(B4) product and pushforward commute;
(B5) product and pullback commute;
(B6) pushforward and pullback commute;
(B7) projection formula.

Definition 6.4. Let B and B′ be two bivariant theories on a category C. Then a Grothendieck transfor-
mation from B to B′

γ : B −→ B′

is a collection of morphisms

B(X
f−→ Y )→ B′(X f−→ Y )

for each morphism X
f−→ Y in the category C, which preserves the above three basic operations.

As to the constructible functions we recall the following fact from [40]:

Theorem 6.5. If we define F(X
f−→ Y ) := F (X) (ignoring the morphism f ), then it become a bivariant

theory, called the “simple” bivariant theory of constructible functions with the following three bivariant
operations:

• (bivariant product)

• : F(X
f−→ Y )⊗ F(Y

g−→ Z)→ F(X
gf−→ Z),

α • β := α · f∗β.
• (bivariant pushforward) For morphisms f : X → Y and g : Y → Z with f proper

f? : F(X
gf−→ Z)→ F(Y

g−→ Z)

f?α := f∗α.
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• (bivariant pullback) For a fiber square

X ′
g′−−−−→ X

f ′
y yf
Y ′ −−−−→

g
Y,

g? : F(X
f−→ Y )→ F(X ′

f ′−→ Y ′)

g?α := (g′)∗α.

Theorem 6.6. Here we consider the category of complex algebraic varieties. Then the above group

FBeh(X
f−→ Y ) becomes a bivariant theory as a subtheory of the above simple bivariant theory F(X

f−→ Y ),
provided that we consider smooth morphisms g for the bivariant pullback.

Proof. All we have to do is to show that those three bivariant operations are well-defined on the sub-

group FBeh(X
f−→ Y ). Below, as to bivariant product and bivariant pushforward, we do not need the

requirement that δY is the signed Behrend function ν̃Y , but we need it for bivariant pullback.

(1) (bivariant product) It suffices to show that

(f |S)∗δY • (g|W )∗δZ = (f |S)∗δY · f∗(g|W )∗δZ ∈ FδZ (X
gf−→ Z).

Since (f |S)∗δY is a constructible function on S, (f |S)∗δY =
∑
V aV 11V where V ’s are subva-

rieties of S, hence subvarieties of X . Thus we get

(f |S)∗δY · f∗(g|W )∗δZ =
∑
V

aV 11V · (gf |f−1(W ))
∗δZ

=
∑
V

aV (gf |f−1(W )∩V )∗δZ

Since f−1(W ) ∩ V is a finite union of subvarieties, it follows that

(f |S)∗δY · f∗(g|W )∗δZ ∈ FδZ (X
gf−→ Z).

(2) (bivariant pushforward) It suffices to show that

f∗((gf |S)∗δZ) ∈ FδZ (Y
g−→ Z).

More precisely, f∗((gf |S)∗δZ) = f∗(iS)∗(f |S)∗g∗δZ) = (f |S)∗(f |S)∗g∗δZ . Now it follows
from Verdier’s result [37, (5.1) Corollaire] that the morphism f |S : S → Y is a stratified
submersion, more precisely there is a filtration of closed subvarieties V1 ⊂ V2 ⊂ · · · ⊂ Vm ⊂ Y
such that the restriction of f |S to each strata Vi+1 \ Vi, i.e., (f |S)−1(Vi+1 \ Vi)→ Vi+1 \ Vi is a
fiber bundle. Hence the operation (f |S)∗(f |S)∗ is the same as the multiplication (

∑m
i=1 ai11Vi)·

with some integers ai’s, i.e.,

(f |S)∗(f |S)∗g∗δZ = (
∑
i

ai11Vi) · g∗δZ =
∑
i

ai(g|Vi)∗δZ ∈ FδZ (Y
g−→ Z).

Here we remark that the above integer ai is expressed as follows. Let χi denote the Euler-
Poincaré characteristic of the fiber of the above fiber bundle (f |S)|Vi\Vi−1

. Then

am = χm and ai = χi −
m∑

j=i+1

χj for 1 5 i < m.
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(3) (bivariant pullback) Here we show that the following is well-defined

g∗ : FδY (X
f−→ Y )→ Fg

∗δY (X ′
f ′−→ Y ′).

Consider the following fiber squares:

S′
g′′−−−−→ S

iS′

y yiS
X ′

g′−−−−→ X

f ′
y yf
Y ′ −−−−→

g
Y.

Indeed,

g∗((f |S)∗δY ) = (g′)∗((f |S)∗δY (by definition)

= (g′)∗((iS)∗(f |S)∗δY (more precisely)

= (iS′)∗(g
′′)∗(iS)∗f∗δY

= (iS′)∗(iS′)
∗(f ′)∗g∗δY ∈ Fg

∗δY (X ′
f ′−→ Y ′).

Hence, if δY is the signed Behrend function ν̃Y , then for a smooth morphism g : Y ′ → Y we

have ν̃Y ′ = g∗ν̃Y , thus the pullback g∗ : FBeh(X
f−→ Y ) → FBeh(X ′

f ′−→ Y ′) is well-defined.
Here we note that for any constructible functions δY which are preserved by smooth morphisms

g : Y ′ → Y , i.e. δY ′ = g∗δY , the subgroups FδY (X
f−→ Y ) give rise to a bivariant theory.

�

Problem 6.7. Define a “bivariant homology theory” H̃(X → Y ) such that

(1) H̃(X
f−→ Y ) j HBM

∗ (X) for any morphism f : X → Y ,
(2) H̃(X −→ Y ) = HBM

∗ (X) for a smooth Y ,
(3) the homomorphism

c∗ : FBeh(X
f−→ Y )→ H̃(X

f−→ Y )

defined by c∗(iS∗i∗Sf
∗ν̃Y ) := iS∗c∗(i

∗
Sf
∗ν̃Y ) ∈ HBM

∗ (X) and extended linearly, becomes a
Grothendieck transformation.

(4) if Y is a point pt, then c∗ : F (X) = FBeh(X
f−→ pt) → H̃(X

f−→ pt) = HBM
∗ (X) is equal to

the original MacPherson’s Chern class homomorphism.

Remark 6.8. One simple-minded construction of such a “bivariant homology theory” H̃(X → Y ) could

be simply the image of FBeh(X
f−→ Y ) under MacPherson’s Chern class c∗ : F(X) → HBM

∗ (X). It

remains to see whether the image H̃(X → Y ) := c∗(FBeh(X
f−→ Y )) gives rise to a bivariant theory.

Before closing this section, we mention a bivariant-theoretic analogue of the covariant functor L of
conical Lagrangian cycles. For the covariant functor of conical Lagrangian cycles, see [33, 21, 22].

In [21] Kennedy proved that Ch : F (X)
∼=−→ L(X) is an isomorphism. In general, suppose we have a

correspondenceH such that
• H assigns an abelian groupH(X) to a variety X
• there is an isomorphism ΘX : F (X)

∼=−→ H(X).



NAIVE MOTIVIC DONALDSON–THOMAS TYPE HIRZEBRUCH CLASSES 49

Then, by “transfer of structure” using the above isomorphism Θ, we can get the corresponding bivariant
theory. Here we go into a bit more details. If we define the pushforward f∗ : H(X)→ H(Y ) for a map
f : X → Y by

fH∗ := ΘY ◦ fF∗ ◦Θ−1
X : H(X)→ H(Y ),

then the correspondenceH becomes a covariant functor via the covariant functor F. Here

fF∗ : F (X)→ F (Y ),

emphasizing the covariant functor F . Similary, if we define the pullback f∗ : H(Y )→ H(X) by

f∗H := ΘX ◦ f∗F ◦Θ−1
Y : H(Y )→ H(X),

then the correspondence H becomes a contravariant functor via the contravariant functor F. Here
f∗F : F (Y )→ F (X). Furthermore, if we define

BH(X
f−→ Y ) := H(X)

then we get the simple bivariant-theoretic version of the correspondenceH as follows:

• (Bivariant product) •BH : BH(X
f−→ Y )⊗ BH(Y

g−→ Z)→ BH(X
gf−→ Z) is defined by

α •BH β := ΘX

(
Θ−1
Y (α) •F Θ−1

X (β)
)
.

• (Bivariant pushforward) fBH∗ : BH(X
gf−→ Z)→ BH(Y

g−→ Z) is defined by

fBH∗ := ΘY ◦ fF∗ ◦ΘXH
−1.

• (Bivariant pullback) g∗BH : BH(X
f−→ Y )→ BH(X ′

f ′−→ Y ′) is defined by

g∗BH := ΘX′ ◦ f∗F ◦Θ−1
X .

Clearly we get the canonical Grothendieck transformation

γΘ = Θ : F(X
f−→ Y )→ BH(X

f−→ Y ).

If we apply this argument to the conical Lagrangian cycle L(X) we get the simple bivariant theory of

conical Lagrangian cycles L(X
f−→ Y ) and also we get the canonical Grothendieck transformation

γCh = Ch : F(X
f−→ Y )→ L(X

f−→ Y ).

This simple bivariant theory L(X
f−→ Y ) can be defined or constructed directly, which would be however

harder. Indeed, it is done in [7] and one has to go through many geometric and/or topological ingredients.

Fulton–MacPherson’s bivariant theory FFM (X
f−→ Y ) is a subgroup (or a subtheory) of the simple

bivariant theory F(X
f−→ Y ) = F (X). Then if we define

LFM (X
f−→ Y ) := γCh(FFM (X

f−→ Y ))

then we can get a finer bivariant theory of conical Lagrangian cycles, putting aside the problem of how
we define or describe such a finer bivariant-theoretic conical Lagrangian cycle; it would be much harder

than the case of the simple one L(X
f−→ Y ) done in [7].
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7. SOME MORE QUESTIONS AND PROBLEMS

7.1. A categorification of Donaldson–Thomas type invariant of a morphism. The cardinality c(F )
of a finite set F , i.e., the number of elements of F , satisfies that

(1) X ∼= X ′ (set-isomorphism) =⇒ c(X) = c(X ′),
(2) c(X) = c(Y ) + c(X \ Y ) for a subset Y ⊂ X (a scissor relation),
(3) c(X × Y ) = c(X)× c(Y ),
(4) c(pt) = 1.

Now, let us suppose that there is a similar “cardinality” on a category T OP of certain reasonable topo-
logical spaces, satisfying the above four properties, except for the condition (1) and (2),

(1)’ X ∼= X ′ (T OP-isomorphism) =⇒ c(X) = c(X ′),
(2)’ c(X) = c(Y ) + c(X \ Y ) for a closed subset Y ⊂ X .
(3) c(X × Y ) = c(X)× c(Y ),
(4) c(pt) = 1.

If such a “topological cardinality” exists, then we can show that c(R1) = −1, hence c(Rn) = (−1)n

(e.g. see [41]). Thus, for a finite CW -complex X , c(X) is exactly the Euler–Poincaré characteristic
χ(X). The existence of such a topological cardinality is guaranteed by the ordinary homology theory,
more precisely

c(X) = χc(X) :=
∑

(−1)i dimRH
i
c(X;R) =

∑
i

(−1)i dimRH
BM
i (X;R).

Here HBM
∗ (X) is the Borel–Moore homology group of X .

Similarly let us suppose that there is a similar cardinality on the category VC of complex algebraic
varieties:

(1)” X ∼= X ′ (VC-isomorphism) =⇒ c(X) = c(X ′),
(2)” c(X) = c(Y ) + c(X \ Y ) for a closed subvariety Y ⊂ X (i.e., a closed subset in Zariski

topology),
(3) c(X × Y ) = c(X)× c(Y ),
(4) c(pt) = 1.

The complex affine line C1 is corresponding to the real line R1. But we cannot do the same trick for
C1 as we do for R1. The existence of such an algebraic cardinality is guaranteed by Deligne’s theory of
mixed Hodge structures. Let u, v be two variables, then the Deligne–Hodge polynomial χu,v is defined
by

χu,v(X) =
∑

(−1)i dimCGr
p
FGr

W
p+q(H

i
c(X;C))upvq.

In particular, χu,v(C1) = uv. The particular case when u = −y, v = 1 is the important one for the
motivic Hirzebruch class:χy(X) := χ−y,1(X) =

∑
(−1)i dimCGr

p
F (Hi

c(X;C))(−y)p. This is called
χy-genus of X .

Similarly let us consider the Donaldson–Thomas type invariant of morphisms:

(1)”’ X
f−→ Y ∼= X ′

f ′−→ Y (isomorphism) =⇒ χDT (X
f−→ Y ) = χDT (X ′

f ′−→ Y ),

(2)”’ χDT (X
f−→ Y ) = χDT (Z

f |Z−−→ Y ) + χDT (X \ Z
f |X\Z−−−−→ Y ) for a closed subvariety Z ⊂ X .

(3)”’ χDT (X1 ×X2
f1×f2−−−−→ Y1 × Y2) = χDT (X1

f1−→ Y1)× χDT (X2
f2−→ Y2),

(4) χDT (pt) = 1.

So, just like the above two cardinalities or counting χc(X) and χu,v(X), we pose the following
problem, which is related to the above Problem 6.7:
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Problem 7.1. Is there some kind of bivariant theory Θ?(X
f−→ Y ) such that

(1) χDT (X
f−→ Y ) =

∑
i(−1)i dim Θ?(X

f−→ Y )?

(2) When Y is smooth, Θ(X
f−→ Y ) is isomorphic to Borel–Moore homology theory HBM

∗ (X)

(which is isomorphic to the Fulton-MacPherson bivariant homology theory H(X
f−→ Y ) (e.g.,

see [39, 4]) ).

Remark 7.2. (1) When Y is smooth, we have χDT (X
f−→ Y ) = (−1)dimY χ(X), that is

χDT (X
f−→ Y ) = (−1)dimY

∑
i

(−1)i dimHBM
i (X)

=
∑
i

(−1)i+dimY dimH−i(X f−→ Y ).

In the above formulation χDT (X
f−→ Y ) =

∑
i(−1)i dim Θ?(X

f−→ Y ) the sign part (−1)i

should involve something of the morphism f such as reldim f := dimX − dimY , dimX , or
dimY etc., as well.

(2) Even for the identity X idX−−→ X , since χDT (X) 6= χDT (Z) + χDT (X \Z), the cohomological

part Θ(X
idX−−→ X) of such a theory (if it existed) does not satisfy the usual long exact sequence

for a pair Z ⊂ X , and it should satisfy a modified one so that

χDT (X) = χDT (Z
inclusion−−−−−−→ X) + χDT (X \ Z inclusion−−−−−−→ X)

is correct.

7.2. A higher class analogue of MNOP conjecture and a generalized MacMahon function. In [27]
M. Levine and R. Pandharipande proved the MNOP conjecture [30], that is, we have the homomorphism

M(q) : Ω−3(pt)→ Q[[q]], defined by M(q)([X]) := M(q)
∫
X
c3(TX⊗KX),

where Ω∗(X) is Levine–Morel’s algebraic cobordism [26] (also see [25] and [27]) and

M(q) :=
∏
n51

1

(1− qn)n
= 1 + q + 3q2 + 6q3 + 13q4 + · · ·

is the MacMahon function. A naive question on the above homomorphism M(q) : Ω−3(pt)→ Q[[q]] is:

Question 7.3. To what extent could one extend the homomorphismM(q) : Ω−3(pt)→ Q[[q]] to a higher
dimensional variety Y instead of Y = pt? Namely, is

M(q) : Ω∗(Y )→ HBM
∗ (Y )⊗Q[[q]]

defined by

M(q)([X
f−→ Y ]) := M(q)f∗(cdimX−dimY (Tf⊗Kf )∩[X])

a homomorphism?
Here by the construction of algebraic cobordism X and Y are both smooth, Tf := TX − f∗TY and

Kf := KX − f∗KY .

Note that for Y = pt the above

M(q) : Ω∗(Y )→ HBM
∗ (Y )⊗Q[[q]]

is nothing but M(q) : Ω−3(pt)→ Q[[q]] in the case when dimX = 3. The MacMahon function has a
combinatorial origin as the generating function for the number of 3-dimensional partitions of size n (as
explained in [25]). One could conjecture that the MacMahon function is involved only in the case when
dimX − dimY = 3. If it were the case, the following more specific problem should be posed:
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Problem 7.4. Is it true that the following is a homomorphism?

M(q) : Ω−3(Y )→ HBM
∗ (Y )⊗Q[[q]] defined by M(q)([X

f−→ Y ]) := M(q)f∗(c3(Tf⊗Kf )∩[X])

Remark 7.5. Note that the dimension d of an element

[X
f−→ Y ] ∈ Ωd(Y )

is equal to codim f = dimY − dimX , hence if Y = pt, then dimX = 3 implies that d = −3.
Moreover, for a general dimension d, say d < −3, one should come up with some other functions,
i.e. “d-dimensional generalized MacMahon function M̃(q)d” such that when d = −3 it is the same as

the original MacMahon function M(q), i.e. M̃(q)−3 = M(q). Such a formulation would be useful in
Donaldson–Thomas theory for d-Calabi–Yau manifolds with d > 3. However, we have to point out that
the above function M̃(q)d for the generating function of dimension d partitions is now known to be not
correct, although it does appear to be asymptotically correct in dimension four [3, 31]. Following ideas
from algebraic cobordism as in [27], we hope to investigate this question further in a future work.
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ON REGULARITY CONDITIONS AT INFINITY

L.R.G. DIAS

Abstract. Let f : X → Kp be a restriction of a polynomial mapping on X, where X ⊂ Kn

is a smooth affine variety. We prove the equivalence of regularity conditions at infinity, which
are useful to control the bifurcation set of f .

1. Introduction

Let f : X → Kp be a differentiable mapping, where K = R or C, X is a smooth affine variety
and dimX ≥ p. The bifurcation set of f , denoted by B(f), is the smallest subset of Kp such
that f is a locally trivial topological fibration on Kp \B(f).

The elements of B(f) may come from critical values but also from regular values of f , i.e.,
B(f) \ (B(f) ∩ f(Singf)) can be not empty. In the example f : K2 → K, f(x, y) = x+ x2y, the
value 0 ∈ K is not critical but there is no trivial fibration on any neighborhood of 0.

The study of bifurcation set B(f) has connections with many other topics such as problems of
optimization of polynomial functions f : Rn → R (see e.g. [HP]), generalizations of Ehresmann’s
Theorem (see e.g. [Ga, Je3, Ra]), Jacobian Conjecture (see e.g. [LW, ST]), global Łojasiewicz
exponents (see e.g. [PZ, DG]), equisingularity and Milnor numbers (see e.g. [Ga, Pa1, ST, Ti2,
Ti3]), stratification theory (see e.g. [KOS, Ti1]), etc...

A complete characterization of B(f) \ (B(f) ∩ f(Singf)) is yet an open problem. In fact, a
characterization of B(f)\(B(f)∩f(Singf)) is available only for polynomial functions f : K2 → K,
see [Su, HL] for K = C and [TZ] for K = R.

Through the use of regularity conditions at infinity, one has obtained some ways to approxi-
mate B(f). For polynomial functions f : Kn → K, see for instance [Br, CT, NZ, Pa1, Pa2, PZ,
ST, Ti2, Ti3, Ti4].

For mappings, i.e., p ≥ 1, Rabier [Ra] considered a regularity condition, which we call here
Rabier condition. From this condition, Rabier defined the set of asymptotic critical values K∞(f)
and proved that B(f) ⊂ (f(Singf) ∪ K∞(f)). In fact, Rabier’s results apply to C2 maps
f : M → N , where M,N are Finsler manifolds.

For polynomial mappings f : Cn → Cp, Gaffney [Ga] defined the generalized Malgrange condi-
tion, which we call here Gaffney condition. This condition yields the set AG∞(f) of non-regular
values at infinity and, under additional hypothesis on f , Gaffney obtained

B(f) ⊂ (f(Singf) ∪AG∞(f)).

Kurdyka, Orro and Simon [KOS] also considered Rabier condition. They obtained an equiv-
alence between Rabier condition and another condition which depends on Kuo function([Kuo])
(we call this last of Kuo-KOS condition). They showed that, for C2 semi-algebraic mappings
f : Rn → Rp (respectively, polynomial mappings f : Cn → Cp), the set K∞(f) is a closed semi-
algebraic set (respectively, a closed algebraic set) of dimension at most p− 1.

2010 Mathematics Subject Classification. 14D06, 51N10, 32S20.
Key words and phrases. polynomial mapping, bifurcation values, Rabier condition, t-regularity, non-

properness set, fibration, regularity at infinity.
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Jelonek [Je3] used another condition, which turns out to be equivalent to Rabier condition
and to Gaffney condition. We call that condition Jelonek condition. Then, Jelonek [Je3] gave a
more direct proof of the inclusion B(f) ⊂ (f(Singf) ∪K∞(f)).

The above four conditions are asymptotic conditions, which depend on the behaviours of the
fibres of f and Jacobian matrix of f .

Another regularity condition at infinity is the t-regularity, a geometric grounded condition at
infinity. The t-regularity has been introduced in [ST] for polynomial functions f : Cn → C and
in [Ti3] for polynomial functions f : Rn → R.

In [DRT], we considered the t-regularity for C1 semi-algebraic mappings f : Rn → Rp and we
proved that t-regularity is equivalent to the conditions of [Ra, KOS] (consequently, equivalent
to the conditions of [Ga, Je3]).

In this paper, we extend the use of t-regularity to algebraic mappings f : X → Kp and we
replace Kn in the above results by a smooth affine variety X.

In section 4, we prove that t-regularity is equivalent to Rabier condition for f : X → Kp (The-
orem 4.1). This extends for mappings defined on X the equivalence proved in [DRT, Theorem
3.2] and the equivalence proved for p = 1 in [Pa2, ST].

It follows from Jelonek [Je4] that Rabier, Gaffney, Kuo-KOS and Jelonek conditions are also
equivalent for mappings defined on X. Therefore, our Theorem 4.1 completes for these mappings
the equivalences above mentioned in the case of mappings f : Kn → Kp.

Another important set in the study of polynomial mappings is the set Jf of points at which
f is not proper (see e.g. [Je1, Je2]). It was proved in [KOS, Proposition 3.1] that in the case of
semi-algebraic maps f : Rn → Rn, the set Jf coincides with K∞(f). This equality is crucial in
the proof of the injectivity criterion of [CDTT, CDT].

In section 5, we consider f : X → Rp, where dimX = p. We prove (Proposition 5.3) that
K∞(f) = Jf , which extends for mappings defined on X the equality proved in [KOS, Proposition
3.1].

2. Basic Definitions

The goal of this section is to present Lemma 2.1, which will be useful to compute the Rabier
function. We also introduce here some notations.

Let V , W be normed finite dimensional vector spaces over K, where K = R,C. We denote
by L(V,W ) the set of linear mappings from V to W . For simplicity, we denote L(V,K) by V ∗.
Given A ∈ L(V,W ), we denote by A∗ ∈ L(W ∗, V ∗) the adjoint operator induced by A. For any
linear subspace V of Kn, we set

V ⊥ := {w ∈ Kn | 〈w, v〉 = 0,∀v ∈ V }.

We consider the following norm on L(V,W ):

(1) ‖A‖ := max {‖A(x)‖; x ∈ V and ‖x‖ = 1}, where A ∈ L(V,W ).

We denote by ei the vector of Kn with 1 in the i-th coordinate and zeros elsewhere. Let
A ∈ L(Kn,K), we denote by ‖(A(e1), . . . , A(en))‖ the Euclidean norm of the vector

(A(e1), . . . , A(en)) ∈ Kn.

Another norm on L(Kn,K) can be defined as follows:

(2) ‖A‖1 := ‖(A(e1), . . . , A(en))‖.

It is well known that norms (1) and (2) of L(Kn,K) are equivalents (see e.g. [Yo, Theorem
6.8]). The next lemma will be useful in the sequel:
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Lemma 2.1. Let V ⊂ Kn be a linear subspace of Kn. Given A ∈ L(Kn,K), we denote by A|V
the restriction of A to V and we set:

(3) ‖A|V ‖3 := min {‖(A(e1), . . . , A(en)) + w‖;w ∈ V ⊥}.
Then, the norms (1) and (3) of A|V are equivalent (indeed, one has ‖A|V ‖3 = ‖A|V ‖).

Proof. Let A ∈ L(Kn,K). For any vector w ∈ V ⊥ and v = (v1, . . . , vn) ∈ V , we may write
A(v) =

∑n
i=1 viA(ei) = 〈v, (A(e1), . . . , A(en))〉 = 〈v, (A(e1), . . . , A(en)) + w〉, where the last

equality follows from the fact that w ∈ V ⊥. These equalities and Cauchy-Schwarz inequality
imply:

(4) ‖A(v)‖ = ‖〈v, (A(e1), . . . , A(en)) + w〉‖ ≤ ‖v‖‖(A(e1), . . . , A(en)) + w‖,
If ‖v‖ = 1, the inequality (4) gives ‖A(v)‖ ≤ ‖(A(e1), . . . , A(en))+w‖. Since v, w are arbitrary

elements, this last inequality implies:

(5) ‖A|V ‖ ≤ ‖A|V ‖3.

To show ‖A|V ‖3 ≤ ‖A|V ‖, we write (A(e1), . . . , A(en)) = v1 + w1, with v1 ∈ V and w1 ∈ V ⊥
(this is possible since Kn = V ⊕ V ⊥). Then, for any v ∈ V , one obtains

A(v) = 〈v, (A(e1), . . . , A(en))〉 = 〈v, v1 + w1〉 = 〈v, v1〉,
where the last equality follows from the fact that w1 ∈ V ⊥.

If v1 = 0 then A|V ≡ 0 and (A(e1), . . . , A(en)) = w1, which implies ‖A|V ‖ = 0 and
‖A|V ‖1 = 0. Therefore, the inequality ‖A|V ‖3 ≤ ‖A|V ‖ holds if v1 = 0.

If v1 6= 0, we set z := v1

‖v1‖ . Thus, z ∈ V , ‖z‖ = 1 and A(z) = 〈z, v1〉 = ‖v1‖, where the last
equality follows from definition of z. Since ‖z‖ = 1, one has ‖A(z)‖ = ‖v1‖ ≤ ‖A|V ‖.

To finish, we observe that (A(e1), . . . , A(en)) − w1 = v1, with w1 ∈ V ⊥. By definition of
‖A|V ‖3, this last equality implies ‖A|V ‖3 ≤ ‖v1‖. Thus, we conclude ‖A|V ‖3 ≤ ‖v1‖ ≤ ‖A|V ‖,
which follows ‖A|V ‖3 ≤ ‖A|V ‖. Therefore, from this last inequality and inequality (5), we obtain
‖A|V ‖ = ‖A|V ‖3, which finishes the proof. �

3. Regularity conditions for mappings

We introduce the main definitions leading to the notion of t-regularity and we define Rabier
condition in §3.3.

3.1. t-regularity. Let X ⊂ Km be a K-analytic variety, K = R or C. We denote the set of
regular points of X by Xreg and the set of singular points of X by Xsing. We assume that X
contains at least a regular point.

Definition 3.1. Let g : X → K be an analytic function defined in some neighbourhood of X in
Km. Let X0 denote the subset of Xreg where g is a submersion. The relative conormal space of
g is defined as follows:

Cg(X ) := closure{(x,H) ∈ X0 × P̌m−1 | Tx(g−1(g(x))) ⊂ H} ⊂ X × P̌m−1.

We denote by π : Cg(X )→ X the projection π(x,H) = x.

For any y ∈ X such that g(y) = 0, we define Cg,y(X ) := π−1(y). The following result shows
that Cg,y(X ) depends on the germ of g at y only up to multiplication by some invertible analytic
function germ γ.

Lemma 3.2 ([Ti4, Lemma 1.2.7]). Let γ : (Km, y) → K be an analytic function such that
γ(y) 6= 0. Then Cγg,y(X ) = Cg,y(X ). �
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We use coordinates (x1, . . . , xn) for Kn and coordinates [x0 : x1 : . . . : xn] for the projective
space Pn. We denote by H∞ = {[x0 : x1 : . . . : xn] ∈ Pn | x0 = 0} the hyperplane at infinity.

Let f : X → Kp be the restriction of a polynomial mapping to a smooth affine varietyX ⊂ Kn,
where dimX ≥ p. We set X := graphf as the closure of the graph of f in Pn × Kp and we set
X∞ := X ∩ (H∞ ×Kp).

We consider the affine charts Uj×Kp of Pn×Kp, where Uj = {xj 6= 0} and j = 0, 1, . . . , n. We
identify the chart U0 with the affine space Kn. Thus, we have X∩ (U0×Kp) = X\X∞ = graphf
and X∞ is covered by the charts U1 ×Kp, . . . , Un ×Kp.

If g denotes the projection to the variable x0 in some affine chart Uj ×Kp, then the relative
conormal Cg(X\X∞ ∩Uj ×Kp) ⊂ X× P̌n+p−1 and the projection π : Cg(X\X∞ ∩Uj ×Kp)→ X,
π(y,H) = y, are well-defined.

Let us then consider the space π−1(X∞), which is well-defined for every chart Uj × Kp as a
subset of Cg(X\X∞ ∩ Uj × Kp). By Lemma 3.2, the definitions coincide at the intersections of
the charts and one has:

Definition 3.3. The space of characteristic covectors at infinity is the well-defined set

C∞ := π−1(X∞).

For any z0 ∈ X∞, we denote C∞z0 := π−1(z0).

We denote by τ : Pn × Kp → Kp the second projection. The relative conormal space
Cτ (Pn ×Kp) is defined as in Definition 3.1, where the function g is replaced by the applica-
tion τ .

Definition 3.4 (t-regularity). We say that f is t-regular at z0 ∈ X∞ if Cτ (Pn ×Kp) ∩ C∞z0 = ∅.

3.2. t-regularity interpretation. Let X ⊂ Kn be a smooth affine variety over K. We suppose
that X is a global complete intersection. In other words,

X = {x ∈ Kn | h1(x) = h2(x) = . . . = hr(x) = 0}

and rank Dh(x) = r, where h = (h1, . . . , hr) : Kn → Kr and Dh(x) denotes the Jacobian matrix
of h at x.

Let f = (f1, . . . , fp) : X → Kp be the restriction of a polynomial mapping to X, where
dimX ≥ p. Given z0 ∈ X∞, up to some linear change of coordinate, we may assume that
z0 ∈ X∞ ∩ (Un × Kp). In the intersection of charts (U0 ∩ Un) × Kp, we consider the change of
coordinates x1 = y1/y0, . . . , xn−1 = yn−1/y0, xn = 1/y0, where (x1, . . . , xn) are the coordinates
in U0 and (y0, . . . , yn−1) are those in Un. Then for i = 1, . . . , p and j = 1, . . . , r, we define:

Fi(y, t) = Fi(y0, y1, . . . , yn−1, t1, . . . , tp) := fi (y1/y0, . . . , yn−1/y0, 1/y0)− ti,(6)
Hj(y, t) = Hj(y0, y1, . . . , yn−1, t1, . . . , tp) := hj(y1/y0, . . . , yn−1/y0, 1/y0).(7)

Define H(y, t) := (H1(y, t), . . . ,Hr(y, t)) and F (y, t) := (F1(y, t), . . . , Fp(y, t)). Then

(X ×Kp) ∩ ((U0 ∩ Un)×Kp) = H−1(0)

and X ∩ ((U0 ∩ Un)×Kp) = F−1(0) ∩H−1(0).
We denote the normal vector to the hypersurface {y0 = constant} by

~n0 = (1, 0, . . . , 0) ∈ Kn ×Kp.

Let us define p+ r normal vectors to F−1(0) at (y, t) ∈ X ∩ ((U0 ∩ Un)×Kp), as follows:
For i = 1, . . . , p, define:

(8) ~ni(y, t) = ∇Fi(y, t) = (∇nFi(y, t),∇pFi(y, t)),
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where

∇nFi(y, t) :=

(
∂Fi
∂y0

(y, t), · · · , ∂Fi
∂yn−1

(y, t)

)
, ∇pFi(y, t) :=

(
∂Fi
∂t1

(y, t), · · · , ∂Fi
∂tp

(y, t)

)
.

For j = 1, . . . , r, define:

(9) ~mj(y, t) = ∇Hj(y, t) =

(
∂Hj

∂y0
(y, t), . . . ,

∂Hj

∂yn−1
(y, t), 0, . . . , 0

)
.

By Definition 3.4, f is not t-regular at z0 ∈ X∞ if and only if there exists a sequence
{(yk, tk)}k∈N ⊂ X ∩ ((U0 ∩ Un) × Kp) such that (yk, tk) → z0 and the tangent hyperplanes
to the fibres of g|X at (yk, tk) tend to a hyperplane W such that its normal line has a direc-
tion of the form [0 : · · · : 0 : b1 : · · · : bp] in Pn+p−1. More explicitly, there exists a sequence
{(ψ0k, ψ1k, . . . , ψpk , ϕ1k, . . . , ϕrk)}k∈N ⊂ Kp+r+1 such that

lim
k→∞

(

p∑
i=0

ψik ~ni(yk, tk) +

r∑
j=1

ϕjk ~mj(yk, tk))

of the linear combination of normal vectors ~ni, ~mj has the direction

~nW = [0 : 0 : · · · : 0 : b1 : · · · : bp] ∈ Pn+p−1.

3.3. Rabier function and Rabier condition.

Definition 3.5 ([Ra, p. 651]). Given A ∈ L(V,W ). The Rabier function at A is defined as
follows:

(10) ν(A) := inf{‖A∗(ϕ)‖;ϕ ∈W ∗ and ‖ϕ‖ = 1}.

For any vector w = (w1, . . . , wm) ∈ Km, we denote the line matrix associated to w by [w], i.e.,
[w] =

[
w1 . . . wm

]
. Given A ∈ L(Kn,Kp), we denote by [A] the matrix of A with respect

to the canonical basis of Kn and Kp. Thus, one has:

Lemma 3.6. Let V be a linear subspace of Kn. For any A ∈ L(Kn,Kp), if we set

(11) ν1(A|V ) := inf{ ‖ [u][A] + [w] ‖ ;w ∈ V ⊥, u ∈ Kp and ‖u‖ = 1},
then there are positive constants C1 and C2 such that C1ν1(A|V ) ≤ ν(A|V ) ≤ C2ν1(A|V ).

Proof. The proof follows from Lemma 2.1 and Definition 3.5. �

Now, let X ⊂ Kn be a smooth affine variety over K and let f : X → Kp be the restriction of
a polynomial mapping to X, where dimX ≥ p. We have:

Definition 3.7 ([Ra]). The set of asymptotic critical values of f is defined as follows:

K∞(f) := {t ∈ Kp | ∃{xj}j∈N ⊂ X, lim
j→∞

‖xj‖ =∞,(12)

lim
j→∞

f(xj) = t and lim
j→∞

‖xj‖ν(Df(xj)|Txj
X) = 0},

where ν(−) is defined as in Definition 3.5.

We reformulate the above condition in a localized version, at some point at infinity z0 ∈ X∞,
as follows:

Definition 3.8 (Rabier condition). We say that z0 ∈ X∞ is an asymptotic critical point of
f if and only if there exists {xj}j∈N ⊂ X ' graphf such that limj→∞(xj , f(xj)) = z0 and
τ(z0) ∈ K∞(f), where τ : Pn ×Kp → Kp denotes the second projection.

We say that z0 ∈ X∞ satisfies Rabier condition if z0 is not an asymptotic critical point of f .
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Remark 3.9. From Lemma 3.6, we obtain the same set of Definition 3.7 if we replace ν by the
function ν1 defined in (11).

4. Equivalence of regularity conditions

The goal of this section is to prove an equivalence between t-regularity and Rabier condition.
Let X ⊂ Kn be a smooth affine variety over K. We suppose that X is a global complete inter-

section. In other words, X = {x ∈ Kn | h1(x) = h2(x) = . . . = hr(x) = 0} and rank Dh(x) = r,
for any x ∈ X, where h = (h1, . . . , hr) : Kn → Kr and Dh(x) denotes the Jacobian matrix of h
at x (see Remark 4.2). With above definitions and statements, we have:

Theorem 4.1. Let f : X → Kp be a non-constant polynomial mapping, with dimX ≥ p. Let
z0 ∈ X∞. Then f is t-regular at z0 if and only if z0 is not an asymptotic critical point of f .

Proof. We may assume (eventually after some linear change of coordinates) that

z0 ∈ X∞ ∩ (Un × Rp)

and that |xn| ≥ |xi|, i = 1, . . . , n− 1, for x in some neighbourhood of z0.
“⇒”. Let z0 be an asymptotic critical point of f . By Definition 3.8 and Remark 3.9, this
means that there exist sequences {(ψk, ϕk) = ((ψ1k, . . . , ψpk), (ϕ1k, . . . , ϕrk))}k∈N ⊂ Kp+r and
{xk := (x1k, . . . , xnk)}k∈N ⊂ X, where ‖ψk‖ = 1 and limk→∞(ψk, ϕk) = (ψ,ϕ), such that
limk→∞ ψk = ψ = (ψ1, . . . , ψp) 6= (0, . . . , 0), limk→∞(xk, f(xk)) = z0 and:

(13)

‖xk‖

∥∥∥∥∥∥
 p∑
i=1

ψik
∂fi
∂x1

(xk) +

r∑
j=1

ϕjk
∂hj
∂x1

(xk), . . . ,

p∑
i=1

ψik
∂fi
∂xn

(xk) +

r∑
j=1

ψjk
∂hj
∂xn

(xk)

∥∥∥∥∥∥→ 0.

Since for large enough k we have |xnk| ≥ |xik|, i = 1, . . . , n− 1, we may replace in (13) ‖xk‖
by |xnk| and then multiply the sums of (13) by xnk.

In the notations of §3.2, by changing coordinates within U0∩Un, one has y0 = 1/xn, yi = xi/xn
and the relations:

(14)


∂Fj

∂yi
(y, t) = xn

∂fj
∂xi

(x), 1 ≤ i ≤ n− 1, 1 ≤ j ≤ p,
∂Fj

∂tl
(y, t) = −δl,j , 1 ≤ j, l ≤ p,

∂Fj

∂y0
(y, t) = −xn(x1

∂fj
∂x1

(x) + . . .+ xn
∂fj
∂xn

(x)), 1 ≤ j ≤ p.

(15)


∂Hj

∂yi
(y, t) = xn

∂hj

∂xi
(x), 1 ≤ i ≤ n− 1, 1 ≤ j ≤ r,

∂Hj

∂tl
(y, t) = 0, 1 ≤ j ≤ r, 1 ≤ l ≤ p,

∂Hj

∂y0
(y, t) = −xn(x1

∂hj

∂x1
(x) + . . .+ xn

∂hj

∂xn
(x)), 1 ≤ j ≤ r.

The condition (13) yields:

(16)∥∥∥∥∥∥
 p∑

i=1

ψik
∂Fi
∂y1

+

r∑
j=1

ϕjk
∂Hj

∂y1

 (yk, tk), . . . ,

 p∑
i=1

ψik
∂Fi
∂yn−1

+

r∑
j=1

ϕjk
∂Hj

∂yn−1

 (yk, tk)

∥∥∥∥∥∥→ 0.

We set ~nWk
:= (0, ωk,−ψ1k, . . . ,−ψpk), where ωk is the vector of equation (16). Let Wk be

the hyperplane defined by ~nWk
. Let ~ni and ~mj be the vectors defined in §3.2. Then, the vectors
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{~nWk
} are linear combinations of ~ni and ~mj with coefficients {ψik, ϕjk}, and the hyperplanes

Wk are tangent to the levels of the function g|X. Since we have supposed

lim
k→∞

(ψ1k, . . . , ψpk) = (ψ1, . . . , ψp) 6= (0, . . . , 0),

it follows from definition of ~nWk
and equation (16) that:

lim
k→∞

~nWk
= [0 : 0 : . . . : 0 : ψ1 : . . . : ψp].

Denote by W the hyperplane defined by [0 : 0 : . . . : 0 : ψ1 : . . . : ψp]. Then W = limk→∞Wk,
which implies that W belongs to C∞z0 and consequently f is not t-regular at z0 (see §3.2).
“⇐”. Let z0 ∈ X∞ be not t-regular. By Definition 3.4, this means that there exist a sequence of
points {(yk, tk)}k∈N ⊂ X ∩ ((U0 ∩ Un) × Kp) tending to z0, and a sequence of hyperplanes Wk

tangent to the levels of g at (yk, tk), such that Wk →W ∈ C∞z0 .
Let ~ni and ~mj be the vectors defined in §3.2. From §3.2, if f is not t-regular at z0 then

there exist sequences {ψ̃k = (ψ̃1k, . . . , ψ̃pk)}k∈N ⊂ Kp, {ϕ̃k = (ϕ̃1k, . . . , ϕ̃rk)}k∈N ⊂ Kr and
{λk}k∈N ⊂ K such that ~nWk

= λk~n0(yk, tk) +
∑
i ψ̃ik~ni(yk, tk) +

∑
j ϕ̃jk ~mj(yk, tk) and that

limk→∞ ~nWk
=
[
0 : 0 : . . . : 0 : ψ̃1 : . . . : ψ̃p

]
, where

(
ψ̃1, . . . , ψ̃p

)
6= (0, . . . , 0). By assumption,

the vector ~nWk
has the following expression:

(a) In the first coordinate of ~nWk
one has: λk +

(
p∑
i=1

ψ̃ik
∂Fi

∂y0
+

r∑
j=1

ϕ̃jk
∂Hi

∂y0

)
(yk, tk).

(b) In the l-th coordinate, with 2 ≤ l ≤ n, one has:

(
p∑
i=1

ψ̃ik
∂Fi

∂yl
+

r∑
j=1

ϕ̃jk
∂Hj

∂yl

)
(yk, tk).

(c) In the q-th coordinate, with n+ 1 ≤ q ≤ n+ p, one has: −ψ̃qk.
We may take λk := −

∑p
i=1 ψ̃ik

∂Fi

∂y0
(yk, tk) −

∑r
j=1 ϕ̃jk

∂Hi

∂y0
(yk, tk). After, we divide out by

µk := ‖(ψ̃1k, . . . , ψ̃pk)‖. Then, we replace ψ̃ik and ϕ̃jk by ψik := ψ̃ik

µk
and ϕjk :=

ϕ̃jk

µk
, respec-

tively. This implies that ‖(ψ1k, . . . , ψpk)‖ = 1 and limk→∞ ~nWk
= [0 : . . . : 0 : ψ1 : . . . : ψp] ,

where (ψ1, . . . , ψp) 6= (0, . . . , 0). Therefore,

(17) lim
k→∞

p∑
i=1

ψik
∂Fi
∂yl

(yk, tk) +

r∑
j=1

ϕjk
∂Hj

∂yl
(yk, tk) = 0, for any 1 ≤ l ≤ n− 1.

By using (14) and (15), this is equivalent to:

(18) lim
k→∞

xnk

 p∑
i=1

ψik
∂fi
∂xl

(xk) +

r∑
j=1

ϕjk
∂hj
∂xl

(xk)

 = 0,

for 1 ≤ l ≤ n− 1, and one has |xnk| ≥ 1√
n
‖xk‖ for large enough k. Therefore, in order to get the

limit (13) it remains to prove that (18) is true for l = n. The rest of our argument is devoted to
this proof.

From relations (14) and (15), we obtain xn ∂fi∂xn
(x) = −

∑n−1
j=0 yj

∂Fi

∂yj
(y, t) and

xn
∂hi
∂xn

(x) = −
n−1∑
j=0

yj
∂Hi

∂yj
(y, t).

Therefore:
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(19) xnk

p∑
i=1

ψik
∂fi
∂xn

(xk) = −
n−1∑
j=1

p∑
i=1

yjkψik
∂Fi
∂yj

(yk, tk)−
p∑
i=1

ψiky0k
∂Fi
∂y0

(yk, tk).

(20) xnk

r∑
i=1

ϕik
∂hi
∂xn

(xk) = −
n−1∑
j=1

r∑
i=1

yjkϕik
∂Hi

∂yj
(yk, tk)−

r∑
i=1

ϕiky0k
∂Hi

∂y0
(yk, tk).

We will show that the following two terms tend to zero:

n−1∑
j=1

p∑
i=1

yjkψik
∂Fi
∂yj

(yk, tk) +

n−1∑
j=1

r∑
i=1

yjkϕik
∂Hi

∂yj
(yk, tk), and(21)

p∑
i=1

ψiky0k
∂Fi
∂y0

(yk, tk) +

r∑
i=1

ϕiky0k
∂Hi

∂y0
(yk, tk).(22)

First, we have:

(23)

∥∥∥∥∥∥
n−1∑
j=1

p∑
i=1

yjkψik
∂Fi
∂yj

(yk, tk) +

n−1∑
j=1

r∑
i=1

yjkϕik
∂Hi

∂yj
(yk, tk)

∥∥∥∥∥∥ ≤∥∥∥∥ xkxnk
∥∥∥∥
∥∥∥∥∥((

p∑
i=1

ψik
∂Fi
∂y1

+

r∑
i=1

ϕik
∂Hi

∂y1
)(yk, tk), . . . , (

p∑
i=1

ψik
∂Fi
∂yn−1

+

r∑
i=1

ϕik
∂Hi

∂yn−1
)(yk, tk))

∥∥∥∥∥ ,
since by hypothesis |yjk| = | xjk

xnk
| ≤ 1 for large enough k. Then we obtain from (17) that the

right hand side of (23) tends to zero as k →∞, which shows that (21) tends to zero.
To show that (22) tends to zero, let us assume that the following inequality holds for large

enough k � 1, the proof of which will be given below:

(24)

∥∥∥∥∥∥
p∑
i=1

ψiky0k
∂Fi
∂y0

+

r∑
j=1

ϕjky0k
∂Hj

∂y0

∥∥∥∥∥∥�∥∥∥∥∥∥(

p∑
i=1

ψik
∂Fi
∂y1

+

r∑
j=1

ϕjk
∂Hj

∂y1
, . . . ,

p∑
i=1

ψik
∂Fi
∂yn−1

+

r∑
j=1

ϕjk
∂Hj

∂yn−1
,

p∑
i=1

ψik
∂Fi
∂t1

, . . . ,

p∑
i=1

ψik
∂Fi
∂tp

)

∥∥∥∥∥∥ .
Then, by using (17), (24) and the equality

∑p
i=1 ψik

∂Fi

∂tl
= −ψlk for any 1 ≤ l ≤ p (implied

by (14)), we have: ∥∥∥∥∥∥
p∑
i=1

ψiky0k
∂Fi
∂y0

+

r∑
j=1

ϕjky0k
∂Hj

∂y0

∥∥∥∥∥∥� ‖ψk‖ = 1.

This implies limk→∞ ‖(
∑p
i=1 ψiky0k

∂Fi

∂y0
+
∑r
j=1 ϕjky0k

∂Hj

∂y0
)(yk, tk)‖ = 0, which shows that (22)

tends to zero as k →∞.
We have shown that (21) and (22) tend to zero as k →∞. From the equations (19) and (20),

we have that the sum (21) + (22) is equal to equation of (18) with l = n. These imply that (18)
is also true for l = n. This completes our proof of relation (13) showing that z0 is an asymptotic
critical point of f .
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Let us now give the proof of (24). Suppose not; this means that there exists δ > 0 such that
for k � 1 we have:
(25) ∥∥∥∑p

i=1 ψiky0k
∂Fi

∂y0
+
∑r
j=1 ϕjky0k

∂Hj

∂y0

∥∥∥∥∥∥(
∑p
i=1 ψik

∂Fi

∂y1
+
∑r
j=1 ϕjk

∂Hj

∂y1
, . . . ,

∑p
i=1 ψik

∂Fi

∂yn−1
+
∑r
j=1 ϕjk

∂Hj

∂yn−1
,−ψ1k, . . . ,−ψpk)

∥∥∥ > δ,

where, by relations (14), we have −ψlk =
∑p
i=1 ψik

∂Fi

∂tl
, for 1 ≤ l ≤ p. The set:

W = {((y, t), ψ, ϕ) ∈ ((Un∩U0)×Kp×Kp×Kr)∩ (X×Sp−11 ×Kr) | (25) holds for ((y, t), ψ, ϕ)}

is a semi-algebraic set and we have ((yk, tk), ψk, ϕk) ∈ W for k � 1. We observe that if
((y, t), ψ, ϕ) ∈ W then ((y, t), γψ, γϕ) ∈ W, for any γ ∈ K∗. This last observation implies that
((yk, tk), ψ̃k, ϕ̃k) ∈ W, where ψ̃k := ψk

‖(ψk,ϕk)‖ and ϕ̃k := ϕk

‖(ψk,ϕk)‖ .
Since limk→∞ ψk → ψ 6= 0, one may suppose that limk→∞(ψ̃k, ϕ̃k)→ (ψ̃, ϕ̃), with (ψ̃, ϕ̃) 6= 0.

Then limk→∞((yk, tk), ψ̃k, ϕ̃k) = (z0, ψ̃, ϕ̃) and by the curve selection lemma [Mi] there exists
an analytic curve λ = (φ, ψ, ϕ) : [0, ε[→ W such that λ(]0, ε[) ⊂ W and λ(0) = (z0, ψ, ϕ). We
denote

φ(s) = (y0(s), y1(s), . . . , yn−1(s), t1(s), . . . , tp(s)), ψ(s) = (ψ1(s), . . . , ψp(s)), and

ϕ(s) = (ϕ1(s), . . . , ϕr(s)).

Since (F,H)(φ(s)) ≡ 0, we have:

0 =
d

ds
(F,H)(φ(s)) = y′0(s)

∂(F,H)

∂y0
(φ(s)) +

n−1∑
i=1

y′i(s)
∂(F,H)

∂yi
(φ(s)) +

p∑
i=1

t′i(s)
∂(F,H)

∂ti
(φ(s)),

where ∂(F,H)
∂yi

= (∂F1

∂yi
, . . . ,

∂Fp

∂yi
, ∂H1

∂yi
, . . . , ∂Hr

∂yi
).

Multiplying by (ψ(s), ϕ(s)) we obtain:

(26) − y′0(s)

 p∑
i=1

ψi(s)
∂Fi
∂y0

+

r∑
j=1

ϕj
∂Hj

∂y0

 (φ(s))

 =

n−1∑
l=1

y′l(s)

 p∑
i=1

ψi(s)
∂Fi
∂yl

+

r∑
j=1

ϕj
∂Hj

∂yl

 (φ(s))

+

p∑
l=1

t′l(s)

p∑
i=1

ψi(s)
∂Fi
∂tl

(φ(s)).

Since φ is analytic, thus bounded at s = 0, by applying the Cauchy-Schwarz inequality one finds
a constant C > 0 such that:

(27)

∣∣∣∣∣∣y′0(s)

 p∑
i=1

ψi(s)
∂Fi
∂y0

+

r∑
j=1

ϕj
∂Hj

∂y0

 (φ(s))

∣∣∣∣∣∣ ≤
C

∥∥∥∥∥∥
(

p∑
i=1

ψi
∂Fi
∂y1

+

r∑
j=1

ϕj
∂Hj

∂y1
)(φ), . . . , (

p∑
i=1

ψi
∂Fi
∂yn−1

+

r∑
j=1

ϕj
∂Hj

∂yn−1
)(φ), ψ1, . . . , ψp

 (s)

∥∥∥∥∥∥ .
We have l := ordsy

′
0(s) ≥ 0 and ordsy0(s) = l + 1 ≥ 1 since y0(0) = 0. Thus∣∣∣y0(s)(

∑p
i=1 ψi(s)

∂Fi

∂y0
+
∑r
j=1 ψj

∂Hj

∂y0
)(φ(s))

∣∣∣ � ∣∣∣y′0(s)(
∑p
i=1 ψi(s)

∂Fi

∂y0
+
∑r
j=1 ψj

∂Hj

∂y0
)(φ(s))

∣∣∣.
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This and (27) give:∥∥∥∥∥∥y0(s)(

p∑
i=1

ψi(s)
∂Fi
∂y0

+

r∑
j=1

ψj
∂Hj

∂y0
)(φ(s))

∥∥∥∥∥∥�∥∥∥∥∥∥
(

p∑
i=1

ψi
∂Fi
∂y1

+

r∑
j=1

ϕj
∂Hj

∂y1
)(φ), . . . , (

p∑
i=1

ψi
∂Fi
∂yn−1

+

r∑
j=1

ϕj
∂Hj

∂yn−1
)(φ), ψ1, . . . , ψp

 (s)

∥∥∥∥∥∥ ,
which contradicts our assumption that (φ(s), ψ(s), ϕ(s)) ∈ W, for s ∈ ]0, ε[. Therefore, we
conclude that (24) holds, which completes the proof of Theorem 4.1. �

The above theorem extends for mappings defined on X the equivalence proved in [DRT,
Theorem 3.2]. It also extends an equivalence proved for p = 1 in [Pa2, ST].

Remark 4.2. In Theorem 4.1 we suppose that X ⊂ Kn is a complete intersection. It is well
known that any manifold is a locally complete intersection (see e.g [GP, p. 18]). So, in the
general case of a smooth affine variety X, one may take a locally finite cover {Ui} of Kn such
that the manifold Xi := X ∩ Ui is a complete intersection. Then we consider the normal vector
fields on each Xi as in §3.2 and we use a partition of unity subordinate to the cover {Ui} to
obtain normal vector fields defined on X. Then the proof of Theorem 4.1 in the general case is
the same as above.

5. t-regularity and Jelonek set

In this section, we consider f : X → Rp, where dimX = p. We prove that, in this case,
t-regularity is related with the Jelonek set Jf ([Je1]). We begin with:

Definition 5.1 ([Je1, Definition 3.3]). Let f : M → N be a continuous mapping, where M,N
are manifolds. We say that f is proper at a point t0 ∈ N if there exists an open neighbourhood
U of t0 such that the restriction f|f−1(U) : f−1(U) → U is a proper mapping. We denote by Jf
the set of points at which f is not proper.

See for instance [Je1, Je2] for applications and related problems with Jf .

Definition 5.2. Let f : X → Kp be the restriction of a polynomial mapping to a smooth variety
X, where dimX ≥ p. We set

(28) NT ∞(f) := {t0 = τ(z0) ∈ Kp | z0 ∈ X∞ and z0 is not t-regular}.

When dimX = p, we have:

Proposition 5.3. Let X ⊂ Rn be a smooth affine variety over R. We suppose that X is a
global complete intersection. In other words X = {x ∈ Rn | h1(x) = h2(x) = . . . = hr(x) = 0}
and rank Dh(x) = r, for any x ∈ X, where h = (h1, . . . , hr) : Rn → Rr and Dh(x) denotes the
Jacobian matrix of h at x.

Let f = (f1, . . . , fp) : X → Rp be the restriction of a polynomial mapping to X, where
dimX = n− r = p. Then NT ∞(f) = K∞(f) = Jf .

Proof. The equality NT ∞(f) = K∞(f) follows directly from Theorem 4.1. Thus, we need only
show the equality K∞(f) = Jf .

The inclusion K∞(f) ⊂ Jf follows directly from Definitions 3.7 and 5.1. On the other hand,
let t0 ∈ Jf . By the curve selection lemma [Mi], there exists an analytic path

φ = (φ1, . . . , φn) : ]0, ε[→ X ⊂ Rn
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such that lims→0 ‖φ(s)‖ =∞ and lims→0 f(φ(s)) = t0.
Consider

∂fi
∂x

(x) :=

(
∂fi
∂x1

(x), . . . ,
∂fi
∂xn

(x)

)
, for i = 1, . . . , p,(29)

∂hj
∂x

(x) :=

(
∂hj
∂x1

(x), . . . ,
∂hj
∂xn

(x)

)
, for j = 1, . . . , r.(30)

Since n = h+ r, there exist analytic curves λ̃(s), ϕ̃1(s), . . . , ϕ̃p(s), ψ̃1(s), . . . , ψ̃r(s), from ]0, ε[

to R, such that (λ̃(s), ϕ̃1(s), . . . , ϕ̃p(s), ψ̃1(s), . . . , ψ̃r(s)) 6= (0, . . . , 0), for any s ∈]0, ε[, and the
following equality holds:

(31) λ̃(s)(φ1(s), . . . , φn(s)) =

p∑
i=1

ϕ̃i(s)
∂fi
∂x

(φ(s)) +

r∑
j=1

ψ̃j(s)
∂hj
∂x

(φ(s)).

Let ϕ̃(s) := (ϕ̃1(s), . . . , ϕ̃p(s)). Let us assume that there exists 0 < ε1 ≤ ε such that ϕ̃(s) 6= 0,
for any s ∈ ]0, ε1[, the proof of which will be given below.

We consider the curves λ(s), ϕ(s) := (ϕ1(s), . . . , ϕp(s)) and ψ(s) := (ψ1(s), . . . , ψr(s)), where
λ(s) := λ̃(s)

‖ϕ̃(s)‖ , ϕi(s) := ϕ̃i(s)
‖ϕ̃(s)‖ , i = 1, . . . , p, and ψj(s) =

ψ̃j(s)
‖ϕ̃(s)‖ , j = 1, . . . , r.

Then ‖ϕ(s)‖ = 1 and we can rewrite equation (31) as follows:

(32) λ(s)(φ1(s), . . . , φn(s)) =

p∑
i=1

ϕi(s)
∂fi
∂x

(φ(s)) +

r∑
j=1

ψj(s)
∂hj
∂x

(φ(s)).

By chain rule and from (32), we obtain the following equalities:

(33)
p∑
i=1

ϕi(s)
d

ds
fi(φ(s)) +

r∑
j=1

ψj(s)
d

ds
hj(φ(s)) =〈

p∑
i=1

ϕi(s)
∂fi
∂x

(φ(s)) +

r∑
j=1

ψj(s)
∂hj
∂x

(φ(s));
d

ds
φ(s)

〉
=

1

2
λ(s)

(
d

ds
‖φ(s)‖2

)
.

Since lims→0 f(φ(s)) = t0 and h(φ(s)) ≡ 0, we have that ords

(
d
dsfi(φ(s))

)
≥ 0, for i = 1, . . . , p,

and d
dshj(φ(s)) ≡ 0, for j = 1, . . . , r. These and (33) imply:

(34) 0 ≤ ords

(
λ(s)

(
d

ds
‖φ(s)‖2

))
< ords

(
λ(s)‖φ(s)‖2

)
.

On the other hand, the equality (32) yields:

(35) ords

(
|λ(s)|‖φ(t)‖2

)
= ords

‖φ(s)‖

∥∥∥∥∥∥
p∑
i=1

ϕi(s)
∂fi
∂x

(φ(s)) +

r∑
j=1

ψj(s)
∂hj
∂x

(φ(s))

∥∥∥∥∥∥
 .

From (34), we conclude that (35) is positive, which implies:

(36) lim
s→0
‖φ(s)‖

∥∥∥∥∥∥
p∑
i=1

ϕi(s)
∂fi
∂x

(φ(s)) +

r∑
j=1

ψj(s)
∂hj
∂x

(φ(s))

∥∥∥∥∥∥ = 0.

Therefore, since lims→0 f(φ(s)) = t0, ‖ϕ(s)‖ = 1,
∑r
j=1 ψj(s)

∂hj

∂x (φ(s)) ∈ (Tφ(s)X)⊥, we
conclude from (36), Definition 3.7 and Lemma 3.6 that t0 ∈ K∞(f).
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Let us now show that there exists 0 < ε1 ≤ ε such that ϕ̃(s) 6= 0, for any s ∈ ]0, ε1[. Suppose
not; this means that there exists a sequence {sk}k∈N ⊂ ]0, ε[ such that limk→∞ sk = 0 and
ϕ̃(sk) = (0, . . . , 0). This and (31) yield the following equality:

(37) λ̃(sk)(φ1(sk), . . . , φn(sk)) =

r∑
j=1

ψ̃j(sk)
∂hj
∂x

(φ(sk)), for any k ∈ N.

We remember that (λ̃(s), ϕ̃1(s), . . . , ϕ̃p(s), ψ̃1(s), . . . , ψ̃r(s)) 6= (0, . . . , 0), for any s ∈]0, ε[.
Consequently, the condition on ϕ̃ implies (λ̃(sk), ψ̃1(sk), . . . , ψ̃r(sk)) 6= (0, . . . , 0), for any k ∈ N.
Moreover, since limk→∞ sk = 0, we have limk→∞ ‖φ(sk)‖ = ∞ and limk→∞ f(φ(sk)) = t0.
From these conditions, equality (37) and curve selection lemma, we can obtain new analytic
curves λ(s), ψ1(s), . . . , ψr(s) and an analytic curve α = (α1, . . . , αn) : ]0, ε[→ X ⊂ Rn such that
lims→0 ‖α(s)‖ =∞, lims→0 f(α(s)) = t0, (λ(s), ψ1(s), . . . , ψr(s)) 6= (0, . . . , 0), for any s, and the
following equality holds:

(38) λ(s)(α1(s), . . . , αn(s)) =

r∑
j=1

ψj(s)
∂hj
∂x

(φ(s)).

Since α(s) ∈ X, we have hj(α(s)) ≡ 0, which implies d
dshj(α(s)) ≡ 0, for j = 1, . . . , r. These

and chain rule give:

(39) 0 ≡
r∑
j=1

ψj(s)
d

ds
hj(α(s)) =

〈
r∑
j=1

ψj(s)
∂hj
∂x

(α(s)),
d

ds
α(s)

〉
=

1

2
λ(s)

(
d

ds
‖α(s)‖2

)
.

Since λ and α are analytic curves, equality (39) gives λ(s) ≡ 0 or d
ds‖α(s)‖2 ≡ 0. If λ(s) ≡ 0

then, from (38) and statements on λ, ψ1, . . . , ψr, we obtain that
∑r
j=1 ψj(s)

∂hj

∂x (φ(s)) ≡ 0,
with (ψ1(s), . . . , ψr(s)) 6= (0, . . . , 0). But this contradicts the hypothesis that X is a global
intersection. If d

ds‖α(s)‖2 ≡ 0 then ‖α(s)‖2 is constant, which contradicts the assumption
lims→0 ‖α(s)‖ =∞. Therefore, we have shown by contradiction that the assertion “there exists
0 < ε1 ≤ ε such that ϕ̃(s) 6= 0, for any s ∈ ]0, ε1[,” is true, which completes the proof of
Proposition 5.3. �

The above proposition extends for mappings defined on X the equality proved in [KOS,
Proposition 3.1].
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SINGULARITIES OF AFFINE EQUIDISTANTS:

PROJECTIONS AND CONTACTS

W. DOMITRZ, P. DE M. RIOS, AND M. A. S. RUAS

Abstract. Using standard methods for studying singularities of projections and of contacts,

we classify the stable singularities of affine λ-equidistants of n-dimensional closed submanifolds
of Rq , for q ≤ 2n, whenever (2n, q) is a pair of nice dimensions [12].

1. Introduction

When M is a smooth closed curve on the affine plane R2, the set of all midpoints of chords
connecting pairs of points on M with parallel tangent vectors is called the Wigner caustic of M ,
or the area evolute of M , or still, the affine 1/2-equidistant of M , denoted E1/2(M).

The 1/2-equidistant is generalized to any λ-equidistant, denoted Eλ(M), λ ∈ R, by consid-
ering all chords connecting pairs of points of M with parallel tangent vectors and the set of
all points of these chords which stand in the λ-proportion to their corresponding pair of points
on M . In this case, when M is a curve on R2, the local classification of stable singularities of
Eλ(M) is well known [2, 5].

The definition of the affine λ-equidistant of M is generalized to the cases when M is an n-
dimensional closed submanifold of Rq, with q ≤ 2n, by considering the set of all λ-points of
chords connecting pairs of points on M whose direct sum of tangent spaces do not coincide with
Rq, the so-called weakly parallel pairs on M .

In addition to curves in R2, the possible stable singularities of Eλ(M) have been previously
studied in the general setting when M is a hypersurface [5, 6], or when M is a surface in R4 [7].
The cases of curves in R2 and surfaces in R4 have also been studied in the particular setting of
Lagrangian submanifolds of affine symplectic spaces [3].

In this paper, we classify the possible stable singularities of Eλ(M) in a quite more general
circumstance, namely, when the double dimension of M , 2n, and the dimension of the ambient
affine space, q, form a pair of nice dimensions [12], see Theorem 5.3 below.

In order to obtain such a classification, we start in Section 2 by defining an affine λ-equidistant
of Mn ⊂ Rq as the set of critical values of the λ-point map (projection)

πλ : Rq × Rq → Rq, (x+, x−) 7→ λx+ + (1− λ)x−

restricted to M ×M , thus locally a map

π̃λ : R2n → Rq ,

see Definition 2.8, Remark 2.9 and equation (5.2), below. Then, we also present the characteri-
zation of affine equidistants by a contact map, extending previous construction for the Wigner
caustic ([14, 7]).
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In Section 3 we review the standard K-equivalence and the classification of K-simple singu-
larities [10, 12], Theorem 3.9 below. Then, in Section 4 we combine the study of singularities of
projections and of contacts, in view of Theorem 4.6 below ([12, 11]), with emphasis on contact
reduction to rank 0 map-germs, Proposition 4.14.

Our main result is obtained in Section 5. First, in Theorem 5.2 we apply the Multijet Transver-
sality Theorem [8] to a K-invariant stratification of the jet space. When (2n, q) is a pair of nice
dimensions, the relevant strata of this stratification are the K-simple orbits in jet space. Then,
we use the results of Section 4 in the context of affine equidistants: Proposition 5.4 and Corollary
5.5, as well as equations (5.8)-(5.12). The following table summarizes our main result, Theorem
5.6, which is presented more extensively as subsection 5.1. The normal forms for the A-stable
singularities of the map π̃λ follow the notation of [10] (see Theorem 3.9 below) for the K-simple
rank-0 contact map-germ

θλ : (Rk, 0)→ (Rk−(2n−q), 0) ,

where k is the degree of parallelism of the pair of points on M joined by the chord (cf. Definition
2.1 and Tables I, II, III in Theorem 3.9).

(n , q) Stable Eλ(M), Mn ⊂ Rq Restrictions

(1 , 2) Aµ µ ≤ 2

(2 , 3) Aµ µ ≤ 3

(2 , 4) Aµ, C
±
2,2 µ ≤ 4

(3 , 4) Aµ, D
±
4 µ ≤ 4

(3 , 5) Aµ, D
±
4 , D

±
5 , S5 µ ≤ 5

(3 , 6) Aµ, C
±
ρ,τ , C6 µ ≤ 6, 2 ≤ ρ ≤ τ , ρ+ τ ≤ 6

(4 , 5) Aµ, D
±
4 , D

±
5 µ ≤ 5

(4 , 7) Aµ, D
±
ν , E6, E7, Sβ , T7, T̃7 µ ≤ 7, 4 ≤ ν ≤ 7, 5 ≤ β ≤ 7

(4 , 8) Aµ, C
±
ρ,τ , C6, C8, F7, F8 µ ≤ 8, 2 ≤ ρ ≤ τ , ρ+ τ ≤ 8

(5 , 6) Aµ, D
±
ν , E6 µ ≤ 6, 4 ≤ ν ≤ 6

We note that the case M4 ⊂ R6 is absent from the table of results. This is due to the fact that
(2n = 8, q = 6) is not a pair of nice dimensions (see Theorem 5.3 below). Similarly, (2n, q > 6)
is not a pair of nice dimensions, for all n ≥ 5. Classification of stable singularities of Eλ(M), in
these cases, lies outside the scope of this paper.

As mentioned before, the cases in the table of results when

(n, q) ∈ {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)}

correspond to hypersurfaces and have been previously studied in [5, 6], and the case (n, q) = (2, 4)
was partially studied in [7]. On the other hand, the results for the cases when

(n, q) ∈ {(3, 5), (3, 6), (4, 7), (4, 8)}

are entirely new.
We emphasize that, in all of the above, we are excluding the cases of vanishing chords, that

is, when the λ-point of the chord connecting two points on M touches M because the pair of
points on M lies in the diagonal of M ×M . Such “diagonal singularities” or singularities on
shell for Eλ(M) possess additional symmetries when λ = 1/2 and these have been studied for
the cases of curves on the plane and surfaces in R4, both in the general setting [7] and in the
more particular setting of Lagrangian submanifolds of affine symplectic space [4]. In this paper,
we don’t study such singularities on shell for Eλ(M).
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2. Affine equidistants

2.1. Definition of affine equidistants. Let M be a smooth closed n-dimensional submanifold
of the affine space Rq, with q ≤ 2n. Let a, b be points of M and denote by

τa−b : Rq 3 x 7→ x+ (a− b) ∈ Rq

the translation by the vector (a− b).

Definition 2.1. A pair of points a, b ∈M (a 6= b) is called a weakly parallel pair if

TaM + τa−b(TbM) 6= Rq.

codim(TaM + τa−b(TbM)) in TaRq is called the codimension of a weakly parallel pair a, b.
We denote it by codim(a, b).

A weakly parallel pair a, b ∈M is called k-parallel if

(2.1) dim(TaM ∩ τb−a(TbM)) = k.

If k = n the pair a, b ∈M is called strongly parallel, or just parallel. We also refer to k as the
degree of parallelism of the pair (a, b) and denote it by deg(a, b). The degree of parallelism
and the codimension of parallelism are related in the following way:

(2.2) 2n− deg(a, b) = q − codim(a, b).

Definition 2.2. A chord passing through a pair a, b, is the line

l(a, b) = {x ∈ Rq|x = λa+ (1− λ)b, λ ∈ R}.

Definition 2.3. For a given λ, an affine λ-equidistant of M , Eλ(M), is the set of all x ∈ Rq
such that x = λa+(1−λ)b, for all weakly parallel pairs a, b ∈M . Eλ(M) is also called a (affine)
momentary equidistant of M . Whenever M is understood, we write Eλ for Eλ(M).

Note that, for any λ, Eλ(M) = E1−λ(M) and in particular E0(M) = E1(M) = M . Thus,
the case λ = 1/2 is special:

Definition 2.4. E1/2(M) is called the Wigner caustic of M [2, 14].

2.2. Characterization of affine equidistants by projection. Consider the product affine
space: Rq × Rq with coordinates (x+, x−) and the tangent bundle to Rq: TRq = Rq × Rq with
coordinate system (x, ẋ) and standard projection π : TRq 3 (x, ẋ)→ x ∈ Rq.

Definition 2.5. For λ ∈ R, a λ-chord transformation

Γλ : Rq × Rq → TRq , (x+, x−) 7→ (x, ẋ)

is a linear diffeomorphism defined by the λ-point equation:

(2.3) x = λx+ + (1− λ)x− ,

for the λ-point x, and a chord equation:

(2.4) ẋ = x+ − x−.

Remark 2.6. For our purposes, the choice (2.4) for a chord equation is not unique, but is the
simplest one. Among other possibilities, the choice ẋ = λx+ − (1 − λ)x− is particularly well
suited for the study of affine equidistants of Lagrangian submanifolds in symplectic space [3].
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Now, let M be a smooth closed n-dimensional submanifold of the affine space Rq (2n ≥ q)
and consider the product M ×M ⊂ Rq ×Rq. LetMλ denote the image of M ×M by a λ-chord
transformation,

Mλ = Γλ(M ×M) ,

which is a 2n-dimensional smooth submanifold of TRq.
Then we have the following general characterization:

Theorem 2.7 ([3]). The set of critical values of the standard projection π : TRq → Rq restricted
to Mλ is Eλ(M).

Definition 2.8. For λ ∈ R, the λ-point map is the projection

πλ : Rq × Rq → Rq , (x+, x−) 7→ x = λx+ + (1− λ)x− .

Remark 2.9. Because πλ = π ◦ Γλ we can rephrase Theorem 2.7: the set of critical values of
the projection πλ restricted to M ×M is Eλ(M).

2.3. Characterization of affine equidistants by contact. In the literature, if M ⊂ R2 is
a smooth curve, the Wigner caustic E1/2(M) has been described in various ways. A particular

description says that, if Ra : R2 → R2 denotes reflection through a ∈ R2, then a ∈ E1/2(M)
when M and Ra(M) are not transversal [2, 14]. This description has also been used in [14] for
the case of Lagrangian surfaces in symplectic R4 and, more recently [7], for the case of general
surfaces in R4.

We now generalize this description for every λ-equidistant of submanifolds of more arbitrary
dimensions.

Definition 2.10. For λ ∈ R \ {0, 1}, a λ-reflection through a ∈ Rq is the map

(2.5) Rλa : Rq → Rq , x 7→ Rλa(x) =
1

λ
a− 1− λ

λ
x

Remark 2.11. A λ-reflection through a is not a reflection in the strict sense because

Rλa ◦ Rλa 6= id : Rq → Rq,

instead,

R1−λ
a ◦ Rλa = id : Rq → Rq ,

so that, if a = aλ = λa+ + (1− λ)a− is the λ-point of (a+, a−) ∈ R2q,

Rλaλ(a−) = a+ , R1−λ
aλ

(a+) = a− .

Of course, for λ = 1/2, R1/2
a ≡ Ra is a reflection in the strict sense.

Now, let M be a smooth n-dimensional submanifold of Rq, with 2n ≥ q, and let

a = aλ = λa+ + (1− λ)a−

be the λ-point of (a+, a−) ∈ M ×M ⊂ Rq × Rq. Also, let M+ be a germ of submanifold M
around a+ and M− be a germ of submanifold M around a−. We have:

Proposition 2.12. The following statements are equivalent:
(i) The λ-point a belongs to Eλ(M).
(ii) M+ and Rλa(M−) are not transversal at a+.
(iii) M− and R1−λ

a (M+) are not transversal at a−.
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Remark 2.13. Furthermore, from Remark 2.9 we see that the study of the singularities of
affine equidistants is the study of the singularities of πλ. But this is the same as the study of
the singularities at a = 0 of

(x+, x−)→ x+ +
1− λ
λ

x− = x+ −Rλ0 (x−) .

In other words, the study of the singularities of Eλ(M) 3 0 can be proceeded via the study of the

contact between M+ and Rλ0 (M−) or, equivalently, the contact between M− and R1−λ
0 (M+).

3. K-equivalence

We recall some basic definitions and results (for details, see [1]).
Henceforth, Es denotes the local ring of smooth function-germs on Rs, and ms its maximal

ideal.

Definition 3.1. Map-germs f, f̃ : (Rs, y0) → (Rt, 0) are K-equivalent if there exists a diffeo-
morphism-germ φ : (Rs, y0) → (Rs, y0) and a map-germ A : (Rs, y0) → GL(Rt) such that

f̃ = A · (f ◦ φ).

Theorem 3.2 ([1]). For the K-equivalence of two map-germs it is necessary and sufficient that
two ideals generated by the components of these map-germs may be mapped one to the other by
an isomorphism of Es induced by a diffeomorphism-germ of the source space (Rs, y0).

Definition 3.3. A map-germ F : (Rs × Rp, (y0, z0)) → Rt is a deformation of a map-germ
f : (Rs, y0)→ Rt if F |Rs×{z0} = f , where p is the number of parameters of deformation F .

Definition 3.4. A diffeomorphism-germ Φ : (Rs × Rp, (y0, z0)) → (Rs × Rp, (y0, z0)) is called
fiber-preserving if Φ(y, z) = (Y (y, z), Z(z)) for a smooth map-germ

Y : (Rs × Rp, (y0, z0))→ (Rs, y0)

and a diffeomorphism-germ Z : (Rp, z0)→ (Rp, z0). It means that Φ preserves the fibers of the
projection pr : (Rs × Rp, (y0, z0))→ (Rp, z0).

Definition 3.5. Deformations F, F̃ : (Rs × Rp, (y0, z0)) → (Rt, 0) of respective map-germs

f, f̃ : (Rs, y0) → (Rt, 0) are fiber K-equivalent if there is a fiber-preserving diffeomorphism-
germ Φ : (Rs×Rp, (y0, z0))→ (Rs×Rp, (y0, z0)), i.e. Φ(y, z) = (Y (y, z), Z(z)), and a map-germ

A : (Rs × Rp, (y0, z0))→ GL(Rt) such that F̃ = A · (F ◦ Φ).

Corollary 3.6. For the fiber K-equivalence of two deformations it is necessary and sufficient
that the two ideals of Es+p generated by the components of these deformations may be mapped
one to the other by an isomorphism of Es+p induced by a fiber-preserving diffeomorphism-germ
of the source space (Rs × Rp, (y0, z0)).

Definition 3.7. The germ f : (Rs, 0)→ (Rt, 0) is said to be K-simple if its k-jet, for any k, has
a neighborhood in the jet space Jk0,0(Rs,Rt) that intersects only a finite number of K-equivalence
classes (bounded by a constant independent of k).

Definition 3.8. The p-parameter suspension of the map-germ f : (Rs, 0)→ (Rt, 0) is the map
germ

F : (Rs × Rp, 0) 3 (y, z) 7→ (f(y), z) ∈ (Rt × Rp, 0).

Theorem 3.9 ([10]). K-simple map-germs (Rs, 0) → (Rt, 0) with s ≥ t belong, up to K-
equivalence and suspension, to one of the following three lists in Tables 1-3:
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Notation Normal form Restrictions

Aµ yµ+1
1 +Qs−1 µ ≥ 1

Dµ y21y2 ± yµ−1
2 +Qs−2 µ ≥ 4

E6 y31 + y42 +Qs−2 -

E7 y31 + y1y
3
2 +Qs−2 -

E8 y31 + y52 +Qs−2 -

Table 1. K-simple germs Rs → R. Qs−i = ±y2i+1 ± · · · ± y2s .

Notation Normal form Restrictions

C±k,l (y1y2, y
k
1 ± yl2) l ≥ k ≥ 2

C̃2k (y21 + y22 , y
k
2 ) k ≥ 3

F2m+1 (y21 + y32 , y
m
2 ) m ≥ 3

F2m+4 (y21 + y32 , y1y
m
2 ) m ≥ 2

G∗10 (y21 , y
4
2) -

H±m+5 (y21 ± ym2 , y1y22) m ≥ 4

Table 2. K-simple germs R2 → R2.

Notation Normal form Restrictions

Sµ (±y21 ± y22 + yµ−3
3 , y2y3) µ ≥ 5

T7 (y21 + y32 + y33 , y2y3) -

T̃7 (y21 + y22 , y
2
2 + y23) -

T8 (y21 + y32 ± y43 , y2y3) -

T9 (y21 + y32 + y53 , y2y3) -

U7 (y21 + y2y3, y1y2 + y33) -

U8 (y21 + y2y3 + y33 , y1y2) -

U9 (y21 + y2y3, y1y2 + y43) -

W8 (y21 + y32 , y
2
2 + y1y3) -

W9 (y21 + y2y
2
3 , y

2
2 + y1y3) -

Z9 (y21 + y33 , y
2
2 + y33) -

Z10 (y21 + y2y
2
3 , y

2
2 + y33) -

Table 3. K-simple germs R3 → R2.

Definition 3.10. A deformation

F : (Rs × Rp, (0, 0))→ (Rt, 0)

of a map-germ f : (Rs, 0)→ (Rt, 0) is K-versal if any other deformation

F̃ : (Rs × Rq, (0, 0))→ (Rt, 0)

of f is of the form

F̃ (y, z) = A(y, z) · F (g(y, z), h(z)),

where A : Rs×Rq → GL(Rt), g : (Rs×Rq, (0, 0))→ (Rs, 0), h : (Rq, 0)→ (Rp, 0) are map-germs
such that A(0, 0) is nondegerate matrix and g(y, 0) = y.

Theorem 3.11 ([1]). K-versal deformations of K-equivalent germs with the same number of
parameters are fiber K-equivalent.
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4. Singularities of projection and of contact

4.1. Singularities of projection. In view of Theorem 2.7, let M and M̃ be smooth closed
n-dimensional submanifolds of Rq, q ≤ 2n, and

Mλ = Γλ(M ×M) , M̃λ = Γλ(M̃ × M̃) ,

where Γλ is the λ-chord transformation.
For local classification of singularities, we introduce the definition:

Definition 4.1. Eλ(M) and Eλ(M̃) are λ-chord equivalent if there exists a fiber-preserving

diffeomorphism-germ of TRq that maps the germ ofMλ to the germ of M̃λ i.e. if the following
diagram commutes (vertical arrows indicate diffeomorphism-germs):

Γλ|M×M π
M ×M −→ TRq −→ Rq

↓ ↓ ↓
Γλ|M̃×M̃ π

M̃ × M̃ −→ TRq −→ Rq

The λ-chord equivalence of Eλ is a special case of equivalence of projections studied by V.
Goryunov ([9], [10]), as outlined below.

Definition 4.2. A projection of a (smooth) submanifold S from a total space E to the base
B of the bundle p : E → B is a triple

ι p
S ↪→ E → B

where ι is an embedding. A projection is called a projection “onto” if the dimension of S is
not less than the dimension of the base B.

Definition 4.3. Two projections Si ↪→ Ei → Bi for i = 1, 2 are equivalent if the following
diagram commutes

ι1 p1

S1 ↪→ E1 → B1

↓ ι2 ↓ p2 ↓
S2 ↪→ E2 → B2

where vertical arrows indicate diffeomorphisms.

A projection of S onto B defines a family of subvarieties in the fibers of the bundle p : E → B
parameterized by B: Sb = S ∩ p−1(b) for any b ∈ B. A germ of the projection

(S, q0) ↪→ (E, e0)→ (B, b0)

can be considered in a natural way as a deformation of the subvariety Sb0 .
The germ of a bundle E → B can be identified with the germ of the trivial bundle

Rs × Rp → Rp.

A germ of an embedded smooth submanifold S can be described by the germ of the variety of
zeros of some mapping-germ F : (Rs × Rp, (y0, z0)) → Rt. Then Sz0 can be identified with the
germ of the variety of zeros of F |Rs×{z0}.



74 W. DOMITRZ, P. DE M. RIOS, AND M. A. S. RUAS

If deformations F, F̃ : (Rs × Rp, (y0, z0)) → (Rt, 0) of map-germs f, f̃ : (Rs, y0) → (Rt, 0)
(respectively) are fiber K-equivalent then the following diagram commutes (Φ, Z indicate diffeo-
morphism-germs and pr indicate the projection):

pr
F−1(0) ↪→ Rs × Rp −→ Rp

↓ ↓ Φ ↓ Z
pr

F̃−1(0) ↪→ Rs × Rp −→ Rp

If the ideal of function-germs vanishing on F−1(0) is generated by the components of F , then
by Corollary 3.6 the inverse result is also true.

We remind that the group A = Diff(Rm, 0)×Diff(Rp, 0) acts on map-germs (Rm, 0)→ (Rp, 0)
by composition on source and target, with corresponding definitions for A-equivalent and A-
simple (refer to Definitions 3.1 and 3.7 for the group K). Then, from the above we have the
following results:

Proposition 4.4 ([9, 10]). F and F̃ are fiber K-equivalent if and only if the projections of

F−1(0) and F̃−1(0) onto Rp are A-equivalent.

Theorem 4.5 ([9]). If the germ of a projection (F−1(0), (0, 0)) ↪→ (Rs×Rp, (0, 0))→ (Rp, 0) is
A-simple then f = F |Rs×{0} is K-simple.

Theorem 4.6 ([11, 12]). The map-germ F : Rs×Rp → Rt is a K-versal deformation of a rank-0
map-germ f : Rs → Rt of finite K-codimension if and only if the projection-germ of F−1(0) onto
Rp is A-stable (infinitesimally stable).

By Theorems 4.5 and 4.6, in order to classify stable singularities of projections one considers
deformations of three classes of singularities: simple singularities of hypersurfaces (Table 1),
simple singularities of curves in a 3-dimensional space (Table 3), simple singularities of a mul-
tiple point on a plane (Table 2). We are interested in projections ”onto” when the projected
submanifold S = F−1(0) is smooth and the dimension of the base B of the bundle is greater
than 1.

In order to see in a more clear way how these three tables are applied to the classification of
singularities of affine equidistants, we now turn to the contact viewpoint.

4.2. Singularities of contact. Let N1, N2 be germs at x of smooth n-dimensional submanifolds
of the space Rq, with 2n ≥ q. We describe N1, N2 in the following way:

• N1 = f−1(0), where f : (Rq, x)→ (Rq−n, 0) is a submersion-germ,
• N2 = g(Rn), where g : (Rn, 0)→ (Rq, x) is an embedding-germ.

Let Ñ1, Ñ2 be another pair of germs at x̃ of smooth n-dimensional submanifolds of the space
Rq, described in the same way.

Definition 4.7. The contact of N1 and N2 at x is of the same contact-type as the contact of Ñ1

and Ñ2 at x̃ if there exists a diffeomorphism-germ Φ : (Rq, x) → (Rq, x̃) such that Φ(N1) = Ñ1

and Φ(N2) = Ñ2. We denote the contact-type of N1 and N2 at x by K(N1, N2, x).

Definition 4.8. A contact map between submanifold-germs N1, N2 is the following map-germ
f ◦ g : (Rn, 0)→ (Rq−n, 0).

Theorem 4.9 ([13]). K(N1, N2, x) = K(Ñ1, Ñ2, x̃) if and only if the contact maps f ◦ g and

f̃ ◦ g̃ are K-equivalent.
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Remark 4.10. If N1 and N2 are transversal at x then it is obvious that the contact map
f ◦ g : (Rn, 0)→ (Rq−n, 0) is a submersion-germ or a diffeomorphism-germ (when q = 2n).

The interesting cases are when N1 and N2 are not transversal at x0

Tx0N1 + Tx0N2 6= Tx0Rq.

Definition 4.11. We say that N1 and N2 are k-tangent at x0 if

dim(Tx0
N1 ∩ Tx0

N2) = k .

If k is maximal, that is

k = n = dim(Tx0
N1) = dim(Tx0

N2) ,

we say that N1 and N2 are tangent at x0.

Remark 4.12. In order to bring this definition into the context of affine equidistants, Eλ(M),
note that N1 = M+ and N2 = Rλ0 (M−) are k-tangent at 0 if and only if TaM

+ and TbM
− are

k-parallel, where λa+ (1− λ)b = 0 ∈ Eλ(M).

If N1 and N2 are k-tangent then we can describe germs of N1 and N2 at 0 in the following
way:

(4.1) N1 = {(y, z, u, v) ∈ Rq : u = φ(y, z), v = ψ(y, z)},

(4.2) N2 = {(y, z, u, v) ∈ Rq : z = η(y, v), u = ζ(y, v)},
where y = (y1, · · · , yk), z = (z1, · · · , zn−k), u = (u1, · · · , uq+k−2n), v = (v1, · · · , vn−k) and
(y, z, u, v) is a coordinate system on the affine space Rq,

φ = (φ1, · · · , φq+k−2n), ψ = (ψ1, · · · , ψn−k),

η = (η1, · · · , ηn−k), ζ = (ζ1, · · · , ζq+k−2n), and φi, ψj , ηj , ζi ∈M2
q,

for i = 1, · · · , q + k − 2n and j = 1, · · · , n− k.
Then, the contact map κN1,N2

: (Rn, 0)→ (Rq−n, 0) is given by:

(4.3) κN1,N2
(y, z) = (z − η(y, ψ(y, z)), φ(y, z)− ζ(y, ψ(y, z)))

From the form of κN1,N2 we easily obtain the following fact

Proposition 4.13. If N1 and N2 are k-tangent at 0 then the corank of the contact map κN1,N2

is k.

We can interpret the contact between two k-tangent n-dimensional submanifolds N1, N2 of
Rq as the contact between tangent k-dimensional submanifolds PN1 and PN2 of N1 and N2,
respectively, in a smooth q− 2n+ 2k-dimensional submanifold S of Rq. These submanifolds are
constructed in the following way:

Let H be a smooth q + k − n-dimensional submanifold-germ on Rq which contains N1 and is
transversal to N2 at 0. Then PN2

= H ∩N2 is a smooth k-dimensional submanifold on N2.
Let G be a smooth q + k − n-dimensional submanifold-germ on Rq which contains N2 and is

transversal to N1 at 0. Then PN1 = G ∩N1 is a smooth k-dimensional submanifold on N1.
PN1

and PN2
are tangent at 0 and they are contained in the smooth q− 2n+ 2k-dimensional

submanifold-germ S = H ∩G.

The contact between N1 and N2 at 0 can now be described as the contact between PN1 and
PN2 at 0, which defines a rank-0 map

(4.4) κPN1
,PN2

: (Rk, 0)→ (Rk−(2n−q), 0) .
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Although in general PN1
and PN2

depend on the choices of H and G, the contact type of PN1

and PN2
does not depend on these choices. This means that if Ñ1, Ñ2 is another pair of germs

at 0 of smooth n-dimensional submanifold of Rq then we have the following result.

Proposition 4.14. K(N1, N2, 0) = K(Ñ1, Ñ2, 0) if and only if

K(PN1 , PN2 , 0) = K(PÑ1
, PÑ2

, 0).

Proof. It is easy to see that in general H can be described in the following way:

(4.5) v = ψ(y, z) +A(y, z, u, v)(u− φ(y, z)),

and G can be described in the following way:

(4.6) z = η(y, v) +B(y, z, u, v)(u− ζ(y, v)),

where A = (aij)
j=1,··· ,n−k
i=1,··· ,q+k−2n, B = (bij)

j=1,··· ,n−k
i=1,··· ,q+k−2n and aij , bij are smooth function-germs on

Rq.
Thus S = H ∩G is given by (4.5) and (4.6).
PN1

is given by (4.5), (4.6), and u = φ(y, z) and PN2
is given by (4.5), (4.6) and u = ζ(y, v).

On the other hand we can also describe N1 by (4.5) and u = φ(y, z) and N2 by (4.6) and
u = ζ(y, v). Then it is easy to see that contact maps are the same after a suitable suspension. �

In view of Proposition 4.14, it is enough to classify the rank-0 map-germs of the form (4.4)
with respect to the group K.

5. Stable singularities of affine equidistants

Since our goal is to classify singularities of affine equidistants of n-dimensional submanifold
M of Rq, we substitute submanifold-germs N1 and N2 of the previous section by N1 = M+ and
N2 = Rλ0 (M−), or equivalently by N1 = M− and N2 = R1−λ

0 (M+), where M+ and M− are
germs of M ⊂ Rq at points a+ 6= a− ∈M ⊂ Rq, such that λa+ + (1− λ)a− = 0.

First, we state the following definition and theorem:

Definition 5.1. A mapping ψ : Nm → Rq is locally stable at p ∈ Nm if there exists a neighbour-
hood Wp of ψ in the space C∞(Nm,Rq) of C∞-mappings from Nm into Rq with the Whitney
C∞-topology, and neighbourhoods Up around p and Vp around ψ(p) such that for all φ ∈ Wp,
it follows that φ : Up → Vp is A- equivalent to ψ : Up → Vp, where A = Diff(Up)×Diff(Vp) (see
[8]).

Theorem 5.2. For a residual set of embeddings ι : Mn → Rq the map

πλ ◦ (ι× ι) : M ×M \∆→ Rq

is locally stable whenever the pair (2n, q) is a pair of nice dimensions, where ∆ is the diagonal
in M ×M .

Proof. From the diagram of maps

ι× ι πλ
M ×M −→ Rq × Rq → Rq ,

we obtain the diagram of r-jet maps

jr(ι× ι) (πλ)∗
M ×M −→ Jr(M ×M,Rq × Rq) → Jr(M ×M,Rq) .

A typical fiber of Jr(M × M,Rq) is Jr0 (M × M,Rq), the space of (degree ≤ r)-polynomial
map-germs Rn × Rn → Rq, vanishing at 0.
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Let {W1, . . . ,Ws} be the finite set of all K simple orbits in Jr(M×M,Rq); let {Ws+1, . . . ,Wt}
be a finite stratification of the complement of the union of simple orbits W1 ∪ . . . ∪Ws. This
stratification exists because these are semialgebraic sets. We denote by S = {Wj}1≤j≤t the
resulting stratification of Jr(M ×M,Rq). Because (πλ)∗ is a submersion, (πλ)−1

∗ Wj = W ∗j is a
submanifold of Jr(M×M,Rq×Rq), for all j = 1, . . . , t, so that S∗ = {W ∗j }1≤j≤t is a stratification
of this space.

Furthermore,

(5.1) jr(ι× ι) t S∗ ⇐⇒ jr(πλ ◦ (ι× ι)) t S ,
where transversality to S (respectively to S∗) means transversality of jr(ι × ι) (respectively
jr(πλ ◦ (ι× ι)) ) to each stratum of the corresponding stratification.

On the other hand, under the natural identification

jr(ι× ι)|M×M\∆ ' 2j
rι ⊂ 2J

r(M,Rq) ,
where 2J

r(M,Rq) is the space of double r-jets, we can apply the Multijet Transversality Theorem
[8] to get that, for each W ∗j in 2J

r(M,Rq), the set of immersions

RWj
= {ι : M → Rq |2jrι tW ∗j }

is residual. Then, the set
R = ∩tj=1RWj

is also residual.
Now, it follows from equation (5.1) that jr(πλ ◦ (ι× ι)) tWj , for all ι ∈ R, for all j = 1, . . . , t.

When (2n, q) is a pair of nice dimensions, this implies that jr(πλ ◦ (ι × ι)) is transversal to all
K orbits in Jr(M ×M,Rq), which says that this mapping is locally stable (see [8, 12]). �

Theorem 5.3 ([12]). The nice dimensions for pairs (2n, q) are:
(i) n < q = 2n, n ≤ 4
(ii) n < q = 2n− 1, n ≤ 4
(iii) n < q = 2n− 2, n ≤ 3
(iv) n < q ≤ 2n− 3, q ≤ 6

Thinking locally, denote two distinct germs of embedding ι : Mn → Rq by

ι+ : (Rn, 0)→ (Rq, a+) and ι− : (Rn, 0)→ (Rq, a−),

and by

(5.2) π̃λ = πλ ◦ (ι+ × ι−) : (R2n, 0)→ (Rq, 0) ,

the restriction of πλ to M+ ×M−. Then, recalling the notation of (4.1)-(4.2), π̃λ is given by

(5.3) π̃λ : (y, z, ỹ, v) 7→ (π̃1
λ(y, ỹ), π̃2

λ(z, ỹ, v), π̃3
λ(y, z, ỹ, v), π̃4

λ(y, z, v))

where y, ỹ ∈ Rk, z, v ∈ Rn−k, and

(5.4) π̃1
λ(y, ỹ) = λy + (1− λ)ỹ,

(5.5) π̃2
λ(z, ỹ, v) = λz + (1− λ)η(ỹ, v),

(5.6) π̃3
λ(y, z, ỹ, v) = λφ(y, z) + (1− λ)ζ(ỹ, v),

(5.7) π̃4
λ(y, z, v) = λψ(y, z) + (1− λ)v.

Let
κλ : (Rn, 0)→ (Rq−n, 0)

denote the the contact-map between M+ and Rλ0 (M−). We have:
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Proposition 5.4. Local rings
E2n

π̃∗λ(mq)
and

En
κ∗λ(mq−n)

are isomorphic.

Proof. From (5.3), we have that

E2n
π̃∗λ(mq)

'
E(y,z,ỹ,v)

〈π̃1
λ(y, ỹ), π̃2

λ(z, ỹ, v), π̃3
λ(y, z, ỹ, v), π̃4

λ(y, z, v)〉
so that, using (5.4)-(5.7), this is isomorphic to

E(y,z)
〈z + (1−λ)

λ η(− λ
(1−λ)y,−

λ
(1−λ)ψ(y, z)), φ(y, z) + (1−λ)

λ ζ(− λ
(1−λ)y,−

λ
(1−λ)ψ(y, z))〉

and, using (4.3) for N1 = M+ and N2 = Rλ0 (M−), we see that the above local ring is isomorphic

to
En

κ∗λ(mq−n)
. �

On the other hand, we remind from Remark 4.12 that k is the degree of tangency of M+ and
Rλ0 (M−) and therefore k is the degree of parallelism of Ta+M

+ and Ta−M
−, where

λa+ + (1− λ)a− = 0 ∈ Eλ(M),

so that, denoting by

θλ : (Rk, 0)→ (Rk−(2n−q), 0)

the reduced (rank-0) contact map θλ = κPN1
,PN2

, for N1 = M+ and N2 = Rλ0 (M−), from
Proposition 4.14 we have the following

Corollary 5.5. The local rings
En

κ∗λ(mq−n)
and

Ek
θ∗λ(mk−(2n−q))

are isomorphic.

Thus, by Theorems 4.6 and 5.2, Proposition 5.4 and Corollary 5.5, for the local classification of
stable singularities of affine equidistants, we need to determine every rank-0 K-simple map-germ

(5.8) θλ : (Rk, 0)→ (Rl, 0) ,

that admits a K-versal deformation Fλ : Rk × Rq → Rl, so that

(5.9) π̃λ : (Fλ)−1(0) = (R2n, 0)→ (Rq, 0)

is an A-stable map. Here, θλ = κPN1
,PN2

, for N1 = M+ and N2 = Rλ0 (M−), and π̃λ is the

restriction of πλ to M+ ×M−, so that

(5.10) l = k − (2n− q) , 1 ≤ k ≤ n , 2n ≥ q > n ,

for any pair (2n, q) in the nice dimensions (Theorem 5.3).
In other words, we unfold the map-germ θλ with m parameters,

(5.11) π̃λ : (Rm × Rk, 0)→ (Rm × Rl, 0) , (w, y) 7→ (w, u(w, y)) ,

where m = 2n− k, so that π̃λ is A-stable. Thus, in each case, we look for the rank-0 K-simple
map-germs θλ that can be unfolded with m = 2n − k parameters so that its Ke-codimension µ
is such that

(5.12) µ ≤ l +m = q .

The list of K-simple map-germs θλ is presented in Tables 1, 2 and 3, in section 2 above. Thus,
for classifying the stable singularities of affine equidistants of smooth submanifolds Mn ⊂ Rq, all
we have to do is read those Tables with respect to the numbers k, l and µ, subject to conditions
(5.10) and (5.12) for each pair (2n, q) in the nice dimensions.

In this way, we arrive at our main result, as follows.
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5.1. All possible stable singularities in the nice dimensions. First, remind the definition
of k-parallelism, cf. (2.1). Then, we have:

Theorem 5.6. Let Mn ⊂ Rq be a smooth closed submanifold of the affine space, such that
2n ≥ q and (2n, q) is a pair of nice dimensions, as listed in Theorem 5.3. Then, the possible
stable singularities of the λ-affine equidistant Eλ(M) ⊂ Rq are listed case by case, as below.

Curves:

In this case, we have curves in R2 and the rank-0 contact map is θλ : R→ R, µ ≤ 2. From Table
1, the stable singularities of affine equidistants can be of type A1 and A2.

Surfaces:

(1) M2 ⊂ R3.
2-parallelism. θλ : R2 → R, µ ≤ 3.
Eλ(M) with stable singularities of types A1, A2 and A3.

(2) M2 ⊂ R4.
(i) 1-parallelism. θλ : R→ R, µ ≤ 4.
Eλ(M) with stable singularities of types A1, A2, A3 and A4.

(ii) 2-parallelism. θλ : R2 → R2, µ ≤ 4.
Eλ(M) with stable singularities of types C±2,2.

3-manifolds:

(1) M3 ⊂ R4.
3-parallelism. θλ : R3 → R, µ ≤ 4.
Eλ(M) with stable singularities of types A1, ..., A4 and D±4 .

(2) M3 ⊂ R5.
(i) 2-parallelism. θλ : R2 → R, µ ≤ 5.
Eλ(M) with stable singularities of types A1, ..., A5, D±4 , D±5 .

(ii) 3-parallelism. θλ : R3 → R2, µ ≤ 5.
Eλ(M) with stable singularites of types S5.

(3) M3 ⊂ R6.
(i) 1-parallelism. θλ : R→ R, µ ≤ 6.
Eλ(M) with stable singularities of types A1, ..., A6.

(ii) 2-parallelism. θλ : R2 → R2, µ ≤ 6.
Eλ(M) with stable singularities of types C±2,2, C±2,3, C±2,4, C±3,3, C6.

(iii) 3-parallelism. No stable singularities for Eλ(M).

4-manifolds:

(1) M4 ⊂ R5.
4-parallelism. θλ : R4 → R, µ ≤ 5.
Eλ(M) with stable singularities of types A1, ..., A5, D±4 , D±5 .
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(2) M4 ⊂ R6: The map π̃λ : R8 → R6 is not in nice dimensions.

(3) M4 ⊂ R7.
(i) 2-parallelism. θλ : R2 → R, µ ≤ 7.
Eλ(M) with stable singularities A1, ..., A7, D±4 , ..., D±7 , E6, E7.

(ii) 3-parallelism. θλ : R3 → R2, µ ≤ 7.

Eλ(M) with stable singularities of types S5, S6, S7, T7, T̃7.
(iii) 4-parallelism. No stable singularities for Eλ(M).

(4) M4 ⊂ R8.
(i) 1-parallelism. θλ : R→ R, µ ≤ 8.
Eλ(M) with stable singularities of types A1, ..., A8.

(ii) 2-parallelism. θλ : R2 → R2, µ ≤ 8.
Eλ(M) with stable singularities of types
C±2,2, C±2,3, C±2,4, C±2,5, C±2,6, C±3,3, C±3,4, C±3,5, C±4,4, C6, C8, F7, F8.

(iii) 3-parallelism, 4-parallelism. No stable singularities for Eλ(M).

5-manifolds:

(1) M5 ⊂ R6.
5-parallelism. θλ : R5 → R, µ ≤ 6.
Eλ(M) with stable singularities A1, ..., A6, D±4 , D±5 , D±6 , E6.

(2) For all other embeddings M5 ⊂ Rq, no map π̃λ in nice dimensions.

n-manifolds, n ≥ 6: No map π̃λ in nice dimensions.
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SOME NOTES ON THE EULER OBSTRUCTION OF A FUNCTION

NICOLAS DUTERTRE AND NIVALDO G. GRULHA JR.

Abstract. In this paper, we present an alternative proof of the Brasselet, Massey, Parameswaran

and Seade formula for the Euler obstruction of a function [5] using Ebeling and Gusein-Zade’s
results on the radial index and the Euler obstruction of 1-forms [11].

1. Introduction

Let (X, 0) ⊂ (CN , 0) be an equidimensional reduced complex analytic germ. The Euler
obstruction EuX(0) was defined by MacPherson [20] as a tool to prove the conjecture about
existence and unicity of Chern classes in the singular case. Since that the Euler obstruction has
been deeply investigated by many authors as Brasselet, Schwartz, Seade, Sebastiani, Gonzalez-
Sprinberg, Lê, Teissier, Sabbah, Dubson, Kato and others. For an overview about the Euler
obstruction see [2, 3].

In [4] a Lefschetz type formula for the Euler obstruction was given by Brasselet, Lê and Seade.
This formula relates the Euler obstruction EuX(0) to the topology of the Milnor fibre of a generic
linear form l : (X, 0)→ (C, 0). It shows that the Euler obstruction, as a constructible function,
satisfies the Euler condition relatively to generic linear forms (Theorem 2.3).

In [5], the authors studied how far the equality given in the above theorem is from being true
if we replace the generic linear form l with some other analytic function on X with at most an
isolated stratified critical point at 0. For this, they defined the Euler obstruction Euf,X(0) of a
function f on a complex analytic variety X, which can be seen as a generalization of the Milnor
number, and they established a Lefschetz type formula for this new invariant (Theorem 2.5).

The definition of the Euler obstruction of a function was extended by Ebeling and Gusein-
Zade in [11] to the case of complex 1-forms. When the 1-form is the differential of a holomorphic
function f , they recovered the Euler obstruction of the function (up to sign). They also define the
radial index of a 1-form, which is a generalization to the singular case of the classical Poincaré-
Hopf index. Then they established relations between the local Euler obstruction of a 1-form, the
radial index and Euler characteristics of complex links.

In this paper, we use the results of Ebeling and Gusein-Zade to give an alternative proof of
the Brasselet, Massey, Parameswaran and Seade formula for the Euler obstruction of a function
(Theorem 2.5).

The main idea of the original proof of Theorem 2.5 was to construct a vector field that
combines all the properties needed to prove the result, essentially using Poincaré-Hopf type
theorems. Let us say some words about our proof, which uses combinatorial techniques and is a
less extensive and less constructive proof than the original one in [5]. We first give an expression
of the Euler obstruction of a 1-form in terms of the radial indices of this form on the closures
of the strata of X and Euler characteristics of complex links (this relation appears first in [11],
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Corollary 1, with a different proof). As a corollary, we obtain a formula for EuX(0)− Euf,X(0)
in terms of Euler characteristics of complex links and the Euler characteristics of the Milnor
fibre of f on the closures of the stata of X. Then we use the addivity of the Euler characteristic
to get a relation between Euf,X(0) and the Euler characteristics of the Milnor fibres of f on the
strata of X.

The first author is partially supported by the program

“Catédras Lévi-Strauss−USP/French Embassy, no. 2012.1.62.55.7”.

The authors are grateful to the referee for his/her careful reading and for suggesting improve-
ments in this paper.

2. The Euler obstruction

Let us now introduce some objects in order to define the Euler obstruction.

Let (X, 0) ⊂ (CN , 0) be an equidimensional reduced complex analytic germ of dimension d in
an open set U ⊂ CN . We consider a complex analytic Whitney stratification {Vi} of U adapted
to X and we assume that {0} is a stratum. We choose a small representative of (X, 0) such that
0 belongs to the closure of all the strata. We denote it by X and we write X = ∪qi=0Vi where
V0 = {0} and Vq = Xreg, the set of smooth points of X. We assume that the strata V0, . . . , Vq−1

are connected and that the analytic sets V0, . . . , Vq−1 are reduced. We set di = dimVi for
i ∈ {1, . . . , q} (note that dq = d).

Let G(d,N) denote the Grassmanian of complex d-planes in CN . On the regular part Xreg of
X the Gauss map φ : Xreg → U ×G(d,N) is well defined by φ(x) = (x, Tx(Xreg)).

Definition 2.1. The Nash transformation (or Nash blow-up) X̃ of X is the closure of the image
Im(φ) in U×G(d,N). It is a (usually singular) complex analytic space endowed with an analytic

projection map ν : X̃ → X which is a biholomorphism away from ν−1(Sing(X)) .

The fiber of the tautological bundle T over G(d,N), at the point P ∈ G(d,N), is the set of
vectors v in the d-plane P . We still denote by T the corresponding trivial extension bundle over

U × G(d,N). Let T̃ be the restriction of T to X̃, with projection map π. The bundle T̃ on X̃
is called the Nash bundle of X.

Let us recall the original definition of the Euler obstruction, due to MacPherson [20]. Let
z = (z1, . . . , zN ) be local coordinates in CN around {0}, such that zi(0) = 0. We denote by Bε
and Sε the ball and the sphere centered at {0} and of radius ε in CN . Let us consider the norm
‖z‖ =

√
z1z1 + · · ·+ zNzN . Then the differential form ω = d‖z‖2 defines a section of the real

vector bundle T (CN )∗, cotangent bundle on CN . Its pull-back restricted to X̃ becomes a section

of the dual bundle T̃ ∗ which we denote by ω̃. For ε small enough, the section ω̃ is nonzero

over ν−1(z) for 0 < ‖z‖ ≤ ε. The obstruction to extend ω̃ as a nonzero section of T̃ ∗ from

ν−1(Sε) to ν−1(Bε), denoted by Obs(T̃ ∗, ω̃) lies in H2d(ν−1(Bε), ν
−1(Sε);Z). Let us denote by

Oν−1(Bε),ν−1(Sε) the orientation class in H2d(ν
−1(Bε), ν

−1(Sε);Z).

Definition 2.2. The local Euler obstruction of X at 0 is the evaluation of Obs(T̃ ∗, ω̃) on
Oν−1(Bε),ν−1(Sε), i.e.:

EuX(0) = 〈Obs(T̃ ∗, ω̃),Oν−1(Bε),ν−1(Sε)〉.

An equivalent definition of the Euler obstruction was given by Brasselet and Schwartz in the
context of vector fields [6].

The idea of studying the Euler obstruction using hyperplane sections appears in the works of
Dubson [8] and Kato [13], but the approach we follow here comes from [4, 5].
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Theorem 2.3 ([4]). Let (X, 0) and {Vi} be given as before, then for each generic linear form l,
there is ε0 such that for any ε with 0 < ε < ε0 and δ 6= 0 sufficiently small, the Euler obstruction
of (X, 0) is equal to:

EuX(0) =

q∑
i=1

χ
(
Vi ∩Bε ∩ l−1(δ)

)
· EuX(Vi),

where χ denotes the Euler-Poincaré characteristic, EuX(Vi) is the value of the Euler obstruction
of X at any point of Vi, i = 1, . . . , q, and 0 < |δ| � ε� 1.

We define now an invariant introduced by Brasselet, Massey, Parameswaran and Seade in
[5], which measures in a way how far the equality given in Theorem 2.3 is from being true if
we replace the generic linear form l with some other function on X with at most an isolated
stratified critical point at 0. Let f : X → C be a holomorphic function which is the restriction of
a holomorphic function F : U → C. A point x in X is a critical point of f if it is a critical point
of F|V (x), where V (x) is the stratum containing x. We assume that f has an isolated singularity
(or an isolated critical point) at 0, i.e. that f has no critical point in a punctured neighborhood
of 0 in X. In order to define this new invariant, the authors constructed in [5] a stratified vector
field on X, denoted by ∇Xf . This vector field is homotopic to ∇F |X and one has ∇Xf(x) 6= 0
unless x = 0.

Let ζ̃ be the lifting of ∇Xf as a section of the Nash bundle T̃ over X̃ without singularity
over ν−1(X ∩ Sε). Let O(ζ̃) ∈ H2n

(
ν−1(X ∩ Bε), ν−1(X ∩ Sε)

)
be the obstruction cocycle to

the extension of ζ̃ as a nowhere zero section of T̃ inside ν−1(X ∩Bε).

Definition 2.4. The local Euler obstruction Euf,X(0) is the evaluation of O(ζ̃) on the funda-
mental class of the pair (ν−1(X ∩Bε), ν−1(X ∩ Sε)).

The following result is the Brasselet, Massey, Parameswaran and Seade formula [5] that
compares the Euler obstruction of the space X with that of a function on X.

Theorem 2.5. Let (X, 0) and {Vi} be given as before and let f : (X, 0) → (C, 0) be a function
with an isolated singularity at 0. For 0 < |δ| � ε� 1 we have:

EuX(0)− Euf,X(0) =

(
q∑
i=1

χ
(
Vi ∩Bε ∩ f−1(δ)

)
· EuX(Vi)

)
.

In this paper, we present an alternative proof for this result using Ebeling and Gusein-Zade’s

work [11] . In order to do this, let us consider the Nash bundle T̃ on X̃. The corresponding dual

bundles of complex and real 1-forms are denoted, respectively, by T̃ ∗ → X̃ and T̃ ∗R → X̃.

Definition 2.6. Let (X, 0) and {Vα} be given as before. Let ω be a (real or complex) 1-form on
X, i.e. a continuous section of either T ∗RCN |X or T ∗CN |X . A singularity of ω in the stratified
sense means a point x where the kernel of ω contains the tangent space of the corresponding
stratum.

This means that the pull-back of the form to Vα vanishes at x. Given a section η of T ∗RCN |A,

A ⊂ V , there is a canonical way of constructing a section η̃ of T̃ ∗R |Ã, Ã = ν−1A, such that if η
has an isolated singularity at the point 0 ∈ X (in the stratified sense), then we have a never-zero

section η̃ of the dual Nash bundle T̃ ∗R over ν−1(Sε ∩X) ⊂ X̃. Let

o(η) ∈ H2d(ν−1(Bε ∩X), ν−1(Sε ∩X);Z)

be the cohomology class of the obstruction cycle to extend this to a section of T̃ ∗R over ν−1(Bε ∩X).
Then we can define (c.f. [7]):
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Definition 2.7. The local Euler obstruction of the real differential form η at an isolated singu-
larity is the integer EuX,0 η obtained by evaluating the obstruction cohomology class o(η) on the
orientation fundamental cycle [ν−1(Bε ∩X), ν−1(Sε ∩X)].

In the complex case, one can perform the same construction, using the corresponding complex
bundles. If ω is a complex differential form, section of T ∗CN |A with an isolated singularity, one
can define the local Euler obstruction EuX,0 ω. Notice that, as explained in [7] p.151, it is equal
to the local Euler obstruction of its real part up to sign:

EuX,0 ω = (−1)dEuX,0Re ω.

This is an immediate consequence of the relation between the Chern classes of a complex vector
bundle and those of its dual. Remark also that when we consider the differential of a function
f , we have the following equality (see [11]):

EuX,0 df = (−1)dEuf,X(0).

3. The complex link, radial index and Euler obstruction

In this section, we recall the definition of the complex link and of the radial index. We also
present a formula of Ebeling and Gusein-Zade which expresses the radial index of a 1-form in
terms of Euler characteristics of complex links and Euler obstructions.

The complex link is an important object in the study of the topology of complex analytic
sets. It is analogous to the Milnor fibre and was studied first in [15]. It plays a crucial role
in complex stratified Morse theory (see [12]) and appears in general bouquet theorems for the
Milnor fibre of a function with isolated singularity (see [16, 17, 22, 23]). It is related to the
multiplicity of polar varieties and also the local Euler obstruction (see [8, 9, 18, 19]). Let us
recall briefly its definition. Let M be a complex analytic manifold equipped with a Riemannian
metric and let Y ⊂ M be a complex analytic variety equipped with a Whitney stratification.
Let V be a stratum of Y and let p be a point in V . Let N be a complex analytic submanifold
of M which meets V transversally at the single point p. By choosing local coordinates on N , in
some neighborhood of p we can assume that N is an Euclidian space Ck.

Definition 3.1. The complex link of V in Y is the set denoted by lkC(V, Y ) and defined as
follows:

lkC(V, Y ) = Y ∩N ∩Bε ∩ l−1(δ),

where l : N → C is a generic linear form and 0 < |δ| � ε� 1.

The fact that the complex link of a stratum is well-defined, i.e. independent of all the choices
made to define it, is explained in [19, 9, 12]. It is also independent of the embedding of the
analytic variety Y (see [19]).

In [11], Ebeling and Gusein-Zade established relations between the local Euler obstruction
of a 1-form, its radial index and Euler characteristics of complex links. The radial index is a
generalization to the singular case of the Poincaré-Hopf index.

This index for 1-forms is a natural extension of the equivalent notion for vector fields, a notion
first introduced by King and Trotman in a 1995 preprint only recently published [14] and then
studied by Ebeling and Gusein-Zade in [10] and by Aguilar, Seade and Verjovsky in [1].

In order to define this index, let us consider first the real case. Let Z ⊂ Rn be a closed
subanalytic set equipped with a Whitney stratification {Sα}α∈Λ. Let ω be a continuous 1-form
defined on Rn. We say that a point P in Z is a zero (or a singular point) of ω on Z if it is a
zero of ω|S , where S is the stratum that contains P . In the sequel, we define the radial index of
ω at P , when P is an isolated zero of ω on Z. We can assume that P = 0 and we denote by S0

the stratum that contains 0.
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Definition 3.2. A 1-form ω is radial on Z at 0 if, for an arbitrary non-trivial subanalytic arc
ϕ : [0, ν[→ Z of class C1, the value of the form ω on the tangent vector ϕ̇(t) is positive for t
small enough.

Let ε > 0 be small enough so that in the closed ball Bε, the 1-form has no singular points
on Z \ {0}. Let S0, . . . , Sr be the strata that contain 0 in their closure. Following Ebeling and
Gusein-Zade, there exists a 1-form ω̃ on Rn such that:

(1) The 1-form ω̃ coincides with the 1-form ω on a neighborhood of Sε.
(2) The 1-form ω̃ is radial on Z at the origin.
(3) In a neighborhood of each zero Q ∈ Z ∩Bε \{0}, Q ∈ Si, dim Si = k, the 1-form ω̃ looks

as follows. There exists a local subanalytic diffeomorphism h : (Rn,Rk, 0)→ (Rn, Si, Q)
such that h∗ω̃ = π∗1 ω̃1 +π∗2 ω̃2 where π1 and π2 are the natural projections π1 : Rn → Rk
and π2 : Rn → Rn−k, ω̃1 is a 1-form on a neighborhood of 0 in Rk with an isolated zero
at the origin and ω̃2 is a radial 1-form on Rn−k at 0.

Definition 3.3. The radial index indR
Z,0 ω of the 1-form ω on Z at 0 is the sum:

1 +

r∑
i=0

∑
Q|ω̃|Si

(Q)=0

indPH(ω̃, Q, Si),

where indPH(ω̃, Q, Si) is the Poincaré-Hopf index of the form ω̃|Si
at Q and where the sum is

taken over all zeros of the 1-form ω̃ on (Z \ {0}) ∩ Bε. If 0 is not a zero of ω on Z, we put

indR
Z,0 ω = 0.

A straightforward corollary of this definition is that the radial index satisfies the law of
conservation of number (see Remark 9.4.6 in [7] or the remark before Proposition 1 in [11]).

Let us go back to the complex case. As in Section 2, (X, 0) ⊂ (CN , 0) is an equidimensional
reduced complex analytic germ of dimension d in an open set U ⊂ CN . Let ω be a complex
1-form on U with an isolated singular point on X at the origin.

Definition 3.4. The complex radial index indC
X,0 ω of the complex 1-form ω on X at the origin

is (−1)d times the index of the real 1-form given by the real part of ω.

Let us write ni = (−1)d−di−1
(
χ
(
lkC(Vi, X)

)
− 1
)

, where {Vi} is the Whitney stratification

of (X, 0) considered before. In particular for an open stratum Vi of X, lkC(Vi, X) is empty and
so ni = 1. Let us define the Euler obstruction EuY,0 ω to be equal to 1 for a zero-dimensional
connected variety Y . Under this conditions Ebeling and Gusein-Zade proved in [11] the following
result which relates the radial index of a 1-form to Euler obstructions.

Theorem 3.5. Let (X, 0) ⊂ (CN , 0) be the germ of a reduced complex analytic space at the
origin, with a Whitney stratification {Vi}, i = 0, . . . , q, where V0 = {0} and Vq is the regular
part of X. Then:

indC
X,0 ω =

q∑
i=0

ni · EuVi,0
ω.

4. Corollaries of Theorem 3.5 and alternative proof of Theorem 2.5

In this section, we give some corollaries of Theorem 3.5, among them an alternative proof of
Theorem 2.5.

As in the previous sections, (X, 0) ⊂ (CN , 0) is an equidimensional reduced complex analytic
germ of dimension d in an open set U , equipped with a Whitney stratification {Vi} such that 0
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belongs to the closure of all the strata. We write X = ∪qi=0Vi where V0 = {0} and Vq = Xreg.

We assume that the strata V0, . . . , Vq−1 are connected and that the analytic sets V0, . . . , Vq−1

are reduced. We set di = dimVi for i ∈ {1, . . . , q}. Let f : X → C be a holomorphic function
which is the restriction of a holomorphic function F : U → C. We assume that f has an isolated
singularity at 0.

Let us see what happens when we apply Theorem 3.5 to the form
∑
zkdzk. Let us consider

(z1, z2, . . . , zN ) as complex coordinates of CN , where zk = uk +
√
−1vk. This implies that

(u1, v1, . . . , uN , vN ) are real coordinates of R2N . Let ω be a 1-form defined by ω =
∑
k zkdzk, it

means that:

ω =
∑
k

(uk −
√
−1vk)(duk +

√
−1dvk),

and so that:

ω =
∑
k

(ukduk + vkdvk) +
√
−1
∑

(ukdvk − vkduk).

In this case, the real 1-form Re ω =
∑

(ukduk+vkdvk) is a radial 1-form, and indR
X,0 Re ω = 1.

Since indC
X,0 ω = (−1)dindR

X,0 Re ω, we find that:

indC
X,0 ω = (−1)dindR

X,0 Re ω = (−1)d.

As it was remarked before,

EuX,0 ω = (−1)dEuX,0 Re ω.

Using this information and the definition of ni given in Section 3, we have the next equality:

niEuVi,0
ω = (−1)d−di−1

(
χ
(
lkC(Vi, X)

)
− 1
)

(−1)diEuVi
(0).

Therefore, by Theorem 3.5 we conclude that:

(−1)d = (−1)d

[
q−1∑
i=0

(
1− χ

(
lkC(Vi, X)

))
EuVi

(0) + EuX(0)

]
,

and so we arrive to the following lemma:

Lemma 4.1. We have:

(1) EuX(0) = 1 +

q−1∑
i=0

(
χ
(
lkC(Vi, X)

)
− 1
)

EuVi
(0).

When we apply Theorem 3.5 to the form df , we obtain a similar result for the Euler obstruction
of the function f .

Lemma 4.2. We have:

1− χ(f−1(δ) ∩X ∩Bε) =

q∑
i=0

(
1− χ

(
lkC(Vi, X)

))
Euf,Vi

(0).

Proof. On the one hand, applying Theorem 3.5 to the form df , we have:

indC
X,0 df =

q∑
i=0

niEuVi,0
df = (−1)d−di−1

(
χ
(
lkC(Vi, X)

)
− 1
)

(−1)diEuf,Vi
(0).

On the other hand, by Theorem 3 of [11] we have:

indC
X,0 df = (−1)d

(
1− χ(f−1(δ) ∩X ∩Bε)

)
.
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It follows that:

1− χ(f−1(δ) ∩X ∩Bε) =

q∑
i=0

(
1− χ

(
lkC(Vi, X)

))
Euf,Vi

(0).

�

Before stating the next result, let us set Bf,X(0) = EuX(0)− Euf,X(0).

Corollary 4.3. We have:

χ(f−1(δ) ∩X ∩Bε) =

q∑
i=0

(
1− χ

(
lkC(Vi, X)

))
Bf,Vi

(0).

Proof. By the previous lemma, we have the following equation:

(2) Euf,X(0) = 1− χ(f−1(δ) ∩X ∩Bε) +

q−1∑
i=0

(
χ
(
lkC(Vi, X)

)
− 1
)

Euf,Vi
(0).

By the difference (1)− (2) we arrive at:

(3) Bf,X(0) = χ(f−1(δ) ∩X ∩Bε) +

q−1∑
i=0

(
χ
(
lkC(Vi, X)

)
− 1
)

Bf,Vi
(0).

Hence we find:

χ(f−1(δ) ∩X ∩Bε) =

q∑
i=0

(
1− χ

(
lkC(Vi, X)

))
Bf,Vi

(0).

�

In [11, Corollary 1], Ebeling and Gusein-Zade give an “inverse” of the formula of Theorem
3.5. They use combinatorial theory (Möbius inverse). In the sequel, we give an inductive proof
of that result. Let us recall the notations of [11]. The strata Vi of X are partially ordered:
Vi ≺ Vj (we shall write i ≺ j) if Vi ⊂ Vj and Vi 6= Vj . For two strata Vi and Vj with Vi � Vj
(we shall write i � j), let Nij be the normal slice of the variety Vj to the stratum Vi at a point

of it and let Ml|Nij
be the complex link of Vi in Vj . We denote χ(Z)− 1 by χ(Z). For i ≺ j, let

mij be defined as follows:

mij = (−1)dim X−dim Vi

∑
i=k0≺···≺kr=j

χ(Ml|Nk0k1
) · · ·χ(Ml|Nkr−1kr

),

and let us set mii = 1.

Corollary 4.4. Let ω be a complex 1-form with an isolated zero on X at the origin. We have:

EuX,0 ω =

q∑
i=0

miq · indC
Vi,0

ω.

Proof. This is clearly true if dim X = 0. Let us assume that dim X = d ≥ 1 and prove the result
by induction on the depth of the stratification. The first step is to consider the case when X has
an isolated singularity at the origin. In this case, the stratification will be {V0 = {0}, V1 = Xreg}
and

n0 = (−1)d−1(χ(lkC(V0, X)− 1) = (−1)d−1χ(Ml|N01
),

EuX,0 ω = 1, n1 = 1 and EuV1,0
ω = EuX,0 ω. Applying Theorem 3.5, we get:

indC
X,0 ω = (−1)d−1χ(Ml|N01

) + EuX,0 ω,
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and so:

EuX,0 ω = indC
X,0 ω + (−1)dχ(Ml|N01

).

This is exactly the expected formula because indC
V0,0 ω = 1 and m01 = (−1)dχ(Ml|N01

).
Let us prove the general case. By the induction hypothesis, for each k ∈ {0, . . . , d − 1}, we

have:

EuVk,0
ω =

∑
j | Vj⊂Vk

mik · indC
Vj ,0

ω.

But we know by Theorem 3.5 that:

EuX,0 ω = indC
X,0 ω −

d−1∑
k=0

nk · EuVk,0
ω.

Replacing EuVk,0
ω by its above value, we obtain:

EuX,0 ω = indC
X,0 ω −

d−1∑
k=0

nk

indC
Vk,0

ω +
∑

j | Vj⊂∂Vk

mjk · indC
Vj ,0

ω

 .

We see that each indVj ,0
C ω appears in each term

nk

indC
Vk,0

ω +
∑

j | Vj⊂∂Vk

mjk · indC
Vj ,0

ω

 ,

for which Vj ⊂ Vk. Therefore we can write:

EuX,0 ω = indC
X,0 ω −

d−1∑
j=0

indC
Vj ,0

ω

nj +
∑

k | Vj⊂∂Vk

mjk · nk

 .

Let us examine Aj = nj +
∑
k | Vj⊂∂Vk

mjk · nk. We have:

Aj = (−1)d−dj−1χ(Ml|Njq
)+

∑
k | Vj⊂∂Vk

(
(−1)dk−dj−1

∑
j=k0≺···≺kr=k

χ(Ml|Nk0k1
) · · ·χ(Ml|Nkr−1kr

)× (−1)d−dk−1χ(Ml|Nkq
)
)
.

Therefore, we see that:

Aj = (−1)d−dj−1χ(Ml|Njq
)+

∑
k | Vj⊂∂Vk

(−1)d−dj−1
∑

j=k0≺···≺kr+1=q

χ(Ml|Nk0k1
) · · ·χ(Ml|Nkrkr+1

)

 ,

i.e. Aj = −mjq. We get the desired result. �

When we apply this to the form ω =
∑
zkdzk, we get:

EuX(0) =

q∑
i=0

∑
i=k0≺···≺kr=q

χ(Ml|Nk0k1
) · · ·χ(Ml|Nkr−1kr

). (∗)
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This formula is still valid if V0 6= {0}. In this case, we can introduce the stratum V−1 = {0}.
The above formula becomes:

EuX(0) =

q∑
i=−1

∑
i=k0≺···≺kr=q

χ(Ml|Nk0k1
) · · ·χ(Ml|Nkr−1kr

).

But since generically the linear form l has no singularity at 0 on V0, the Milnor fibre Ml|Vk
of

l : Vk → C is contractible for k ≥ 0, which implies that χ(Ml|N−1k
) = 0 for k ≥ 0.

Applied to the form df , Corollary 4.4 gives:

Euf,X(0) = −
q∑
i=0

χ(Mf |Vi
)

∑
i=k0≺···≺kr=q

χ(Ml|Nk0k1
) · · ·χ(Ml|Nkr−1kr

), (∗∗)

where Mf |Vi
denotes the Milnor fibre of f : Vi → C, because Euf,X(0) = (−1)dEuX,0 df and

indC
Vi,0

df = (−1)di−1χ(Mf |Vi
).

We are now in position to give the alternative proof of Theorem 2.5.

Proof. Using the two equalities (∗) and (∗∗) above, we find:

EuX(0)− Euf,X(0) =

q∑
i=0

χ(Mf |Vi
)

∑
i=k0≺···≺kr=q

χ(Ml|Nk0k1
) · · ·χ(Ml|Nkr−1kr

).

By the additivity of the Euler characteristic, for each i ∈ {0, . . . , q} we have:

χ(Mf |Vi
) =

∑
j |Vj⊂Vi

χ(Mf |Vj
).

Therefore, we have:

EuX(0)− Euf,X(0) =

q∑
i=0

 ∑
j |Vj⊂Vi

χ(Mf |Vj
)

 ∑
i=k0≺···≺kr=q

χ(Ml|Nk0k1
) · · ·χ(Ml|Nkr−1kr

).

As in the proof of the previous corollary, we see that each χ(Mf |Vj
) appears in an expression ∑

j |Vj⊂Vi

χ(Mf |Vj
)

 ∑
i=k0≺···≺kr=q

χ(Ml|Nk0k1
) · · ·χ(Ml|Nkr−1kr

),

when Vj ⊂ Vi. We can factorize χ(Mf |Vj
) in the above equality and get:

EuX(0)− Euf,X(0) =

q∑
j=0

χ(Mf |Vj
)

 ∑
i |Vj⊂Vi

∑
i=k0≺···≺kr=q

χ(Ml|Nk0k1
) · · ·χ(Ml|Nkr−1kr

)

 .

But by the equality (∗) and the remark that follows it, we see that:∑
i |Vj⊂Vi

∑
i=k0≺···≺kr=q

χ(Ml|Nk0k1
) · · ·χ(Ml|Nkr−1kr

),

is exactly EuX(Vj). �
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EVOLUTES OF FRONTS IN THE EUCLIDEAN PLANE

T. FUKUNAGA AND M. TAKAHASHI

Dedicated to Professor Shyuichi Izumiya on the occasion of his 60th birthday

Abstract. The evolute of a regular curve in the Euclidean plane is given by not only the
caustics of the regular curve, envelope of normal lines of the regular curve, but also the locus

of singular points of parallel curves. In general, the evolute of a regular curve has singularities,

since such points correspond to vertices of the regular curve and there are at least four vertices
for simple closed curves. If we repeat an evolute, we cannot define the evolute at a singular

point. In this paper, we define an evolute of a front and give properties of such an evolute

by using a moving frame along a front and the curvature of the Legendre immersion. As
applications, repeated evolutes are useful to recognize the shape of curves.

1. Introduction

The evolute of a regular plane curve is a classical object (cf. [5, 8, 9]). It is useful for
recognizing the vertex of a regular plane curve as a singularity (generically, a 3/2 cusp singularity)
of the evolute. The caustics (evolutes) are related to general relativity theory, see for instance
[6, 10]. The properties of evolutes are discussed by using distance squared functions and the
theories of Lagrangian and Legendrian singularities (cf. [1, 2, 3, 13, 14, 17, 20]). Moreover,
the singular points of parallel curves of a regular curve sweep out the evolute. By using this
property, we define an evolute of a front in §2. In order to consider properties of an evolute of a
front, we introduce a moving frame along a front (a Legendre immersion) (cf. [7]). In [7], we give
existence and uniqueness for a Legendre curve in the unit tangent bundle like for regular plane
curves. It is quite useful to analyze a Legendre curve (or, a frontal) in the unit tangent bundle.
In §3, we give another representation for the evolute of a front by using the moving frame and the
curvature of the Legendre immersion (Theorem 3.3). By the representation, we give properties
of the evolutes of fronts, for example, the evolute of a front is also a front. It follows that we
can consider the repeated evolutes, namely, the evolute of an evolute of a front, see Theorem 4.1
in §4. Moreover, we extend the notion of the vertex for a front (or, a Legendre immersion) and
give a kind of four vertex theorem for a front, see Proposition 3.11. Furthermore, the evolute of
a front is also given by the envelope of normal lines of the front. A singular point of the evolute
of the evolute of a regular curve measure to the contact of an involute of a circle. We give the
n-th evolute of a front in §5. In §6, we give examples of the evolutes of fronts. In the appendix,
we give the condition of contact between regular curves.

All maps and manifolds considered here are differentiable of class C∞.
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2. Definitions and basic concepts

Let I be an interval or R. Suppose that γ : I → R2 is a regular plane curve, that is, γ̇(t) 6= 0
for any t ∈ I. If s is the arc-length parameter of γ, we denote t(s) by the unit tangent vector
t(s) = γ′(s) = (dγ/ds)(s) and n(s) by the unit normal vector n(s) = J(t(s)) of γ(s), where J
is the anticlockwise rotation by π/2. Then we have the Frenet formula as follows:(

t′(s)
n′(s)

)
=

(
0 κ(s)

−κ(s) 0

)(
t(s)
n(s)

)
,

where κ(s) = t′(s) · n(s) is the curvature of γ and · is the inner product on R2.
Even if t is not the arc-length parameter, we have the unit tangent vector t(t) = γ̇(t)/|γ̇(t)|,

the unit normal vector n(t) = J(t(t)) and the Frenet formula(
ṫ(t)
ṅ(t)

)
=

(
0 |γ̇(t)|κ(t)

−|γ̇(t)|κ(t) 0

)(
t(t)
n(t)

)
,

where γ̇(t) = (dγ/dt)(t), |γ̇(t)| =
√
γ̇(t) · γ̇(t) and κ(t) = det(γ̇(t), γ̈(t))/|γ̇(t)|3 = ṫ(t)·n(t)/|γ̇(t)|.

Note that κ(t) is independent of the choice of a parametrization.
In this paper, we consider evolutes of plane curves. The evolute Ev(γ) : I → R2 of a regular

plane curve γ is given by

Ev(γ)(t) = γ(t) +
1

κ(t)
n(t),

away from the points where κ(t) = 0 (cf. [5, 8, 9]).
If γ is not a regular curve, then we cannot define the evolute as above, since the curvature

may diverge at a singular point. However, we define an evolute of a front in the Euclidean plane,
see Definition 2.10 and Theorem 3.3. It is a generalization of the evolute of regular plane curves.

We say that γ : I → R2 is a front (or, a wave front) in the Euclidean plane, if there exists
a smooth map ν : I → S1 such that the pair (γ, ν) : I → R2 × S1 is a Legendre immersion,
namely, (γ̇(t), ν̇(t)) 6= (0, 0) and (γ(t), ν(t))∗θ = 0 for each t ∈ I. Here θ is the canonical contact
structure on T1R2 = R2 × S1, and S1 is the unit circle. We remark that the second condition is
equivalent to γ̇(t) · ν(t) = 0 for each t ∈ I (cf. [1, 2, 3]).

Throughout the paper, we assume that the pair (γ, ν) is co-orientable, the singular points of
γ are finite and γ has no inflection points. The first and second conditions can be removed, see
Remarks 3.4 and 3.5. However, we add these conditions for the sake of simplicity.

We give examples of fronts. See [1, 4, 11] for other examples.

Example 2.1. One of the typical examples of a front is a regular plane curve. Let γ : I → R2

be a regular plane curve. In this case, we may take ν : I → S1 by ν(t) = n(t). Then it is easy
to check that (γ, ν) is a Legendre immersion.

Example 2.2. Let γ : R → R2 be a 3/2 cusp (A2-singularity) given by γ(t) = (t2, t3). In this

case, 0 is a singular point of γ. If we take ν : R → S1 by ν(t) = (1/
√

9t2 + 4)(−3t, 2), then we
can show that (γ, ν) is a Legendre immersion. Hence the 3/2 cusp is an example of a front. The
3/2 cusp is the generic singularity of fronts and also evolutes in the Euclidean plane.

Example 2.3. Let γ : R → R2 be a 4/3 cusp (E6-singularity) given by γ(t) = (t3, t4). In this

case, 0 is also a singular point of γ. If we take ν : R→ S1 by ν(t) = (1/
√

16t2 + 9)(−4t, 3), then
we can show that (γ, ν) is a Legendre immersion. Hence the 4/3 cusp is also an example of a
front, see Example 6.3.

Example 2.4. Let γ : R → R2 be a 5/2 cusp (A4-singularity) given by γ(t) = (t2, t5). In this
case, 0 is also a singular point of γ. However, the 5/2 cusp is not a front. By the condition
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γ̇(t) · ν(t) = 0, we take ν : R → S1 by ν(t) = ±(1/
√

25t6 + 4)(−5t3, 2). Then (γ, ν) is not an
immersion at t = 0 and hence γ is not a front (but γ is a frontal, see [7]).

Remark 2.5. By the definition of the Legendre immersion, if (γ, ν) is a Legendre immersion,
then (γ,−ν) is also.

We have the following Lemma (cf. [4, 11, 12]).

Lemma 2.6. Let γ : I → R2 be a front and t0 ∈ I. If γ(i)(t0) = 0 for each 1 ≤ i ≤ k − 1 and
γ(k)(t0) 6= 0, then γ at t0 is diffeomorphic to the curve (tk, tk+1 + o(tk+1)) at t = 0. Moreover,
if k = 2 (respectively, k = 3), the curve at t0 is diffeomorphic to a 3/2 (respectively, 4/3) cusp.

Let (γ, ν) : I → R2 × S1 be a Legendre immersion. We define a parallel curve γλ : I → R2 of
γ by γλ(t) = γ(t) + λν(t) for each λ ∈ R. Then we have following results.

Proposition 2.7. For a Legendre immersion (γ, ν) : I → R2×S1, the parallel curve γλ : I → R2

is a front for each λ ∈ R.

Proof. We take νλ : I → S1 by νλ(t) = ν(t). Since γλ(t) = γ(t) + λν(t), it holds that
γ̇λ(t) = γ̇(t) + λν̇(t). If γ̇λ(t0) = 0 at a point t0 ∈ I, then we have γ̇(t0) + λν̇(t0) = 0. If
ν̇λ(t0) = ν̇(t0) = 0, then γ̇(t0) = 0. It contradicts the fact that (γ, ν) is an immersion. Hence
(γλ, νλ) is an immersion. By ν(t) · ν(t) = 1, we have ν̇(t) · ν(t) = 0. Then

γ̇λ(t) · νλ(t) = (γ̇(t) + λν̇(t)) · ν(t) = γ̇(t) · ν(t) + λν̇(t) · ν(t) = 0

holds. It follows that (γλ, νλ) is a Legendre immersion and hence γλ is a front. 2

We denote the curvature of the parallel curve γλ(t) by κλ(t), when γλ is a regular curve.

Proposition 2.8. Let (γ, ν) be a Legendre immersion. If γ is a regular curve and λ 6= 1/κ(t),
then a parallel curve γλ is also regular and Ev(γλ)(t) is consistent with Ev(γ)(t).

Proof. Since γλ(t) = γ(t)+λn(t), it holds that γ̇λ(t) = |γ̇(t)|(1−λκ(t))t(t). By the assumption
λ 6= 1/κ(t), γλ is a regular curve. By a direct calculation, we have

κλ(t) =
κ(t)

|1− λκ(t)|
, nλ(t) =

1− λκ(t)

|1− λκ(t)|
n(t).

Hence we have

Ev(γλ)(t) = γλ(t) +
1

κλ(t)
nλ(t) = γ(t) + λn(t) +

|1− λκ(t)|
κ(t)

1− λκ(t)

|1− λκ(t)|
n(t)

= γ(t) +
1

κ(t)
n(t) = Ev(γ)(t)

2

Remark 2.9. Let (γ, ν) be a Legendre immersion. If t0 is a singular point of the front γ, then
limt→t0 |κ(t)| =∞. By the equality κλ(t) = κ(t)/|1− λκ(t)|, we have limt→t0 κλ(t) 6= 0, see also
Remark 3.2.

We now define an evolute of a front in the Euclidean plane.

Definition 2.10. Let (γ, ν) : I → R2 × S1 be a Legendre immersion. We define an evolute
Ev(γ) : I → R2 of the front γ as follows:

Ev(γ)(t) =

{
γ(t) + 1

κ(t)n(t) if t is a regular point,

γλ(t) + 1
κλ(t)

nλ(t) if t ∈ (t0 − δ, t0 + δ), t0 is a singular point of γ,
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where δ is a sufficiently small positive real number, λ ∈ R is satisfied the condition λ 6= 1/κ(t)
and κ(t) 6= 0.

Remark 2.11. By the assumption of the finiteness of singularities of a front, there exists λ ∈ R
with the condition λ 6= 1/κ(t). Moreover, by Proposition 2.8, we can glue on the regular interval
of γ and γλ. Then the evolute of a front is well-defined. Furthermore, by definition, the evolute
of a front Ev(γ) is a C∞ map.

In order to consider properties of the evolute of a front, we need a moving frame along a front
(or, a Legendre immersion) (cf. [7]). Let (γ, ν) : I → R2×S1 be a Legendre immersion. If γ is a
regular curve around a point t0, then we have the Frenet formula of γ in §2. On the other hand,
if γ is singular at a point t0, then we don’t define such a frame. However, ν is always defined
even if t is a singular point of γ. Therefore, we have the Frenet formula of a front as follows.
We put µ(t) = J(ν(t)). We call the pair {ν(t),µ(t)} is a moving frame along a front γ(t) in R2

and we have the Frenet formula of a front which is given by(
ν̇(t)
µ̇(t)

)
=

(
0 `(t)
−`(t) 0

)(
ν(t)
µ(t)

)
,(1)

where `(t) = ν̇(t) · µ(t). Moreover, if γ̇(t) = α(t)ν(t) + β(t)µ(t) for some smooth functions
α(t), β(t), then α(t) = 0 follows from the condition γ̇(t) · ν(t) = 0. Hence, there exists a smooth
function β(t) such that

γ̇(t) = β(t)µ(t).(2)

Since (γ, ν) is an immersion, we have (`(t), β(t)) 6= (0, 0) for each t ∈ I. The pair (`, β) is
an important invariant of Legendre curves (or, frontals) in the unit tangent bundle like as the
curvature of a regular plane curve, for more detail, see [7]. We call the pair (`, β) the curvature
of the Legendre curve. Since we assume that (γ, ν) is a Legendre immersion, so that we call
(`, β) the curvature of the Legendre immersion. For the related properties, see [15, 16].

3. Properties of the evolutes of fronts

In this section, we consider properties of the evolutes of fronts. Let (γ, ν) : I → R2 × S1 be a
Legendre immersion with the curvature of the Legendre immersion (`, β).

First we give a relationship between the curvature of the Legendre immersion (`(t), β(t)) and
the curvature κ(t) if γ is a regular curve.

Lemma 3.1. (1) If γ is a regular curve, then `(t) = |β(t)|κ(t).
(2) If γλ is a regular curve, then `(t) = |β(t) + λ`(t)|κλ(t).

Proof. (1) By a direct calculation, γ̇(t) = β(t)µ(t), γ̈(t) = β̇(t)µ(t)− β(t)`(t)ν(t) and

κ(t) =
det (γ̇(t), γ̈(t))

|γ̇(t)|3
=

det
(
β(t)µ(t), β̇(t)µ(t)− β(t)`(t)ν(t)

)
|β(t)|3

=
β(t)2`(t)

|β(t)|3
=

`(t)

|β(t)|
.

Therefore we have `(t) = |β(t)|κ(t).
(2) We can also prove by the same calculations of (1). 2

Remark 3.2. Since (`(t), β(t)) 6= (0, 0), if t0 is a singular point of γ, then γλ is a regular curve.
By Lemma 3.1 (2), `(t0) = |λ`(t0)|κλ(t0). It follows from λ`(t0) 6= 0 that κλ(t0) 6= 0.

We give another representation of the evolute of a front by using the moving frame of a front
{ν(t),µ(t)} and the curvature of the Legendre immersion (`(t), β(t)).
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Theorem 3.3. Under the above notations, the evolute of a front Ev(γ)(t) is represented by

Ev(γ)(t) = γ(t)− β(t)

`(t)
ν(t),(3)

and Ev(γ) is a front. More precisely, (Ev(γ)(t), J(ν(t))) is a Legendre immersion with the
curvature (

`(t),
d

dt

(
β(t)

`(t)

))
.

Proof. First suppose that γ is a regular curve. Since γ̇(t) = β(t)µ(t), we have |β(t)| 6= 0 and

t(t) =
β(t)

|β(t)|
µ(t), n(t) = − β(t)

|β(t)|
ν(t).

By Lemma 3.1 (1), κ(t) = `(t)/|β(t)| and `(t) 6= 0. Then

Ev(γ)(t) = γ(t) +
1

κ(t)
n(t) = γ(t) +

|β(t)|
`(t)

(
− β(t)

|β(t)|

)
ν(t) = γ(t)− β(t)

`(t)
ν(t).

Second suppose that t0 is a singular point of γ and γλ is a regular curve with λ 6= 1/κ(t). Since
γ̇λ(t) = (β(t) + λ`(t))µ(t), we have |β(t) + λ`(t)| 6= 0 and

tλ =
β(t) + λ`(t)

|β(t) + λ`(t)|
µ(t), nλ = − β(t) + λ`(t)

|β(t) + λ`(t)|
ν(t).

By Lemma 3.1 (2), κλ(t) = `(t)/|β(t) + λ`(t)| and `(t) 6= 0. Then

Ev(γλ)(t) = γλ(t) +
1

κλ(t)
nλ(t) = γ(t) + λν(t) +

|β(t) + λ`(t)|
`(t)

(
− β(t) + λ`(t)

|β(t) + λ`(t)|

)
ν(t)

= γ(t)− β(t)

`(t)
ν(t).

If we take ν̃(t) = J(ν(t)) = µ(t), then (Ev(γ)(t), ν̃(t)) is a Legendre immersion. In fact,
˙̃ν(t) = `(t)J(µ(t)) 6= 0 and by the form of

Ėv(γ)(t) = − β̇(t)`(t)− β(t) ˙̀(t)

`(t)2
ν(t) =

d

dt

(
β(t)

`(t)

)
J(µ(t)),(4)

we have Ėv(γ)(t) · ν̃(t) = 0. It follows that (Ev(γ)(t), J(ν(t))) is a Legendre immersion with the
curvature (`(t), (d/dt)(β(t)/`(t))) and hence Ev(γ) is a front. This completes the proof of the
Theorem. 2

Remark 3.4. By the representation (3), we may define the evolute of a front even if γ have
non-isolated singularities, under the condition `(t) 6= 0.

By Lemma 3.1 and Remark 3.4, for a Legendre immersion (γ, ν) with the curvature of the
Legendre immersion (`, β), we say that t0 is an inflection point of the front γ (or, the Legendre
immersion (γ, ν)) if `(t0) = 0. Since β(t0) 6= 0 and Proposition 3.1, `(t0) = 0 is equivalent to
the condition κ(t0) = 0.

Remark 3.5. Let (γ, ν) be a Legendre immersion, then (γ,−ν) is also (Remark 2.5). However,
Ev(t) does not change. It follows that we can define an evolute of a non co-orientable front, by
taking double covering of γ.
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Remark 3.6. By Definition 2.10, the evolute of a front is independent on the parametrization
of (γ, ν). The curvature of the Legendre immersion (`, β) is depended on the parametrization
of (γ, ν), see [7]. If s = s(t) is a parameter changing on I to I, then `(t) = `(s(t))ṡ(t) and
β(t) = β(s(t))ṡ(t). It also follows from the representation (3) that the evolute of a front is
independent on the parametrization of (γ, ν).

If t0 is a singular point of γ, then β(t0) = 0. As a corollary of Theorem 3.3, we have the
following.

Corollary 3.7. If t0 is a singular point of γ, then Ev(γ)(t0) = γ(t0).

Proposition 3.8. Let (γ, ν) : I → R2 × S1 be a Legendre immersion without inflection points.
Suppose that t0 is a singular point of γ. Then t0 is a regular point of Ev(γ)(t) if and only if
γ̈(t0) 6= 0.

Proof. By the assumption, β(t0) = 0. Let t0 be a regular point of Ev(γ)(t). Since (4) and

`(t0) 6= 0, we have β̇(t0) 6= 0. By the differentiate of γ̇(t) = β(t)µ(t), we have

γ̈(t) = β̇(t)µ(t)− β(t)`(t)ν(t)

It follows that γ̇(t0) = 0 and γ̈(t0) = β̇(t0)µ(t0) 6= 0. The converse is also holded by reversing
the arguments. 2

Note that by Lemma 2.6 and Proposition 3.8, the conditions follows that γ is diffeomorphic
to the 3/2 cusp at t0. Hence, we can recognize the 3/2 cusp of original curve by the regularity
of the evolute of a front, see Examples 6.2 and 6.3.

The most degenerate case of the evolute of a front, we have classified as follows:

Proposition 3.9. If Ėv(γ)(t) ≡ 0, then γ is a part of a circle or a point.

Proof. By the condition Ėv(γ)(t) ≡ 0, there exists a constant c ∈ R such that β(t)/`(t) ≡ c, if
and only if β(t) = c`(t). If c = 0, then γ̇(t) = β(t)µ(t) = 0. It follows that γ is a point. Suppose
that c 6= 0. By the existence and the uniqueness of a front in [7], we take

ν(t) =

(
cos

(∫
`(t)dt

)
, sin

(∫
`(t)dt

))
, µ(t) =

(
− sin

(∫
`(t)dt

)
, cos

(∫
`(t)dt

))
.

By γ̇(t) = β(t)µ(t), we have

γ(t) =

(
−c
∫
`(t) sin

(∫
`(t)dt

)
dt+ a, c

∫
`(t) cos

(∫
`(t)dt

)
dt+ b

)
=

(
c cos

(∫
`(t)dt

)
+ a, c sin

(∫
`(t)dt

)
+ b

)
for some constants a, b ∈ R. Therefore, γ is a part of a circle. 2

As a well-known result, a singular point of Ev(γ) of a regular plane curve γ is corresponding
to a vertex of γ, namely, κ̇(t) = 0 (cf. [5, 8, 18, 19]).

We extend the notion of vertex. For a Legendre immersion (γ, ν) with the curvature of
the Legendre immersion (`, β), t0 is a vertex of the front γ (or a Legendre immersion (γ, ν))
if (d/dt)(β/`)(t0) = 0, namely, (d/dt)Ev(t0) = 0. Note that if t0 is a regular point of γ, the
definition of the vertex coincides with usual vertex for regular curves. Therefore, this is a
generalization of the notion of the vertex of regular plane curves.
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Remark 3.10. Let (γ, ν) be a Legendre immersion. If t0 is a singular point of γ which degenerate
more than 3/2 cusp, then t0 is a vertex of a front γ. In fact,

d

dt

(
β

`

)
(t0) =

β̇(t0)`(t0)− β(t0) ˙̀(t0)

`(t0)2
= 0,

since β(t0) = β̇(t0) = 0 by Proposition 3.8.

In this paper, a Legendre immersion (γ, ν) : [a, b]→ R2 × S1 is a closed Legendre immersion
if (γ(n)(a), ν(n)(a)) = (γ(n)(b), ν(n)(b)) for all n ∈ N ∪ {0} where γ(n)(a), ν(n)(a), γ(n)(b) and
ν(n)(b) means one-sided differential. If (γ, ν) : [a, b]→ R2 × S1 is a closed Legendre immersion,
then both a and b are regular points or both a and b are singular points of γ. When a and b are
singular points of γ, we treat these singular points as one singular point.

Proposition 3.11. Let (γ, ν) : [a, b]→ R2×S1 be a closed Legendre immersion without inflection
points.

(1) If γ has at least two singular points which degenerate more than 3/2 cusp, then γ has at
least four vertices.

(2) If γ has at least four singular points, then γ has at least four vertices.

Proof. (1) Suppose that γ has at least two singular points which degenerate more than 3/2 cusp.
By Remark 3.10, these singularities are vertices of γ, therefore it is sufficient to show that there
is at least one vertex between two adjacent singular points. Since γ has no inflection points, the
sign of the curvature of γ on regular points is constant. Therefore, either limt→t0 κ(t) = ∞ for
all t0 ∈ Σ(γ) or limt→t0 κ(t) = −∞ for all t0 ∈ Σ(γ), where Σ(γ) is the set of singular points of
γ. This concludes there exist t ∈ (t1, t2) such that κ̇(t) = 0 for singular points t1 and t2 of γ.

Suppose that a and b are singular points which degenerate more than 3/2 cusp. Since we
treat a and b as the one singular point, there exists at least one singular point t1 ∈ (a, b) which
degenerate more than 3/2 cusp by the assumption. In this case, there exist at least two vertices
v1 ∈ (a, t1) and v2 ∈ (t1, b). Moreover, a and t1 are also vertices. Therefore, there exist at least
four vertices.

Next, suppose that a and b are regular points or 3/2 cusps. Then there exist at least two
singular points t1 and t2 (we assume t1 < t2) in (a, b) which degenerate more than 3/2 cusp.
In this case, there exists at least one vertex v1 ∈ (t1, t2). Moreover, since (γ, ν) is closed, there
exists a point v2 ∈ [a, t1) ∪ (t2, b] such that κ̇(v2) = 0. Therefore, γ has at least four vertices.

(2) Suppose that γ has at least four singular points. Since γ has no inflection points, the sign
of the curvature of γ on regular points is constant. Therefore, either limt→t0 κ(t) = ∞ for all
t0 ∈ Σ(γ) or limt→t0 κ(t) = −∞ for all t0 ∈ Σ(γ). This concludes there exist t ∈ (t1, t2) such
that κ̇(t) = 0, that is, there is at least one vertex between two adjacent singular points.

Suppose that a and b are singular points of γ. Since we treat a and b as the one singular
point, there exist at least three singular points t1, t2 and t3 of γ in (a, b), which we assume
to be ordered so that a < t1 < t2 < t3 < b. Since there is at least one vertex between two
adjacent singular points, there exist at least four vertices v1 ∈ (a, t1), v2 ∈ (t1, t2), v3 ∈ (t2, t3)
and v4 ∈ (t3, b).

Next, suppose that a and b are regular points of γ. Let t1, t2, t3 and t4 be singular points
of γ (we assume a < t1 < t2 < t3 < t4 < b). Since there is at least one vertex between two
adjacent singular points, there exist at least three vertices v1 ∈ (t1, t2), v2 ∈ (t2, t3), v3 ∈ (t3, t4).
Moreover, since (γ, ν) is closed, there exists a point v4 ∈ [a, t1) ∪ (t4, b] such that κ̇(v4) = 0.
Therefore, γ has at least four vertices. 2

Finally, in this section, we consider the evolute of a front as a (wave) front of a Legendre
immersion by using a family of functions.
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We define a family of functions

F : I × R2 → R
by F (t, x, y) = (γ(t)− (x, y)) · µ(t).

Proposition 3.12. Let (γ, ν) : I → R2 × S1 be a Legendre immersion with the curvature of the
Legendre immersion (`, β).

(1) F (t, x, y) = 0 if and only if there exists a real number λ such that (x, y) = γ(t)− λν(t).
(2) F (t, x, y) = (∂F/∂t)(t, x, y) = 0 if and only if `(t) 6= 0 and (x, y) = γ(t)− (β(t)/`(t))ν(t).

Proof. (1) (γ(t)−(x, y))·µ(t) = 0 if and only if there exists λ ∈ R such that γ(t)−(x, y) = λν(t).
(2) (∂F/∂t)(t, x, y) = γ̇(t) ·µ(t)+(γ(t)−(x, y)) ·µ̇(t) = β(t)−λ`(t). If `(t) = 0, then β(t) = 0.

This is a contradiction for (`(t), β(t)) 6= (0, 0). It follows that λ = β(t)/`(t). The converse is
also holded. 2

One can show that F is a Morse family, in the sense of Legendrian singularity theory (cf.
[1, 14, 20]), namely, (F, ∂F/∂t) : I × R2 → R× R is a submersion at (t, x, y) ∈ D(F ), where

D(F ) = {(t, x, y) | F (t, x, y) = (∂F/∂t)(t, x, y) = 0}.

It follows that the evolute of a front Ev(γ) is a (wave) front of a Legendre immersion and is
given by the envelope of normal lines of the front.

4. Evolutes of the evolutes of fronts

By Theorem 3.3, the evolute of a front is also a front without inflection points. We consider
a repeated evolute of an evolute of a front and give properties of a singular point of it. Let
(γ, ν) be a Legendre immersion with the curvature of the Legendre immersion (`, β) and without
inflection points.

Theorem 4.1. The evolute of an evolute of a front is given by

Ev(Ev(γ))(t) = Ev(γ)(t)− β̇(t)`(t)− β(t) ˙̀(t)

`(t)3
µ(t).(5)

Proof. At this proof, we denote γ̃(t) = Ev(γ)(t). By the proof of Theorem 3.3,

(γ̃(t), ν̃(t)) = (Ev(γ)(t),µ(t))

is a Legendre immersion. Since µ̃(t) = J(ν̃(t)) = −ν(t) and the derivative of the evolute of the
front (4), we have

β̃(t) =
β̇(t)`(t)− β(t) ˙̀(t)

`(t)2
,

where ˙̃γ(t) = β̃(t)µ̃(t). Moreover ˜̀(t) = `(t) by the Frenet formula of a front (1). It follows that

Ev(Ev(γ))(t) = Ev(γ̃)(t) = γ̃(t)− β̃(t)˜̀(t) ν̃(t) = Ev(γ)(t)− β̇(t)`(t)− β(t) ˙̀(t)

`(t)3
µ(t).

2

We can also prove Theorem 4.1 by a direct calculation of the definition of the evolute of a
front (Definition 2.10). We need to divide into four cases, that is, γ is a regular or a singular,
and Ev(γ) is a regular or a singular. All cases coincide with (5). We also call Ev(Ev(γ)) the
second evolute of a front.

Now we consider a geometric meaning of a singular point of Ev(Ev(γ))(t).
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Lemma 4.2. Suppose that γ and Ev(γ) are both regular curves. If Ėv(Ev(γ))(t) ≡ 0, then γ is
an involute of a circle.

Proof. We may assume that t is the arc-length parameter of γ. It follows that |β(t)| = 1

and hence `(t) = κ(t) by Lemma 3.1. Moreover, we have β(t)2 = 1 and β̇(t) = 0. Since
t(t) = β(t)µ(t) and n(t) = −β(t)ν(t), we have µ(t) = β(t)t(t) and ν(t) = −β(t)n(t). Then

Ev(γ)(t) = γ(t)− β(t)

`(t)
ν(t) = γ(t)− β(t)

κ(t)
(−β(t)n(t)) = γ(t) +

1

κ(t)
n(t)

and

Ev(Ev(γ))(t) = Ev(γ)(t) +
β(t)κ̇(t)

κ(t)3
β(t)t(t) = Ev(γ)(t) +

κ̇(t)

κ(t)3
t(t)

hold. It follows that

Ėv(γ)(t) = − κ̇(t)

κ(t)2
n(t), Ėv(Ev(γ))(t) =

κ̈(t)κ(t)− 3κ̇(t)2

κ(t)4
t(t).

By the assumptions, κ(t) 6= 0, κ̇(t) 6= 0 and κ̈(t)κ(t)− 3κ̇(t)2 ≡ 0, it follows that

d

dt

(
κ̇(t)

κ(t)

)
= 2

(
κ̇(t)

κ(t)

)2

.

Solving this differential equation, there exist constants C1, C2 ∈ R with C2 6= 0 such that

κ(t) = C2
1√

2t+ C1

.

A curve having the curvature 1/
√

2ct for a constant c ∈ R \ {0} is an involute of a circle with
radius c. By the existence and the uniqueness theorems of regular plane curves, see for example
[8, 9], γ is an involute of a circle (cf. [9, P.138]). 2

Let γ : I → R2 be a regular curve and t0 ∈ I. The involute of a regular curve is defined by
Inv(γ, t0) : I → R2;

Inv(γ, t0)(t) = γ(t)−
(∫ t

t0

|γ̇(u)| du
)
t(t).

Note that Ev(Inv(γ, t0))(t) = γ(t), for more detail see [5, 8, 9].

Theorem 4.3. Suppose that γ and Ev(γ) are regular curves. If t0 is a singular point of
Ev(Ev(γ)), then γ is at least 4-th order contact to an involute of a circle at the point t = t0
up to congruent.

Proof. We may assume that t is the arc-length parameter of γ. By the same arguments in the
proof of Lemma 4.2, we have κ(t0) 6= 0, κ̇(t0) 6= 0 and κ̈(t0)κ(t0)−3κ̇(t0)2 = 0. We set κ(t0) = a
and κ̇(t0) = b. Then we define a curve γ̃(t) whose curvature is given by

κ̃(t) = a

√
a

b

1√
−2t+ 2t0 + a

b

,

(
respectively, κ̃(t) = a

√
−a
b

1√
2t− 2t0 − a

b

)
if ab > 0 (respectively, ab < 0). Then κ(t0) = κ̃(t0) = a and κ̇(t0) = ˙̃κ(t0) = b. Since

κ̈(t0)κ(t0)− 3κ̇(t0)2 = 0 and ¨̃κ(t)κ̃(t)− 3 ˙̃κ(t)2 ≡ 0, we have κ̈(t0) = ¨̃κ(t0). By the Theorem A.1
in the appendix, γ and γ̃ are at least 4-th order contact at the point t = t0 up to congruent. It
follows that γ and an involute of a circle are at least 4-th order contact at the point t = t0 up
to congruent. This completes the proof of Theorem. 2
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Remark 4.4. Suppose that γ is a regular curve. If t0 is a singular point of Ev(γ)(t) and
Ev(Ev(γ))(t), then κ̇(t0) = κ̈(t0) = 0 by the same calculations of the proof of Lemma 4.2. It
follows that γ and the osculating circle are at least 4-th order contact at the point t = t0.

Proposition 4.5. Let (γ, ν) : I → R2 × S1 be a Legendre immersion without inflection points.
Suppose that t0 is a singular point of both γ and Ev(γ). Then t0 is a regular point of Ev(Ev(γ))
if and only if

...
γ (t0) 6= 0.

Proof. Let t0 be a regular point of Ev(Ev(γ)). By Proposition 3.8, β(t0) = β̇(t0) = 0 and
`(t0) 6= 0. Since

d

dt
Ev(Ev(γ))(t) = − β̈(t)`(t)2 − β(t)`(t)῭(t)− 3β̇(t)`(t) ˙̀(t) + 3β(t) ˙̀(t)2

`(t)4
µ(t),

it holds that (d/dt)Ev(Ev(γ))(t0) = −β̈(t0)`(t0)−2µ(t0) 6= 0 if and only if β̈(t0) 6= 0. By the
differentiate of γ̇(t) = β(t)µ(t), we have

...
γ (t) = (β̈(t)− β(t)`(t)2)µ(t)− (2β̇(t)`(t) + β(t) ˙̀(t))ν(t)

It follows that
...
γ (t0) = β̈(t0)µ(t0) 6= 0. The converse is also shown by reversing the arguments.

2

Note that by Lemma 2.6 and Proposition 4.5, the conditions follows that γ is diffeomorphic
to the 4/3 cusp at t0.

5. The n-th evolutes of fronts

Let (γ, ν) : I → R2 × S1 be a Legendre immersion with the curvature (`, β) and without
inflection points. We give the form of the n-th evolute of a front, where n is a natural number.
We denote Ev0(γ)(t) = γ(t) and Ev1(γ)(t) = Ev(γ)(t) for convenience. We define

Evn(γ)(t) = Ev(Evn−1(γ))(t), β0(t) = β(t), and βn(t) =
d

dt

(
βn−1(t)

`(t)

)
inductively.

Theorem 5.1. (Evn(γ), Jn(ν)) : I → R2 × S1 is a Legendre immersion with the curvature
(`, βn), where the n-th evolute of the front is given by

Evn(γ)(t) = Evn−1(γ)(t)− βn−1(t)

`(t)
Jn−1(ν(t)),

where Jn is n-times operations of J .

Proof. Let n = 1 and n = 2, then

Ev1(γ)(t) = Ev0(γ)(t)− β0(t)

`(t)
J0(ν(t)) = γ(t)− β(t)

`(t)
ν(t)

and

Ev2(γ)(t) = Ev1(γ)(t)− β1(t)

`(t)
J1(ν(t)) = Ev(γ)(t)− d

dt

(
β(t)

`(t)

)
1

`(t)
J(ν(t))

= Ev(γ)(t)− β̇(t)`(t)− β(t) ˙̀(t)

`(t)3
µ(t).

These are nothing but the evolute of a front (3) and the second evolute of a front (5).
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Next suppose that 1 ≤ j ≤ k is holded, namely,

Evj(γ)(t) = Evj−1(γ)(t)− βj−1(t)

`(t)
Jj−1(ν(t))

for 1 ≤ j ≤ k. We consider Ev(Evk(γ))(t). Suppose that (Evk(γ)(t), Jk(ν(t))) is a Legendre
immersion with the curvature (`(t), βk(t)). By Theorem 3.3, we have (k + 1)-th evolute of the
front

Evk+1(γ)(t) = Evk(γ)(t)− βk(t)

`(t)
Jk(ν(t)).

Since

d

dt
Evk+1(γ)(t) =

d

dt
Evk(γ)(t)− d

dt

(
βk(t)

`(t)

)
Jk(ν(t))− βk(t)

`(t)
Jk(ν̇(t))

= βk(t)Jk+1(t) + βk+1(t)Jk+2(ν(t))− βk(t)Jk+1(ν(t))

= βk+1(t)Jk+2(ν(t)),

d

dt
Jk+1(ν(t)) = Jk+1(ν̇(t)) = Jk+1(`(t)µ(t)) = `(t)Jk+1(J(ν(t)))

= `(t)Jk+2(ν(t)),

it holds that (Evk+1(γ), Jk+1(ν)) is a Legendre immersion with the curvature (`(t), βk+1(t)). By
the induction, this completes the proof of Theorem. 2

As a generalization of Propositions 3.8 and 4.5, we have the following result:

Proposition 5.2. Let (γ, ν) : I → R2 × S1 be a Legendre immersion with the curvature of the
Legendre immersion (`, β) and without inflection points. Suppose that t0 is a singular point of
γ. Then the following are equivalent:

(1) t0 is a singular point of Evi(γ)(t) for i = 1, . . . , n.
(2) (diβ/dti)(t0) = 0 for i = 1, . . . , n.
(3) (diγ/dti)(t0) = 0 for i = 2, . . . , n+ 1.

Proof. First, we show that βi(t) is given by the form β(i)(t) and lower terms of β(i)(t), namely,

βi(t) =
β(i)(t)

`(t)i
+ L(β(t), . . . , β(i−1)(t))(6)

for some smooth function L which contain `(t) and derivatives of `(t).
Since

β1(t) =
d

dt

(
β(t)

`(t)

)
=
β̇(t)

`(t)
+ β(t)

d

dt

(
1

`(t)

)
,

the case of i = 1 is holded. Suppose that i = k is holded, namely, there exists a smooth function
L such that

βk(t) =
β(k)(t)

`(t)k
+ L(β(t), . . . , β(k−1)(t)).

Then

βk+1(t) =
d

dt

(
βk(t)

`(t)

)
=
β(k+1)(t)

`(t)k+1
+ L̃(β(t), . . . , β(k)(t)),

for some smooth function L̃. By the induction, we conclude the assertion.
Second, assume that t0 is a singular point of Evi(γ)(t) for i = 1, . . . , n. By Theorem 5.1,

(d/dt)Evi(γ)(t0) = 0 if and only if βi(t0) = 0. Since (6) and β(t0) = 0, it holds that βi(t0) = 0
for i = 1, . . . , n if and only if β(i)(t0) = 0 for i = 1, . . . , n. It follows that (1) implies (2). By the
reversing arguments, the converse (1) follows from (2).
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Finally, since γ̇(t) = β(t)µ(t), we can also show that (2) is equivalent to (3) by the induction.
2

6. Examples

We give examples to understand the phenomena for evolutes of fronts.

Example 6.1. Let γ(t) = (a cos t, b sin t) be an ellipse with a, b > 0 and a 6= b. Since

ν(t) =
1√

a2 sin2 t+ b2 cos2 t
(−b cos t, a sin t), µ(t) =

1√
a2 sin2 t+ b2 cos2 t

(−a sin t,−b cos t),

we have

`(t) =
ab

a2 sin2 t+ b2 cos2 t
, β(t) = −

√
a2 sin2 t+ b2 cos2 t.

The evolute, the second evolute and the third evolute of the ellipse γ are given by

Ev(γ)(t) =

(
a2 − b2

a
cos3 t,−a

2 − b2

b
sin3 t

)
,

Ev(Ev(γ))(t) =
(a2 − b2

ab2
cos t

(
b2 cos4 t+ 3a2 sin4 t+ b2 sin2 2t

)
,

− a2 − b2

a2b
sin t

(
a2 sin4 t+ 3b2 cos4 t+ a2 sin2 2t

))
,

and Ev3(γ)(t) =

(a2 − b2
8a3b2

cos3 t
(
45a4 − 10a2b2 − 3b4 + 12(−5a4 + 4a2b2 + b4) cos 2t+ 15(a2 − b2)2 cos 4t

)
,

a2 − b2

8a2b3
sin3 t

(
3a4 + 10a2b2 − 45b4 + 12(a4 + 4a2b2 − 5b4) cos 2t− 15(a2 − b2)2 cos 4t

))
.

The ellipse γ and its evolute (red curve) are showed in Figures 1 left and 2 center. Moreover,
the second evolute (yellow curve), see Figure 1 center, and the third evolute (green curve), see
Figures 1 right and 2 right.

The evolute is useful to recognize the difference of the sharp of curves. In Figure 2, the left
is a circle and the center is an ellipse and its evolute. We can observe the evolute of the ellipse,
however, it is very small (red curve). If we consider the repeated evolute, we can easy to observe
it. The right in Figure 2 is the second and the third evolute of the ellipse.
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Figure 1. The ellipse and evolutes.
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Example 6.2. Let γ(t) = (3 cos t − cos 3t, 3 sin t − sin 3t) = (6 cos t − 4 cos3 t, 4 sin3 t) be the
nephroid, see Figure 3 left. Since ν(t) = (− sin 2t, cos 2t) and µ(t) = (− cos 2t, sin 2t), we have
`(t) = 2, β(t) = −6 sin t. The evolute and the second evolute of the nephroid are as follows, see
Figure 3 center and right:

Ev(γ)(t) =
(
2 cos3 t, 3 sin t− 2 sin2 t

)
,

Ev(Ev(γ))(t) =

(
3

2
cos t− cos3 t, sin3 t

)
.

We can observe that γ(t)/4 = Ev(Ev(γ))(t).
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Figure 3. The nephroid and evolutes.

Example 6.3. Let γ(t) = (t3, t4) be the 4/3 cusp, Figure 4 left. Since ν(t) = (1/
√

16t2 + 9)(−4t, 3)

and µ(t) = (1/
√

16t2 + 9)(−3,−4t), we have `(t) = 12/(16t2 + 9), β(t) = −t2
√

16t2 + 9. The
evolute and the second evolute of the 4/3 cusp are as follows, see Figure 4 center and right:

Ev(γ)(t) =

(
−2t3 − 16

3
t5,

9

4
t2 + 5t4

)
,

Ev(Ev(γ))(t) =

(
−27

8
t− 23t3 − 32t5,−9

4
t2 − 23t4 − 320

9
t6
)
.

-2 -1 1 2

-2

-1

1

2

-2 -1 1 2

-2

-1

1

2

-2 -1 1 2

-2

-1

1

2

Figure 4. The 4/3 cusp and evolutes.

Appendix A. Contact between regular curves

In this appendix, we discuss contact between regular curves. Let γ : I → R2; t 7→ γ(t) and

γ̃ : Ĩ → R2;u 7→ γ̃(u) be regular plane curves, respectively. We say that γ and γ̃ have k-th order
contact at t = t0, u = u0 if

γ(t0) = γ̃(u0),
dγ

dt
(t0) =

dγ̃

du
(u0), · · · , d

kγ

dtk
(t0) =

dkγ̃

duk
(u0),

dk+1γ

dtk+1
(t0) 6= dk+1γ̃

duk+1
(u0).

Moreover, we say that γ and γ̃ have at least k-th order contact at t = t0, u = u0 if

γ(t0) = γ̃(u0),
dγ

dt
(t0) =

dγ̃

du
(u0), · · · , d

kγ

dtk
(t0) =

dkγ̃

duk
(u0).

Let γ1, γ2 : I → R2 be regular plane curves. We say that γ1 and γ2 are congruent if there exists
a congruence C such that γ2(t) = C(γ1(t)) = A(γ1(t)) + b for all t ∈ I, where the congruence is
given by a rotation A and a translation b on R2.

Let γ : I → R2; t 7→ γ(t) and γ̃ : Ĩ → R2;u 7→ γ̃(u) be regular plane curves. We take the
arc-length parameter for γ(t) and γ̃(u), respectively. In general, we may assume that γ(t) and
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γ̃(u) have at least first order contact at any point t = t0, u = u0 up to congruent. We denote
the curvatures κ(t) of γ(t) and κ̃(u) of γ̃(u), respectively.

Theorem A.1. Let γ : I → R2 and γ̃ : Ĩ → R2 be regular plane curves. If γ(t) and γ̃(u) have
at least (k + 2)-th order contact at t = t0, u = u0 then

κ(t0) = κ̃(u0),
dκ

dt
(t0) =

dκ̃

du
(u0), · · · , d

kκ

dtk
(t0) =

dkκ̃

duk
(u0).(7)

Conversely, if t and u are the arc-length parameter of γ and γ̃ respectively, and the condition
(7) holds, then γ and γ̃ have at least (k + 2)-th order contact at t = t0, u = u0 up to congruent.

Proof. We may assume that t and u are the arc-length parameter of γ and γ̃ respectively.
Suppose that γ and γ̃ have at least third order contact. Since the Frenet formula, we have
(dγ/dt)(t) = t(t), (d2γ/dt2)(t) = κ(t)n(t) and (dγ̃/du)(u) = t̃(u), (d2γ̃/du2)(u) = κ̃(u)ñ(u). It

follows that t(t0) = t̃(u0),n(t0) = ñ(u0) and κ(t0) = κ̃(u0). Hence, the case of k = 1 holds.
Suppose that γ and γ̃ have at least (k + 2)-th order contact and

κ(t0) = κ̃(u0),
dκ

dt
(t0) =

dκ̃

du
(u0), · · · , d

k−1κ

dtk−1
(t0) =

dk−1κ̃

duk−1
(u0)

hold. Since (d3γ/dt3)(t) = (dκ/dt)(t)n(t)− κ(t)2t(t), the form of (dk+1γ/dtk+1)(t) is given by

dk−1κ

dtk−1
(t)n(t) + f

(
κ(t), · · · , d

k−2κ

dtk−2
(t)

)
t(t) + g

(
κ(t), · · · , d

k−2κ

dtk−2
(t)

)
n(t),

for some smooth functions f and g. Then

dk+2γ

dtk+2
(t) =

dkκ

dtk
(t)n(t) + F

(
κ(t), · · · , d

k−1κ

dtk−1
(t)

)
t(t) +G

(
κ(t), · · · , d

k−1κ

dtk−1
(t)

)
n(t)

for some smooth functions F and G. By the same calculations, we have

dk+2γ̃

duk+2
(u) =

dkκ̃

duk
(u)ñ(u) + F

(
κ̃(u), · · · , d

k−1κ̃

duk−1
(u)

)
t̃(u) +G

(
κ̃(u), · · · , d

k−1κ̃

duk−1
(u)

)
ñ(u).

It follows that (dkκ/dtk)(t0) = (dkκ̃/duk)(u0). By the induction, we have the first assertion.
By the reversing arguments, we can prove the converse assertion up to congruent. 2
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THE GENERICITY OF THE INFINITESIMAL LIPSCHITZ CONDITION

FOR HYPERSURFACES

TERENCE GAFFNEY

Abstract. We continue the development of the theory of infinitesimal Lipschitz equivalence,

showing the genericity of the condition for families of hypersurfaces with isolated singularities.

1. Introduction

In an earlier paper [7], we introduced a candidate for a theory of infinitesimal Lipschitz
equisingularity for families of complex analytic hypersurfaces with isolated singularities. The
definition given there has an equivalent formulation, using the theory of integral closure of
modules. This alternate form is easier to work with in many situations. In this paper we show
that a slightly evolved version of this condition is generic. More precisely, we show, in the case of
two strata, considered here, that the condition holds on a Zariski open subset of the parameter
stratum Y . Proving that a stratification property is generic is essential for an equisingularity
condition to have any value.

In preparation for using the integral closure formulation of our condition, we review some
elements of the theory of integral closure of modules in section 2.

In section 3, we review the definition of the Lipschitz saturation of an ideal, give its alternate
formulation using the theory of integral closure and define two infinitesimal Lipschitz conditions,
one which we denote by iLmY

which is the analogue of the Whitney conditions and one which
is the analogue of the Whitney A or the af condition which we denote by iLA. We also give a
geometric interpretation of these conditions on the family X.

We also introduce an invariant coming from the integral formulation of the Lipschitz condition.
We use this invariant to show when two different ideals have the same Lipschitz saturation. We
also use it to characterize generic hyperplanes in section 4.

In section 4, we come to the heart of this paper. As mentioned earlier, proving a genericity
theorem is an important step in developing the theory attached to an equisingularity condition.
Not only is this result necessary to ensure the condition is widely applicable, but the fact of
genericity implies a strong connection with the geometry of the family. For example, Teissier
proved that condition C held on a Zariski open and dense subset of the parameter space Y k, of
a k parameter family of isolated hypersurface singularities in Cn+k in [16]. Condition C later
was seen to be equivalent to Verdier’s condition Wf for the pair of strata {Cn+k − Y k, Y k},
where f defined the family. Condition C was the keystone of Teissier’s work on the Whitney
equisingularity of families of hypersurfaces with isolated singularities. We use Teissier’s proof in
[16] as a model in developing a similar theorem for the iLA condition. Currently a proof for the
genericity of the iLmY

remains unknown.
In section 4, we state and prove the genericity theorem for the iLA condition for the case

of families of isolated hypersurface singularities. For the proof, we work in the module setting.
Analogous results exist in the general case for families of isolated singularities, but requires
further work in developing the definition of the infinitesimal Lipschitz condition; since you start

http://dx.doi.org/10.5427/jsing.2014.10g


INFINITESIMAL LIPSCHITZ CONDITION 109

with modules in the general case instead of ideals, a further layer of complexity is added in
passing to the module theoretic version of the definition.

Also in section 4, we give an application of the genericity theorem. Given an equisingularity
condition it is natural to ask if it passes to the family of generic plane sections of the singularity.
We use the genericity theorem to show that it does for the iLA condition. We then use the
invariant introduced in section 3, and the multiplicity polar theorem, discussed in section 2, to
give a condition for a hyperplane to be generic.

Ultimately, we hope to use the stratification condition defined here to prove that for a family
of isolated hypersurface singularities, the iLA condition gives a necessary and sufficient condition
for the family to have a bi-Lipschitz stratification which includes Y as a stratum. This would
give an infinitesimal criterion for the existence of a bi-Lipschitz stratification of such a family.
It is known by work of Mostowski, [13] that bi-Lipschitz stratifications exist in the complex
analytic setting, but not much is known about them besides their existence.

Using the conditions of this paper to characterize the “thick” and “thin” zones of Birbrair,
Neumann and Pichon [1], developed by them for normal surface singularities, would open an av-
enue to generalizing these notions to higher dimensions, as well as linking them with Mostowski’s
work on showing the existence of these stratifications.

I am happy to acknowledge the impetus to this work given by the beautiful paper of Birbrair,
Neumann and Pichon [1] and the stimulation afforded from conversation with them.

2. The theory of the Integral closure of modules

Let (X,x) be a germ of a complex analytic space and X a small representative of the germ
and let OX denote the structure sheaf on a complex analytic space X. One of the formulations
of the definition of the infinitesimal Lipschitz condition uses the theory of integral closure of
modules, which we now review. This theory will also provide the tools for working with the
condition.

Definition 2.1. Suppose (X,x) is the germ of a complex analytic space, M a submodule ofOpX,x.

Then h ∈ OpX,x is in the integral closure of M , denoted M , if for all analytic φ : (C, 0)→ (X,x),

h ◦ φ ∈ (φ∗M)O1. If M is a submodule of N and M = N we say that M is a reduction of N .

To check the definition it suffices to check along a finite number of curves whose generic point
is in the Zariski open subset of X along which M has maximal rank. (Cf. [3].)

If a module M has finite colength in OpX,x, it is possible to attach a number to the module, its

Buchsbaum-Rim multiplicity, e(M,OpX,x). We can also define the multiplicity e(M,N) of a pair
of modules M ⊂ N , M of finite colength in N , as well, even if N does not have finite colength
in OpX .

We recall how to construct the multiplicity of a pair of modules using the approach of Kleiman
and Thorup [9]. Given a submodule M of a free OXd module F of rank p, we can associate a
subalgebra R(M) of the symmetric OXd algebra on p generators. This is known as the Rees
algebra of M . If (m1, · · · ,mp) is an element of M then

∑
miTi is the corresponding element

of R(M). Then Projan(R(M)), the projective analytic spectrum of R(M) is the closure of
the projectivised row spaces of M at points where the rank of a matrix of generators of M is
maximal. Denote the projection to Xd by c. If M is a submodule of N or h is a section of
N , then h and M generate ideals on ProjanR(N); denote them by ρ(h) and ρ(M). If we can
express h in terms of a set of generators {ni} of N as

∑
gini, then in the chart in which T1 6= 0,

we can express a generator of ρ(h) by
∑
giTi/T1. Having defined the ideal sheaf ρ(M), we blow

it up.
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On the blow up Bρ(M)(ProjanR(N)) we have two tautological bundles. One is the pullback
of the bundle on ProjanR(N). The other comes from ProjanR(M). Denote the corresponding
Chern classes by cM and cN , and denote the exceptional divisor by DM,N . Suppose the generic
rank of N (and hence of M) is g.

Then the multiplicity of a pair of modules M,N is:

e(M,N) =

d+g−2∑
j=0

∫
DM,N · cd+g−2−j

M · cjN .

Kleiman and Thorup show that this multiplicity is well defined at x ∈ X as long as M = N
on a deleted neighborhood of x. This condition implies that DM,N lies in the fiber over x,
hence is compact. Notice that when N = F and M has finite colength in F then e(M,N) is
the Buchsbaum-Rim multiplicity e(M,OpX,x). There is a fundamental result due to Kleiman

and Thorup, the principle of additivity [9], which states that given a sequence of OX,x-modules
M ⊂ N ⊂ P such that the multiplicity of the pairs is well defined, then

e(M,P ) = e(M,N) + e(N,P ).

Also if M = N then e(M,N) = 0 and the converse also holds if X is equidimensional. Combining
these two results we get thet if M = N then e(M,N) = e(N,P ). These results will be used in
Section 5.

In studying the geometry of singular spaces, it is natural to study pairs of modules. In dealing
with non-isolated singularities, the modules that describe the geometry have non-finite colength,
so their multiplicity is not defined. Instead, it is possible to define a decreasing sequence of mod-
ules, each with finite colength inside its predecessor, when restricted to a suitable complementary
plane. Each pair controls the geometry in a particular codimension.

We also need the notion of the polar varieties of M . The polar variety of codimension k of
M in X, denoted Γk(M), is constructed by intersecting ProjanR(M) with X ×Hg+k−1 where
Hg+k−1 is a general plane of codimension g + k − 1, then projecting to X.

Setup: We suppose we have families of modules M ⊂ N , M and N submodules of a free
module F of rank p on an equidimensional family of spaces with equidimensional fibers X d+k,
X a family over a smooth base Y k. We assume that the generic rank of M , N is g ≤ p. Let
P (M) denote ProjanR(M), πM the projection to X .

We will be interested in computing, as we move from the special point 0 to a generic point,
the change in the multiplicity of the pair (M,N), denoted ∆(e(M,N)). We will assume that the
integral closures of M and N agree off a set C of dimension k which is finite over Y , and assume
we are working on a sufficiently small neighborhood of the origin, so that every component of
C contains the origin in its closure. Then e(M,N, y) is the sum of the multiplicities of the pair
at all points in the fiber of C over y, and ∆(e(M,N)) is the change in this number from 0 to a
generic value of y. If we have a set S which is finite over Y , then we can project S to Y , and the
degree of the branched cover at 0 is multyS. (Of course, this is just the number of points in the
fiber of S over our generic y.)

Let C(M) denote the locus of points where M is not free, i.e., the points where the rank of
M is less than g, C(ProjanR(M)) its inverse image under πM .

We can now state the Multiplicity Polar Theorem. The proof in the ideal case appears in [5];
the general proof appears in [6].

Theorem 2.2. (Multiplicity Polar Theorem) Suppose in the above setup we have that M = N
off a set C of dimension k which is finite over Y . Suppose further that

C(ProjanR(M))(0) = C(ProjanR(M(0))),
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except possibly at the points which project to 0 ∈ X (0).
Then, for y a generic point of Y ,

∆(e(M,N)) = multyΓd(M)−multyΓd(N),

where C(ProjanR(M))(0) is the fiber of C(ProjanR(M)) over 0, X (0) is the fiber over 0 of the
family X d+k, and M(0) is the restriction of the module M to X (0).

3. The Lipschitz saturation of an ideal and the definition of the iL conditions

The construction of the integral closure of an ideal is an example of a general approach to
constructing closure operations on sheaves of ideals and modules given a closure operation on a
sheaf of rings. Here is the idea. Denote the closure operation on the ring R by C(R). Given
a ring, R, blow-up R by an ideal I. (If we have a module M which is a submodule of a free
module F , form the blow-up Bρ(M)(ProjanR(F )), as in the last section.) Use the projection
map of the blow-up to the base to pullback I to the blow-up. Now apply the closure operation
to the structure sheaf of the blow-up, and look at the sheaf of ideals generated by the pull back
of I. The elements of the structure sheaf on the base which pull back to elements of the ideal
sheaf are the elements of C(I).

Two examples of this are given by the normalization of a ring and the semi-normalization of
a ring. (In the normalization, all of the bounded meromorphic functions become regular, while
in the semi-normalization only those which are continuous become regular. Cf [8] for details on
this construction.) Consider BI(X), the blow-up of X by I. If we pass to the normalization of
the blow-up, then h is in Ī iff and only if the pull back of h to the normalization is in the ideal
generated by the pullback of I [11]. If we pass to the semi-normalization of the blow-up, then h
is in the weak sub-integral closure of I denoted ∗I, iff the pullback of h to the semi-normalization
is in the ideal generated by the pullback of I. (For a proof of this and more details on the weak
subintegral closure cf. [8]).

There is another way to look at the closure operation defined above; in the case of the
integral closure of an ideal, we are looking at an open cover of the co-support of an ideal sheaf,
and choosing locally bounded meromorphic functions on each open set, and seeing if we can
write a regular function locally in terms of generators of the ideal using our locally bounded
meromorphic functions as coefficients. This suggests, that in the Lipschitz case, we use locally
bounded meromorphic functions which satisfy a Lipschitz condition. The closure operation on
rings that this indicates is the Lipschitz saturation of a space, as developed by Pham-Teissier
([15]).

In the approach of Pham-Teissier, let A be a commutative local ring over C, and Ā its
normalization. (We can assume A is the local ring of an analytic space X at the origin in Cn.)
Let I be the kernel of the inclusion Ā⊗C Ā→ Ā⊗A Ā.

In this construction, the tensor product is the analytic tensor product which has the right
universal property for the category of analytic algebras, and which gives the analytic algebra for
the analytic fiber product.

Pham and Teissier then defined the Lipschitz saturation of A, denoted Ã, to consist of all
elements h ∈ Ā such that h ⊗ 1 − 1 ⊗ h ∈ Ā ⊗C Ā is in the integral closure of I. (For related
results see [12].)

The connection between this notion and that of Lipschitz functions is as follows. If we pick
generators (z1, . . . , zn) of the maximal ideal of the local ring A, then zi ⊗ 1 − 1 ⊗ zi ∈ Ā ⊗C Ā
give a set of generators of I. Choosing zi so that they are the restriction of coordinates on the
ambient space, the integral closure condition is equivalent to

|h(z1, . . . , zn)− h(z′1, . . . , z
′
n)| ≤ C sup

i
|zi − z′i|
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holding on some neighborhood U , of (0, 0) on X ×X. This last inequality is what is meant by
the meromorphic function h being Lipschitz at the origin on X. (Note that the integral closure
condition is equivalent to the inequality holding on a neighborhood U for some C for any set of
generators of the maximal ideal of the local ring A. The constant C and the neighborhood U
will depend on the choice.)

If X,x is normal, then passing to the Lipschitz saturation doesn’t add any functions. Denote
the saturation of the blow-up by SBI(X), and the map to X by πS . Then we make the definition:

Definition 3.1. let I be an ideal in OX,x, then the Lipschitz saturation of the ideal I, denoted
IS , is the ideal IS = {h ∈ OX,x|π∗S(h) ∈ π∗S(I)}.

Since the normalization of a local ring A contains the seminormalization of A, and the semino-
malization contains the Lipschitz saturation of A, it follows that Ī ⊃ ∗I ⊃ IS ⊃ I. In particular,
if I is integrally closed, all three sets are the same.

Here is a viewpoint on the Lipschitz saturation of an ideal I, which will be useful later.
Given an ideal, I, and an element h that we want to check for inclusion in IS , we can consider
(BI(X), π), π∗(I) and h ◦ π. Since π∗(I) is locally principal, working at a point z on the
exceptional divisor E, we have a local generator f ◦ π of π∗(I). Consider the quotient (h/f) ◦ π.
Then h ∈ IS if and only if at the generic point of any component of E, (h/f)◦π is Lipshitz with
respect to a system of local coordinates. If this holds we say h ◦ π ∈ (π∗(I))S .

We can also work on the normalized blow-up, (NBI(X), πN ). Then we say h◦πN ∈ (π∗N (I))S if
(h/f)◦πN satisfies a Lipschitz condition at the generic point of each component of the exceptional
divisor of (NBI(X), πN ) with respect to the pullback to (NBI(X), πN ) of a system of local
coordinates on BI(X) at the corresponding points of BI(X). As usual, the inequalities at the
level of NBI(X) can be pushed down and are equivalent to inequalities on a suitable collection
of open sets on X.

This definition can be given an equivalent statement using the theory of integral closure of
modules. Since Lipschitz conditions depend on controlling functions at two different points as
the points come together, we should look for a sheaf defined on X ×X. We describe a way of
moving from a sheaf of ideals on X to a sheaf on X ×X. Let h ∈ OX,x; define hD in O2

X×X,x,x,

as (h ◦ π1, h ◦ π2), πi the projection to the i-th factor of the product. Let I be an ideal in OX,x;
then ID is the submodule of O2

X×X,x,x generated by the hD where h is an element of I.

If I is an ideal sheaf on a space X then intuitively, h ∈ Ī if h tends to zero as fast as the
elements of I do as you approach a zero of I. If hD is in ID then the element defined by
(1,−1) · (h ◦ π1, h ◦ π2) = h ◦ π1 − h ◦ π2 should be in the integral closure of the ideal generated
by applying (1,−1) to the generators of ID, namely the ideal generated by g ◦ π1− g ◦ π2, g any
element of I. This implies the difference of h at two points goes to zero as fast as the difference
of elements of I at the two points go to zero as the points approach each other. It is reasonable
that elements in IS should have this property. In fact we have:

Theorem 3.2. Suppose (X,x) is a complex analytic set germ, I ⊂ OX,x. Then h ∈ IS if and

only if hD ∈ ID.

Proof. This is theorem 2.3 of [7], and is proved there under the additional assumption that h ∈ Ī.
However, as we have noted if h ∈ IS , then h ∈ Ī. If hD ∈ ID, it follows that (1, 0) · hD is in the
integral closure of π∗1(I) on X ×X, which clearly implies h ∈ Ī. �

Here is an example showing the difference between the integral closure of the Jacobian ideal
and its saturation. Consider f(x, y) = x2 + yp, p > 3 odd. Denote the plane curve defined by f
by X. Then X has a normalization given by φ = (tp, t2). The elements in the integral closure
of the Jacobian ideal are just those ring elements h such that h ◦ φ ∈ φ∗(J(f)) = (tp). Now
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yq ◦ φ = t2q, so yq ∈ J(f) for q > p/2. Denote a matrix of generators for J(f)D by [J(f)D].
Consider the curve mapping into X ×X given by Φ(t) = (tp, t2, tp, ct2), where c is a p-th root
of unity different from 1. Now consider the ideal generated by the entries of the vector

< 1,−1 > [J(f)D] ◦ Φ(t).

This ideal is generated by (yp−1 − y′p−1, (x, x′, yp−1, y′p−1)(y − y′)) ◦ Φ(t) = (tp+2). Meanwhile
the order in t of < 1,−1 > (yq, y′q) ◦Φ(t) = 2q. If p < 2q < p+ 2 ie. q = (p+ 1)/2, then (yq, y′q)

cannot be in J(f)D, hence yq /∈ J(f)S but yq is in J(f).
Because we have re-cast the Lipschitz saturation of an ideal in integral closure terms, the

invariants associated with integral closure become available to describe/control the Lipschitz
saturation of an ideal. Notice first that the multiplicity of an ideal doesn’t help, because the
multiplicity of IS is same as the multiplicity of I since they have the same integral closure.

Even if X is an isolated hypersurface singularity, J(f)D will not have finite colength, even
in the plane curve case. The co-support will be X × 0 ∪ 0 ×X ∪∆X in X ×X. However the
multiplicity of the pair offers a way around this. The module J(f)D has a simple description,
as we will see, off the origin in each of these three sets, and any integral closure condition we
wish to use is easily checked because of this structure. This suggests looking for the largest
module whose integral closure agrees with J(f)D off the origin, and using the multiplicity of the
pair as our invariant. In the notation of [4], this module is denoted H2n−3(J(f)D). This is the
integral hull of J(f)D of codimension 2n − 3, which means the integral closure of J(f)D and
H2n−3(J(f)D) agree off a set of codimension 2n − 2, ie. off (0, 0) in Xn−1 ×Xn−1 . The next
lemma identifies H2n−3(J(f)D).

Lemma 3.3. Suppose Xn−1 is an isolated hypersurface singularity, defined by f . Then

H2n−3(J(f)D) = J(f)D.

Proof. We’ll show that the integral closure of J(f)D and J(f)D agree off the origin in X ×X.
Suppose p = (x, x′) /∈ X×0∪0×X∪∆X. Then for some i, j, k, fj(x)(zi−z′i) and fk(x′)(zi−z′i)

are not zero at p. This implies that both modules have rank 2 at p, hence are equal.
Suppose p ∈ ∆X , p 6= (0, 0); then for some i, fi(x) 6= 0. This implies I∆ ⊕ I∆ is in both

modules. Further by adding elements of the form (0, fi(z) − fi(z′)) which are in I∆ ⊕ I∆ to
(fi(z), fi(z

′)), we see both modules contain (1, 1). Since both modules are contained in the
module generated by (1, 1) and I∆ ⊕ I∆, and this module is integrally closed, the result is
checked on ∆X − (0, 0).

Suppose p = (x, 0), 6= 0. Since x 6= 0, J(f)D contains (1, 0) and (0, J(f)).Thus

J(f)D = OX,x ⊕ J(f) = J(f)D.

�

The lemma suggests that it is interesting to consider the multiplicity of the pair J(f)D, J(f)D,
and we will use this invariant in the last section in the study of hyperplane sections of X. For
now we remark as a corollary of the proof of the lemma, we have for any I an ideal of finite
colength in any OdX , that H2d−1(I) = (I)D. As a corollary we have:

Corollary 3.4. Suppose I ⊂ J ⊂ I are ideals in OX,x, with X,x equidimensional, then

e(ID, ID) = e(JD, ID) if and only if ID = JD.

Proof. From the additivity of multiplicity of pairs [9] it follows that e(ID, JD) = 0 which is
equivalent to their integral closures being the same. �

Corollary 3.5. Suppose I ⊂ J ⊂ I are ideals in OX,x, with X,x equidimensional, then

e(ID, ID) = e(JD, ID) if and only if IS = JS.
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Proof. This follows from the connection between the Lipschitz saturation of an ideal and integral
closure. �

Now we add the necessary structure to deal with families of spaces.
Just as Pham-Teissier extended their original definition to a family of spaces, we can do the

same. Suppose Xd+k, 0 is an analytic space containing a smooth subset Y k, 0, and (Xd+k, p) is
a family of spaces over Y , X, Y embedded in Cn+k, 0, so that p is the projection on the last k
factors of Cn+k, 0, where Y k = 0× Ck.

Then, in the definition of the Lipschitz saturation rel Y of the local ring of Xd+k, 0, we use a
set of local coordinates on the ambient space which restrict to generators of the maximal ideals
of the fibers of X over Y . This amounts to looking at the fiber product of the normalization
of X with itself over Y , and asking that locally h ◦ p1 − h ◦ p2 is in the integral closure of the
double of the ideal generated by these coordinates.

Given an ideal sheaf I on Xd+k, 0, using the relative saturation, we can define the Lipschitz
saturation of I relative to Y . When we are working in the context of a family of spaces we will
also use IS to denote this saturation. In a similar way, we can develop an equivalent integral
closure condition using modules as before, just working on X ×Y X instead of X ×X.

In practice we will be working with ideal sheaves on a family of spaces, where the ideals
vanish on Y , and our local coordinates at points of BI(X

n+k) consist of the pullbacks of a set
of generators of mY and local coordinates on the projective space(s) in the blow-up.

It is not difficult to check that Theorem 2.3 of [7] continues to hold in this new context.
Having constructed the necessary infinitesimal objects we now develop our condition.

Setup Let Xn+k, 0 ⊂ Cn+1+k, 0 be a hypersurface, containing a smooth subset Y embedded in
Cn+1+k as 0×Ck, with pY the projection to Y . Assume Y = S(X), the singular set ofX. Suppose
F is the defining equation of X, (z, y) coordinates on Cn+1+k. Denote by fy(z) = F (z, y) the
family of functions of defined by F , and by Xy, f−1

y (0). Assume fy has an isolated singularity at
the origin. Let mY denote the ideal defining Y , and J(F )Y , the ideal generated by the partial
derivatives with respect to the y coordinates, Jz(F ), those with respect to the z coordinates.

Definition 3.6. The pair (X,Y ) satisfy the iLmY
condition at the origin if either of the two

equivalent conditions hold:
1) J(F )Y ⊂ (mY Jz(F ))S
2) (J(F )Y )D ⊂ (mY Jz(F ))D.

An analogous condition for iLmY
is J(F )Y ⊂ mY Jz(F ). This is the equivalent to the Verdier’s

condition W or the Whitney conditions.
Next we give the definition of iLA.

Definition 3.7. The pair (X,Y ) satisfy the iLA, at the origin if either of the two equivalent
conditions hold:

1) J(F )Y ⊂ (Jz(F ))S
2) (J(F )Y )D ⊂ Jz(F ))D.

The analogous condition is J(F )Y ⊂ Jz(F ). If one works on the ambient space, then this
is equivalent to the AF condition. Working on X, it is equivalent to asking that the X has
no vertical tangent plane at the origin, so this is weaker than Whitney A. However, suppose
l is a linear form on the ambient space. Let J(F )l denote the ideal generated by applying
tangent vectors in the kernel of l to F . So Jz(F ) = J(F )y in the case dim Y = 1. Working
in the one dimensional parameter case, if there exist a pencil of forms ls including y such that
J(F ) ⊂ J(F )ls then not only does Whitney A hold but the total space has no relative polar
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curve. This follows because if the dimension of the fiber of the limiting tangent hyperplanes over
the origin is not maximal then the fiber over the origin must be in the closure of the fiber over
the parameter space with y 6= 0, and all of these hyperplanes contain Y . Because the dimension
of the fiber over the origin is less than maximal this also implies the polar curve is empty. The
condition with the pencil of forms ensures that no hyperplane defined by an element of the pencil
can be a limiting tangent hyperplane, hence the pencil of hyperplanes has no intersection with
the fiber over zero, which must therefore have less than maximal dimension.

Since there are different ways in which the total space Xn+k can be made into a family of
spaces, it is natural to ask if the conditions we have defined depend on the projection to Y which
defines the family. We now show that the condition iLmY

does not depend on the projection to
Y .

Proposition 3.8. In the above set-up the following conditions are equivalent:
1) (J(F )Y )D ⊂ (mY Jz(F ))D,

2) (J(F )Y )D ⊂ (mY J(F ))D.

The analogous result for W is quite easy. The Lipschitz case is more technical. We first show:

Lemma 3.9. In the above setup if (J(F )Y )D ⊂ (mY J(F ))D, then J(F )Y ⊂ mY J(F ), hence
condition W holds for the pair (X − Y, Y ) at the origin (and hence on some Z-open subset of Y
containing the origin.)

Proof. We use the curve criterion. We can choose a curve Φ = (φ1, φ2), where φ1 maps C, 0 to 0,
and φ2 is arbitrary. Then the curve criterion for this curve becomes φ∗2(J(F )Y ) ⊂ φ∗2(mY J(F )).
Here an easy argument using Nakayama’s lemma implies that φ∗2(J(F )Y ) ⊂ φ∗2(mY Jz(F )), which
implies the W condition.

�

Now we prove our proposition.

Proof. We use the curve criterion again. Let Φ = (φ1, φ2). It is enough to prove it in the case
where Y is one dimensional, since the notation is the only part of the proof which is harder in
general. It is also clear that 1) implies 2), so we assume 2). By the given we have:(

∂F

∂y

)
D

◦ Φ =
∑

gi,j(t)

(
zi
∂F

∂zj

)
D

◦ Φ +
∑

gi,j,k(t)(zk ◦ φ1 − zk ◦ φ2)

(
0, zi

∂F

∂zj

)
◦ φ2

+
∑

hi(t)

(
zi
∂F

∂y

)
D

◦ Φ.

We now work modm1Φ∗(mY J(F )D) and we call the left side of the above equation ∗. Subtract∑
hi(t)zi ◦ φ1∗ from both sides of the above equation. This sum is in m1Φ∗(mY J(F )D), so we

get:(
∂F

∂y

)
D

◦ Φ =
∑

gi,j(t)

(
zi
∂F

∂zj

)
D

◦ Φ +
∑

gi,j,k(t)(zk ◦ φ1 − zk ◦ φ2)

(
0, zi

∂F

∂zj

)
◦ φ2

+
∑

hi(t)(zi ◦ φ2 − zi ◦ φ1)

(
0,
∂F

∂y
◦ φ2

)
.

Now we use the lemma to write ∂F
∂y ◦ φ2 as an element of φ∗2(mY Jz(F )). Making the substi-

tution into the line above shows that the terms there are 0 mod m1Φ∗(mY J(F )D), hence we
have ∂F

∂y ◦Φ is an element of (mY Jz(F ))D modm1Φ∗(mY J(F )D). Hence by Nakayama’s lemma,

Φ∗mY Jz(F ))D = Φ∗mY J(F ))D and the proposition follows. �



116 TERENCE GAFFNEY

While a similar result for iLA doesn’t make sense, if we ask that (J(F )Y )D is strictly depen-
dent on Jz(F ))D then an analogous result holds. (Recall that an element h ∈ OpX,x is strictly

dependent on M ⊂ OpX,x, if for each curve φ h ◦ φ ∈ m1φ
∗(M). The set of elements strictly

dependent on M are denoted M+.)

We give a geometric interpretation of these conditions at the level of the family Xn+k. We
make some preliminary constructions to do this. Denote the coordinates on Pn by Ti, for
1 ≤ i ≤ n+ 1, let Vi be the subset of Pn defined by Ti 6= 0, and let Ui denote

BJz(F )(X
n+k) ∩ (X × Vi).

At each point of Ui,
∂F
∂zi
◦ π is a local generator of the principal ideal sheaf π∗(Jz(F )). The

condition that ∂F
∂yj

be in the Lipschitz saturation of Jz(F )) means that at each point of Ui,
∂F
∂yj
∂F
∂zi

◦ π is Lipschitz rel Y with respect to the local coordinates, which are zk ◦ π, 1 ≤ k ≤ n+ 1,

and Tj/Ti, 1 ≤ j ≤ n + 1, j 6= i. Since
∂F
∂zj
∂F
∂zi

◦ π =
Tj

Ti
, this implies that

∂F
∂yj
∂F
∂zi

is Lipschitz with

respect to zk, 1 ≤ k ≤ n+ 1, and
∂F
∂zj
∂F
∂zi

, 1 ≤ j ≤ n+ 1, j 6= i on π(Ui).

This implies the existence of k vectorfields tangent to X defined on each π(Ui) of the form

~vj,i =
∂

∂yj
−

∂F
∂yj
∂F
∂zi

∂

∂zi
,

each vectorfield Lipschitz relative to Y ,with respect to zk, 1 ≤ k ≤ n+1, and
∂F
∂zj
∂F
∂zi

, 1 ≤ j ≤ n+1,

j 6= i. Since every element of Jz(X) is in the Lipschitz saturation of Jz(X) it is not true apriori
that these vectorfields are extensions of the constant fields on Y . However, if we assume the AF

condition holds for (X −Y, Y ), then the quotients
∂F
∂yj
∂F
∂zi

◦π will vanish on the exceptional divisor,

and the ~vj,i will be extensions of the constant fields on Y .
There is another useful interpretation which we can make. Recall the following definition of

distance between two linear subspaces A, B at the origin in CN , then

dist (A,B) = sup
u ∈ B⊥ − {0}
v ∈ A− {0}

|(u, v)|
‖u‖ ‖v‖

.

If p, p′ are smooth points in the same fiber y over Y in π(Ui), we claim that the distance
between the tangent spaces to X at p and p′ is commensurate with the maximum of the distance
between the tangent spaces to Xy at p and p′ and the distance between the points.

We first relate the distance defined above to a notion of distance closer to our Lipschitz
condition.

Suppose a = (a0, . . . , an), b = (b0, . . . , bn) define hyperplanes A and B in Cn+1. We will use
the supnorm on Cn+1; suppose ||a|| = ai, and ||b|| = bi, same index for both, for simplicity take
i = 0.

We can then also measure the distance between A and B by using the sup
i,i≤i≤n

||ai/a0− bi/b0||.

The ai/a0 are just the coordinates of the hyperplane A regarded as a point of P̂n. We compare
this notion of distance with the usual one.
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Lemma 3.10. Suppose a = (a0, . . . , an), b = (b0, . . . , bn) define hyperplanes A and B in Cn+1,
||a|| = a0, and ||b|| = b0. Then

dist (A,B) = sup
i,1≤i≤n

||ai/a0 − bi/b0||.

Proof. A basis for the vectors in A are given by a0ei − aie0 where ek is the k-th standard basis

vector in Cn+1. Since we are using the supnorm, the terms |(u,v)|
‖u‖‖v‖ become

|(a0ei − aie0, b̄)|
‖a0‖ ‖b0‖

= ||ai/a0 − bi/b0||.

�

Now we return to our geometric interpretation. Since the ∂F
∂yi

are in the integral closure of

Jz(F ), we may work in a system of neighborhoods Ui on X where we may assume for each p ∈ Ui
the values of the elements of J(F ) are bounded in norm by | ∂F∂zi (p)|. Then, applying the above
lemma, we see that the distance between tangent planes to X at points p1, p2 in the same Ui is
the sup over {∣∣∣∣∣

∣∣∣∣∣
∂F
∂yk

(p1)
∂F
∂zi

(p1)
−

∂F
∂yk

(p2)
∂F
∂zi

(p2)

∣∣∣∣∣
∣∣∣∣∣ ,

∣∣∣∣∣
∣∣∣∣∣
∂F
∂zj

(p1)

∂F
∂zi

(p1)
−

∂F
∂zj

(p2)

∂F
∂zi

(p2)

∣∣∣∣∣
∣∣∣∣∣
}
.

Then condition iLA implies that this is the same as the sup over{∣∣∣∣∣
∣∣∣∣∣
∂F
∂zj

(p1)

∂F
∂zi

(p1)
−

∂F
∂zj

(p2)

∂F
∂zi

(p2)

∣∣∣∣∣
∣∣∣∣∣ , ||p1 − p2||

}
,

which is the same as the maximum of the distance between the tangent spaces to Xy at p1 and
p2 and the distance between the points, p1 and p2.

We can say something similar for the iLW condition. First, since iLW implies iLA, the same
interpretation applies to the iLW condition. But more is true, and we develop some material
related to the Lipschitz saturation of the product of two ideals to explain it.

Lemma 3.11. (Product lemma) Given h,g in OX,x, p1,p2 ∈ X, then

‖(hg)(p1)− (hg)(p2)‖ ≤ ‖h(p1)‖‖g(p1)− g(p2)‖+

‖g(p2)‖‖h(p1)− h(p2)‖.

Proof. We have

‖(hg)(p1)− (hg)(p2)‖ = ‖(hg)(p1)− h(p1)g(p2) + h(p1)g(p2)− (hg)(p2)‖

= ‖h(p1)(g(p1)− g(p2)) + g(p2)(h(p1)− h(p2))‖
≤ ‖h(p1)‖‖g(p1)− g(p2)‖+ ‖g(p2)‖‖h(p1)− h(p2)‖.

�

Note that we can always choose one of the terms, say ‖g(pi)‖, to be the minimum of the
‖g(pi)‖. (You cannot, in general, minimize both h and g terms.)

We apply this lemma to the condition for h ∈ OX,x to be in the Lipschitz saturation of IJ ,
I,J two ideals of OX,x.

Suppose I = (f1, . . . , fp), J = (g1, . . . , gq). Work on the Zariski open subset Um,n of
(BIJ(X), π) in which (fmgn) ◦ π is a local generator of π∗(IJ). Local coordinates are given
by the pullback of coordinates at x, and by Ti,j where (i, j) 6= (m,n), 1 ≤ i ≤ p,1 ≤ j ≤ q, and

where Ti,j =
(figj)◦π
fmgn◦π .
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Note that

Tm,j =
(fmgj) ◦ π
fmgn ◦ π

=
gj ◦ π
gn ◦ π

, while Ti,n =
(fign) ◦ π
fign ◦ π

=
fi ◦ π
fm ◦ π

.

The next lemma shows that among all the Ti,j , on Um,n we need only consider the Tm,j and
Ti,n to define the Lipschitz saturation of IJ . As usual, πN denotes the normalization map, while
p1 and p2 are projection maps from the product of the normalization of BIJ(X) with itself.

Lemma 3.12. Let Um,n be as above, then the ideal generated by

{Tj,n ◦ πN ◦ p1 − Tj,n ◦ πN ◦ p2, Tm,i ◦ πN ◦ p1 − Tm,i ◦ πN ◦ p2},
for 1 ≤ j ≤ p, j 6= m, 1 ≤ i ≤ q, i 6= n, is a reduction of the ideal generated by

{Tj,i ◦ πN ◦ p1 − Tj,i ◦ πN ◦ p2}
at points of π−1

N (Um,n)× π−1
N (Um,n).

Proof. By the product lemma we have

‖ figj
fmgn

◦ π ◦ πN ◦ p1(z′1, z
′
2)− figj

fmgn
◦ π ◦ πN ◦ p2(z′1, z

′
2)‖

≤ ‖ fi ◦ π
fm ◦ π

◦ πN ◦ p1(z′1, z
′
2)‖‖ gj ◦ π

gn ◦ π
◦ πN ◦ p1(z′1, z

′
2)− gj ◦ π

gn ◦ π
◦ πN ◦ p2(z′1, z

′
2)‖

+‖ gj ◦ π
gn ◦ π

◦ πN ◦ p1(z′1, z
′
2)‖‖ fi ◦ π

fm ◦ π
◦ πN ◦ p1(z′1, z

′
2)− fi ◦ π

fn ◦ π
◦ πN ◦ p2(z′1, z

′
2)‖.

Now we can bound the terms ‖ fi◦πfm◦π ◦ πN ◦ p1(z′1, z
′
2)‖ and ‖ gj◦πgn◦π ◦ πN ◦ p1(z′1, z

′
2)‖ locally by

constants because the ideal IJ is principal on Um,n. The result follows from this.
�

We apply the above results to say something about the local vectorfields ~vi,j defined above.

Since ∂F
∂yj
∈ (mY Jz(F )S), we can usefully re-write ~vi,j as

~vi,j,k =
∂

∂yj
−

∂F
∂yj

zk
∂F
∂zi

zk
∂

∂zi
.

Denote the coefficient of ∂
∂zi

in ~vi,j,k by vi,j,k.

Then for pairs of points (t, p1), (t, p2) in π(Ui,k) we have:

‖vi,j,k(t, p1)− vi,j,k(t, p2)‖ ≤

∣∣∣∣∣
∣∣∣∣∣

∂F
∂yj

zk
∂F
∂zi

(t, p1)

∣∣∣∣∣
∣∣∣∣∣ ||zk(p1)− zk(p2)||

+‖zk(p2)‖

∣∣∣∣∣
∣∣∣∣∣

∂F
∂yj

zk
∂F
∂zi

(t, p1)−
∂F
∂yj

zk
∂F
∂zi

(t, p2)

∣∣∣∣∣
∣∣∣∣∣ .

Hence,
‖vi,j,k(t, p1)− vi,j,k(t, p2)‖ ≤ C‖zk(p1)− zk(p2)‖

+‖zk(p1)‖ sup

{∣∣∣∣∣
∣∣∣∣∣
∂F
∂zj
∂F
∂zi

(t, p1)−
∂F
∂zj
∂F
∂zi

(t, p2)

∣∣∣∣∣
∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣ zjzk (p1)− zj

zk
(p2)

∣∣∣∣∣∣∣∣
}
.

Here we may assume that ‖zk(p2)‖ is the smaller of ‖zk(p1)‖, ‖zk(p2)‖. So, if the local fields are
not Lipschitz on Ui,k with respect to the distance between points, then they are Lipschitz with
respect the distance between planes or secant lines to the origin and in this case the Lipschitz
constant goes to zero as one of the points goes to the origin.
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4. Genericity Theorem

Although at present we can’t give a complete proof that the iLmY
condition is generic, we can

do both conditions at once in some of the cases. We first determine the different cases in which
it is necessary to check the conditions. These cases are the different ways in which Jz(F )D can
fail to have maximal rank.

Proposition 4.1. The co-supports of (mY Jz(F ))D or Jz(F )D on X ×Y X consist of
1) Y × (0, 0),
2) ∆(X ×Y X), and
3) (0×Y X) ∪ (X ×Y 0).

Proof. Suppose (x, x′) does not lie in one of the sets. Then, since some zi ◦ p1 and some zj ◦ p2

are not zero at (x, x′), (mY Jz(F ))D = Jz(F )D locally. Then Jz(F )D contains terms of the form
(0, ∂F∂zj ◦ p2), ( ∂F∂zj ◦ p1, 0), which implies that the rank of (mY Jz(F ))D is 2 and (x, x′) are not in

the cossupport.
�

The reader may have noted that Y × (0, 0) is a subset of both ∆(X ×Y X) and

(0×Y X) ∪ (X ×Y 0).

We will next show that generically both conditions hold at points of ∆(X ×Y X) − Y × (0, 0),
and of (0×Y X)∪ (X ×Y 0)−Y × (0, 0). Since we are working on a Z-open set of Y , and we are
working with families of isolated singularities, we may assume that the only singular point of
Xy is at (y, 0), that (X − Y, Y ) satisfies W at (y, 0). We will show that checking the conditions
at points of the form (y, 0, x), x 6= 0 amounts to checking W at (y, 0) for (X − Y, Y ) , while
checking the conditions at points of ∆(X ×Y X), x 6= 0 is trivial. Thus it will suffice to look at
components of the appropriate exceptional divisor that surject onto Y × (0, 0).

Proposition 4.2. In the set-up of this section, iLA and iLmY
hold at all points of

∆(X ×Y X)− Y × (0, 0),

and both conditions hold at all points of (0×Y X) ∪ (X ×Y 0)− Y × (0, 0) such that (X − Y, Y )
satisfies W at (y, 0).

Proof. Work at (y, x, x), x 6= 0. Then since x 6= 0, (mY Jz(F ))D = Jz(F )D locally. Since fy is

a submersion at x, and Jz(F )D contains elements of the form (0, (zi ◦ p1 − zi ◦ p2)( ∂F∂zj ◦ p2)),

((zi◦p1−zi◦p2)( ∂F∂zj ◦p1), 0), it follows that Jz(F )D contains I∆O2
X×YX,(x,x). By adding elements

of the form (0, ∂F∂y ◦p1− ∂F
∂y ◦p2) to (∂F∂y ◦p1,

∂F
∂y ◦p2) and elements of the form (0, ∂F∂zj ◦p1− ∂F

∂zj
◦p2)

to ( ∂F∂zj ◦ p1,
∂F
∂zj
◦ p2), this part of the proof is finished since ∂F

∂y is in the ideal Jz(F ) at x since

fy is a submersion.
Now work at (x, 0), x 6= 0. Since fy is a submersion at x, and x 6= 0 it follows that (mY Jz(F ))D

contains elements of the form (1, 0), so it suffices to show that ∂F
∂y is in the integral closure of

mY Jz(F )) and this is equivalent to W . This ends the second part of the proof.
�

Theorem 4.3. In the set-up of this section, there exists a Zariski open subset of U of Y such
that iLA holds for the pair (X − Y,U ∩ Y ) along Y .

Proof. We will follow the lines of the proof of the Idealistic Bertini Theorem given in [16] p591-
598. We prove that the ilA condition is generic using the module criterion. We will work
on the normalized blow-up of X ×Y X × P1 by the ideal sheaf induced from the submodule
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Jz(F )D, denoting NB(Jz(F ))D (X ×Y X × P1) by N . We need to check that on each component

of the exceptional divisor that the pullback of the element induced from (∂F∂y )D to the normalized

blowup is in the pullback of (Jz(F ))D. Denote the projection to Y by p. By the previous lemmas
we need only consider those components of the exceptional divisor which project to Y under the
map to X×Y X. Since we are working over a Zariski open subset of Y we may assume that every
such component maps surjectively onto Y . Since we are working on the normalization, we can
work at a point q of the exceptional divisor such that E is smooth at q, N is smooth at q and
the projection to Y is a submersion at q. Thus, we can choose coordinates at q, (y′, u′, x′), such

that y′ = y ◦ p, and u′ defines E locally with reduced structure. The key point is that ∂u′

∂y′ = 0.

Let πi denote the composition of π, the projection from N to X×Y X×P1 with the projection
pi to the i-th factor of X ×Y X × P1, i = 1, 2.

We have that F ◦ p1 + sF ◦ p2 is identically zero on X ×Y X × P1. Pull this back to N by π
and take the partial derivative with respect to y′ at q. We get by the chain rule:

0 =
∂F

∂y
◦ π1 + s

∂F

∂y
◦ π2 +

n∑
i=1

∂F

∂zi
◦ π1

∂zi ◦ π1

∂y′
+ s

∂F

∂zi
◦ π2

∂zi ◦ π2

∂y′
.

Notice that there is no term involving the derivative of s. This is because the coefficient of
this partial by the product rule would be zero, since F ◦ πi = 0.

Now we work to re-shape the above term to prove the theorem. Notice that since zi all vanish
along Y , zi ◦ πj all vanish along E at q. We can assume the order of vanishing of z1 ◦ πj is
minimal among {zi ◦ πj}, and that the strict transforms of z1 ◦ πj do not pass through q.

We have:

∂F

∂y
◦ π1 + s

∂F

∂y
◦ π2 = −

(
n∑
i=1

(
∂F

∂zi
◦ π1

)(
∂zi ◦ π1

∂y′

)
+

s

((
∂F

∂zi
◦ π2

)(
∂zi ◦ π1

∂y′

)
−
(
∂F

∂zi
◦ π2

)[
∂zi ◦ π1

∂y′
− ∂zi ◦ π2

∂y′

]))
.

We want to show that the terms on the right hand side in the above expression are in the ideal
generated by the pullback of the ideal sheaf on X×Y X×P1 induced by Jz(F ))D. For this we use
the curve criterion. We use a test curve to show that the order of vanishing of ∂F∂y ◦π1 +s∂F∂y ◦π2

along a component is same as the order of vanishing of the ideal (Jz(F ))D. This will imply that
∂F
∂y ◦ π1 + s∂F∂y ◦ π2 is in the ideal along the component. We can choose a curve Φ̃ such that Φ̃

is the lift of a curve Φ = (ψ, φ1, φ2), Φ : C :→ P1 ×X ×Y X. Further Φ̃(0) is a smooth point of

the component and the ambient space, Φ̃ transverse to the component so that u′ ◦ Φ̃ = t, where
t is a coordinate in the local ring of C at the origin. This implies that if an ideal is generated
by u′p, that the pullback is generated by tp. Since the pullback of the ideal (Jz(F ))D is locally

principal, we can choose Φ̃(0) so that (Jz(F ))D is generated by a power of u′.
Then we have

Φ̃∗
(
∂F

∂y
◦ π1 + s

∂F

∂y
◦ π2

)
=

−

(
n∑
i=1

(
∂F

∂zi
◦ π1 ◦ φ̃1

)(
∂zi ◦ π1

∂y′

)
◦ φ̃1 + ψ2/ψ1

((
∂F

∂zi
◦ π2

)
◦ φ̃2

(
∂zi ◦ π1

∂y′

)
◦ φ̃1

−
(
∂F

∂zi
◦ π2

)
◦ φ̃2

[
∂zi ◦ π1

∂y′
◦ φ̃1 −

∂zi ◦ π2

∂y′
φ̃2

]))
.
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The right hand side will clearly be in the ideal Φ∗(Jz(F ))D), provided the pullback of(
∂F

∂zi
◦ π2

)(
∂zi ◦ π1

∂y′
− ∂zi ◦ π2

∂y′

)
is. However, by construction, since y′ and u′ are independent coordinates, the order of

∂zi ◦ π1

∂y′
− ∂zi ◦ π2

∂y′

in u′ will be the same as the order of zi◦π1−zi◦π2. Hence the pullback of ( ∂F∂zi ◦π2)(∂zi◦π1

∂y′ −
∂zi◦π2

∂y′ )

does vanish to the desired order in t, which finishes the proof. �

We describe an application of this result. Given X an isolated hypersurface singularity we
can consider the sections of X by hyperplanes. It is natural to ask if there is a generic set of
hyperplanes for which the associated family of hyperplane sections satisfies the iLA condition.
We will show this is true after recalling the ideas necessary to make precise statements. (For
more details on this material see [2].) We first need the notion of the Grassman modification of
X, which we describe in the hyperplane case. Let En−1 denote the canonical bundle over Pn−1,
which we view as hyperplanes though the origin in Cn. Denote the projection of En−1 to Cn
by βn−1. If Xn−1 is a subset of Cn, we call X̃ = βn−1

−1(X), the Gn−1 modification of X. In
this paper we will simply refer to the Gn−1 modification as the Grassman modification of Xn−1.
Note that Pn−1 is embedded in En−1 as the zero section of En−1. This means that we can think

of 0×Pn−1 as a stratum of X̃; note that the projection to 0×Pn−1 makes X̃ a family of analytic
sets with 0× Pn−1 as the parameter space which we denote by Y . The members of this family
are just {P ∩X} as P varies through the points of Pn−1.

The set of hyperplanes which are limiting tangent planes to X at the origin form a Zariski

closed set. It is known that on the complement of this set, (X̃ − Y, Y ) are a pair of strata which
satisfy the Whitney conditions. We can now apply Theorem 4.3 to this situation.

Theorem 4.4. Suppose Xn, 0 is the germ of an analytic hypersurface in Cn, then there exists

a Zariski open subset U of Pn−1, such that condition iLA holds for the pair X̃ − U,U along U .

Proof. We can view X̃ locally as a family of hypersurfaces parameterized by Pn−1. The fiber
of the family over the plane P is just the intersection P ∩X. The existence of U follows from
4.3. �

We can use the ideas of [2] to describe these generic hyperplanes. We work in the chart Un
given by planes P with equation zn =

∑
i

aizi. Then we have local coordinates on En−1 given

by (z1, ...zn, a1, ..., an−1). In these coordinates we have

β(z1, ...zn, a1, ..., an−1) = (z1, ...zn,
∑
i

aizi).

If φ : C, 0 → X̃, P × {0}, then β ◦ φ is tangent to P at the origin. If φ : C, 0 → X, 0 is tangent

to P at 0, then φ lifts to X̃, P × {0}, and we say φ is liftable. It follows from [2], that since F

defines X, G := F ◦ β defines X̃. From the chain rule we note that

∂G

∂ai
= zi

∂F

∂zn
◦ β, Jz(G) =

(
∂F

∂zj
◦ β +

∑
i

ai
∂F

∂zn
◦ β

)
,

for 1 ≤ j ≤ n− 1.
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Corollary 4.5. Suppose Xn, 0 is the germ of an analytic hypersurface in Cn, then, for P ∈ Un,
P is a point in the Z-open set of the last theorem, if and only if zi

∂F
∂zn
◦ β ∈ (Jz(G))S for

1 ≤ i ≤ n− 1 at P, 0.

Proof. In the framework of the corollary, the condition of the corollary is exactly the iLA con-
dition. �

The corollary says that to check a plane is generic, it suffices to check that for all curves φi
i = 1, 2 on X, tangent to P at the origin, with lifts φ̃i for φi, and Φ := (φ1, φ2), Φ̃ := (φ̃1, φ̃2),
that (

zi
∂F

∂zn

)
D

◦ Φ ∈

((
∂F

∂zj

)
D

◦ Φ +

(∑
i

ai
∂F

∂zn
◦ β

)
D

◦ Φ̃

)
.

We will give a description using analytic invariants of these generic hyperplanes. For the rest
of this section we will assume that the planes we consider are not limiting tangent hyperplanes
to X, 0. This condition is equivalent to J(F )H = J(F ) in OX,0.

The invariant we will use appeared earlier in section 3. It is the multiplicity of the pair
J(X ∩H)D, J(X ∩H)D, which we denote e(J(X ∩H)D, J(X ∩H)D).

Similar invariants have been used in this setting before. In the case of ICIS singularities, to test
for whether or not a hyperplane is in the generic set of planes for which the hyperplane sections
form a Whitney equisingular family, you use the multiplicity of the pair (JM(X ∩ H),OpX),
which is e(JM(X ∩H)). The plane is generic if this multiplicity is minimal, and the minimal
number is the sum of the Milnor numbers of X ∩H, and X ∩H ∩G, where H and G are generic
hyperplanes.

The proof that the minimal value of e(J(X∩H)D, J(X ∩H)D) again identifies generic hyper-
planes will be done in the context of the multiplicity polar theorem, so we identify the modules
we will use.

We will work in X̃×Pn−1X̃ ⊂ X×Pn−1×X. The moduleN will be (β∗J(F ))D, and the module
M will be Jz(G)D. Notice that M restricted to the fiber of the family over the plane H is just

J(X ∩H)D, while N restricted to H is (J(X)|H)D; because we are assuming H is not a limiting

tangent hyperplane, we have that J(X)|H = J(X ∩H), hence N restricted to H is J(X ∩H)D,

so the multiplicity of the pair M(H), N(H) is the same as e(J(X ∩H)D, J(X ∩H)D). At this
time we do not have a geometric interpretation of this number.

Theorem 4.6. Suppose Xn−1, 0 is an isolated singularity hypersurface and U the set of hyper-
planes which are limiting tangent hyperplanes to X at 0. Then

1) e(J(X ∩H)D, J(X ∩H)D) is upper semicontinuous on U .
2) The iLA condition holds along U at a hyperplane H for which the value of

e(J(X ∩H)D, J(X ∩H)D)

is minimal.

Proof. The condition on U implies that J(X ∩H)D) is the restriction of N to the fiber. Essen-
tially since N is independent of H, N has no polar variety of the same codimension as U . The
multiplicity polar theorem then implies e(J(X ∩H)D, J(X ∩H)D) is upper semicontinuous on
U .

Suppose we are at H which gives the minimal value of the multiplicity. Since the value of the
multiplicity cannot go down, it must be constant, which implies that the polar variety of M of
the same dimension as U must be empty. The emptiness of the polar variety puts restrictions on
the size of the fiber of ProjR(M). Now we know that generically the ∂G

∂ai
are in M ; coupling this



INFINITESIMAL LIPSCHITZ CONDITION 123

with the bound on the dimension of the fiber of ProjR(M), by Theorem A1 of [10], it follows
that the ∂G

∂ai
are in the integral closure of M at H as well, which finishes the proof. �
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AXIUMBILIC SINGULAR POINTS ON SURFACES IMMERSED IN R4 AND

THEIR GENERIC BIFURCATIONS

R. GARCIA, J. SOTOMAYOR, AND F. SPINDOLA

Abstract. Here are described the axiumbilic points that appear in generic one parameter
families of surfaces immersed in R4. At these points the ellipse of curvature of the immersion,

Little [7], Garcia - Sotomayor [11], has equal axes.

A review is made on the basic preliminaries on axial curvature lines and the associated
axiumbilic points which are the singularities of the fields of principal, mean axial lines, axial

crossings and the quartic differential equation defining them.
The Lie-Cartan vector field suspension of the quartic differential equation, giving a line field

tangent to the Lie-Cartan surface (in the projective bundle of the source immersed surface

which quadruply covers a punctured neighborhood of the axiumbilic point) whose integral
curves project regularly on the lines of axial curvature.

In an appropriate Monge chart the configurations of the generic axiumbilic points, denoted

by E3, E4 and E5 in [11] [12], are obtained by studying the integral curves of the Lie-Cartan
vector field.

Elementary bifurcation theory is applied to the study of the transition and elimination

between the axiumbilic generic points. The two generic patterns E1
34 and E1

45 are analysed
and their axial configurations are explained in terms of their qualitative changes (bifurcations)

with one parameter in the space of immersions, focusing on their close analogy with the saddle-

node bifurcation for vector fields in the plane [1], [10].
This work can be regarded as a partial extension to R4 of the umbilic bifurcations in

Garcia - Gutierrez - Sotomayor [5], for surfaces in R3. With less restrictive differentiability

hypotheses and distinct methodology it has points of contact with the results of Gutierrez -
Guiñez - Castañeda [3].

Introduction

In this work are described the axiumbilic singularities, at which the ellipse of curvature, as
defined in Little [7] and Garcia - Sotomayor [11], has equal axes. The focus here are the axiumbilic
points that appear generically in one parameter families of surfaces immersed in R4. It can be
regarded as an extension from R3 to R4, as target spaces for immersed surfaces, and from umbilic
to axiumbilic points as singularities, of results obtained by Gutierrez - Garcia - Sotomayor in [5].
It is also a continuation, in the direction of bifurcations of axiumbilic singularities, of the study
of the structural stability of global axial configurations started in Garcia - Sotomayor [11].

An outline of the organization of this paper follows:
Section 1 deals with geometric preliminaries and a review of axial lines and axiumblic points

in order to define the principal and mean curvature configurations and their quartic differential
equations.
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In Section 2, locally presenting a surface M immersed into R4 with a Monge chart, are studied
the axiumbilic points and the transversality conditions in terms of which are defined the generic
axiumbilic points are made explicit.

Section 3 establishes the axial principal and mean configurations in a neighborhood of generic
axiumbilic points, denoted E3, E4 and E5. This description uses the suspension of Lie-Cartan,
giving rise to a line field tangent to a surface, which quadruply covers a punctured neighborhood
of the axiumbilic point, and whose integral lines project regularly on the lines of axial curvature.
This follows the approach of Garcia and Sotomayor in [11] and [12], chap. 8. After this review
follow two subsections devoted to describe the behaviors of the axial lines near the axiumbilic
points denoted E1

34 and E1
45, which are the transversal transitions between the generic axiumbilic

points.
In fact, the axiumbilic point E1

34 (Figure 7) characterizes the transition between an axiumbilic
point of type E3 and one of type E4, which is explained by the variation of one parameter family
in the space of immersions Cr, r ≥ 5 of a surface M into R4 (Proposition 11), in a first analogy
with the saddle-node bifurcation of vector fields [1], [10].

The axiumbilic point E1
45 (Figure 11) is characterized by the collision and subsequent elimina-

tion between one point of type E4 and other of type E5. Here also, this bifurcation phenomenon
is explained by means of a parameter variation in the space of immersions (Proposition 17), in
a second analogy with the saddle-node bifurcations in the plane [1] [10].

Section 4 establishes the genericity of the axiumbilic bifurcations studied in this paper.
This work is related to the papers by Gúıñez-Gutiérrez [2] and Gúıñez-Gutiérrez-Castañeda

[3] where a description, in class C∞ and in the context of quartic differential forms, of the points
E1

34 and E1
45 (using the notation H34 and H45), can be found.

Here was adopted a different approach, using the Lie-Cartan suspension as established in
Garcia-Sotomayor [11], for immersions of class Cr, 5 ≤ r ≤ ∞. This leads to an interpretation of
these points with less restrictive differentiability hypotheses and allows proofs with techniques
closer to those of elementary bifurcation theory as in [1] and [10].

Section 5 closes the paper with related comments on its results and their connection with
others found in the literature.

Acknowledgment. The authors are grateful to the referee for his/her careful reading and
helpful style suggestions.

1. Differential Equation of Axial Lines

Let α : M −→ R4 be an immersion of class Cr, r ≥ 5, of an oriented smooth surface in R4, with
the canonical orientation. Assume that (x, y) is a positive chart of M and that {αx, αy, N1, N2}
is a smooth positive frame in R4, where for p ∈ M , {αx = ∂α/∂x, αy = ∂α/∂y}p is the the
standard basis of TpM in the chart (x, y) and {N1, N2}p is an orthonormal basis of the normal
plane NpM .

In the chart (x, y), the first fundamental form is expressed by

Iα = 〈Dα,Dα〉 = Edx2 + 2Fdxdy +Gdy2

where, E = 〈αx, αx〉, F = 〈αx, αy〉 and G = 〈αy, αy〉 and the second fundamental form is given
by IIα = II1

αN1 + II2
αN2 where IIiα, i = 1, 2, is

IIiα := 〈D2α,Ni〉 = eidx
2 + 2fidxdy + gidy

2,

with ei = 〈αxx, Ni〉, fi = 〈αxy, Ni〉 and gi = 〈αyy, Ni〉.
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The mean curvature vector is defined by H = h1N1 + h2N2 with

hi =
Egi − 2Ffi +Gei

2(EG− F 2)
.

For v ∈ TpM , the normal curvature vector in the direction v is defined by:

(1) kn = kn(p, v) =
IIα(v)

Iα(v)
=
II1
α(v)

Iα(v)
N1 +

II2
α(v)

Iα(v)
N2.

The image of kn restricted to the unitary circle S1
p of TpM describes in NpM an ellipse

centered in H(p), which is called ellipse of curvature of α at p, and it will be denoted by εα(p).
When (e1− g1)f2− (e2− g2)f1 6= 0, it is an actual non-degenerate ellipse, which can be a circle.
Otherwise it can be a segment or a point. As kn|S1

p
is quadratic, the pre-image of each point of

the ellipse is formed of two antipodal points on S1
p , and therefore each point of εα(p) is associated

to a direction in TpM . Moreover, for each pair of points in εα(p) antipodally symmetric with
respect to H(p), it is associated two orthogonal directions in TpM , defining a pair of lines in
TpM [7], [8], [9].

Consider the function:

‖kn −H‖2 :=

[
e1dx

2 + 2f1dxdy + g1dy
2

Edx2 + 2Fdxdy +Gdy2
− Eg1 − 2Ff1 +Ge1

2(EG− F 2)

]2

+

[
e2dx

2 + 2f2dxdy + g2dy
2

Edx2 + 2Fdxdy +Gdy2
− Eg2 − 2Ff2 +Ge2

2(EG− F 2)

]2

For each p ∈ M in which εα(p) is not a circle, the points maximum and minimum of this
function determine four points over the ellipse of curvature εα(p), which are their vertices, located
at the large and small axes.

Figure 1. Ellipse of curvature εα(p) and lines of axial curvature

As illustrated in Figure 1, to the small axis AB is associated the crossing A′A′′B′B′′ and
to the large axis CD is associated the crossing C ′C ′′D′D′′. Thus, for each p ∈ M at which
the non-degenerate ellipse is not a circle or a point, two crossings are defined in TpM , one
associated to the large axis and the other to the small axis of the ellipse of curvature. These
fields of 2-crossings in M are called fields of axial curvature.

Outside the set Uα of points at which the ellipse of curvature is a circle (i.e. has equal
axes), called axiumbilic points, the lines and crossings are said to be lines and crossings of axial
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curvature. Those related to the large (respectively small) axis of the ellipse of curvature are
called lines and crossings of principal (respectively mean) axial curvature.

From the considerations above, the axial directions are defined by the equationm

Jac(‖kn −H‖2, Iα) = 0

which has four solutions for p /∈ Uα and is singular at p ∈ Uα. According to [11] and [12], the
differential equation of axial lines is given by:

(2) a4dy
4 + a3dy

3dx+ a2dy
2dx2 + a1dydx

3 + a0dx
4 = 0,

where

a4 = −4F (EG− 2F 2)(g2
1 + g2

2) + 4G(EG− 4F 2)(f1g1 + f2g2),

+ 8FG2(f2
1 + f2

2 ) + 4FG2(e1g1 + e2g2)− 4G3(e1f1 + e2f2)

a3 = −4E(EG− 4F 2)(g2
1 + g2

2)− 32EFG(f1g1 + f2g2),

+ 16EG2(f2
1 + f2

2 )− 4G3(e2
1 + e2

2) + 8EG2(e1g1 + e2g2)

a2 = −12FG2(e2
1 + e2

2) + 12E2F (EG− 4F 2)(g2
1 + g2

2),

+ 24EG2(e1f1 + e2f2)− 24E2G(f1g1 + f2g2)

a1 = 4E3(g2
1 + g2

2) + 4G(EG− 4F 2)(e2
1 + e2

2)

+ 32EFG(e1f1 + e2f2)− 16E2G(f2
1 + f2

2 )− 8E2G(e1g1 + e2g2),

a0 = 4F (EG− 2F 2)(e2
1 + e2

2)− 4E(EG− 4F 2)(e1f1 + e2f2)

+ −8E2F (f2
1 + f2

2 )− 4E2F (e1g1 + e2g2) + 4E3(f1g1 + f2g2).

Proposition 1 ([11], [12]). Let α : M −→ R4 be an immersion of class Cr, r ≥ 5, of an oriented
and smooth surface. Denote the first fundamental form of α by

Iα = Edx2 + 2Fdxdy +Gdy2

and the second fundamental form by:

IIα = (e1dx
2 + 2f1dxdy + g1dy

2)N1 + (e2dx
2 + 2f2dxdy + g2dy

2)N2

where {N1, N2} is an orthonormal frame.

i) The differential equation of axial lines is given by:

G = [a0G(EG− 4F 2) + a1F (2F 2 − EG)]dy4

+ [−8a0EFG+ a1E(4F 2 − EG)]dy3dx

+ [−6a0GE
2 + 3a1FE

2]dy2dx2 + a1E
3dydx3 + a0E

3dx4 = 0,

where

a1 = 4G(EG− 4F 2)(e2
1 + e2

2) + 32EFG(e1f1 + e2f2)

+ 4E3(g2
1 + g2

2)− 8E2G(e1g1 + e2g2)− 16E2G(f2
1 + f2

2 )

and

a0 = 4F (EG− 2F 2)(e2
1 + e2

2)− 4E(EG− 4F 2)(e1f1 + e2f2)

+ 4E3(f1g1 + f2g2)− 4E2F (e1g1 + e2g2)− 8E2F (f2
1 + f2

2 ).
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ii) The axiumbilic points of α are characterized by a0 = a1 = 0.

The axiumbilic points are defined by the intersection of the curves a0(x, y) = 0 and a1(x, y) = 0.
Assume, with no lost of generality, that they intersect at (x, y) = (0, 0). In this work it will be
considered the case where the intersection is transversal or quadratic at (0, 0).

Figure 2 illustrates the generic contact of the curves a0(x, y) = 0 and a1(x, y) = 0, whose
intersection characterizes the axiumbilic points.

Figure 2. Transversal and quadratic contact between the curves a0 = 0 and
a1 = 0 at an axiumbilic point p.

An axiumbilic point given by (x, y) = (0, 0) is called transversal if

(3)
∂(a0, a1)

∂(x, y)

∣∣∣∣
(0,0)

=

∣∣∣∣∣ ∂a0
∂x (0, 0) ∂a0

∂y (0, 0)
∂a1
∂x (0, 0) ∂a1

∂y (0, 0)

∣∣∣∣∣ 6= 0.

The axiumbilic point given by (x, y) = (0, 0) is said to be of quadratic type if the matrix

(4)
∂(a0, a1)

∂(x, y)

∣∣∣∣
(0,0)

=

[
∂a0
∂x (0, 0) ∂a0

∂y (0, 0)
∂a1
∂x (0, 0) ∂a1

∂y (0, 0)

]
has rank 1 and, assuming ∂a0

∂y (0, 0) 6= 0, it follows from the implicit function theorem that y(x)

is a local solution of a0(x, y(x)) = 0. Writing s(x) = a1(x, y(x)) it follows that s′(0) = 0 and
s′′(0) 6= 0.

A similar analysis can be carried out if other element of the matrix ∂(a0,a1)
∂(x,y)

∣∣∣∣
(0,0)

is non zero.

Remark 2 ([11]). In isothermic coordinates, where E = G and F = 0, it follows that

a1 = −a3 = E3[e2
1 + e2

2 + g2
1 + g2

2 − 4(f2
1 + f2

2 )− 2(e1g1 + e2g2)]

a0 = a4 = −a2

6
= 4E3[f1g1 + f2g2 − (e1f1 + e2f2)]

and the differential equation of axial lines is simplified to

(5) a0(x, y)(dx4 − 6dx2dy2 + dy4) + a1(x, y)(dx2 − dy2)dxdy = 0.

1.1. Axial configurations of immersed surfaces in R4. Let Ir = Ir(M,R4) the set of
immersions of class Cr. For α ∈ Ir, the differential equation of axial lines is well defined
(equation (2)):

(6) G(x, y, dx, dy) = a4dy
4 + a3dy

3dx+ a2dy
2dx2 + a1dydx

3 + a0dx
4 = 0

in the projective bundle PM of M .
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For each α ∈ Ir, define the Lie-Cartan surface of the immersion α by Lα := G−1
α (0), which

is of class Cr−2, regular in M − Uα and may present singularities at Uα.
Moreover, as the set defined by the quartic equation (6) contains the projective lines at Uα,

it follows that Lα is a ramified covering of degree 4 in M − Uα and contains the projective line
π−1(p) for each p ∈ Uα.

In the chart (x, y, p) of PM , with p = dy
dx , equation (6) is given by

(7) G(x, y, p) = a4p
4 + a3p

3 + a2p
2 + a1p+ a0 = 0.

Consider the Lie-Cartan vector field Xα, of class Cr−3, tangent to the surface G = 0

(8) Xα := Gp
∂

∂x
+ pGp

∂

∂y
− (Gx + pGy)

∂

∂p
.

The axial curvature lines are the projections by π : PM −→ M restricted to Lα, of the
integral curves of Xα.

See illustration in Figure 3. For each p ∈ M − Uα there are 4 well defined axial directions,
given the four roots of equation (7).

Two axial configurations are given: the principal axial configuration Pα = {Uα,Xα} defined by
the axiumbilic points Uα and by the net Xα (related to the crossing of principal axial curvature),
in M − Uα and the mean axial configuration Qα = {Uα,Yα}, defined by the axiumbilic points
Uα and the net Yα (related to the crossing of mean axial curvature), in M − Uα.

Figure 3. Projection on M of the integral curves of the Lie-Cartan vector field
tangent to Lα in a neighborhood of p ∈M −Uα. For each point in M pass four
lines, associated, in pairs, to the axis of the ellipse.

2. Differential Equation of Axial Lines in a Monge Chart

The surface M will be locally parametrized by a Monge chart near an axiumbilic point p as
follows

z = R(x, y), and w = S(x, y),

where

(9)
R(x, y) =

r20

2
x2 + r11xy +

r02

2
y2 +

r30

6
x3 +

r21

2
x2y +

r12

2
xy2 +

r03

6
y3

+
r40

24
x4 +

r31

6
x3y +

r22

4
x2y2 +

r13

6
xy3 +

r04

24
y4 + h.o.t.,

(10)
S(x, y) =

s20

2
x2 + s11xy +

s02

2
y2 +

s30

6
x3 +

s21

2
x2y +

s12

2
xy2 +

s03

6
y3

+
s40

24
x4 +

s31

6
x3y +

s22

4
x2y2 +

s13

6
xy3 +

s04

24
y4 + h.o.t.
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At the point (x, y,R(x, y), S(x, y)), the tangent plane to the surface is generated by {t1, t2},
where t1 = (1, 0, Rx, Sx) and t2 = (0, 1, Ry, Sy). The normal plane is generated by {N1, N2},
where N1 = Ñ1

|Ñ1|
and N2 = Ñ2

|Ñ2|
are defined by Ñ1 = (−Rx,−Ry, 1, 0) and Ñ2 = t1 ∧ t2 ∧ Ñ1.

Here ∧ is the exterior or wedge product v1 ∧ v2 ∧ v3 of three vectors v1, v2, v3 in R4 is defined
by equation det(v1, v2, v3, v) = 〈v1 ∧ v2 ∧ v3, v〉 for all v ∈ R4.

Therefore it follows that:

det(t1, t2, Ñ1, •) = 〈Ñ2, •〉.
From the expressions of R and S given by equations (9) and (10), it follows that:

E = 1 +O(2), F = O(2), G = 1 +O(2),

and
e1 = r20 + r30x+ r21y +O(2), e2 = s20 + s30x+ s21y +O(2),
f1 = r11 + r21x+ r12y +O(2), f2 = s11 + s21x+ s12y +O(2),
g1 = r02 + r12x+ r03y +O(2), g2 = s02 + s12x+ s03y +O(2).

The axiumbilic points are defined by a0(x, y) = 0 and a1(x, y) = 0. So, in a neighborhood of
(0, 0), it follows that

(11) a0(x, y) = a0
00 + a0

10x+ a0
01y +O(2)

and

(12) a1(x, y) = a1
00 + a1

10x+ a1
01y +O(2),

where

a0
00 = r11(r02 − r20) + s11(s02 − s20),

a0
10 = r21(r02 − r20) + r11(r12 − r30) + s11(s12 − s30) + s21(s02 − s20),

a0
01 = r12(r02 − r20) + r11(r03 − r21) + s11(s03 − s21) + s12(s02 − s20)

and

a100 = (r02 − r20)2 + (s02 − s20)2 − 4(r211 + s211),

a110 = 2(r12 − r30)(r02 − r20) + 2(s12 − s30)(s02 − s20)− 8(r21r11 + s21s11),

a101 = 2(r03 − r21)(r02 − r20) + 2(s03 − s21)(s02 − s20)− 8(r12r11 + s12s11).

Therefore a point p, expressed in a Monge chart by (0, 0), is an axiumbilic point when the
following relations hold.

(13)

{
a0

00 = r11(r02 − r20) + s11(s02 − s20) = 0,
a1

00 = (r02 − r20)2 + (s02 − s20)2 − 4(r2
11 + s2

11) = 0.

Algebraic manipulations of the equations above, see [2], show that (0, 0) is an axiumbilic point
when the following equations hold

(14)

{
2r11 = (s02 − s20),
2s11 = −(r02 − r20, )

or

{
2r11 = −(s02 − s20),
2s11 = (r02 − r20).

Remark 3. Let r02 = r20 + r and s02 = s20 + s, ρ2 = r2
11 + s2

11. Then condition for (0, 0) to be
an axiumbilic point, see equation (13), is given by

(15)

{
r11 · r + s11 · s = 0,
r2 + s2 = 4ρ2.



AXIUMBILIC SINGULAR POINTS ON SURFACES IMMERSED IN R4 131

These condition for being an axiumbilic point can be interpreted as the intersection of a circle
and a straight line in the plane (r, s). The intersections are given by

(16)

{
r11 = s

2 ,
s11 = − r2 ,

or

{
r11 = − s2 ,
s11 = r

2 ,

and therefore equation (16) is another form of equation (14).
Let

α1 =s12 − s30 + 2r21, α2 = r30 − r12 + 2s21,

α3 =s03 − s21 + 2r12, α4 = r21 − r03 + 2s12.

The discussion above is synthesized in the following lemma.

Lemma 4. Let p be an axiumbilic point with coordinates (0, 0) in a Monge chart. The differential
equation of axial lines in a neighborhood of (0, 0) is given by

(17) ã0(x, y)(dx4 − 6dx2dy2 + dy4) + ã1(x, y)(dx2 − dy2)dxdy +H(x, y, dx, dy) = 0,

where

(18)
ã0(x, y) =

1

2
(rα1 + sα2)x+

1

2
(rα3 + sα4)y + a0

20x
2 + a0

11xy + a0
02y

2,

ã1(x, y) =2(sα1 − rα2)x+ 2(sα3 − rα4)y + a1
20x

2 + a1
11xy + a1

02y
2

and H contains terms of order greater than or equal to 3 in (x, y).

With the notation in equation (17), the condition of transversality between the curves a0 = 0
and a1 = 0 is given by ∣∣∣∣ a0

10 a0
01

a1
10 a1

01

∣∣∣∣ 6= 0.

The determinant above has the following expression:

[α2α3 − α1α4] · (r2 + s2),

where r = r02−r20 and s = s02−s20. If (r2+s2) is zero, it follows that a0
10 = a0

01 = a1
10 = a1

01 = 0,
and therefore the matrix [

a0
10 a0

01

a1
10 a1

01

]
is identically zero. Thus the axiumbilic points with r = s = 0 form a set of codimension at least
four.

Therefore, the condition of transversality, supposing r2 + s2 6= 0, is given by:

(19) T := α2α3 − α1α4 6= 0.

Long, but straightforward calculations show that condition (19) is invariant by positive rota-
tions in the tangent and in the normal planes.

Lemma 5. Consider the quartic differential equation

(a10x+ a01y)(dx4 − 6dx2dy2 + dy4) + (b10x+ b01y)dxdy(dx2 − dy2) = 0.

Consider a rotation x = cos θu+sin θv, y = − sin θu+cos θv, where θ is a real root of the system
of equations

−a01t5 + (a10 − b01)t4 + (6a01 + b10)t3 + (b01 − 6a10)t2 − (a01 + b10)t+ a10 = 0, t = tan θ.

Then it follows that

ā01v(du4 − 6du2dv2 + dv4) + ( ¯b10u+ ¯b01v)dudv(du2 − dv2) = 0,where
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ā01 =(t2 + 1)[a01(t4 − 6t2 + 1) + b01t(t
2 − 1)t]

¯b10 =− 16t(t2 − 1)(a10 − a01t) + (t4 − 6t2 + 1)(b10 − b01t)

¯b01 =− 16(t2 − 1)(ta10 + a01) + (t4 − 6t2 + 1)(b10t+ b01)

Proof. The result follows from straightforward calculations. Observe that when a01 = 0 a
rotation of angle π/2 is sufficient to obtain the result stated. �

Proposition 6. Let p be an axiumbilic point. Then there exists a Monge chart and a homothety
in R4 such that the differential equation of axial lines is given by

(20) y(dy4 − 6dx2dy2 + dx4) + (ax+ by)dxdy(dx2 − dy2) +H(x, y, dx, dy) = 0

where H contains terms of order greater than or equal to 2 in (x, y). Moreover, the axiumbilic
point p is transversal if and only if a 6= 0.

Proof. Consider a parametrization X(x, y) = (x, y,R(x, y), S(x, y)) given by equations (9) and
(10) such that 0 is an axiumbilic point. By equation (18) it follows that:

a0(x, y) =
1

2
(rα1 + sα2)x+

1

2
(rα3 + sα4)y +O(2),

a1(x, y) =2(sα1 − rα2)x+ 2(sα3 − rα4)y +O(2).

By an appropriate choice of the rotation in the plane {x, y} given by Lemma 5 and a homothety
in R4, it is possible to make 2a10 = rα1 + sα2 = 0 and, when (α1α4 − α2α3)(r2 + s2) 6= 0, also

a01 = 1
2 (rα3 + sα4) = 1. So the result is established, a = 4(sα1−rα2)

rα3+sα4
when rα1 + sα2 = 0 and

b = 4(sα3−rα4)
rα3+sα4

. If r 6= 0 it follows that a = − 4(r2+s2)α2

r(rα3+sα4) and a = 4α1

α4
when s 6= 0 and r = 0. �

Remark 7. Let p = dy
dx . Then the differential equation (20) is given by:

(21) y(p4 − 6p2 + 1) + (ax+ by)p(1− p2) +H(x, y, p) = 0,

where H contains terms of order greater than or or equal to 2 in (x, y).

3. Axial configuration in the neighborhood of axiumbilic points

Let p be an axiumbilic point whose neighborhood is parametrized by a Monge chart and
assume the notation established at the beginning of Section 2.

When it is a transversal axiumbilic point, which is determined by transversal intersection of
the curves a0 = 0 and a1 = 0 (see equation (3)), it results from Proposition 6 and Remark 7
that the differential equation of axial lines is given by

(22) G(x, y, p) = y(p4 − 6p2 + 1) + (ax+ by)p(1− p2) +H(x, y, p) = 0,

where H(x, y, p) contains higher order terms greater or equal to 2 in (x, y).
The Lie-Cartan surface Lα in PM is defined implicitly by

(23) G(x, y, p) = 0.

In the case that p is a transversal axiumbilic point the surface defined above is regular and of
class Cr−2 in the neighborhood of the projective axis p.

In the coordinates (x, y, p), the Lie-Cartan vector field X, is of class Cr−3, (equation (8)):

(24) X := Gp
∂

∂x
+ pGp

∂

∂y
− (Gx + pGy)

∂

∂p
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and the projections of the integral curves of X

∣∣∣∣
G=0

are the axial lines in a neighborhood of p

(Figure 3).
Restricted to the projective axis p, defined by x = 0, y = 0, the Lie-Cartan vector field is

given by

X = −p[(p4 − 6p2 + 1) + (1− p2)(a+ bp)]
∂

∂p
.

Therefore, the singular points of the Lie-Cartan vector field in the projective line are given
by the equation:

(25) P (p) = pR(p) = p[(p4 − 6p2 + 1) + (1− p2)(a+ bp)] = 0.

The discriminant of R(p) = (p4 − 6p2 + 1) + (1− p2)(a+ bp) is

(26)
∆(a, b) =16a5 + 4(b2 + 68)a4 + 16(b2 + 144)a3

−8(b2 − 80)(16 + b2)a2 + 96(16 + b2)2a+ 4(16 + b2)3.

Furthermore, R(±1) = −4, R(0) = 1 + a and limp−→±∞R(p) = +∞, thus R has at least two
simple real roots, one is less than −1 and the other is greater than 1.

The derivative of X at (0, 0, p) is given by:

DX(0, 0, p) =

 a(1− 3p2) 4p3 + b(1− 3p2)− 12p 0
a(1− 3p2)p p[4p3 + b(1− 3p2)− 12p] 0

0 0 −P ′(p)


whose eigenvalues are 0 and

λ1(p) = a(1− 3p2) + p[4p3 + b(1− 3p2)− 12p],
λ2(p) = −P ′(p).

Recall that P (p) = pR(p), and so P ′(p) = R(p) + pR′(p). Therefore at the roots of R, it
follows that −P ′(p) = −pR′(p). Also, as ±1 are not roots of R, it follows that

a =
(−p4 + 6p2 − 1) + bp(1− p2)

1− p2
.

Substituting the equation above into the expression of λ1(p), p being a root of R(p) (a singular
point of X), it follows that {

λ1(p) = (p2+1)3

(p2−1) ,

λ2(p) = −pR′(p).
Therefore, the eigenvalues of DX, at the singular points (0, 0, p0) = (0, 0, 0) and (0, 0, pi),

pi 6= 0, on the tangent space to G = 0, are as follows:

(27) p0 = 0 :

{
λ1 = a,
λ2 = −(a+ 1),

(28) pi 6= 0 :

{
λ1 =

(p2i+1)3

(p2i−1)
,

λ2 = −piR′(pi).
The eigenspace associated to the eigenvalue λ1 is transversal to the axis p and the eigenvalue

λ2 has the projective axis as the associated eigenspace.
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In [11] the axial configuration near an axiumbilic point was established in the following situ-
ation:

• ∆(a, b) < 0,
• ∆(a, b) > 0, a < 0, a 6= −1,
• ∆(a, b) > 0, a > 0.

When ∆(a, b) < 0, R has two simple real roots, and the Lie-Cartan vector field has three
hyperbolic saddles in the projective axis. This axiumbilic point is called of type E3.

When ∆(a, b) > 0, a < 0, a 6= −1, R has four simple real roots, and the Lie-Cartan vector field
has 5 singular points in the projective line. Four are hyperbolic saddles and one is a hyperbolic
node. This axiumbilic point is called of type E4.

When ∆(a, b) > 0, a > 0, the Lie-Cartan vector field has 5 hyperbolic saddles in the projective
line. This axiumbilic point is called of type E5.

In Figure 4 the Lie-Cartan surfaces and the integral curves of the Lie-Cartan vector field
are sketched in the three cases E3, E4 and E5. The projections of the integral curves by
π : PM −→M are the axial lines near the axiumbilic points (see Figure 5) E3, E4 and E5.

Figure 4. Lie-Cartan vector field and its integral curves in the cases E3, E4

and E5.

Figure 5. Axial configurations near axiumbilic points E3 (left), E4 (center)
and E5 (right).
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For an immersion α of a surface M into R4, the axiumbilic singularities Uα and the lines
of axial curvature are assembled into two axial configurations: the principal axial configuration
Pα = {Uα, Xα} and the mean axial configuration Qα = {Uα, Yα}.

An immersion α ∈ Ir is said to be principal axial stable if it has a Cr neighborhood V(α)
such that, for any β ∈ V(α) there exists a homeomorphism h : M → M mapping Uα onto Uβ
and mapping the integral net of Xα onto that of Xβ . Analogous definition is given for mean axial
stability.

In Proposition 8 are described the axiumbilic points which are principal axial stable. In Figure
6 are sketched the curves ∆(a, b) = 0, a = −1 and a = 0 in the plane a, b, which bound the open
regions corresponding to the three types of axiumbilic points of principal axial stable type.

Proposition 8 ([11], [12] p. 209). Let p be an axiumbilic point of α ∈ Ir, r ≥ 5. Then, α is
locally principal axial stable and locally mean axial stable at p if and only if p is of type E3, E4

or E5. The curve ∆(a, b) = 0 has three connected components, is contained in the region a ≤ −1

and it is regular outside the points (− 27
2 ,±

5
√

5
2 ) which are of cuspidal type.

E
4

E
4

E
4

E
4

E
4

E
4

b

a

E5

E5

E
3

E
3

0-1

Figure 6. Diagram of stable axiumbilic points, E3, E4 and E5.

Proof. The function ∆(a, b) defined by equation (26) is symmetric in b. The polynomials ∆(a, b)
and ∂∆

∂b in the variable b have resultant equal to a positive multiple of

(1 + a)(a2 + 8a+ 32)2a16(2a+ 27)6.

The critical points p± = (− 27
2 ,±

5
√

5
2 ) of ∆ are contained in ∆(a, b) = 0.

Near the point p+ it follows that:

∆(a, b) =− 54675

[(
a+

27

2

)2

+ 5

(
b− 5

√
5

2

)2

+ 2
√

5

(
a+

27

2

)(
b− 5

√
5

2

)]
+h.o.t.

Further analysis shows p± are Whitney cuspidal points.
Also the curve ∆(a, b) = 0 is contained in the region a ≤ −1 and near (−1, 0) it is given by

a = − 1
20b

2 +O(3). In fact, for a > −1 all the roots of ∆(a, b) are complex.
By the classification of axiumbilic points E3, E4 and E5 by the sign of ∆(a, b) and of a, the

diagram of stable axiumbilic points, see [11], [12] p. 209, is as shown in Fig. 6. �
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3.1. The axiumbilic point E1
34.

Definition 9. Let α : M −→ R4 be an immersion of class Cr, r ≥ 5, of a smooth and oriented
surface. An axiumbilic point p is said to be of type E1

34 if a defined in Proposition 6 does not
vanish and:

i) ∆(a, b) = 0, (a, b) 6= (−1, 0) and (a, b) 6= (− 27
2 ,±

5
2

√
5), or

ii) b 6= 0 if a = −1.

Proposition 10. Let α : M −→ R4 be an immersion of class Cr, r ≥ 5 of a smooth and
oriented surface having an axiumbilic point p of type E1

34. Then the axial configuration, defined
in subsection 1.1, of α in a neighborhood of p is as shown in Figure 7.

Figure 7. Axial configurations in a neighborhood of an axiumbilic point of type E1
34.

Proof. Since the condition of transversality (a 6= 0) is preserved at an axiumbilic point of type
E1

34 the implicit surface defined by equation (23) is regular in a neighborhood of the projective

line. From the hypotheses ∆(a, b) = 0, (a, b) 6= (−1, 0) and (a, b) 6= (− 27
2 ,±

5
2

√
5) or b 6= 0, if

a = −1, the polynomial P (p) = p[(p4 − 6p2 + 1) + (1− p2)(a+ bp)] = pR(p), which defines the
singularities of the Lie-Cartan vector field, has one double root and three real simple roots.
With no loss of generality, we can consider the case a = −1 and b 6= 0, where p = 0 is a double
root of the polynomial P (p). In this case, we have P (p) = p2(p3 − bp2 − 5p+ b).
The eigenvalues of DX at (0, 0, p) are given by:

λ1 = 4p4 − 3bp3 − 9p2 + bp− 1 and λ2 = p(−5p3 + 4bp2 + 15p− 2b).

Therefore, at the singular points (0, 0, p), p 6= 0, of X it follows that:

λ1 =
(p2 + 1)3

p2 − 1
and λ2 = −p

2(p4 + 2p2 + 5)

p2 − 1
.

Then, λ1λ2 < 0 when p 6= 0 and these three singular points of X are hyperbolic saddles. At
p = 0, double root of P , it follows that λ1 = −1, λ2 = 0. Recall that the eigenspace associated
to λ1 is transversal to the axis p and that one associated to λ2 is the projective axis itself.
Since Gy(0, 0, 0) = 1, it follows from the implicit function theorem that y(x, p) = xp + O(3) is
defined in a neighborhood of (0, 0, 0) such that G(x, y(x, p), p) = 0. In this case, the Lie-Cartan
vector field in the chart (x, p) is given by:

(29)

{
ẋ = −x+ bxp+O(3)
ṗ = −bp2 +O(3)

with b 6= 0. Therefore, (0, 0, 0) is a quadratic saddle-node with the center manifold tangent to
the projective line. The phase portrait is sketched in Figure 8, and the projections of the integral
curves are the axial lines shown in Figure 7.
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Figure 8. Integral curves of X|G=0 in the neighborhood of the projective line
in the case of an axiumbilic point of type E1

34

When (a, b) 6= (−1, 0), (a, b) 6= (− 27
2 ,±

5
2

√
5) and ∆(a, b) = 0 the polynomial

P (p) = p[(p4 − 6p2 + 1) + (1− p2)(a+ bp)]

has a double root p0 6= 0 and three real simple roots. This case is reduced to the case when
p = 0 is a double root, making an appropriate rotation of coordinates in the plane {x, y} so that,
in the new coordinates, the double root p0 is located at p = 0. �

Proposition 11. Let α ∈ Ir, r ≥ 5, be an immersion such that p is axiumbilic point of type
E1

34. Then, there is a neighborhood V of p, a neighborhood V of α and a function F : V −→ R
of class Cr−3 such that for each µ ∈ V there is an unique axiumbilic point pµ ∈ V such that:

i) dFα 6= 0,
ii) F(µ) < 0 if and only if pµ is of type E3,
iii) F(µ) > 0 if and only if pµ of type E4,
iv) F(µ) = 0 if, and only if, pµ is of type E1

34.

Proof. Since p is a transversal axiumbilic point of α, the existence of the neighborhoods V and
V follows from the Implicit Function Theorem. For µ ∈ V with an axiumbilic point pµ ∈ V ,
after a rigid motion Γµ in R4, locally the immersion µ ∈ V can be parametrized in terms of a
Monge chart (x, y,Rµ(x, y), Sµ(x, y)), with the origin being the axiumbilic point pµ and

Rµ(x, y) =
r20(µ)

2
x2 + r11(µ)xy +

r02(µ)

2
y2 +

r30(µ)

6
x3 +

r31(µ)

2
x2y

+
r13(µ)

2
xy2 +

r03(µ)

6
y3 + h.o.t.,

Sµ(x, y) =
s20(µ)

2
x2 + s11(µ)xy +

s02(µ)

2
y2 +

s03(µ)

6
x3 +

s21(µ)

2
x2y

+
s12(µ)

2
xy2 +

s03(µ)

6
y3 + h.o.t.

For µ, performing rotations and homoteties as described in Section 2, the coefficients aµ and
bµ can be expressed in function of the coefficients of the surface presented in a Monge chart, as
was done in Proposition 6, considering the coefficients in function of the parameter µ ∈ V.

Define F(µ) = ∆(a(µ), b(µ)) whose zeros define locally the manifold of immersions with an
E1

34 axiumbilic point. Here, ∆(a, b), given by equation (26), is the discriminant of the polynomial
R(p) = (p4 − 6p2 + 1) + (1− p2)(a+ bp).

Notice that due to the particular representation of the 3-jets taken here, the condition
a(µ) = −1 in Definition 9, the jet extension of the immersion is not transversal, but tangent, to
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the manifold of jets with E1
34 axiumbilic points. It is always possible, by an appropriate rotation

in the plane {x, y} to suppose that a(α) /∈ {− 27
2 ,−1}. See Section 2.

Assertions (ii), (iii) and (iv) follow from the definition of F and the previous analysis on the
sign of the discriminant ∆(aµ, bµ).

Moreover, the derivative of F(µ) in the direction of the coordinate a does not vanish, leading
to conclude that dFα 6= 0.

In fact, assuming s11(α) = 1
2r 6= 0, it follows that a0(µ) = y + 0(2),

a1(µ)(x, y) = − 4(r(µ)2 + s(µ)2)α2(µ)

r(µ) (r(µ)α3(µ) + s(µ)α4(µ))
x+

4(s(µ)α3(µ)− r(µ)α4(µ))

r(µ)α3(µ) + s(µ)α4(µ)
y +O(2)

= a(µ)x+ b(µ)y +O(2),

α1 = s12 − s30 + 2r21, α2 = r30 − r12 + 2s21, α3 = s03 − s21 + 2r12, and α4 = r21 − r03 + 2s12.

Consider the deformation

µ = (x, y,Rα(x, y), Sα(x, y)) +

(
0, 0, t(

1

6
x3 − 1

2
xy2), tx2y

)
.

Then, as α2 = r30 − r12 + 2s21, it follows that a(µ) = − 4(r2+s2)(α2+t)
r(rα3+sα4) and

d

dt
(∆(a(µ), b(µ))

∣∣∣∣
t=0

=
∂∆

∂a
· da
dt

=
∂∆

∂a
·
(
− 4(r2 + s2)

r(rα3 + sα4)

)
6= 0.

In the case where s11(α) = 0 it follows that r11(α) = − 1
2s 6= 0, α1α4 6= 0 and α2(µ) = 0. Now

consider the deformation

µ = (x, y,Rα(x, y), Sα(x, y)) +

(
0, 0, tx2y, t(−1

6
x3 +

1

2
xy2)

)
.

Then, a(µ) = 4(α1+t)
α4

and

d

dt
(∆(a(µ), b(µ))

∣∣∣∣
t=0

=
∂∆

∂a
· da
dt

=
∂∆

∂a
·
(

4

α4

)
6= 0.

�

Figure 9. Axial configuration near axiumbilic points. E3 (left), E1
34 (center)

and E4 (right).
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Figure 10. Bifurcation diagram of the axial configuration near an axiumbilic
point E1

34 and the structure of separatrices.

3.2. The axiumbilic point E1
4,5. Consider the Monge chart described by equations (9) and

(10). Suppose that the origin is an axiumbilic point, which is expressed by

(30)
R(x, y) =

r20

2
x2 + r11xy +

r02

2
y2 +

r30

6
x3 +

r21

2
x2y +

r12

2
xy2 +

r03

6
y3

+
r40

24
x4 +

r31

6
x3y +

r22

4
x2y2 +

r13

6
xy3 +

r04

24
y4 + h.o.t.,

(31)
S(x, y) =

s20

2
x2 + s11xy +

s02

2
y2 +

s30

6
x3 +

s21

2
x2y +

s12

2
xy2 +

s03

6
y3

+
s40

24
x4 +

s31

6
x3y +

s22

4
x2y2 +

s13

6
xy3 +

s04

24
y4 + h.o.t.,

where, r02 = r20 + r, r11 = − 1
2s, s02 = s20 + s, s11 = 1

2r.

Let α1 = s12 − s30 + 2r21, α2 = r30 − r12 + 2s21, α3 = s03 − s21 + 2r12, α4 = r21 − r03 + 2s12,
β1 = s22 − s40 + 2r31, β2 = r40 − r22 + 2s31, β3 = s13 − s31 + 2r22, β4 = r31 − r13 + 2s22,
β5 = s04 − s22 + 2r13, and β6 = r22 − r04 + 2s13.

The functions a0 and a1 (see Proposition 1) are given by

(32) a0(x, y) = a10x+ a01y +
1

2
a20x

2 + a11xy +
1

2
a02y

2 + h.o.t. and

(33) a1(x, y) = b10x+ b01y +
1

2
b20x

2 + b11xy +
1

2
b02y

2 + h.o.t.,

where

a10 =
1

2
(rα1 + sα2), a01 =

1

2
(rα3 + sα4),

a20 = −α2r21 + α1s21 +

[
β1

4 + s20
2 (r2

20 + s2
20)

]
r+[

β2

4 −
r20
2 (r2

20 + s2
20)

]
s+ (r2

20 − s2
20)sr − 3

8 (r2 + s2)(s20r − r20s) + r20s20(s2 − r2),

a11 = −r12α2 + s12α1 − r21α4 + s21α3 −
[
β3

2 + r20(r2
20 + s2

20)

]
r +

[
β4

2 − s20(r2
20 + s2

20)

]
s

−2s20r20rs− 1
2 (3s2

20 + r2
20)s2 − 1

2 (3r2
20 + s2

20)r2 − 3
8 (r2 + s2)2 − 5

4 (r2 + s2)(r20r + s20s),
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a02 = −r12α4 + s12α3 +

[
β5

2 −
s20
2 (r2

20 + s2
20)

]
r +

[
β6

2 + r20
2 (r2

20 + s2
20)

]
s+

(−2s2
20 + 2r2

20)sr + 2s20r20(s2 − 2r2) +− 9
8 (r2 + s2)(rs20 − sr20),

b10 = 2(sα1 − rα2), b01 = 2(sα3 − rα4),

b20 = α2
1 + α2

2 − 4(s21α2 + r21α1) +

[
− β2 + 2r20(r2

20 + s2
20)

]
r+[

β1 + 2s20(r2
20 + s2

20)

]
s− 1

2 (r2 + s2)(s20s+ r20r) + 4(r20s− s20r)
2,

b11 = 2(α3α1 + α2α4)− 4(α1r12 + α2s12 + α3r21 + α4s21)+

2

[
− β4 + 2s20(r2

20 + s2
20)

]
r + 2

[
β3 − 2r20(r2

20 + s2
20)

]
s+ 4(s2

20 − r2
20)rs+ 4r20s20(r2 − s2),

b02 = α2
3 + α2

4 + 4(r2
12 + s2

12) + 4s12(r21 − r03) + 4r12(s03 − s21)+

[−β6 − 2r20(r2
20 + s2

20)]r + [β5 − 2s20(r2
20 + s2

20)]s+ 2(r2
20 − 3s2

20)s2 + 2(s2
20 − r2

20)r2.

Definition 12. An axiumbilic point is said to be of type E1
4,5 if the variety Lα has exactly 4

singular points which are of Morse type located along the projective line over the point.

Proposition 13. Consider a Monge chart and a homothety such that the differential equation
of axial lines is written as

a0(x, y)(dx4 − 6dx2dy2 + dy4) + a1(x, y)dxdy(dx2 − dy2) + 0(3) = 0,

where

a0(x, y) =y +
1

2
a20x

2 + a11xy +
1

2
a02y

2 + h.o.t.,

a1(x, y) =b01y +
1

2
b20x

2 + b11xy +
1

2
b02y

2 + h.o.t.

Then the following conditions are equivalent:

i) the curves a0 = 0 and a1 = 0 are regular and have quadratic contact at 0,
ii) the axiumbilic point 0 is of type E1

4,5,
iii) the Lie-Cartan vector field defined in Lα has a quadratic saddle-node in the projective axis

with the center manifold transversal to the projective line.

Proof. The differential equation of axial lines can be written as

a0(x, y)(dx4 − 6dx2dy2 + dy4) + a1(x, y)dxdy(dx2 − dy2) + 0(3) = 0,

where

a0(x, y) =a10x+ a01y +
1

2
a20x

2 + a11xy +
1

2
a02y

2 + h.o.t.

a1(x, y) =b10x+ b01y +
1

2
b20x

2 + b11xy +
1

2
b02y

2 + h.o.t.

where the coefficients of a0 and a1 are given by equations (32) and (33). Here O(3) means terms
of order greater than or equal to 3 in the variables x and y.

In what follows it will be considered a Monge chart such that a10 = 0. This is possible as
shown in Lemma 5 and Proposition 6. Since the contact between a0 = 0 and a1 = 0 is supposed
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to be quadratic it results that b10 = 0 and a01 · b01 6= 0. Also by a homothety it is possible to
obtain a01 = 1.

So, it results that:

a0(x, y) = y +
1

2
a20x

2 + a11xy +
1

2
a02y

2 + h.o.t.(34)

a1(x, y) = b01y +
1

2
b20x

2 + b11xy +
1

2
b02y

2 + h.o.t.(35)

Therefore, the condition of quadratic contact between the two regular curves is expressed by
χ = b20 − a20b01 6= 0.

Notice that this amounts to establish the implication i)→ ii).

Claim 14. In the neighborhood of (0, 0, 0), the Lie-Cartan vector field restricted to the surface
G = 0, can be expressed in the chart (x, p) by

(36)

{
ẋ = χ

2x
2 +O(3),

ṗ = −p+ 3
2a11a20x

2 − (a11 + χ)p− b01p
2 + 0(3)

and (0, 0, 0) is a saddle-node when χ 6= 0.

Since Gy(0, 0, 0) = 1 6= 0, it follows from implicit function theorem that locally y = y(x, p)
and G(x, y(x, p), p) = 0.

The Taylor expansion of y(x, p) in the neighborhood of (x, p) = (0, 0) is given by:

(37) y(x, p) = −1

2
a20x

2 +O(3).

The Lie-Cartan vector field restricted to the surface G = 0 is given by{
ẋ = Gp(x, y(x, p), p) = 1

2χx
2 +O(3)

ṗ = −(Gx + pGy)(x, y(x, p), p) = −p+ 3
2a11a20x

2 − (χ+ a11)p− b01p
2 + 0(3)

The eigenvalues of the vector field (36) at 0 are λ1 = 0 and λ2 = −1 with respective associated
eigenspaces `1 = (1,−a20) and `2 = (0, 1). By Invariant Manifold Theory the center manifold is
tangent to `1 and is given by W c = {(x,−a20x+ 3

2a20(χ+ a11)x2 +O(3))}.
The restriction of the vector field (36) to the center manifold is given by [ 1

2χx
2 + 0(3)] ∂∂x .

This establishes that ii)→ iii).

Claim 15. The function G has exactly 4 critical points in the projective line, and they are of
Morse-type of index 1 or 2 if and only if χ 6= 0.

The critical points of G along the projective line are determined by

(38) S(p) = Gv(0, 0, p) = (p4 − 6p2 + 1) + b01p(1− p2) = 0,

which has for 4 simple real roots located in the intervals (−∞,−1), (−1, 0), (0, 1) and (1,∞).
This follows from S(±1) = −4, S(0) = 1 and from the discriminant ∆(S) = 4(16 + b201)3 > 0.
Along the projective line, the determinant of the Hessian of G is given by

(39) HessG(0, 0, p) = −(a20(1− 6p2 + p4) + b20p(1− p2))(b01 − 12p− 3b01p
2 + 4p3)2.

The resultant of S(p) and HessG(0, 0, p) is given by 256χ4(16 + b201)6 and therefore
HessG(0, 0, p) 6= 0 at the critical points of G. This implies that the critical points are of Morse
type. As G(0, 0, p) = 0 it follows that the index of a critical point is 1 or 2 and so locally the
level set G = 0 is a cone.

The eigenvalues of the derivative of the Lie-Cartan vector field at a point (0, 0, p) are given
by:
λ1 = −p(−4p3 + 3b01p

2 + 12p− b01), λ2 = −1 + 18p2 − 5p4 − 2b01p+ 4b01p
3.
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At the critical points pi (satisfying S(pi) = 0) it follows that λ1 = −λ2 = p6+3p4+3p2+1
p2−1 , then

λi1λ
i
2 < 0, for i = 1..4.

Therefore, these 4 points are saddles of the Lie-Cartan vector field. As the projective line is
invariant it is follows that the other invariant manifold (stable or stable) of a singular point is
transversal to the projective line.

This amounts to prove that iii)→ i). �

Proposition 16. Let α ∈ Ir, r ≥ 5 and p be an axiumbilic point. Suppose, in the Monge chart
expressed by equations (30) and (31), that α1 = α3 = 0 and χ 6= 0. Then p is an axiumbilic
point of type E1

4,5 and the axial configurations of α in a neighborhood of p is as shown in Figure
11.

Figure 11. Axial configurations in a neighborhood of an axiumbilic point of
type E1

4,5.

Saddle Node

Parallel

Figure 12. Lie-Cartan vector field near an axiumbilic point E1
45 and the axial

configuration (principal and mean).
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Proof. Condition α1 = α3 = 0 implies the non-transversal contact of the curves a0 = 0 and
a1 = 0 at the axiumbilic point p expressed in the Monge chart by (0, 0). By Lemma 5 and
Proposition 6, it is possible to express these curves as in equation (34). Assuming χ 6= 0, we
have the quadratic contact of the curves at the axiumbilic point.
Proposition 13 implies that over the axiumbilic point we have five equilibria of the Lie-Cartan
vector field. One of them is a regular point of the Lie-Cartan surface, and this is an equilibrium
of saddle-node type with center manifold transversal to the axis p (see Claim 14).
The remaining equilibria are critical points of Morse type of the Lie-Cartan surface. In the
neighborhood of these points, the level set G = 0 are locally cones, and the 4 points are saddles
of the Lie-Cartan vector field (see Claim 15).
Therefore, we conclude that the configuration is as described in Figure 12, whose projection of
the saddle-node and parallel sectors describe the principal axial and mean axial configurations
close to the axiumbilic point p of type E1

45 (Figure 11). �

Proposition 17. Let α ∈ Ir, r ≥ 5, be an immersion having an axiumbilic point p of type E1
4,5.

Then, there exist a neighborhood V of p, a neighborhood V of α and a function F : V −→ R of
class Cr−3 such that:

i) dFα 6= 0,
ii) F (µ) = 0 if, and only if, µ ∈ V has just one axiumbilic point in V , which is of type E1

4,5,
iii) F (µ) < 0 if, and only if, µ has exactly two axiumbilic points in V , one of type E4 and the

other of type E5,
iv) F (µ) > 0 if, and only if, µ has no axiumbilic points in V .

Proof. By Proposition 13, α being an immersion having an axiumbilic point p of type E1
45, the

curves aα0 = 0 and aα1 = 0 have quadratic contact at p.

Since
∂aα0
∂y (0, 0) = a01 6= 0, if follows from Implicit Function Theorem that locally, for µ in a

neighborhood V of α, y = yµ(x) and aµ0 (x, yµ(x)) = 0.

Moreover,
∂2aα1
∂x2 (0, 0) = b20 6= 0, and so x = xµ is a local solution of

∂aµ1
∂x (xµ, yµ(xµ)) = 0.

Define F (µ) = aµ1 (xµ, yµ(xµ)). Consider the variation

ht(x, y) = (x, y,R(x, y) + txy, S(x, y) + txy).

It follows that dF (t)
dt

∣∣∣∣
t=0

6= 0, and so dFα 6= 0. Therefore, the result follows from the Implicit

Function Theorem.
The axiumbilic point of type E1

45 is therefore the transition between zero and two axiumbilic
points, one of type E4 and the other of type E5.

In Figures 13 and 15 are illustrated this transition, with the axial configurations sketched
in two different styles. See also Figure 15 for an illustration of transition in the Lie - Cartan
surface. �

Proposition 18. In the space of smooth mappings of M × R −→ R4 which are immersions
relative to the first variable, those which have all their axiumbilic points either generic (of types
E3, E4 and E5) or of types E1

34 and E1
45, crossed transversally, is open and dense. Furthermore,

for such families the axiumbilic points describe a regular curve in M × R whose projection into
R has only non-degenerate critical points at E1

45 and the regular points of the projection is a
collection of arcs bounded by E1

34 points, which a the common boundary points of the arcs
consisting of points of types E3 and E4.

Proposition 18 follows from the analysis in Propositions 11 and 17 and an application of
Thom Transversality Theorem to the submanifold of four jets of immersions at axiumbilic points,
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Figure 13. Axiumbilic point E1
45. The axiumbilic points E4 and E5 collapse

in an axiumbilic point E1
45, and after they are eliminated and there are no

axiumbilic points.

Figure 14. Bifurcation diagram of the axial configuration near an axiumbilic
point of type E1

45 and the structure of separatrices

Figure 15. The Lie-Cartan surface. In the left, with two axiumbilic point, in
the center with four singular points, and in the right the four regular levels.

stratified by the generic axiumbilic points of types E3, E4 and E5, by those of types E1
34 and

E1
45, and by their complement which has codimension larger than 3. See Section 4.
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4. Transversality and Stratification

Consider the space Jk(M,R4) of k-jets of immersions α of a compact oriented surface M
into R4, endowed with the structure of Principal Fiber Bundle. The base is M ; the fiber is the
space R4 × Jk(2, 4), where J k(2, 4) is the space of k-jets of immersions of R2 to R4, preserving
the respective origins. The structure group, Ak+, is the product of the group Lk+(2, 2) of k-jets
of origin and orientation preserving diffeomorphisms of R2, acting on the right by coordinate
changes, and by the group of positive isometries of R4, acting on the left. This group is generated
by the groups of translations and that of positive rotations, O+(4), of R4.

Denote by Πk,l, k ≤ l the projection of J l(2, 4) to J k(2, 4). It is well known that the group
action commutes with projections.

Definition 19. We define below the canonic axiumbilic stratification of J 4(2, 4). The term
canonic means that the strata are invariant under the action of the group Ak+= O+(4)×Lk+(2, 2).

1) Axiumbilic Jets: U4, those in the orbit of j4(x, y,R(x, y), S(x, y)), where R and S are as
in equations (9) and (10) satisfying the axiumbilic conditions defined in terms of j2R(0)
and j2S(0). It is a closed variety of codimension 2.

2) Non-axiumbilic Jets: (NU)4 is the complement of U4. It is an open submanifold of
codimension 0.

3) Non-stable axumbilic Jets: (NE)4, in the orbit of the axiumbilic jets for which:
• T = (α1α4 − α2α3)(r2 + s2) = 0 or
• T 6= 0 and conditions that characterize E3 or E4 axiumbilic points in Proposition 8
fail.

E1
45 is a closed variety of codimension 3, which can be expressed as the union of the following

invariant strata:

3.1) Non-Transversal jets: E1
45 for which T = 0 and χ 6= 0. It has codimension 3.

3.2) Transversal-double jets: (E1
34)4, The Lie-Cartan field has a quadratic saddle-node in the

projective line which is characterized by Proposition 11. It has codimension 3.

4) The stable axumbilic jets: UE4, the complement in U4 of NE4.

Proposition 20. In the space of 1-parameter families of immersions, those whose 4-jet extension
are transversal to the canonical axiumbilic stratification is open and dense.

Proof. Follows from Thom Transversality Theorem [6]. �

5. Concluding Comments

In this work was established the principal axial and the mean axial configurations in a neigh-
borhood of the axiumbilc points of types E1

34 and E1
45. The approach concerning methods and

class of differentiability requirements is distinct from that presented in the work of Gutiérrez-
Gúınez-Castañeda in [3]. The use of the Lie-Cartan suspension method made possible the study
of these points by means the classic theory of differential equations, in clear analogy with the
saddle-node bifurcation of vector fields in the plane, following [1], [10] and [5].

The type E1
34 satisfies the transversality condition of the curves a0 and a1, Proposition 6,

which amounts to the fact the Lie-Cartan surface remains regular in a neighborhood of the
projective axis over the axiumbilic point. In this case there is a saddle-node equilibrium point
of the Lie-Cartan vector field whose central separatrix is along the projective axis itself. The
axial configurations are established in Proposition 10 and the qualitative change (bifurcation)
between the types E3 and E4, with the variation of a parameter in the space of immersions, is
explained in Proposition 7. See Figure 10.
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In the case E1
45 the transversality condition fails, since curves a0 and a1, Proposition 13, have

quadratic contact at the axiumbilic point. Here the Lie-Cartan surface is not regular along the
projective axis. It is established in Proposition 13 that there are four conic critical points of
Morse type on the p−axis. At these points there are partially hyperbolic equilibria of the Lie-
Cartan vector field. There is also a saddle-node equilibrium in the regular part of the surface
whose central separatrix is transversal to the projective axis. The integral curves of the Lie
- Cartan vector field on the regular components of the Lie - Cartan surface (which are four
bi-punctured disks) are illustrated in Figure 12. Their projections on the plane give the axial
configurations in a neighborhood of the axiumbilic point.

In Proposition 18 is established the one parameter variation (bifurcation) in the space of im-
mersions. This leads to the fact that for small perturbations of an immersion with an axiumbilic
point of this type it holds that two axiumbilic points, one of type E4 and the other of type
E5, bifurcate form E1

45 or disappear leaving a neighborhood free from axiumbilic points, in full
analogy with the saddle-node bifurcation [1] and [10]. See Figure 14.

In Proposition 20 the genericity of the points E1
34 and E1

45 is established in terms of stratifi-
cation and transversality.
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ON THE EULER CHARACTERISTIC OF REAL MILNOR FIBRES

HELMUT A. HAMM

Abstract. We study the Milnor fibres of a real analytic mapping defined on a real analytic

space which has an isolated critical point. In particular we look at the Euler characteristic.
We discuss the global case, too.

0. Introduction

Mappings f : Rn → Rk with an isolated singularity have been already studied by J. Milnor
[M]. It is not important whether one works in the real algebraic or real analytic category, here we
prefer the real analytic one. We replace Rn by a germ of a real analytic space with an isolated
singularity, introduce a kind of Milnor fibration and study the Euler characteristic of its fibres.
Finally we pass shortly to the global case.

Part of the results has been announced in [H].

1. The real Milnor fibration

Let f : (X, 0) → (Rk, 0) be a real analytic mapping between real analytic space germs with
an isolated singularity, which means that f : X \ {0} → Rk is a submersion between manifolds.
Let X be purely n-dimensional. We may suppose that (X, 0) is embedded in (RN , 0). Let
Dε := {x ∈ RN | ‖x‖ ≤ ε}, Sε := ∂Dε. Let L := X ∩ Sε and K := f−1({0}) ∩ Sε, 0 < ε� 1, be
the links of (X, 0) and (f−1({0}), 0). Note that X \ {0}, L and K are manifolds which are not
necessarily orientable!

Similarly, let Bα := {t ∈ Rk | ‖t‖ ≤ α}.

Theorem 1.1:

a) Let 0 < α � ε � 1. Then f : X ∩ Dε ∩ f−1(Bα \ {0}) → Bα \ {0} is a locally trivial
fibration (“Milnor fibration”).

b) The mapping f : X ∩ Sε ∩ f−1(Bα) → Bα is a locally trivial, hence a trivial fibration, so
∂Ft is diffeomorphic to K for every “Milnor fibre” Ft = f−1({t}) ∩Dε.

Proof. Note that we have supposed that 0 is an isolated singularity of f . In particular f−1(0) has
an isolated singularity at 0, and Sε is transversal to f−1(0), 0 < ε� 1. Hence Sε is transversal
to f−1(t) for ‖t‖ ≤ α, 0 < α� ε� 1. �

The base space in a) is connected if k ≥ 2 but not if k = 1, so we treat these cases separately.

Note that we have a lemma which goes back to Milnor ([M] Lemma 11.3) in the case X = Rn:

1991 Mathematics Subject Classification. 26E05, 32S55.
Key words and phrases. Real Milnor fibre, atypical value.
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Lemma 1.2: For 0 < α� ε� 1 we have a homeomorphism

X ∩
(
(Dε ∩ f−1(∂Bα)) ∪ (Sε ∩ f−1(Bα \ {0}))

)
≈ L \K ,

hence a homotopy equivalence X ∩Dε ∩ f−1(∂Bα) ∼ L \K.

So we use the symbol ≈ in the case of a homeomorphism and ∼ in the case of a homotopy
equivalence.

Proof. We have assumed X ⊂ RN . Put φ, ψ : X → R : φ(x) := ‖f(x)‖2, ψ(x) := ‖x‖2.
By the Curve Selection Lemma we know that there are no x ∈ Dε ∩ X \ f−1(0) such that
there is a λ ≤ 0 with dψx = λ dφx if 0 < ε � 1. Therefore we can find on X \ f−1(0)
a vector field v such that dψx(v(x)) > 0, dφx(v(x)) = 1 for ‖x‖ ≤ ε. Using the flow we can
construct the desired homeomorphism. Furthermore X∩Dε∩f−1(∂Bα) is a deformation retract
of X ∩ ((Dε ∩ f−1(∂Bα)) ∪ (Sε ∩ f−1(Bα \ {0}))). �

According to Milnor [M], p. 99, the homotopy equivalence can in general not be chosen as to

be fibre preserving with respect to x 7→ f(x)
‖f(x)‖ .

2. The Milnor fibre of a real analytic mapping (k ≥ 2)

First we suppose k ≥ 2. Then we can speak of the typical Milnor fibre F because all Milnor
fibres are diffeomorphic.

Standard example: k = 2, n = 2m, f : (Cm, 0) → (C, 0) with isolated singularity. For the
more general case see e.g. [M] p. 103, and [CL].

In this paper we look at cohomology with integral coefficients.

Theorem 2.1: We have long exact sequences:

. . .→ Hm(L \K)→ Hm(F )→ Hm+2−k(F )→ Hm+1(L \K)→ . . . (Wang sequence),

. . .→ Hm−1(K)→ Hm(F, ∂F )→ Hm(F )→ Hm(K)→ . . . ,

. . .→ Hm(L)→ Hm(F )→ Hm−k+2(F, ∂F )→ Hm+1(L)→ . . .

Note that the second and third long exact sequences are the ones for the pair (F, ∂F ) and the
pair (L,F ): we can embed F in L.

For k = 2 the first and third sequences read:

. . .→ Hm(L \K)→ Hm(F )
h∗−id→ Hm(F )→ Hm+1(L \K)→ . . . and

. . .→ Hm(L)→ Hm(F )
V ar∗→ Hm(F, ∂F )→ Hm+1(L)→ . . .

Here h : F → F is “the” monodromy.

Proof. (i) For the Wang sequence, see Spanier [S] p. 456.

Note that L \K may be replaced by X ∩Dε ∩ f−1(∂Bα), see Lemma 1.2, and

f : X ∩Dε ∩ f−1(∂Bα)→ ∂Bα

is a locally trivial fibration.

(ii) In the second exact sequence we may replace K by ∂F ; see Theorem 1.1b).
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(iii) As for the third exact sequence, note that we may replace L by

X ∩
(
(Dε ∩ f−1(∂Bα)) ∪ (Sε ∩ f−1(Bα))

)
Let D be an open “ball” in ∂Bα, t ∈ D. Then:

Hm+1(L,F ) ' Hm+1
(
X ∩ ((Dε ∩ f−1(∂Bα)) ∪ (Sε ∩ f−1(Bα))), X ∩Dε ∩ f−1(D̄)

)
' Hm+1

(
X ∩ ((Dε ∩ f−1(∂Bα)) ∪ (Sε ∩ f−1(Bα))), X ∩ ((Dε ∩ f−1(D̄)) ∪ (Sε ∩ f−1(Bα)))

)
' Hm+1

(
X ∩Dε ∩ f−1(∂Bα \D), X ∩ ((Dε ∩ f−1(∂D)) ∪ (Sε ∩ f−1(∂Bα \D)))

)
' Hm+1((F, ∂F )× (∂Bα \D, ∂D)) ' Hm+2−k(F, ∂F ) .

In fact, for the first isomorphism note that L ≈ X∩((Dε∩f−1(∂Bα))∪(Sε∩f−1(Bα))), similarly
as in Lemma 1.2. Furthermore, F is a deformation retract of X ∩Dε ∩ f−1(D̄).
For the second one, note that f |Sε ∩ f−1(Bα) is trivial, see Theorem 1.1b), so Sε ∩ f−1(D) is a
strong deformation retract of Sε ∩ f−1(Bα).
The third isomorphism is established by excision, the fourth one is due to the fact that

f : Dε ∩ f−1(∂Bα \D)→ ∂Bα \D

is a trivial fibration. The last one follows from the Künneth formula. �

Since one cannot expect good connectivity properties in the real case, let us look at the Euler
characteristic.

Corollary 2.2:

a) χ(L) = 0 if n is even, χ(L) = 2χ(F ) if n is odd,

b) χ(K) = 0 if n− k is even, χ(K) = 2χ(F ) if n− k is odd.

Proof. First let us observe the following: Suppose that M is a compact manifold with boundary
of dimension m. Then χ(M,∂M) = (−1)mχ(M). In particular, χ(M) = 0 if M is closed and m
is odd.
This is obvious by Poincaré duality, in the non-orientable case with coefficients in Z/2Z.
a) Suppose that n is even. Then L is a closed manifold of odd dimension, hence χ(L) = 0.
Therefore we assume now that n is odd. By the third exact sequence and Poincaré duality we
have

χ(L) = χ(F )− (−1)kχ(F, ∂F ) = χ(F )− (−1)nχ(F ) = 2χ(F )

b) Similarly, χ(K) = 0 if n− k is even. So suppose that n− k is odd. Then

χ(K) = χ(F )− χ(F, ∂F ) = χ(F )− (−1)n−kχ(F ) = 2χ(F ).

�

So χ(F ) can be expressed by the Euler characteristic of a link except if k and n are both even.



150 HELMUT A. HAMM

3. The Milnor fibres of a real analytic function (k = 1)

Now let us switch to the case k = 1. Then we have two typical Milnor fibres: F+ (resp. F−),
corresponding to Ft with t > 0 (resp. t < 0).

Theorem 3.1:

a) Hm(L \K) ' Hm(F+)⊕Hm(F−).
b) We have long exact sequences:

. . .→ Hm−1(K)→ Hm(F+, ∂F+)→ Hm(F+)→ Hm(K)→ . . . ,

. . .→ Hm(L)→ Hm(F+)⊕Hm(F−)→ Hm(K)→ . . . and

. . .→ Hm(L)→ Hm(F+)→ Hm+1(F−, ∂F−)→ . . .

The middle exact sequence is a Mayer-Vietoris sequence, of course. As a consequence,

χ(L) + χ(K) = χ(F+) + χ(F−).

Proof. Hm(L,F+) ' Hm(F−, ∂F−) by excision. The rest is clear. �

Corollary 3.2: If n is even, we have

χ(F+) = χ(F−), χ(L) = 0, χ(K) = 2χ(F+).

If n is odd,

χ(L) = χ(F+) + χ(F−), χ(K) = 0.

Proof. If n is even, χ(L) = 0, hence χ(F+) = −χ(F−, ∂F−) = χ(F−). If n is odd, χ(K) = 0.
The rest is clear. �

It is difficult to calculate individual cohomology groups but:

Corollary 3.3: a) Suppose that n = 2m+ 1,m ≥ 1 and that F+ and F− have the homotopy
type of a bouquet of m-spheres. Then H0(L) = Z, H l(L) = 0 for l 6= 0,m, 2m, and Hm(L) is free
abelian. Furthermore H2m(L) ' Z/2Z if m = 1 and L is non-orientable, otherwise H2m(L) ' Z.
b) Suppose that n = 2m + 2,m ≥ 1 and that F+ or F− has the homotopy type of a bouquet
of m-spheres. Then H0(K) = Z, H l(K) = 0 for l 6= 0,m, 2m, and Hm(K) is free abelian.
Furthermore H2m(K) ' Z/2Z if m = 1 and K is non-orientable, otherwise H2m(K) ' Z.

Proof. We know that K 6= ∅, otherwise F+ and F− are compact which gives the wrong homology.
a) The exact sequence

0→ H0(L)→ H0(F+)⊕H0(F−)→ H0(K)

shows that L is connected. This implies the statement for m = 1.
In the case m ≥ 2 we know that F+ and F− are simply connected, hence orientable. So we have
for 0 < l < 2m an exact sequence

H l−1(F+)→ H2m−l(F−)→ H l(L)→ H l(F+)→ H2m−1−l(F−)

because H2m−l(F−) ' H l(F−, ∂F−).
For l 6= m we deduce H l(L) = 0. For l = m we obtain

0→ Hm(F−)→ Hm(L)→ Hm(F+)→ 0,

so Hm(L) is free abelian. Of course, H2m(L) ' Z.
b) Assume that the hypothesis is true for F+. Again, F+ is orientable if m ≥ 2. Note that

H2m−l(F+) ' H l+1(F+, ∂F+).
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Suppose first that F+ is orientable. Then we have an exact sequence

H0(F+)→ H0(K)→ H2m(F+).

Since H2m(F+) = 0 we obtain that K is connected.
If F+ is non-orientable we have that m = 1, and the universal covering of F+ is contractible.

Therefore the orientation covering of F+ has the homotopy type of a bouquet of 1-spheres, too.
We conclude as before that its boundary is connected. So K is connected, too.

So we must only look at the case m ≥ 2. For 0 < l < 2m, we have an exact sequence

H2m+1−l(F+)→ H l(F+)→ H l(K)→ H2m−l(F+)→ H l+1(F+)

For l 6= m we have
H l(F+) = H2m−l(F+) = 0

hence H l(K) = 0.
For l = m we have an exact sequence

0→ Hm(F+)→ Hm(K)→ Hm(F+)→ 0

which implies that Hm(K) is free abelian. �

Example 3.4: a) g : (Cm+1, 0)→ (C, 0) holomorphic with isolated singularity,

X := Cm+1 ∩ {Img = 0}, f := Re g, and n = 2m+ 1.

We obtain that L := Sε ∩ {Img = 0} is a compact manifold of dimension 2m,

H0(L) = H2m(L) = Z,
Hm(L) free abelian of rank 2µ, µ = Milnor number of g.

b) X = Cm+1, f = Img, which leads with K instead of L to the same result as before,
because the Milnor fibres of f and g have the same homotopy type. See Lemma 5.1 below.

4. Euler characteristic of the real Milnor fibre

Using resolution of singularities we can calculate the Euler characteristic of the Milnor fibre(s).

In the situation of section 2, we can put Y := X ∩ {f1 = . . . = fk−1 = 0}. Then the Milnor
fibres of fk : (Y, 0) → (R, 0) coincide with the one of f : (X, 0) → (Rk, 0), so we can reduce to
the case k = 1 with F+ ≈ F−. So it is sufficient to look at the case k = 1 (cf. Example 3.4a).

Let us assume k = 1. Choose an embedded resolution π : X ′ → X of f−1({0}) ⊂ X. Then
(f ◦ π)−1({0}) is a divisor with normal crossing, it has a natural stratification. Let Sli, l being
the codimension of the stratum, be the strata contained in π−1({0}). Locally at a point of this
stratum, f ◦ π = εxν11 · . . . · x

νl
l with respect to suitable local coordinates, ε = ±1.

Put:
αli := 2l−1 if there is a j such that νj is odd,
αli := 2l if ν1, . . . , νl are even, ε = 1,
αli := 0 if ν1, . . . , νl are even, ε = −1.

Theorem 4.1: χ(F+) =
∑
l,i αli(−1)n−lχ(Sli).

Proof. (cf. [CF] in the case X = Rn) Let Ul be a suitable closed neighbourhood of the union of
strata of codimension ≥ l. More precisely, put

Ul := {x ∈ X ′ |ψl(x) ≤ εl},
where ψl : X ′ → [0,∞[ is a real analytic function whose zero set is the union of strata of
codimension ≥ l, and where 0 < ε1 � ε2 � . . . � εn � 1, and suppose 0 < t � ε1. Put
U l := Ul ∪ . . . ∪ Un. Then each connected component of Ul \ U l+1 is the total space of a
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topological fibre bundle over Sli \ U l+1, the fibre being the normal slice with respect to Sli for
some i. Note that Sli \U l+1 has the same homotopy type as Sli. The normal slice N of Sli at p
is homeomorphic to Rl. Near p we can write f ◦ π as above. Then

N ∩ {f ◦ π = t} = {x ∈ Rl | εxν11 · . . . · x
νl
l = t}, 0 < t� 1.

If there is a j such that νj is odd, we may assume j = l, then we can write the right hand side
as the graph of a function defined on (R∗)l−1. This set is the disjoint union of 2l−1 contractible
components.

If all νj are even, ε = −1, the set is empty.

If all νj are even, ε = 1, we get the disjoint union of two graphs of functions defined on the
same set as above, so we obtain 2l contractible components.

Therefore the Euler characteristic of N ∩ {f ◦ π = t}, t > 0, is αli.

Now
F+ ∼ Dε ∩X ∩ {f > 0} ∼ π−1(Dε ∩X ∩ {f > 0})

If we vary ε (resp. ε1, . . . , εn) we see that

π−1(Dε ∩X ∩ {f > 0}) ∼ U1 ∩ {f ◦ π > 0} ∼ U1 ∩ {f ◦ π = t}

Furthermore, U1 =
·⋃

(Ul − U l+1), hence

χ(F+) = χ({f ◦ π = t} ∩ U1) =
∑
l

χc({f ◦ π = t} ∩ (Ul \ U l+1))

=
∑
l,i

αliχc(Sli) =
∑
l,i

αli(−1)n−lχ(Sli)

Here χc is the Euler characteristic with compact support. �

It is easier to calculate χ(F+) + χ(F−):

Corollary 4.2: χ(F+)+χ(F−) =
∑
l,i 2l(−1)n−lχ(Sli), and so, if χ(F+) = χ(F−) (in particular

if n is even), then

χ(F+) =
∑
l,i

2l−1(−1)n−lχ(Sli).

The first statement of the corollary can also be proved directly, without using the local
description of f ◦ π: note that (R∗)l has 2l contractible components.

By the way, we can calculate χ(K) and χ(L) using the same resolution:

Let us denote by S′li those strata Sli which are contained in the strict transform of f−1(0),
i.e., in the closure of π−1(f−1({0}) \ {0}), S′′li the remaining ones. Then:

χ(K) =
∑

2l−1(−1)n−lχ(S′li),

χ(L) =
∑

2l−1(−1)n−lχ(S′li) +
∑

2l(−1)n−lχ(S′′li)

which agrees with the formula χ(L) + χ(K) = χ(F+) + χ(F−) proved before (Theorem 3.1).

In the case of L, note that in the normal slice we have to look at N \ π−1(0) which differs
from N \ (f ◦ π)−1(0) if we are at a point of the strict transform of f = 0: then we have 2l−1

instead of 2l contractible components.
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Using the formula for χ(K) we obtain an easier formula for χ(F+) if n is even: Then

χ(F+) = χ(F−) =
∑

2l−2(−1)n−lχ(S′li),

because χ(K) = 2χ(F+).

5. Comparison of Milnor fibres of mappings (resp. functions)

There is another connection between the cases k ≥ 2 and k = 1 in section 2 (resp. 3):

Let us take up the assumptions of section 2 (in particular, k ≥ 2) and write χ(f) instead of
χ(F ). Similarly in 3: χ(f)+ instead of χ(F+).

Lemma 5.1: For 0 < α � ε � 1, the inclusion of X ∩Dε ∩ {f1 = . . . = fk−1 = 0, fk = α} in
X ∩Dε ∩ f−1k (α) is a homotopy equivalence.

Proof. Let φ, ψ be defined as in the proof of Lemma 1.2. Compare

X ∩Dε ∩ {‖f‖ ≤ α, fk > 0}

with X ∩Bε ∩ {fk > 0}. Choose a vector field v such that, on X ∩Dε ∩ {‖f‖ ≥ α}:

dφx(v(x)) = 1, dψx(v(x)) > 0,

and near fk = 0 : (dfk)x(v(x)) = 0. This is possible: assume that we have a point p such that
dψp = λdφp with λ < 0, we get a contradiction because of the Curve Selection Lemma. Similarly,
suppose that near fk = 0 there is a p, ‖f(p)‖ ≥ α, such that dψp = λdφp + µ(dfk)p with λ ≤ 0
we would get also such a point with fk(p) = 0, which contradicts the Curve Selection Lemma.
So we obtain that

X ∩Dε ∩ {‖f‖ ≤ α, fk > 0} ∼ X ∩Dε ∩ {fk > 0}
Moreover, f : X ∩Dε ∩ {‖f‖ ≤ α, fk > 0} → {t ∈ Bα | tk > 0} is a trivial fibration, so

X ∩Dε ∩ {‖f‖ ≤ α, fk > 0} ∼ X ∩Dε ∩ {f = (0, . . . , 0, α)}

Now we can find a vector field w on {fk > 0} such that, on X ∩Dε ∩ {fk > 0}:

(dfk)x(w(x)) = 1, dψx(w(x)) > 0,

because of the Curve Selection Lemma. Therefore

X ∩Dε ∩ {fk > 0} ∼ X ∩Dε ∩ {0 < fk ≤ α}.

Finally, X has an isolated singularity at 0, so fk : X ∩Dε ∩ {0 < fk ≤ α} →]0, α] is a trivial
fibration, hence

X ∩Dε ∩ {0 < fk ≤ α} ∼ X ∩Dε ∩ {fk = α}.
�

In the case of X = Rn this is a consequence of a conjecture by J.Milnor [M], p. 100, see also
[ADD].

Corollary 5.2: χ(f) = χ(f1)+ = χ(f1)− = . . . = χ(fk)+ = χ(fk)−.

Now let us turn to the special case X = Rn. Then we have the following formula:
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Theorem 5.3: (G.Khimshiashvili [K]) If k = 1, χ(f)+ = 1 − (−1)ndeg0∇f , where ∇f is the

gradient of f and deg0∇f is the topological degree of ∇f|∇f | : Sε → S1.

Replacing f by −f we obtain that χ(f)− = 1− deg0∇f
Note that L is a sphere in our case. This implies altogether:

Corollary 5.4: ([ADD])

a) χ(f) = 1− deg0∇f1 = . . . = 1− deg0∇fk.

b) If n is odd, deg0∇f1 = . . . = deg0∇fk = 0, so χ(f) = 1.

Proof. b) By the Corollary before, χ(fi)+ = χ(fi)−, so according to Khimshiashvili: deg0∇fi = 0,
so χ(f) = χ(fi)+ = 1. �

6. Global analogue

a) Now let us pass to the global case. Let X be a compactifiable real analytic (e.g. a real
algebraic) subspace of RN which is purely n-dimensional, f : X → Rk a compactifiable real
analytic mapping. Let C be the set of critical points of f ; recall that singular points of X are
automatically critical points of f . Assume that

(i) the set of critical points of f which are contained in f−1({0}) is compact,

(ii) for 0 < α� 1 the set C ∩ f−1(Bα \ {0}) is closed in X, i.e. there is no convergent sequence
(pn)→ p∗ of critical points of f such that f(pn) 6= 0 for all n, p∗ ∈ X, f(p∗) = 0.

Then we get that for 0 < α� 1
R � 1 the mapping

f : X ∩DR ∩ f−1(Bα \ {0})→ Bα \ {0}

is a locally trivial fibration:
Assume R� 0. Then X is smooth along X∩SR, SR intersects X transversally, and f |X∩SR

has no critical point which is mapped to 0. Therefore f |X ∩SR has no critical points above Bα.
Finally, f has no critical points in X ∩DR ∩ f−1(Bα \ {0}).

As at the beginning of section 4 we may reduce to the case k = 1. So assume k = 1; then we
get fibres F+ and F−.

Let us fix a compactification f̄ : X̄ → R and let π : X̄ ′ → X̄ be an embedded resolution of
f̄−1(0) ∪ C ∪X∞ ⊂ X̄ where X∞ := X̄ \X. We can achieve that

π : π−1(f−1({0}) \ C)→ f−1({0}) \ C

is an isomorphism. Put X ′ := π−1(X). We have a natural stratification of (f̄ ◦ π)−1(0) such
that π−1(f−1({0})) is a union of strata. Locally at a point of such a stratum of codimension l
in X̄ ′, f̄ ◦ π = εxν11 · . . . · x

νλ
λ , λ ≤ l, with respect to suitable local coordinates, ε = ±1.

Put:
αli := 2l−1 if there is a j such that νj is odd,

αli := 2l if ν1, . . . , νλ are even, ε = 1,

αli := 0 if ν1, . . . , νλ are even, ε = −1.

Then we have, similarly as in section 4:

Theorem 6.1: χ(F+) =
∑
l,i αli(−1)l+1χ(Sli), where the sum extends over all strata contained

in π−1(f−1({0})).
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Proof. Let Ul be a suitable closed neighbourhood of the union of (X̄ ′ \X ′)∩ (f̄ ◦ π)−1({0}) and
all strata of π−1(f−1({0})) of codimension ≥ l, U l := Ul ∪ . . . Un+1. Then

χ(F+) = χ((f̄ ◦ π)−1({t}) \ Un+1) = (−1)n−1χc((f̄ ◦ π)−1({t}) \ Un+1),

and

χc((f̄ ◦ π)−1({t}) \ Un+1) =

n∑
l=1

χc((f̄ ◦ π)−1({t}) ∩ Ul \ U l+1)

We continue similarly as in the proof of Theorem 4.1. �

We have a similar formula for K := f−1(0) ∩ SR, R� 0:
χ(K) =

∑
l,i 2l−1(−1)n−lχ(Sli), where the sum extends to all strata contained in

(X̄ ′ \X ′) ∩X ′ ∩ (f̄ ◦ π)−1(0).

If n is even, this implies a simpler formula for χ(F+) = χ(F−) because

χ(K) = 2χ(F+) = 2χ(F−) :

χ(K) = χ(∂F+) = χ(F+)− χ(F+, ∂F+) = 2χ(F+)

because of Poincaré duality. Similarly for F−.

b) The fibration studied in a) is not so natural because it ignores vanishing cycles at infinity.

So let us suppose instead that X is a compactifiable real analytic space, f : X → Rk compact-
ifiable real analytic, and that f is a submersive mapping between smooth spaces above Bα \ {0}
for 0 < α� 1. Let f̄ : X̄ → Rk be a compactification of f . Put X∞ := X̄ \X. We can stratify
X̄ and Rk subanalytically so that X is a union of strata and f̄ is a stratified mapping.

Let T be a stratum of Rk such that T 6= {0}, 0 ∈ T . Because of Thom’s first isotopy lemma
we know that f : f−1(T )→ T defines a locally trivial fibration.

We want to calculate the Euler characteristic of the typical fibre F of this fibration. Since T
is subanalytic we can find by the Curve Selection Lemma a real analytic curve p :] − c, c[→ Rk
such that p(0) = 0, p(t) ∈ T for t > 0. We apply base change to f with respect to p. In this way
we reduce to the case k = 1. We need only to look at F+.

So let us look at the case k = 1. Then we obtain that f is a locally trivial fibration above
Bα \ {0}, we have two typical fibres F+, F−. Let π and αli be defined as in subsection a).

Theorem 6.2: χ(F+) =
∑
l,i αli(−1)l+1χ(Sli), where the sum extends over all strata of

(f̄ ◦ π)−1({0}) which are not contained in the closure of π−1(X∞ \ (f̄ ◦ π)−1({0})).

Proof. Analogous to the one of Theorem 6.1. �

Again we can find a simpler formula if n is even. First fix t, 0 < t ≤ α. For R � 1
α we

have that f−1({t}) ∩DR is a deformation retract of f−1({t}). Now we have a formula for the
boundary:

χ(f−1({t}) ∩ SR) =
∑
l,i

αli(−1)n−lχ(Sli),

where the sum extends over all strata of (f̄ ◦ π)−1({0}) which are contained in the closure of
π−1(X∞ \ (f̄ ◦ π)−1({0})).

If n is even we have that χ(f−1({t}) ∩ SR) = 2χ(f−1({t}) ∩DR) = 2χ(F+).
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c) Assume that hypothesis (i) of part a) as well as the hypothesis of b) are given. Then we
have hypothesis (ii) of part a), too. The fibrations in a) and b) may be different due to the
presence of vanishing cycles at infinity, as shown by the real version of the Broughton example.
Here is a different example where the fibres F+ and F− in b) have a different Euler characteristic:

Put X := R2, f : X → R: f(x, y) := −x(xy2 − 1).

Then f−1({0}) is the disjoint union of {x = 0}, {y < 0, x = 1
y2 }, {y > 0, x = 1

y2 };
for t > 0,

f−1({t}) =

{
x ≥ t, y = ±

√
x− t
x

}
;

for t < 0, f−1({t}) is the disjoint union of
{
x > 0, y =

√
x−t
x

}
,
{
x > 0, y = −

√
x−t
x

}
and{

t ≤ x < 0, y = ±
√
x−t
x

}
.

So χ(f−1({0})) = 3, χ(f−1({t})) = 1 for t > 0 and χ(f−1({t})) = 3 for t < 0. Note that f has
no critical points, so the fibre in a) has the same Euler characteristic as f−1({0}). Altogether,
0 is not a critical value but an atypical one.
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LIGHTLIKE HYPERSURFACES ALONG SPACELIKE SUBMANIFOLDS IN

DE SITTER SPACE

SHYUICHI IZUMIYA AND TAKAMI SATO

Abstract. We consider the singularities of lightlike hypersurfaces along spacelike submani-
folds with general codimension in de Sitter space. As an application of the theory of Legendrian

singularities, we investigate the geometric meanings of the singularities of lightlike hypersur-
faces from the viewpoint of the contact of spacelike submanifolds with de Sitter lightcones.

1. Introduction

One of the important objects in theoretical physics is the notion of lightlike hypersurfaces
because they provide good models for different types of horizons [3, 5, 20, 23]. The lightlike
hypersurfaces are constructed as ruled hypersurfaces along spacelike submanifolds whose rulings
are the lightlike geodesics. A lightlike hypersurface is also called a light sheet in theoretical
physics (cf., [2]), which plays a principal role in the quantum theory of gravity. In this paper,
we consider the singularities of lightlike hypersurfaces along spacelike submanifolds in de Sitter
space which is one of the Lorentz space forms. There are three kinds of Lorentz space forms:
Lorentz-Minkowski space is a flat Lorentz space form, de Sitter space is a positively curved one,
and anti-de Sitter space is a negatively curved one.

On the other hand, tools in the theory of singularities have proven to be useful in the de-
scription of geometrical properties of submanifolds immersed in different ambient spaces, from
both the local and global viewpoint [6, 7, 9, 10, 11, 13, 16, 18]. The natural connection between
geometry and singularities relies on the basic fact that the contacts of a submanifold with the
models of the ambient space can be described by means of the analysis of the singularities of
appropriate families of contact functions, or equivalently, of their associated Legendrian maps
([1, 21, 24]). When working in a Lorentz space form, the properties associated to the contacts of
a given submanifold with lightcones have a special relevance. In [4, 8, 11, 17], a framework for the
study of spacelike submanifolds with codimension two in Lorentz space forms was constructed,
and a Lorentz invariant concerning their contacts with models related to lightlike hyperplanes
was discovered. The geometry described in this framework is called the lightlike geometry of
spacelike submanifolds with codimension two. By using the invariants of lightlike geometry,
the singularities of lightlike hypersurfaces along spacelike submanifolds with codimension two
in Lorentz-Minkowski space or de Sitter space were investigated in [10, 12, 16]. However, the
situation is rather complicated for the general codimensional case. The main difference from the
Euclidean space (or, Hyperbolic space) case is the fiber of the canal hypersurface of a spacelike
submanifold is neither connected nor compact. In order to avoid the above difficulty, we arbi-
trarily choose a timelike future directed unit normal vector field along the spacelike submanifold,
which always exists for an orientable submanifold (cf., [13, 14, 15]). Then we construct the unit
spherical normal bundle relative to the above timeline unit normal vector field, which can be
considered as a codimension two spacelike canal submanifold of the ambient Lorentz space form.

2010 Mathematics Subject Classification. 53C50, 58K99.
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Therefore, we can apply the idea of the lightlike geometry of spacelike submanifolds with codi-
mension two in Lorentz space-forms. Recently, we have applied this framework and investigated
the geometric meanings of the singularities of lightlike hypersurfaces along spacelike subman-
ifolds in Lorentz-Minkowski space or anti-de Sitter space from the viewpoint of the theory of
Legendrian singularities [14, 15]. In this paper, we consider spacelike submanifolds with general
codimensions in de Sitter space applying an idea similar to [14, 15].

In §2 the basic notions of Lorentz-Minkowski space are described. We explain the differential
geometry of spacelike submanifolds with general codimension in de Sitter space in §3. The
notion of lightlike hypersurfaces is introduced in §4 and investigated the basic properties. In §5
we investigate the geometric meanings of the singularities of lightlike hypersurfaces in de Sitter
space from the viewpoint of the theory of contact with de Sitter lightcones and the theory of
Legendrian singularities. We review the classification result of Kasedou [17] on singularities of
lightlike hypersurfaces along spacelike surfaces in de Sitter 4-space in §5.

2. Basic notions

In this section we prepare basic notions on Lorentz-Minkowski space. Let Rn+1 be an (n+1)-
dimensional cartesian space. For any vectors x = (x0, x1, . . . , xn), y = (y0, y1, . . . , yn) ∈ Rn+1,
the pseudo scalar product of x and y is defined by 〈x,y〉 = −x0y0 +

∑n
i=1 xiyi. The space

(Rn+1, 〈, 〉) is called Lorentz-Minkowski (n + 1)-space and denoted by Rn+1
1 . We say that a

vector x in Rn+1
1 \ {0} is spacelike, lightlike or timelike if 〈x,x〉 > 0,= 0 or < 0 respectively.

The norm of the vector x ∈ Rn+1
1 is defined by ‖x‖ =

√
|〈x,x〉|. We define a hyperplane with

pseudo normal v by HP (v, c) = {x ∈ Rn+1
1 | 〈x,v〉 = c }, where v ∈ Rn+1

1 \ {0} and c is
a real number. We call HP (v, c) a spacelike hyperplane, a timelike hyperplane or a lightlike
hyperplane if v is timelike, spacelike or lightlike respectively. We have the following three kinds
of pseudo-spheres in Rn+1

1 : The hyperbolic n-space is defined by

Hn(−1) = {x ∈ Rn+1
1 | 〈x,x〉 = −1},

the de Sitter n-space by
Sn1 = {x ∈ Rn+1

1 |〈x,x〉 = 1 }
and the (open) lightcone by

LC∗ = {x ∈ Rn+1
1 \ {0}|〈x,x〉 = 0 }.

We also define LCλ0
= {x ∈ Rn+1

1 |〈x − λ0,x − λ0〉 = 0 } which is called a lightcone with the
vertex λ0.

For any x1,x2, . . . ,xn ∈ Rn+1
1 , we define a vector x1 ∧ x2 ∧ · · · ∧ xn by

x1 ∧ x2 ∧ · · · ∧ xn =

∣∣∣∣∣∣∣∣∣∣∣

−e0 e1 · · · en
x10 x11 · · · x1n
x20 x21 · · · x2n
...

... · · ·
...

xn0 xn1 · · · xnn

∣∣∣∣∣∣∣∣∣∣∣
,

where e0, e1, . . . , en is the canonical basis of Rn+1
1 and xi = (xi0, x

i
1, . . . , x

i
n).

3. Differential geometry on spacelike submanifolds in de Sitter space

In [16] Kasedou has investigated differential geometry of spacelike submanifolds in de Sitter
space from the viewpoint of contact with de Sitter hyperhorospheres. Here we construct another
framework on differential geometry of spacelike submanifolds in de Sitter space. Let Rn+1

1 be
an oriented and time-oriented space. We choose e0 = (1, 0, . . . , 0) as a future timelike vector
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field. We consider de Sitter n-space Sn1 ⊂ Rn+1
1 . Let X : U −→ Sn1 be a spacelike embedding

of codimension k, where U ⊂ Rs (s + k = n) is an open subset. We also write M = X(U)
and identify M and U through the embedding X as usual. Since M is a spacelike submanifold
with codimension k+ 1 in Rn+1

1 , Np(M) is a (k+ 1)-dimensional Lorentzian subspace of TpRn+1
1

(cf.,[22]). On the pseudo-normal space Np(M), we have two kinds of k-dimensional pseudo
spheres:

Np(M ;−1) = {v ∈ Np(M) | 〈v,v〉 = −1 }
Np(M ; 1) = {v ∈ Np(M) | 〈v,v〉 = 1 },

so that we have two unit pseudo-spherical normal bundles over M :

N(M ;−1) =
⋃
p∈M

Np(M ;−1) and N(M ; 1) =
⋃
p∈M

Np(M ; 1).

Since M = X(U) is spacelike, e0 /∈ TpM. For any v ∈ TpRn+1
1 |M, we have v = v1 + v2, where

v1 ∈ TpM and v2 ∈ Np(M). If v is timelike, then v2 is timelike. Let

πN(M) : TRn+1
1 |M −→ N(M)

be the canonical projection. Then πN(M)(e0) is a future directed timelike normal vector field
along M. If we project πN(M)(e0) onto the normal space of TpM in TpS

n
1 , then we have a future

directed unit timelike normal vector field in TSn1 along M (even globally). We now arbitrarily
choose a future directed unit timelike normal vector field nT (u) ∈ Np(M ;−1) ∩ TpSn1 , where
p = X(u). Therefore we have the pseudo-orthonormal compliment (〈nT (u)〉R)⊥ in Np(M)∩TpSn1
which is a (k − 1)-dimensional subspace of Np(M). We define a (k − 2)-dimensional spacelike
unit sphere in Np(M) by NdS

1 (M)p[n
T ] = {ξ ∈ Np(M ; 1) | 〈ξ,nT (p)〉 = 〈ξ,X(u)〉 = 0 }. Then

we have a spacelike unit (k − 2)-spherical bundle over M with respect to nT defined by

NdS
1 (M)[nT ] =

⋃
p∈M

NdS
1 (M)p[n

T ].

Since we have T(p,ξ)N
dS
1 (M)[nT ] = TpM × TξNdS

1 (M)p[n
T ], we have the canonical Riemannian

metric on NdS
1 (M)[nT ] which is denoted by (Gij(p, ξ))16i,j6n−2.

On the other hand, we define a map LG(nT ) : NdS
1 (M)[nT ] −→ LC∗ by

LG(nT )(u, ξ) = nT (u) + ξ,

which we call the de Sitter lightcone Gauss image of NdS
1 (M)[nT ]. This map leads us to the

notions of curvatures. Let T(p,ξ)N
dS
1 (M)[nT ] be the tangent space of NdS

1 (M)[nT ] at (p, ξ).
Under the canonical identification

(LG(nT )∗TRn+1
1 )(p,ξ) = T(nT (p)+ξ)Rn+1

1 ≡ TpRn+1
1 ,

we have
T(p,ξ)N

dS
1 (M)[nT ] = TpM ⊕ TξSk−2 ⊂ TpM ⊕Np(M) = TpRn+1

1 ,

where TξS
k−2 ⊂ TξNp(M) ≡ Np(M) and p = X(u). Let

Πt : LG(nT )∗TRn+1
1 = TN1(M)[nT ]⊕ Rk+1 −→ TNdS

1 (M)[nT ]

be the canonical projection. Then we have a linear transformation

S`(n
T )(p,ξ) = −Πt

LG(nT )(p,ξ) ◦ d(p,ξ)LG(nT ) : T(p,ξ)N
dS
1 (M)[nT ] −→ T(p,ξ)N

dS
1 (M)[nT ],

which is called the de Sitter lightcone shape operator of NdS
1 (M)[nT ] at (p, ξ). Consider the

eigenvalues of S`(n
T )(p,ξ), (i = 1, . . . , n − 2). Then we write κ`(n

T )i(p, ξ), (i = 1, . . . , s) for

the eigenvalues whose eigenvectors belong to TpM and κ`(n
T )i(p, ξ), (i = s + 1, . . . n − 2) for
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the eigenvalues whose eigenvectors belong to the tangent space of the fiber of NdS
1 (M)[nT ]. By

exactly the same arguments as those in [13, 15], we have κ`(n
T )i(p, ξ) = −1, (i = s+1, . . . n−2).

We call κ`(n
T )i(p, ξ), (i = 1, . . . , s) the de Sitter lightcone principal curvatures of M with respect

to (nT , ξ) at p ∈M.
We deduce now the lightcone Weingarten formula. Since X is a spacelike embedding, we have

a Riemannian metric (the first fundamental form ) on M = X(U) defined by

ds2 =

s∑
i=1

gijduiduj ,

where gij(u) = 〈Xui
(u),Xuj

(u)〉 for any u ∈ U. Let nS be a local section of NdS
1 (M)[nT ].

Clearly, the vectors nT (u)± nS(u) are lightlike. Here we choose nT + nS as a lightlike normal
vector field along M. We define a mapping LG(nT ,nS) : U −→ LC∗ by

LG(nT ,nS)(u) = nT (u) + nS(u).

We call it the lightcone Gauss image of M = X(U) with respect to (nT ,nS). Under the identi-
fication of M and U through X, we have the linear mapping provided by the derivative of the
lightcone Gauss image LG(nT ,nS) at each point p ∈M ,

dpLG(nT ,nS) : TpM −→ TpRn+1
1 = TpM ⊕Np(M).

Consider the orthogonal projection πt : TpM ⊕Np(M)→ Tp(M). We define

dpLG(nT ,nS)t = πt ◦ dp(nT + nS).

We call the linear transformation Sp(n
T ,nS) = −dpLG(nT ,nS)t the (nT ,nS)-shape operator

of M = X(U) at p = X(u). Let {κi(nT ,nS)(p)}si=1 be the eigenvalues of Sp(n
T ,nS), which are

called the lightcone principal curvatures with respect to (nT ,nS) at p = X(u). Then we have a
lightcone second fundamental invariant with respect to (nT ,nS) defined by

hij(n
T ,nS)(u) = 〈−(nT + nS)ui

(u),Xuj
(u)〉

for any u ∈ U. By the similar arguments to those in the proof of [11, Proposition 3.2], we have
the following proposition.

Proposition 3.1. Let {X,nT ,nS1 , . . . ,n
S
k−2} be a pseudo-orthonormal frame of N(M) with

nSk−2 = nS . Then we have the following lightcone Weingarten formula :

(a) LG(nT ,nS)ui = 〈nTui
,nS〉(nT + nS) +

∑k−3
`=1 〈(nT + nS)ui ,n

S
` 〉nS` −

∑s
j=1 h

j
i (n

T ,nS)Xuj

(b) πt ◦ LG(nT ,nS)ui
= −

∑s
j=1 h

j
i (n

T ,nS)Xuj
.

Here
(
hji (n

T ,nS)
)

=
(
hik(nT ,nS)

) (
gkj
)

and
(
gkj
)

= (gkj)
−1
.

Since 〈−(nT + nS)(u),Xuj
(u)〉 = 0, we have hij(n

T ,nS)(u) = 〈nT (u) + nS(u),Xuiuj
(u)〉.

Therefore the lightcone second fundamental invariant at a point p0 = X(u0) depends only on the
values nT (u0)+nS(u0) and Xuiuj (u0), respectively. Thus, the lightcone curvatures also depend

only on nT (u0) + nS(u0), Xui
(u0) and Xuiuj

(u0), independent of the derivation of the vector

fields nT and nS . We write κi(n
T
0 ,n

S
0 )(p0) (i = 1, . . . , s) as the lightcone principal curvatures

at p0 = X(u0) with respect to (nT0 ,n
S
0 ) = (nT (u0),nS(u0)). So we write that

hij(n
T , ξ)(u0) = hij(n

T ,nS)(u0)

and κ`(n
T )i(ξ, p0) = κi(n

T
0 ,n

S
0 )(p0), where ξ = nS(u0) for some local extension nT (u) of ξ.

Let κ`(n
T )i(p, ξ) be the eigenvalues of S`(n

T )(p,ξ), (i = 1, . . . , n− 1). Here, we write

κ`(n
T )i(p, ξ), (i = 1, . . . , s)
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for the eigenvalues belonging to the eigenvectors on TpM and

κ`(n
T )i(p, ξ), (i = s+ 1, . . . n− 1)

for the eigenvalues belonging to the eigenvectors on the tangent space of the fiber of N1(M)[nT ].
Then we have the following proposition.

Proposition 3.2. We choose a (local) pseudo-orthonormal frame {X,nT ,nS1 , . . . ,n
S
k−2} of

N(M) with nSk−2 = nS . For p0 = X(u0) and ξ0 = nS(u0), we have

κ`(n
T )i(p0, ξ0) = κi(n

T ,nS)(u0), (i = 1, . . . , s)

and κ`(n
T )i(p0, ξ0) = −1, (i = s+ 1, . . . n− 1).

Proof. Since {X,nT ,nS1 , . . . ,n
S
k−2} is a pseudo-orthonormal frame of N(M), we have

〈X(u0), ξ0〉 = 〈nT (u0), ξ0〉 = 〈nSi (u0), ξ0〉 = 0.

Therefore, we have

TξS
k−2 = 〈nS1 (u0), . . . ,nSk−2(u0)〉.

Using this orthonormal basis of Tξ0S
k−2, the canonical Riemannian metric Gij(p0, ξ0) is repre-

sented by

(Gij(p0, ξ)) =

(
gij(p0) 0

0 Ik−2

)
,

where gij(p0) = 〈Xui
(u0),Xuj

(u0)〉.
On the other hand, by Proposition 3.1, we have

−
s∑
j=1

hji (n
T ,nS)(u0)Xuj

= LG(nT ,nS)ui
(u0) = dp0LG(nT ,nS)

(
∂

∂ui

)
,

so that we have

S`(n
T )

(p0,ξ0)

(
∂

∂ui

)
=

s∑
j=1

hji (n
T ,nS)(u0)Xuj .

Therefore, the representation matrix of S`(n
T )

(p0,ξ0)
with respect to the basis

{Xu1(u0), . . . ,Xus(u0),nS1 (u0), . . . ,nSk−2(u0)}

of T
(p0,ξ0)

(NdS
1 (M)[nT ]) is of the form(

hji (n
T ,nS)(u0) ∗

0 −Ik−2

)
.

It follows that the eigenvalues of this matrix are λi = κi(n
T ,nS)(u0), (i = 1, . . . , s) and λi = −1,

(i = s+ 1, . . . , n− 1). This completes the proof. 2

We call κ`(n
T )i(p, ξ), (i = 1, . . . , s) the lightcone principal curvatures of M with respect to

(nT , ξ) at p ∈M.
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4. Lightlike hypersurfaces in de Sitter space

We define a hypersurface LHM (nT ) : NdS
1 (M)[nT ]× R −→ Sn1 by

LHM ((p, ξ), µ) = X(u) + µ(nT + ξ)(u) = X(u) + µLG(nT )(u, ξ),

where p = X(u), which is called the de Sitter lightlike hypersurface along M relative to nT . We
introduce the notion of height functions on spacelike submanifold, which is useful for the study of
singularities of de Sitter lightlike hypersurfaces. We define a family of functionsH : M×Sn1 −→ R
on a spacelike submanifold M = X(U) by

H(p,λ) = H(u,λ) = 〈X(u),λ〉 − 1,

where p = X(u). We call H the de Sitter height function (briefly, dS-height function) on the
spacelike submanifold M. For any fixed λ0 ∈ Sn1 , we write hλ0

(p) = H(p,λ0) and have the
following proposition.

Proposition 4.1. Suppose that p0 = X(u0) 6= λ0. Then we have the following:
(1) hλ0(p0) = ∂hλ0/∂ui(p0) = 0, (i = 1, . . . , s) if and only if there exist ξ0 ∈ NdS

1 (M)p0 [nT ]
and µ0 ∈ R \ {0} such that

λ0 = X(u0) + µ0LG(nT )(u0, ξ0) = LHM (nT )((p0, ξ0), µ0).

(2) hλ0
(p0) = ∂hλ0

/∂ui(p0) = detH(hλ0
)(p0) = 0 (i = 1, . . . , s) if and only if there exist

ξ0 ∈ NdS
1 (M)p0 [nT ] and µ0 ∈ R \ {0} such that

λ0 = LHM (nT )((p0, ξ0), µ0)

and 1/µ is one of the non-zero lightcone principal curvatures κ`(n
T )i(p0, ξ0), (i = 1, . . . , s).

(3) With condition (2), rankH(hλ0
)(p0) = 0 if and only if p0 = X(u0) is a non-flat (nT (u0), ξ0)-

umbilical point.

Proof. (1) We write that p = X(u). The condition hλ0(p) = 〈X(u),λ0〉 − 1 = 0 means that

〈X(u)− λ0,X(u)− λ0〉 = 〈X(u),X(u)〉 − 2〈X(u),λ0〉+ 〈λ0,λ0〉
= −2(−1 + 〈X(u),λ0〉) = 0,

so that X(u) − λ0 ∈ LC∗. Since ∂hλ0
/∂ui(p) = 〈Xui

(u),λ0〉 and 〈Xui
,X〉 = 0, we have

〈Xui(u),λ0〉 = −〈Xui(u),X(u)− λ0〉. Therefore, ∂hλ0/∂ui(p) = 0 if and only if

X(u)− λ0 ∈ NpM.

On the other hand, the condition hλ0
(p) = 〈X(u),λ0〉 − 1 = 0 implies that

〈X(u),X(u)− λ0〉 = 0.

This means that X(u) − λ0 ∈ TpSn1 . Hence hλ0
(p0) = ∂hλ0

/∂ui((p0) = 0 (i = 1, . . . , s) if and
only if X(u0)− λ0 ∈ Np0M ∩ LC∗ ∩ Tp0Sn1 . Let

v = X(u0)− λ0 ∈ Np0M ∩ LC∗ ∩ Tp0Sn1 .

If 〈nT (u0),v〉 = 0, then nT (u0) belongs to a lightlike hyperplane in the Lorentz space Tp0S
n
1 ,

so that nT (u0) is lightlike or spacelike. This contradicts the fact that nT (u0) is a timelike unit
vector. Thus, 〈nT (u0),v〉 6= 0. We set

ξ0 =
−1

〈nT (u0),v〉
v − nT (u0).
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Then we have

〈ξ0, ξ0〉 = −2
−1

〈nT (u0),v〉
〈nT (u0),v〉 − 1 = 1

〈ξ0,nT (u0)〉 =
−1

〈nT (u0),v〉
〈nT (u0),v〉+ 1 = 0,

and 〈ξ0,X(u0)〉 = 0. This means that ξ0 ∈ NdS
1 (M)p0(M)[nT ].

Since −v = 〈nT (u0),v〉(nT (u0) + ξ0), we have λ0 = X(u0) + µ0LG(nT )(p0, ξ0), where
p0 = X(u0) and µ0 = 〈nT (u0),v〉. For the converse assertion, suppose that

λ0 = X(u0) + µ0LG(nT )(p0, ξ0).

Then λ0 −X(u0) ∈ Np0(M) ∩ LC∗ and

〈λ0 −X(u0),X(u0)〉 = 〈µ0LG(nT )(p0, ξ0),X(u0)〉 = 0.

Thus we have λ0−X(u0) ∈ Np0(M)∩LC∗∩Tp0Sn1 . By the previous arguments, these conditions
are equivalent to the condition that hλ0

(p0) = ∂hλ0
/∂ui((p0) = 0 (i = 1, . . . , s).

(2) By a straightforward calculation, we have

∂2hλ0

∂ui∂uj
(u) = 〈Xuiuj

,λ0〉.

Under the condition that λ0 = X(u0) + µ0(nT (u0) + ξ0), we have

∂2hλ0

∂ui∂uj
(u0) = 〈Xuiuj

(u0),X(u0)〉+ µ0〈Xuiuj
(u0), (nT (u0) + ξ0)〉.

Since 〈Xui
,X〉 = 0, we have 〈Xuiuj

,X〉 = −〈Xui
,Xuj

〉. Thus, we have(
∂2hλ0

∂ui∂u`
(u0)

)(
gj`(u0)

)
=
(
µ0h

j
i (n

T , ξ0)(p0)− δji
)
.

It follows that detH(g)(p0) = 0 if and only if 1/µ0 is an eigenvalue of (hij(n
T , ξ0)(p0)), which is

equal to one of the lightcone principal curvatures κ`(n
T )i(p0, ξ0), (i = 1, . . . , s).

(3) By the above calculation, rankH(hλ0)(p0) = 0 if and only if (hij(n
T )(p0, ξ0)) = 1

µ0
(δji ),

where 1/µ0 = κ`(n
T )i(p0, ξ0), (i = 1, . . . , s). This means that p0 = X(u0) is an (nT (u0), ξ0)-

umbilical point. 2

In order to understand the geometric meanings of the assertions of Proposition 4.1, we
briefly review the theory of Legendrian singularities For detailed expressions, see [1, 24]. Let
π : PT ∗(Rn+1) −→ Rn+1 be the projective cotangent bundle with its canonical contact struc-
ture. We next review the geometric properties of this bundle. Consider the tangent bundle
τ : TPT ∗(Rn+) → PT ∗(Rn+1) and the differential map dπ : TPT ∗(Rn+1) → TRn+1 of π. For
any X ∈ TPT ∗(Rn+1), there exists an element α ∈ T ∗(Rn+1

1 such that τ(X) = [α]. For an
element V ∈ Tx(Rn+1), the property α(V ) = 0 does not depend on the choice of representative
of the class [α]. Thus we can define the canonical contact structure on PT ∗(Rn+1) by

K = {X ∈ TPT ∗(Rn+1) | τ(X)(dπ(X)) = 0}.

We have the trivialization PT ∗(Rn+1) ∼= Rn+1 × Pn(R)∗, and call

((v0, v1, . . . , vn), [ξ0 : ξ1 : · · · : ξn])
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homogeneous coordinates of PT ∗(Rn+1), where [ξ0 : ξ1 : · · · : ξn] are the homogeneous coordinates
of the dual projective space Pn(R)∗. It is easy to show that X ∈ K(x,[ξ]) if and only if

n∑
i=0

µiξi = 0,

where dπ̃(X) =
∑n
i=0 µi∂/∂vi. An immersion i : L → PT ∗(Rn+1) is said to be a Legendrian

immersion if dimL = n and diq(TqL) ⊂ Ki(q) for any q ∈ L. The map π ◦ i is also called the
Legendrian map of i and the set W (i) = imageπ ◦ i, the wave front set of i. Moreover, i (or, the
image of i) is called the Legendrian lift of W (i).

Let F : (Rk × Rn+1,0) −→ (R,0) be a function germ. We say that F is a Morse family of
hypersurfaces if the map germ

∆∗F =

(
F,
∂F

∂q1
, . . . ,

∂F

∂qk

)
: (Rk × Rn+1,0) −→ (R× Rk,0)

is submersive, where (q, x) = (q1, . . . , qk, x0, . . . , xn) ∈ (Rk × Rn+1,0). In this case we have a
smooth n-dimensional submanifold

Σ∗(F ) =
{

(q, x) ∈ (Rk × Rn+1,0)
∣∣∣ F (q, x) =

∂F

∂q1
(q, x) = · · · = ∂F

∂qk
(q, x) = 0

}
and the map germ LF : (Σ∗(F ),0) −→ PT ∗Rn+1 defined by

LF (q, x) =

(
x,

[
∂F

∂x0
(q, x) : · · · : ∂F

∂xn
(q, x)

])
is a Legendrian immersion. We call F a generating family of LF (Σ∗(F )), and the wave front set
is given by W (LF )= πn(Σ∗(F )), where πn : Rk ×Rn −→ Rn is the canonical projection. In the
theory of unfoldings of function germs, the wave front set W (LF ) is called a discriminant set of
F, which is also denoted by DF .

By the assertion (2) of Proposition 4.1, a singular point of the de Sitter lightlike hypersurface is
a point λ0 = X(u0) +µ0(nT +ξ0)(u0) for p0 = X(u0) and µ0 = 1/κ`(n

T )i(p0, ξ0), i = 1, . . . .s).
Then we have the following corollary.

Corollary 4.2. The critical value of LHM (nT ) is the point

λ = X(u) +
1

κ`(nT )i(p, ξ)
LG(nT )(u, ξ),

where p = X(u) and κ`(n
T )i(p, ξ) 6= 0.

For a non-zero lightcone principal curvature κ`(n
T )i(p0, ξ0) 6= 0, we have an open subset

Oi ⊂ NdS
1 (M)[nT ] such that κ`(n

T )i(p, ξ) 6= 0. Therefore, we have a non-zero lightcone principal
curvature function κ`(n

T )i : Oi −→ R. We define a mapping LFκ`(nT )i : Oi −→ AdSn+1 by

LFκ`(nT )i(p, ξ) = X(u) +
1

κ`(nT )i(p, ξ)
NG(nT )(u, ξ),

where p = X(u). We also define

LFM (nT ) =

s⋃
i=1

{
LFκ`(nT )i(p, ξ) | (p, ξ) ∈ NdS

1 (M)[nT ] s.t. κ`(n
T )i(p, ξ) 6= 0

}
.

We call LFM (nT ) the de Sitter lightlike focal set of M = X(U) relative to nT , which is the
critical value set of the de Sitter lightlike hypersurface LHM (nT )(NdS

1 (M)[nT ] × R) along M
relative to nT .
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By Proposition 4.1, the image of the lightlike hypersurface along M relative to nT is the
discriminant set of the AdS-height function H on M . Moreover, the focal set is the critical value
set of the lightlike hypersurface along M relative to nT . Since H is independent of the choice of
nT , we have shown the following corollary.

Corollary 4.3. Let nT and nT be future directed timelike unit normal fields along M . Then
we have

LHM (nT )(N1(M)[nT ]× R) = LHM (nT )(N1(M)[nT ]× R) and LFM (nT ) = LFM (nT ).

We have the following proposition.

Proposition 4.4. For any point (u,λ) ∈ Σ∗(F ) = ∆∗H−1(0), the germ of the dS-height function
H at (u,λ) is a Morse family of hypersurfaces.

Proof. We write

X(u) = (X0(u), X1(u), . . . , Xn(u)) and λ = (λ0, λ1, . . . , λn).

We define an open subset U+
n = {λ ∈ Sn1 | λn > 0 }. For any λ ∈ U+

n , we have

λn =

√√√√λ20 −
n−1∑
i=1

λ2i + 1.

Thus, we have local coordinates on Sn1 given by (λ0, λ1, . . . , λn−1) on U+
n . By definition, we have

H(u,λ) = −X0(u)λ0 +X1(u)λ1 + · · ·+Xn−1(u)λn−1 +Xn(u)

√√√√λ20 −
n−1∑
i=1

λ2i + 1− 1.

We now prove that the mapping

∆∗H =

(
H,

∂H

∂u1
, . . . ,

∂H

∂us

)
is non-singular at (u,λ) ∈ Σ∗(F ). Indeed, the Jacobian matrix of ∆∗H is given by

Xn
λ0
λn
−X0 −Xn

λ1

λn
+X1 · · · −Xn

λn−1
λn

+Xn−1

A Xnu1

λ0
λn
−X0u1 −Xnu1

λ1
λn

+X1u1 · · · −Xnu1

λn−1
λn

+Xn−1u1

...
...

. . .
...

Xnus

λ0
λn
−X0us

−Xnus

λ1
λn

+X1us
· · · −Xnus

λn−1
λn

+Xn−1us


,

where

A =


〈Xu1

,λ〉 · · · 〈Xus
,λ〉

〈Xu1u1
,λ〉 · · · 〈Xu1us

,λ〉
...

. . .
...

〈Xusu1
,λ〉 · · · 〈Xusus

,λ〉

 .
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We now show that the rank of

B =



Xn
λ0
λn
−X0 −Xn

λ1
λn

+X1 · · · −Xn
λn−1
λn

+Xn−1

Xnu1

λ0
λn
−X0u1

−Xnu1

λ1
λn

+X1u1
· · · −Xnu1

λn−1
λn

+Xn−1u1

...
...

. . .
...

Xnus

λ0
λn
−X0us

−Xnus

λ1
λn

+X1us
· · · −Xnus

λn−1
λn

+Xn−1us


is s+ 1 at (u,λ) ∈ Σ∗(H). Since (u,λ) ∈ Σ∗(H), we have

λ = X(u) + µ

(
nT (u) +

k−1∑
i=1

ξini(u)

)
with

∑k−1
i=1 ξ

2
i = 1, where {X,nT ,nS1 , . . . ,n

S
k−1} is a pseudo-orthonormal (local) frame of N(M).

Without loss of generality, we assume that µ 6= 0 and ξk−1 6= 0. We write

nT (u) =t(nT0 (u), . . . nTn (u)), nSi (u) =t(ni0(u), . . . nin(u)).

It is enough to show that the rank of the matrix

C =



Xn
λ0
λn
−X0 −Xn

λ1

λn
+X1 · · · −Xn

λn−1
λn

+Xn−1

Xnu1

λ0
λn
−X0u1

−Xnu1

λ1
λn

+X1u1
· · · −Xnu1

λn−1
λn

+Xn−1u1

...
...

. . .
...

Xnus

λ0
λn
−X0us −Xnus

λ1
λn

+X1us · · · −Xnus

λn−1
λn

+Xn−1us

nTn
λ0
λn
− nT0 −nTn

λ1
λn

+ nT1 · · · −nTn
λn−1
λn

+ nTn−1

n1n
λ0
λn
− n10 −n1n

λ1
λn

+ n11 · · · −n1n
λn−1
λn

+ n1n−1

...
...

. . .
...

nk−2n

λ0
λn
− nk−20 −nk−2n

λ1
λn

+ nk−21 · · · −nk−2−1
λn−1
λn

+ nk−2n−1


is n at (u,λ) ∈ Σ∗(H). We write

ai =t(xi(u), xiu1
(u), . . . xius

(u), nTi (u), n1i (u), . . . , nk−2i (u)).

Then we have

C =

(
an

λ0
λn
− a0,−an

λ1
λn

+ a1, . . . ,−an
λn−1
λn

+ an−1

)
.

It follows that

det C =
λ0
λn

(−1)n−1 det(a1, . . . ,an) +
λ1
λn

(−1)n−2 det(a0,a2, . . . ,an)

+ · · ·+ (−1)0
λn−1
λn

det(a0,a1, . . . ,an−2,an) + (−1)1
λn
λn

det(a0,a1, . . . ,an−1).

Moreover, we define δi = det(a0,a1, . . . ,ai−1,ai+1, . . . ,an) for i = 0, 1, . . . , n and

a = (−(−1)n−1δ0, (−1)n−2δ1, . . . , (−1)0δn−1, (−1)1δn).

Then we have

a = (−1)n−1X ∧Xu1 ∧ · · · ∧Xus ∧ nT ∧ n1 ∧ · · · ∧ nk−2.
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We remark that a 6= 0 and a = ±‖a‖nk−1. By the above calculation, we have

det C =

〈(
λ0
λn
,
λ1
λn
, . . . ,

λn
λn

)
,a

〉
=

1

λn

〈
X(u) + µ

(
nT (u) +

k−1∑
i=1

ξini(u)

)
,a

〉

=
1

λn
×±µξk−1‖a‖ = ±µξk−1‖a‖

λn
6= 0.

Therefore the Jacobi matrix of ∆∗H is non-singular at (u,λ) ∈ Σ∗(F ).
For other local coordinates of Sn1 , we can apply the same method for the proof as the above

case. This completes the proof. 2

Here we consider the open set U+
n again. Since H is a Morse family of hypersurfaces, we have

a Legendrian immersion

LH : Σ∗(H) −→ PT ∗(Sn1 )|U+
n

by the general theory of Legendrian singularities. By definition, we have

∂H

∂λ0
(u,λ) = Xn(u)

λ0
λn
−X0(u),

∂H

∂λi
(u,λ) = −Xn(u)

λi
λn

+Xi(u), (i = 1, . . . , n− 1).

It follows that[
∂H

∂λ0
(u,λ) :

∂H

∂λ1
(u,λ) : · · · : ∂H

∂λn−1
(u,λ)

]
= [Xn(u)λ0 −X0(u)λn : X1(u)λn −Xn(u)λ1 : · · · : Xn−1(u)λn −Xn(u)λn−1].

Therefore, we have

LH(u,λ) = (λ, [Xn(u)λ0 −X0(u)λn : X1(u)λn −Xn(u)λ1 : · · · : Xn−1(u)λn −Xn(u)λn−1]),

where

Σ∗(H) = {(u,λ) | λ = LHM (nT )(p, ξ, t) ((p, ξ), t) ∈ N1(M)[nT ]× R}.
We observe that H is a generating family of the Legendrian immersion LH whose wave front is
LHM (nT )(N1(M)[nT ] × R). For other local coordinates of Sn1 , we have the similar results to
the above case.

5. Contact with de Sitter lightcones

In this section, we consider the geometric meaning of the singularities of lightlike hypersurfaces
in de Sitter space from the viewpoint of the theory of contact of submanifolds with model hyper-
surfaces in the view of Montaldi’s theory. We review the theory of contact for submanifolds in
[21]. Let Xi and Yi, i = 1, 2, be submanifolds of Rn with dimX1 = dimX2 and dimY1 = dimY2.
We say that the contact of X1 and Y1 at y1 is the same type as the contact of X2 and Y2 at y2 if
there is a diffeomorphism germ Φ : (Rn, y1) −→ (Rn, y2) such that Φ(X1) = X2 and Φ(Y1) = Y2.
In this case we write K(X1, Y1; y1) = K(X2, Y2; y2). Since this definition of contact is local, we
can replace Rn by an arbitrary n-manifold. Montaldi gives in [21] the following characteriza-
tion of contact by using K-equivalence. We say that two function germs hi : (Rs,0) −→ (R, 0)
(i = 1, 2) are K-equivalent if there exist a diffeomorphism germ ψ : (Rs,0) −→ (Rs,0) and a
function germ λ : (Rs,0) −→ R with λ(0) 6= 0 such that λ(x)h1 ◦ ψ(x) = h2(x) for x ∈ (Rs,0).

Theorem 5.1. Let Xi and Yi, i = 1, 2, be submanifolds of Rn for which dimX1 = dimX2

and dimY1 = dimY2 = n − 1. Let gi : (Xi, xi) −→ (Rn, yi) be immersion germs and let
fi : (Rn, yi) −→ (Rp, 0) be submersion germs with (Yi, yi) = (f−1i (0), yi).

Then K(X1, Y1; y1) = K(X2, Y2; y2) if and only if f1 ◦ g1 and f2 ◦ g2 are K-equivalent.
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We remark that the assertion of the above theorem holds for submanifolds Yi with general
codimension (cf., [21]).

Now, we return to the review of the theory of Legendrian singularities. We introduce a natural
equivalence relation among Legendrian submanifold germs. Let

F,G : (Rk × Rn,0) −→ (R, 0)

be Morse families of hypersurfaces. Then we say that LF (Σ∗(F )) and LG(Σ∗(G)) are Legen-
drian equivalent if there exists a contact diffeomorphism germ H : (PT ∗Rn, z) −→ (PT ∗Rn, z′)
such that H preserves fibers of π and that H(LF (Σ∗(F ))) = LG(Σ∗(G)), where z = LF (0),
z′ = LG(0). By using Legendrian equivalence, we can define the notion of Legendrian stability
for Legendrian submanifold germs in the ordinary way (see, [1, Part III]). We can interpret Leg-
endrian equivalence by using the notion of generating families. We denote by Ek the local ring of
function germs (Rk,0) −→ R with the unique maximal ideal Mk = {h ∈ Ek | h(0) = 0 }.
Let F,G : (Rk × Rn,0) −→ (R, 0) be function germs. We say that F and G are P -K-
equivalent if there exists a diffeomorphism germ Ψ : (Rk × Rn,0) −→ (Rk × Rn,0) of the
form Ψ(x, u) = (ψ1(q, x), ψ2(x)) for (q, x) ∈ (Rk × Rn,0) such that Ψ∗(〈F 〉Ek+n

) = 〈G〉Ek+n
.

Here Ψ∗ : Ek+n −→ Ek+n is the pull-back R-algebra isomorphism defined by Ψ∗(h) = h ◦Ψ. We
say that F is an infinitesimally K-versal deformation of f = F |Rk × {0} if

Ek = Te(K)(f) +

〈
∂F

∂x1
|Rk × {0}, . . . , ∂F

∂xn
|Rk × {0}

〉
R
,

where Te(K)(f) =
〈
∂f
∂q1

, . . . , ∂f∂qk , f
〉
Ek
, (see [19].) The main result in the theory of Legendrian

singularities ([1], §20.8 and [24], THEOREM 2) is the following:

Theorem 5.2. Let F,G : (Rk × Rn,0) −→ (R, 0) be Morse families of hypersurfaces. Then we
have the following assertions:
(1) LF (Σ∗(F )) and LG(Σ∗(G)) are Legendrian equivalent if and only if F and G are P -K-
equivalent,
(2) LF (Σ∗(F )) is Legendrian stable if and only if F is an infinitesimally K-versal deformation
of f = F |Rk × {0}.

Since F and G are function germs on the common space germ (Rk × Rn,0), we do not need
the notion of stably P -K-equivalence under this situation [24, page 27]. For any map germ
f : (Rk,0) −→ (Rp,0), we define the local ring of f by Qr(f) = Ek/(f∗(Mp)Ek + Mr+1

k ). We
have the following classification result of Legendrian stable germs (cf. [10, Proposition A.4])
which is the key for the purpose in this section.

Proposition 5.3. Let F,G : (Rk × Rn,0) −→ (R, 0) be Morse families of hypersurfaces and
f = F |Rk × {0}, g = G|Rk × {0}. Suppose that LF (Σ∗(F )) and LG(Σ∗(G)) are Legendrian
stable. The the following conditions are equivalent:

(1) (W (LF ),0) and (W (LG),0) are diffeomorphic as set germs,
(2) (LF (Σ∗(F )), z) and (LG(Σ∗(G)), z′) are Legendrian equivalent,
(3) Qn+1(f) and Qn+1(g) are isomorphic as R-algebras.

We have the following basic observations.

Proposition 5.4. Let M = X(U) be a spacelike submanifold with

κ`(n
T )i(p, ξ) 6= 0 for i = 1, . . . s.

We consider λ0 ∈ Sn1 . Then M ⊂ LCλ0 ∩Sn1 if and only if λ0 = LFM (nT ). In this case we have
LHM (nT )(N1(M)[nT ]) ⊂ LCλ0 ∩ Sn1 and M = X(U) is totally lightcone umbilical.
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Proof. By Proposition 3.1, κ`(n
T )i(p, ξ) 6= 0 for i = 1, . . . s if and only if

{(nT + nS), (nT + nS)u1
, . . . , (nT + nS)us

}
is linearly independent for p0 = X(u0) ∈ M and ξ0 = nS(u0), where nS : U −→ NdS

1 (M)[nT ]
is a local section. By the proof of assertion (1) of Proposition 4.1, M ⊂ LCλ0

∩ Sn1 if and only
if hλ0(u) = 0 for any u ∈ U, where hλ0(u) = H(u,λ0) is the dS-height function on M. It also
follows from Proposition 4.1 that there exists a smooth function η : U ×NdS

1 (M)[nT ] −→ R and
section nS : U −→ NdS

1 (M)[nT ] such that

X(u) = λ0 + η(u,nS(u))(nT (u)± nS(u)).

In fact, we have η(u,nS(u)) = −1/κ`(n
T )i(p, ξ) i = 1, . . . , s, where p = X(u) and ξ = nS(u).

It follows that κ`(n
T )i(p, ξ) = κ`(n

T )j(p, ξ), so that M = X(U) is totally lightcone umbilical.
Therefore we have

LHM (nT )(u,nS(u), µ) = λ0 + (µ+ η(u,nS(u))(nT (u)± nS(u)).

Hence we have LHM (nT )(N1(M)[nT ] × R) ⊂ LCλ0 . By Corollary 4.2, the critical value set of
LHM (nT )(N1(M)[nT ]×R) is the de Sitter lightlike focal set LFM (nT ). However, it is equal to
λ0 by the previous arguments.

For the converse assertion, suppose that λ0 = LFM (nT ). Then we have

λ0 = X(u) +
1

κ`(nT )i(X(u), ξ)
LG(nT )(u, ξ),

for any i = 1, . . . , s and (p, ξ) ∈ NdS
1 (M)[nT ], where p = X(u). Thus, we have

κ`(n
T )i(X(u), ξ) = κ`(n

T )j(X(u), ξ)

for any i, j = 1, . . . , s, so that M is totally lightcone umbilical. Since LG(nT )(u, ξ) is null, we
have X(u) ∈ LCλ0 . This completes the proof. 2

According to the above proposition, LCλ0 ∩ Sn1 is regarded as a model lightlike hypersurface
in Sn1 . We define

T (Sn1 )λ0
= {x ∈ Rn+1

1 | x− λ0 ∈ Tλ0
Sn1 },

where Tλ0
Sn1 is the tangent space of Sn1 at λ0 ∈ Sn1 . We call T (Sn1 )λ0

a tangent affine space of
Sn1 at λ0 ∈ Sn1 . It is easy to show that

LCλ0
∩ Sn1 = T (Sn1 )λ0

∩ Sn1 .
We write LCλ0(Sn1 ) = LCλ0 ∩Sn1 = T (Sn1 )λ0

∩Sn1 , which is called a dS-lightcone with the vertex
λ0 ∈ Sn1 . Therefore, the model lightlike hypersurface is a dS-lightcone.

We consider the contact of spacelike submanifolds with dS-lightcones. Let

H : Sn1 × Sn1 −→ R
be a function defined by H(x,λ) = 〈x,λ〉 − 1. Given λ0 ∈ Sn1 , we write hλ0

(x) = H(x,λ0), so
that we have h−1λ0

(0) = LCλ0
(Sn1 ). For any p0 = X(u0) ∈ M , µ0 ∈ R and ξ0 ∈ NdS

1 (M)p[n
T ],

we consider the point λ0 = X(u0) + µ0(nT (u0) + ξ0). Then we have

hλ0
◦X(u0)) = H ◦ (X × 1AdSn+1)(u0,λ0) = H(p0,λ0) = 0,

where µ0 = 1/κ`(n
T )i(p0, ξ0), i = 1, . . . , s. We also have relations

∂hλ0 ◦X
∂ui

(u0) =
∂H

∂ui
(p0,λ0) = 0, i = 1, . . . , s.

These imply that the dS-lightcone h−1λ0
(0) = LCλ0(Sn1 ) is tangent to M = X(U) at p0 = X(u0).

In this case, we call LCλ0(Sn1 ) a tangent dS-lightcone of M = X(U) at p0 = X(u0), which
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is denoted by TLCλ0
(M)p0 . Moreover, the tangent dS-lightcone TLCλ0

(M)p0 is called an os-
culating dS-lightcone if λ0 = LFκ`(nT )i(p0,ξ0)

(u0) ∈ LFM , for one lightcone principal curva-

ture κ`(n
T )i(p0, ξ0). In this case, we call λ0 the center of the lightcone principal curvature

κ`(n
T )i(p0, ξ0). Therefore, we can interpret the lightlike focal set as the locus of the centers

of the lightcone principal curvatures. This fact is analogous to the notion of the focal sets of
submanifolds in Euclidean space.

We now describe the contacts of spacelike submanifolds in Sn1 with dS-lightcones. We denote

by Q(X, u0) the local ring of the function germ h̃λ0 : (U, u0) −→ R, where λ0 = LCM (u0, ξ0, µ0).
We remark that we can explicitly write the local ring as follows:

Qn+1(X, u0) =
C∞u0

(U)

〈〈X(u),λ0〉 − 1〉C∞
u0

(U) + Mu0
(U)n+2 ,

where C∞u0
(U) is the local ring of function germs at u0.

Let LHMi(n
T
i ) : (N1(Mi)[n

T
i ]× R, (pi, ξi, µi)) −→ (Sn1 ,λi), (i = 1, 2) be two lightlike hyper-

surface germs of spacelike submanifold germs Xi : (U, ui) −→ (Sn1 , pi). Let

Hi : (U × Sn1 , (ui,λi)) −→ R

be the dS-height function germ of Xi. Then we have the following theorem:

Theorem 5.5. Let Xi : (U, ui) −→ (Sn1 , pi), i = 1, 2, be spacelike submanifold germs such that
the corresponding Legendrian submanifold germs LHi(Σ∗(Hi)) are Legendrian stable. We write
Xi(U) = Mi. Then the following conditions are equivalent:

(1) (LHM1
(N1(M1)[nT1 ]× R),λ1) and (LHM2

(N1(M2)[nT2 ]× R),λ2) are diffeomorphic,
(2) (LH1

(Σ∗(H1)), z1) and (LH2
(Σ∗(H2)), z2) are Legendrian equivalent,

(3) H1 and H2 are P -K-equivalent,
(4) h1,λ1 and h2,λ2 are K-equivalent,
(5) K(M1, TLCλ1

(M1)p1 , p1) = K(M2, TLCλ2
(M2)p2 , p2).

(6) Qn+1(X1, u
1) and Qn+1(X2, u

2) are isomorphic as R-algebras.

Proof. By Proposition 5.3, conditions (1), (2) and (6) are equivalent. These conditions are
also equivalent to the condition that two generating families H1 and H2 are P -K-equivalent by
Theorem 5.2. If we denote hi,λi

(u) = Hi(u,λi), then we have hi,λi
(u) = hλi

◦Xi(u). By Theorem

5.1, K(X1(U), LCλ1
, p1) = K(x2(U), LCλ2, p2) if and only if h̃1,λ1

and h̃2,λ2
are K-equivalent.

This means that (4) and (5) are equivalent. By definition, (3) implies (4). The uniqueness of
the infinitesimally K-versal deformation of hi,λi (cf., [19]) leads that the condition (4) implies
(3). This completes the proof. 2

6. Spacelike submanifolds with codimension two

In [4], we previously investigated the singularities of lightlike surfaces along spacelike curves
in S3

1 . As a consequence, we discovered a new invariant for spacelike curves which estimates
the order of contact with de Sitter lightcones in S3

1 . After that, Kaseou [17] investigated the
singularities of de Sitter lightlike hypersurfaces of spacelike submanifolds of codimension two
in Sn1 . We remark that NdS(M)[nT ] is a double covering of M for codimension two spacelike
submanifold M in Sn1 . Then the de Sitter lightlike hypersurface is the image of the mapping
LH±M (u, µ) = X(u)+µ(nT ±nS)(u), which coincides with the lightlike hypersurface along M in
[17]. Therefore, all results in the previous sections for de Sitter space are generalizations of the
results in [17]. We now consider spacelike surfaces in S4

1 here. Let X : U −→ S4
1 be a spacelike

embedding from an open subset U ⊂ R2. In [17], it was shown that there is the following generic
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classification theorem. We say that two map germs f, g : (Rn, 0) −→ (Rp, 0) are A-equivalent
if there exists diffeomorphism germs φ : (Rn, 0) −→ (Rn, 0) and ψ : (Rp, 0) −→ (Rp, 0) such
that f ◦ φ = ψ ◦ g. Let Embsp (U, S4

1) be a space of spacelike embeddings from U to S4
1 with the

Whitney C∞-topology.

Theorem 6.1 ([17]). There exists an open dense subset O ⊂ Embsp (U, S4
1) such that for any

X ∈ O, the germ of the corresponding lightlike hypersurfaces LH±M at any point (u0, µ0) ∈ U×R
is A-equivalent to one of the map germs Ak (1 ≤ k ≤ 4) or D±4 : where, Ak, D

±
4 -map germs

f : (R3, 0) −→ (R4, 0) are given by
A1; f(u1, u2, u3) = (u1, u2, u3, 0),
A2; f(u1, u2, u3) = (3u21, 2u

3
1, u2, u3),

A3; f(u1, u2, u3) = (4u31 + 2u1u2, 3u
4
1 + u2u

2
1, u2, u3),

A4; f(u1, u2, u3) = (5u41 + 3u2u
2
1 + 2u1u3, 4u

5
1 + 2u2u

3
1 + u3u

2
1, u2, u3),

D+
4 ; f(u1, u2, u3) = (2(u31 + u32) + u1u2u3, 3u

2
1 + u2u3, 3u

2
2 + u1u3, u3),

D−4 ; f(u1, u2, u3) =

((
u31
3
− u1u22

)
+ (u21 + u22)u3, u

2
2 − u21 − 2u1u3, 2(u1u2 − u2u3), u3

)
.

As a corollary of the above theorem, we have the following generic local classification of AdS-
lightlike focal sets along spacelike surfaces. We define C(2, 3, 4) = {(u21, u31, u41) | u1 ∈ R}, which
is called a (2, 3, 4)-cusp. We also define

C(BF ) = {(10u31 + 3u2u1, 5u
4
1 + u2u

2
1, 6u

5
1 + u2u

3
1, u2) | (u1, u2) ∈ R2}.

We call C(BF ) a C-butterfly (i.e., the critical value set of the butterfly). Finally we define
C(2, 3, 4, 5) = {(u21, u31, u41, u51) | u1 ∈ R}, which is called a (2, 3, 4, 5)-cusp.

Corollary 6.2. There exists an open dense subset O ⊂ Embsp (U, S4
1) such that for any X ∈ O,

the germ of the corresponding dS-lightlike focal set LF±M at any point (u0, µ0) ∈ U ×R is diffeo-
morphic to one of the following set germs at the origin in R4:
A2; {(0, 0)} × R2,
A3; C(2, 3, 4)× R,
A4; C(BF ),
D+

4 ; {(2(u31 + u32) + u1u2u3, 3u
2
1 + u2u3, 3u

2
2 + u1u3, u3) | u23 = 36u1u2},

D−4 ;

{((
u31
3
− u1u22

)
+ (u21 + u22)u3, u

2
2 − u21 − 2u1u3, 2(u1u2 − u2u3), u3

) ∣∣∣ u23 = u21 + u22

}
.

Proof. For A3, we can calculate the Jacobi matrix of the normal form f in Theorem 5.9:

Jf =


12u21 + 2u1 2u1 0

12u31 + 2u1u2 u21 0
0 1 0
0 0 1

 ,

so that rankJf < 3 if and only if 6u21 + u2 = 0. Thus, the critical value set of f is

C(f) = {(−8u31,−3u41,−6u21, u3) | (u1, u3) ∈ R2}.

It is C(2, 3, 4) × R. By a similar calculation, we can show that the germ of A4 is diffeomorphic
to C(BF ). For D+

4 , we can calculate the Jacobi matrix o the normal form f :

Jf =


6u21 + u2u3 6u22 + u1u3, u1u2 0

6u1 u3 u2
u3 6u2 u1
0 0 1

 .
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Therefore, rank Jf < 3 if and only if∣∣∣∣ 6u21 + u2u3 6u22 + u1u3, u1u2
6u1 u3

∣∣∣∣ =

∣∣∣∣ 6u21 + u2u3 6u22 + u1u3, u1u2
u3 6u2

∣∣∣∣ =

∣∣∣∣ 6u1 u3
u3 6u2

∣∣∣∣ = 0,

which is equivalent to the condition that u23 = 36u1u2. For D−4 , by a calculation similar to the
above, we have the condition that u23 = u21 + u22. This completes the proof. 2

By using the above normal forms, we can investigate the detailed geometric properties of
spacelike surface in S4

1 corresponding to the singularities of dS-lightlike focal sets . However, we
have limited space, so that we omit these discussions here.
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LINKS OF SINGULARITIES UP TO REGULAR HOMOTOPY

A. KATANAGA, A. NÉMETHI, AND A. SZŰCS

Abstract. We classify links of the singularities x2 + y2 + z2 + v2d = 0 in (C4, 0) up to

regular homotopies precomposed with diffeomorphisms of S3 × S2. Let us denote the link of
this singularity by Ld and denote by id the inclusion Ld ⊂ S7. We show that for arbitrary

diffeomorphisms ϕd : S3×S2 −→ Ld the compositions id ◦ϕd are image regularly homotopic

for two different values of d, d = d1 and d = d2, if and only if d1 ≡ d2 mod 2.

1. Introduction

It is well-known that the infinite number of Brieskorn equations in C5

z6k−1
1 + z3

2 + z2
3 + z2

4 + z2
5 = 0, (intersected with S9 =

{
Σ|zi|2 = 1

}
)

describe the finite number of homotopy spheres. Why do we have infinitely many equations for
a finite number of homotopy spheres? The answer was given in [E-Sz]: These equations give all
the embeddings of these homotopy spheres in S9 up to regular homotopy.

The present paper grew out from an attempt to investigate the analogous question for the
equations

(∗) x2 + y2 + z2 + vk = 0.

It was proved in [K-N] that the links of the singularities (∗) are S5 or S3×S2 depending on the
parity of k. Again we have infinite number of equations for both diffeomorphism types of links.
So it seems natural to pose the analogous
Question: What are the differences between the links for different values of k of the same
parity? Do they represent different immersions up to regular homotopy?

For k odd, when the link is S5, the question about the regular homotopy turns out to be
trivial, since any two immersions of S5 to S7 are regularly homotopic. (By Smale’s result, see
[S1], the set of regular homotopy classes of immersions S5 −→ S7 can be identified with π5(SO7).
The later group is trivial by Bott’s result [B].)

The situation is quite different for k even. Put k = 2d and let us denote by Xd the algebraic
variety defined by the equation (∗), by Ld its link, and by id the inclusion Ld ↪→ S7. In this case
the question on regular homotopy classes of id turns out to be not well-posed.

It is true that Ld is diffeomorphic to S3 × S2 for any d, but the question about the regular
homotopy makes sense only after having given a concrete diffeomorphism ϕd : S3 × S2 −→ Ld,
and only then we can ask about the regular homotopy classes

id ◦ ϕd : S3 × S2 −→ S7.

(In the case of Brieskorn equations precomposing an immersion f : Σ7 −→ S9 with an orientation
preserving self-diffeomorphism of the homotopy sphere Σ7 does not change the regular homotopy
class of the immersion f . This is not so for the manifold S3 × S2.)

Definition (see [P]). Given manifolds M , N , and two immersions f0 and f1 from M to N , we
say that f0 and f1 are image-regular homotopic if there is a self-diffeomorphism ϕ of M such
that f1 is regularly homotopic to f0 ◦ ϕ.

http://dx.doi.org/10.5427/jsing.2014.10k
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Notation:
1) I(M,N) will denote the image-regular homotopy classes of immersions of M to N . The

image regular homotopy class of an immersion f will be denoted by im [f ].
2) Recall that an immersion is called framed if its normal bundle is trivialized. Fr-Imm (M,N)

will denote the framed regular homotopy classes of framed immersions of M to N .
In the case when the immersion f is framed reg [f ] will denote its framed regular homotopy

class.

Remark. Note that for the inclusions id : Ld ⊂ S7 their regular homotopy classes reg [id] are
not well-defined, but their image regular homotopy classes im [id] are well-defined.

Formulation of the results

Theorem 1. For any simply connected, stably parallelizable, 5-dimensional manifold M5 the
framed regular homotopy classes of framed immersions in S7 can be identified with H3(M ;Z),
i.e.

Fr-Imm (M5, S7) = H3(M ;Z).

Corollary. In particular,

Fr-Imm (S3 × S2, S7) = Z.

Theorem 2. The set I(S3 × S2, S7) of image-regular homotopy classes of framed immersions
S3 × S2 −→ S7 can be identified with Z2.

Theorem 3. The inclusions id : Ld ↪→ S7 for d = d1 and d2 represent the same element in
I(S3 × S2, S7) = Z2 (i.e. im [id1 ] = im [id2 ]) if and only if d1 ≡ d2 mod 2.

Remark. The identifications in the above Theorems arise only after we have fixed a paralleliza-
tion of the manifolds (or a stable parallelization). (Different parallelizations provide different
identifications. For the Corollary these identifications differ by an affine shift x 7→ x+ a, where
a ∈ π3(SO) = Z is the difference of the two parallelizations. Similarly, in Theorem 2, a is
replaced by a mod 2 in Z2 = π3(SO)/im j∗(π3(SO3)), where j is the inclusion j : SO3 ⊂ SO.
Now we describe a concrete stable parallelization of S3 × S2 we shall use.

Hence, we want to choose a trivialization of the stable tangent bundle

T (S3 × S2)⊕ E1 −→ S3 × S2,

where E1 is the trivial real line bundle. This 6-dimensional vector bundle is the same as the
restriction T (S3 ×R3)

∣∣∣
S3×S2

= (p∗1TS
3 ⊕ p∗2TR3)

∣∣∣
S3×S2

, where p1 and p2 are the projections of

S3 × R3 onto the factors. The quaternionic multiplication on S3 gives a trivialization of TS3,
i.e. an identification with S3 × R3. We need a trivialization of T (TS3). The standard spherical
metric on S3 gives a connection on the bundle TS3 −→ S3, that is a “horizontal” R3 ⊂ T (TS3)
at any point. The trivialization of TS3 gives a trivialization of both the horizontal and the
vertical (tangent to the fibers) components in T (TS3). Restricting this to the sphere bundle
S(TS3) = S3 × S2 we obtain the required trivialization of

T (TS3)
∣∣∣
S3×S2

= T (S3 × R3)
∣∣∣
S3×S2

= T (S3 × S2)⊕ E1.

Proof of Theorem 1. Having fixed a stable parallelization of M5, any framed immersion
f : M5 −→ Rq gives a map M5 −→ SOq that – by a slight abuse of notation – we will de-
note by df .
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By the Smale–Hirsch immersion theory [S1, H] the map

Fr-Imm (M,Rq) −→ [M,SOq]
reg [f ] −→ [df ]

induces a bijection, where [M,SOq] denotes the homotopy classes of maps M −→ SOq.
Since M5 is simply connected there is a cell-decomposition having a single 0-cell, a single

5-cell, and no 1-dimensional, neither 4-dimensional cells.

Let
◦
M be the punctured M5:

◦
M = M5 \D5. From the Puppe sequence of the pair (

◦
M,∂

◦
M)

(see [Hu]),

S4 = ∂
◦
M ⊂

◦
M ⊂M −→ S5,

it follows that the restriction map [M5, SOq] → [
◦
M,SOq] is a bijection, since π4(SO) = 0 and

π5(SOq) = 0.

Now consider the Puppe sequence of the pair (
◦
M, sk2M). Note that sk2M is a bouquete of

2-spheres, while the quotient
◦
M/sk2M is homotopically equivalent to a bouquette of 3-spheres.

Hence, a part of the Puppe sequence looks like this:

sk2M ⊂
◦
M −→ ∨S3 −→ S(sk2M) = ∨S3

where S( ) means the suspension. Mapping the spaces of this Puppe sequence to SOq, q ≥ 5,
we obtain the following exact sequence of groups (we omit q):[

sk2

◦
M, SO

]
←−

[ ◦
M, SO

]
←−

[
∨S3, SO

] α←−
[
S(sk2M), SO

]
.

Here
[
sk2

◦
M, SO] = 0, because π2(SO) = 0.

Since π3(SO) = Z the group [∨S3, SO] can be identified with the group of 3-dimensional
cochains of M with integer coefficients, i.e. [∨S3, SO] = C3(M ;Z).

Since there are no 4-dimensional cells this is also the group of 3-dimensional cocycles. The
group

[
S(sk2M), SO

]
can be identified with the group of 2-dimensional cochains C2(M ;Z).

Lemma. The map α can be identified with the coboundary map

δ:C2(M ;Z) −→ C3(M ;Z).

Proof of this Lemma will be given in the Appendix.

Hence the cokernel of α, i.e.
[ ◦
M,SO

]
= Fr-Imm (M,Rq) can be identified with the cokernel

of δ, i.e. with H3(M ;Z). �

Remark 1. In the case when M = S3 × S2 and N ∈ S2 is a fixed point in S2, for example the
North pole, the inclusion S3 ↪→M , x −→ (x,N) gives an isomorphism

[M,SO] −→ [S3, SO].

Hence, for M = S3 × S2 two framed immersions M5 −→ R7 (or M5 −→ S7) are regularly
homotopic if their restrictions to S3×N are framed regularly homotopic (adding the two normal
vectors of S3 in M5 to the framing).

Lemma 1. The inclusion j : SO3 ↪→ SOq (q ≥ 5) induces in π3 the multiplication by 2
(if we choose the generators in π3(SO3) = Z and in π3(SOq) = Z properly), i.e., for any
x ∈ π3(SO3) = Z the image j∗(x) ∈ π3(SO) = Z is 2x.
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Proof. It is well-known that π3(SO5) ≈ π3(SO6) ≈ · · · ≈ π3(SO) and by Bott’s result [B]
π3(SO) ≈ Z. Let us consider V2(R5) = SO5/SO3. It is well-known that π3

(
V2(R5)

)
= Z2 (see

for example [M-S]). It is also well-known that π3(SO3) = Z.
Now the exact sequence of the fibration SO5 −→ V2(R5) gives that the homomorphism

π3(SO3) −→ π3(SO5) induced by the inclusion is a multiplication by +2 (or −2, but choosing
the generators properly it can be supposed that it is multiplication by +2). �

Remark 2. It is well-known that π3(SO4) = π3(S3)⊕π3(SO3) and the map j4∗ : π3(SO4) −→
π3(SO5) induced by the inclusion

j4 : SO4 ↪→ SO5

is epimorphic.
It follows that j4∗ maps π3(S3) = Z to the group Z2 = π3(SO5)/j4∗

(
π3(SO3)

)
epimorphically.

From now on we shall denote by M the manifold S3×S2 (except in the Appendix). We shall
write simply S3 for the subset S3 ×N ⊂ S3 × S2, where N ∈ S2.

Lemma 2. For any class 2m ∈ 2Z = im j4∗ ⊂ Z = π3(SO), there is a diffeomorphism
αm : M −→M such that for any framed immersion f : M −→ R7 the difference of the regular
homotopy classes of f and f ◦ αm is 2m, i.e.

reg [f ◦ αm]− reg [f ] ∈ π3(SO) = Z
is 2m.

Proof. Let µm : S3 −→ SO3 be a map representing the class m ∈ π3(SO3) and define the
diffeomorphism

αm : S3 × S2 −→ S3 × S2

by the formula
(x, y) 7−→ (x, µm(x)y).

We have the following diagram:

reg [f ] ∈ Fr-Imm (M,Rq) −→ Fr-Imm (S3,Rq) 3 reg
[
f
∣∣∣
S3

]
↓≈ ↓≈

[M,SOq] −→ [S3, SOq]
df 7−→ df

∣∣∣
S3

d(f ◦ αm) 7−→ d(f ◦ αm)
∣∣∣
S3

It shows that the regular homotopy class of the (framed) immersion f is detected by the ho-

motopy class of df
∣∣∣
S3

in π3(SO), while the regular homotopy class of f ◦ αm is detected by the

homotopy class of d(f ◦ αm)
∣∣∣
S3
.

So we have to compare the homotopy classes of maps

df
∣∣∣
S3

: S3 −→ SOq and d(f ◦ αm)
∣∣∣
S3

: S3 −→ SOq.

By the chain rule one has:

d(f ◦ αm)
∣∣∣
S3

= df
∣∣∣
αm(S3)

· dαm
∣∣∣
S3

.

The restriction map αm
∣∣∣
S3

: S3 −→ S3×S2 is homotopic to a map into S3∨S2, representing

in the third homotopy group π3(S3 ∨ S2) = Z ⊕ Z the element (1, ∗), where ∗ is an integer,
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∗ ∈ π3(S2) = Z (at this point its value is not important, but later we shall show that it is m,
see Lemma A). Since the map df maps S3×S2 into SO and π2(SO) = 0, the map df

∣∣∣
S3∨S2

can

be extended to S3 ∨D3 ∼= S3.
Finally we have that d(f ◦ αm)

∣∣∣
S3

is homotopic to the pointwise product of the maps df
∣∣∣
S3

and dαm
∣∣∣
S3

.

But it is well-known that this gives the sum of the homotopy classes
[
df
∣∣∣
S3

]
∈ π3(SO) and[

dαm
∣∣∣
S3

]
∈ π3(SO).

It remained to show the following

Sublemma.
[
dαm

∣∣∣
S3

]
= 2m ∈ π3(SOq) = Z.

Proof. The differential dαm acts on T (S3 × R3)
∣∣∣
S3×S2

= p∗1TS
3 ⊕ p∗2TR3

∣∣∣
S3×S2

as follows: by

identity on p∗1TS
3 and by µm(x) on (x, y)× R3 for any x ∈ S3, y ∈ S2.

Hence, dαm
∣∣∣
S3

is j ◦ µm, where j : SO3 ↪→ SOq is the inclusion. Recall that the map

µm : S3 −→ SO3 was chosen so that its homotopy class [µm] ∈ π3(SO3) is m ∈ Z = π3(SO3).

Since j∗ is “the multiplication by 2” map it follows that
[
dαm

∣∣∣
S3

]
= 2m. �

This ends the proof of Lemma 2 too. �

Proposition. Any self-diffeomorphism of S3 × S2 changes the regular homotopy class of any
immersion by adding an element of the subgroup in im j∗ = 2Z ⊂ Z = π3(SO). That is for any
framed immersion f : M −→ Rq with (framed) regular homotopy class

reg [f ] ∈ [M,SO] = π3(SO)

and any diffeomorphism ϕ : M −→M the difference of regular homotopy classes

reg [f ]− reg [f ◦ ϕ]

belongs to the subgroup im j∗ = 2Z in Z = π3(SO).

The proof will rely on the following two lemmas (Lemma A and Lemma B).

Definition. A self-diffeomorphism ϕ : S3 × S2 −→ S3 × S2 will be called positive if it induces
on H3(S3 × S2) = Z the identity.

Lemma A. For any positive self-diffeomorphism ϕ there exists a natural number m ∈ Z such
that for N ∈ S2 the restrictions ϕ

∣∣∣
(S3×N)

and αm
∣∣∣
(S3×N)

represent the same homotopy class in

π3(M).

Lemma B. Let ϕ and ψ be self-diffeomorphisms of M such that the images of S3×N at ϕ and
ψ represent the same element in π3(M). Then for any framed-immersion f : M −→ R7 the
regular homotopy classes of f ◦ ϕ and f ◦ ψ coincide.

Proof of Lemma B. Let us extend the self-diffeomorphisms ϕ and ψ to those of M×Dq by taking
the product with the identity map of Dq, for some large q, and denote these self-diffeomorphisms

ofM×Dq by ϕ̂ and ψ̂. Similarly we shall denote by f̂ the product of f with the standard inclusion
Dq ⊂ Rq.
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By the Smale–Hirsch theory [S1, H] (or by the so-called Compression Theorem of Rourke–
Sanderson [R-S]) the restriction induces a bijection

Fr-Imm (M,R7)←− Fr-Imm (M ×Dq,R7+q).

Again the regular homotopy class of a framed immersion in

Fr-Imm (M,R7+q) = Fr-Imm (M ×Dq,R7+q)

is uniquely defined by the restriction to S3(= S3 ×N).

The maps ϕ̂ and ψ̂ restricted to the sphere S3 ×N are framed isotopic. By Thom’s isotopy

lemma [T] there is an isotopy Ψt : M ×Dq −→M ×Dq such that Ψ0 = ϕ̂ and Ψ1 = ψ̂.

It follows that the induced maps dϕ̂ : M −→ SO and dψ̂ : M −→ SO are homotopic. Hence,

the framed-regular homotopy classes of f̂ ◦ ϕ̂ and f̂ ◦ ψ̂ coincide. Then the compositions f ◦ ϕ
and f ◦ ψ are also regularly homotopic. �

Proof of Lemma A. Let m be the homotopy class of the composition

S3
iϕ
↪→ S3 × S2 p−→ S2,

where iϕ is the inclusion x 7→ ϕ(x,N) and p is the projection S3 × S2 −→ S2. We claim that
the maps ϕ′ = p ◦ ϕ

∣∣∣
(S3×N)

and α′m = p ◦ αm
∣∣∣
(S3×N)

are homotopic maps from S3 to S2. To

show this it is enough to compute the Hopf invariants of these maps.
Let us consider first the case m = 1. We need to show that the Hopf invariant of α′1 is equal

to 1.
The map µ1 : S3 −→ SO3 representing the generator in π3(SO3) can be provided by the

standard double covering S3 −→ SO3. Then α1 is the self-diffeomorphism of S3 × S2

α1(x, y) =
(
x, µ1(x)y

)
and α′1 is the composition of the following three maps: the inclusion

S3 ↪→ S3 × S2, x 7−→ (x,N);

the map α1 and the projection p : S3 × S2 −→ S2.
In order to compute the Hopf invariant of α′1 : S3 −→ S2 first we need to compute the

preimage of a regular value. Let us compute first the preimage of N in S3, i.e., (α′1)−1(N). The
map α′1 can be further decomposed as the composition of µ1 : S3 −→ SO3 with the evaluation
map e : SO3 −→ S2, g 7→ g(N), for g ∈ SO3. The set e−1(N) is the subgroup SO2 ⊂ SO3,

which consists of the rotations around the line
−−−−−→
(N,−N) (the stabilizer subgroup of N).

When we identify SO3 with the ball D3
π of radius π with identified antipodal points on

the boundary S2
π, then this subgroup SO2 corresponds to the diameter N,−N with identified

endpoints N and −N . The preimage of this diameter at µ1 : S3 −→ SO3 is a great circle. If we
take any other point V in S2, then e−1(V ) is a coset of the previous subgroup SO2. Then its
preimage at µ1 is also a great circle. Therefore the linking number of two such preimages is 1.

The map α′m can be obtained from α′1 by precomposing it with a degree m map S3 −→ S3.
Hence the Hopf invariant of α′m is m. �

Parametrizations of the links Ld (or, equivalently, of the singularities Xd)

Let us denote by ζ the complex C2-bundle TCP 1 ⊕ ε1
C over CP 1 = S2, where TCP 1 is

the tangent bundle of CP 1, and ε1
C is the trivial complex line bundle. Note that the bundle

ζ considered as a real R4-bundle is isomorphic to the trivial bundle. Hence its total space is
diffeomorphic to S2×R4. Let us denote by E0(ζ) the complement of the zero section in the total
space of the bundle ζ. We shall give below a diffeomorphism of this space E0(ζ) onto Xd \ 0.
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The existence of such a diffeomorphism will give a new proof of the result of [K-N] about the
diffeomorphism type of Ld.

Proposition. Ld is diffeomorphic to S3 × S2.

Proof. Xd \ 0 is diffeomorphic to Ld×R1, and the space E0(ζ) is diffeomorphic to S3×S2×R1.
For simply connected 5-manifolds it is well-known, that two such manifolds are diffeomorphic
if their products with the real line are diffeomorphic (see [Ba], Theorem 2.2). Hence Ld and
S3 × S2 are diffeomorphic. �

Next we give a concrete parametrization:

ϕd : E0(ζ) −→ Xd \ 0 =
{
x, y, z, v

∣∣ x2 + y2 + z2 + v2d = 0, |x|+ |y|+ |z|+ |v| 6= 0
}
.

The composition id ◦ ϕd (or its restriction to ϕ−1
d (S7)) will give a framed-immersion

S3 × S2 −→ S7,

and its regular homotopy class reg [id ◦ ϕd] will turn out to be the number

d ∈ Z = Fr-Imm (S3 × S2, S7).

This will imply that the image-regular homotopy class of the link Ld in S7 is d mod 2 in
Z2 = I(S3 × S2, S7).

Proof of Theorem 3. For arbitrary manifolds N and Q the natural map

Fr-Imm (N,Q) −→ Fr-Imm (N,Q× R1)

induces a bijection — by the Smale–Hirsch immersion theory (or by the Compression Theorem of
Rourke–Sanderson). Hence Fr-Imm (Xd \0 ⊂ C4 \0) = Fr-Imm (S3×S2 ⊂ S7). By a coordinate
transformation of C4 we obtain the following equivalent equation defining Xd

Xd =
{
x, y, z, v

∣∣ xy − z(z + vd) = 0
}
.

The parametrization of Xd \ 0 is the following.
The inclusion

E0(ζ)
Ψ−→ C4 = {(x, y, z, v) | x, y, z, v ∈ C} with image im Ψ = Xd \ 0

will be described on two charts:
1)
(
(a : b), x, v

)
, where a, b, x, v ∈ C, b 6= 0, (a : b) ∈ CP 1, and ‖x‖+ ‖v‖ 6= 0. Put t = a

b ∈ C.
The map Ψ on this chart will be given by the formula

Ψ : (t, x, v) −→ (x, t2x+ tvd, tx, v).

2) For a 6= 0 denote the quotient b
a by t′. On the part of E0(ζ) that projects to CP 1 \ (1 : 0)

(that is diffeomorphic to CP 1 \ (1 : 0)× (C2 \ 0)) consider the coordinates (t′, y, v) and define Ψ
by the formula

Ψ : (t′, y, v) −→ (t′2y − t′vd, y, t′y − vd, v).

The change of coordinates between the two coordinate charts of E0(ζ) is

t′ = t−1, v = v, x = t′2y − t′vd or equivalently

y = t2x+ tvd.

In order to see that these local coordinates give indeed the bundle ζ over CP 1 we can precompose
the first local system with the map (t, x, v) 7→ (t, x−tvd, v). (Note that this map can be connected
to the identity by the diffeotopy (t, x, v) 7→ (t, x − stvd, v), 0 ≤ s ≤ 1.) Then the change from
the first coordinate system to the second one for t ∈ S1 on the equator of S2 = CP 1 will
be given by the map (t, x, v) 7→ (t, t2x, v), where x, v ∈ C. Now it is clear that the obtained
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bundle is ζ = TCP 1 ⊕ ε1
C . (The map of the equator to U(2) defining the bundle ζ gives in

π1(U(2)) the double of the generator, and its image in π1(SO4) = Z2 is trivial. That is why
the bundle ζ is trivial as a real bundle although it has first Chern class equal 2 as a complex
bundle.) Note that Ψ maps the part of the first chart corresponding to the points t = 0, (i.e.,
the space C2 = {(0 : 1), x, v}) identically onto the coordinate space C2

x,v = {x, 0, 0, v} of C4.

The restriction of Ψ to this part determines the framed immersion of Xd \ 0 to C4. Hence, the
immersion itself is very simple: just the inclusion of C2 \ 0→ C4. But we need to consider also
the framing. It is coming a) from the paramatrization Ψ and b) from the defining equation of
Xd.

a) The parametrization gives the complex vector field

∂Ψ

∂t

∣∣∣
t=0

= (0, vd, x, 0).

b) The defining equation g(x, y, z, v) = xy − z(z + vd) = 0 at the points (x, 0, 0, v) gives the
complex vector field

grad g(x, 0, 0, v) = (0, x,−vd, 0).

These two complex vector fields have zero first and last complex coordinates (on the coordinate
subspace C2

x,v = {x, 0, 0, v}). Hence, we shall write only their second and third coordinates: those

are (vd, x) and (−x, vd) respectively. These two complex vectors give four real vector fields if we
add their i-images as well. Let us denote by a1 and a2 the real and imaginary coordinates of vd:
vd = a1 + ia2. Similarly x1 and x2 are those of x, i.e., x = x1 + ix2. Then the four real vectors
in R4 = C2 = (0, y, z, 0) are:

u1 = (a1, a2, x1, x2)

u2 = (a2,−a1, x2,−x1)

u3 = (x1, x2,−a1,−a2)

u4 = (−x2, x1, a2,−a1).

The map (x, v) ∈ R4 \ 0 −→ (u1,u2,u3,u4) can be decomposed as a degree d branched
covering (x, v) 7→ (x, vd) and a map representing an element in π3(SO4) = π3(S3)⊕ π3(SO3) of
the form (1, ∗) for some unknown element ∗ in π3(SO3). (This is because the map

(x, vd) = (x1, x2, a1, a2) 7→ u1 = (a1, a2, x1, x2)

is almost the identity, it differs only by an even permutation of the coordinates.) Hence the
composition represents an element of the form (d, ?) ∈ π3(S3) ⊕ π3(SO3), and its image in
π3(SO)/j4∗(π3(SO3)) = Z2 is dmod 2, see Remark 2. That finishes the proof of Theorem 3. 2

Appendix

For any space Y let us denote by CY the cone over Y . Here we show that the map provided
by the Puppe sequence

α :
[
C(
◦
M) ∪ C(sk2M), SO

]
−→

[ ◦
M ∪ C(sk2M), SO

]
can be identified with the coboundary map in the cochain complex:

δ : C2(M ;Z) −→ C3(M ;Z).

We have seen that the sources and targets of δ and α can be identified.
For simplicity let us consider the situation when sk2M = S2 and M has a single 3-cell D3,

attached to this S2 by a map θ of degree k. Then
◦
M = S2 ∪

θ
D3.
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Let us denote the sets
◦
M ∪ C(sk2M) and C

◦
M ∪ C(sk2M)

by A and B respectively.
Clearly we can choose any degree k map for θ in order to study the induced map α. Take for θ

a branched k-fold cover of S2 along S0. Then the inclusion A ⊂ B can be described homotopically
as follows:

In S3 × [0, 1] contract an interval ∗ × [0, 1] for some ∗ ∈ S3 to a point. A will be identified
with S3 × {0}. Further on S3 × {1} identify the points that are mapped into the same point by
the suspension of θ. The part of B coming from S3 × {1} will be denoted by B1. The space B1

is a deformation retract of B.
Let us denote by r the retraction B −→ B1. Clearly, its restriction r|A : A −→ B1 is a

degree k map (it is actually the suspension of the branched covering θ). So the inclusion A ⊂ B
induces in the 3-dimensional homology group H3 (or in π3) a multiplication by k.

The proof of the special case (when in M there is a single 2-cell and a single 3-cell) is finished.
The general case follows easily taking first the quotient of sk2M by all but one 2-cell and
considering any single 3-cell.
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dapest, Hungary

E-mail address: szucs@cs.elte.hu

http://dx.doi.org/10.1090/S0002-9947-1959-0119214-4
http://dx.doi.org/10.1090/S0002-9947-1959-0119214-4
http://dx.doi.org/10.2140/gt.2001.5.399


Journal of Singularities
Volume 10 (2014), 183-190

Proc. of 12th International Workshop
on Singularities, São Carlos, 2012

DOI: 10.5427/jsing.2014.10l

PERIODIC SOLUTIONS OF

DISCONTINUOUS SECOND ORDER DIFFERENTIAL SYSTEMS

JAUME LLIBRE AND MARCO ANTONIO TEIXEIRA

Abstract. We provide sufficient conditions for the existence of periodic solutions of some

classes of autonomous and non-autonomous second order differential equations with discon-
tinuous right-hand sides. In the plane the discontinuities considered are given by the straight

lines either x = 0, or xy = 0. Two applications of these results are made, one to control

systems with variable structure, and the other to small external periodic excitation of a dis-
continuous nonlinear oscillator.

1. Introduction and statement of the main result

In these last tens the study of discontinuous differential systems became relevant in the bound-
ary between Mathematics, Physics and Engineering. In the book [2] and in the survey [10] there
are different models coming from the impacting motion in mechanical systems, or from switch-
ings in electronic systems, or from hybrid dynamics in control systems, and so on. All of these
models are formulated with differential equations with discontinuous right–hand sides. Also,
many studies have been done in the qualitative aspects of the phase space of discontinuous
differential systems, see for instance the hundreds of references quoted in [2] and [10].

In this paper we are mainly interested in the study of the periodic solutions of autonomous
and non–autonomous second order differential equations with discontinuous right–hand sides.
Recently discontinuous second order differential equations have been studied for several authors,
mainly non–autonomous ones. Thus, discontinuous differential equations of the form

u′′ + u+ α sign(y) = F (θ),

where F is a periodic function has been studied in [7]. In [5] periodic solutions of discontinuous
differential equations of the form u′′ + G(u) = F (θ) are analyzed, where F is periodic and
continuous, and G is continuous except at u = 0. In [6] the authors studied the periodic
solutions of the discontinuous differential equations u′′ + ηsign(u) = α sin(βt).

Our main results will provide sufficient conditions for the existence of periodic solutions of
the following two classes of autonomous second order differential equations with discontinuous
right–hand sides:

u′′ + u+ εα sign(u)G(u, u′) = εH(u, u′),(1)

u′′ + u+ εα sign(uu′)G(u, u′) = εH(u, u′).(2)
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Here u = u(t), α ∈ R is a parameter, ε is a small parameter, G and H are C1 functions, and the
prime denotes derivative with respect to the variable t. Note that the differential equation (1)
is discontinuous at u = 0, and that the differential equation (2) is discontinuous at uu′ = 0.

We also shall provide sufficient conditions for the existence of periodic solutions of the following
two classes of non–autonomous second order differential equations with discontinuous right–hand
sides:

r′′ + ε2α sign(cos θ)G(θ, r, r′) = ε2H(θ, r, r′),(3)

r′′ + ε2α sign(sin(2θ))G(θ, r, r′) = ε2H(θ, r, r′).(4)

Here (r, θ) are the polar coordinates of the plane, i.e. x = r cos θ and y = r sin θ, α ∈ R is
a parameter, ε is a small parameter, G and H are C1 functions in the variables r and r′, the
functions G and H are continuous and periodic in the variable θ of period 2π, and the prime
denotes derivative with respect to the variable θ. Note that the differential equation (3) is
discontinuous at the straight line x = 0 of the plane in cartesian coordinates, and that the
differential equation (4) is discontinuous at the straight lines xy = 0.

Denoting x = u and y = u′ the autonomous differential equations of second order (1) and (2),
respectively can be written as the following differential systems of first order in the plane

(5)

dx

dt
= x′ = y,

dy

dt
= y′ = −x− εα sign(x)G(x, y) + εH(x, y);

with the discontinuity set x = 0, and

(6)

dx

dt
= x′ = y,

dy

dt
= y′ = −x− εα sign(xy)G(x, y) + εH(x, y);

with the discontinuity set xy = 0.

Denoting x = r and y = r′/ε the non–autonomous differential equations of second order (3)
and (4), respectively can be written as the following differential systems of first order in the
plane

(7)

dx

dθ
= x′ = εy,

dy

dθ
= y′ = −εα sign(x)G(θ, x, y) + εH(θ, x, y);

with the discontinuity set x = 0, and

(8)

dx

dθ
= x′ = εy,

dy

dθ
= y′ = −εα sign(xy)G(θ, x, y) + εH(θ, x, y);

with the discontinuity set xy = 0.

The following propositions provide sufficient conditions for the existence of periodic solutions
for the discontinuous differential systems (5), (6), (7) and (8), respectively.
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Proposition 1. For ε 6= 0 sufficiently small the discontinuous differential system (5) has a
periodic solution (x(t, ε), y(t, ε)) for each simple zero r∗ of the function

f1(r) =

∫ 2π

0

H(r cos θ, r sin θ) sin θ dθ

+α

(∫ 3π/2

π/2

G(r cos θ, r sin θ) sin θ dθ −
∫ π/2

−π/2
G(r cos θ, r sin θ) sin θ dθ

)
,

such that (x(0, ε), y(0, ε))→ (r∗, 0) when ε→ 0.

Proposition 2. For ε 6= 0 sufficiently small the discontinuous differential system (6) has a
periodic solution (x(t, ε), y(t, ε)) for each simple zero r∗ of the function

f2(r) =

∫ 2π

0

H(r cos θ, r sin θ) sin θ dθ

−α

(∫ π/2

0

G(r cos θ, r sin θ) sin θ dθ +

∫ 3π/2

π

G(r cos θ, r sin θ) sin θ dθ

)

+α

(∫ π

π/2

G(r cos θ, r sin θ) sin θ dθ +

∫ 2π

3π/2

G(r cos θ, r sin θ) sin θ dθ

)
,

such that (x(0, ε), y(0, ε))→ (r∗, 0) when ε→ 0.

Proposition 3. For ε 6= 0 sufficiently small the discontinuous differential system (7) has a
periodic solution (x(θ, ε), y(θ, ε)) for each simple zero x∗ of the function

f3(x) =

∫ 2π

0

H(θ, x, 0) dθ + α

(∫ 3π/2

π/2

G(θ, x, 0) dθ −
∫ π/2

−π/2
G(θ, x, 0) dθ

)
,

such that (x(0, ε), y(0, ε))→ (x∗, 0) when ε→ 0.

Proposition 4. For ε 6= 0 sufficiently small the discontinuous differential system (8) has a
periodic solution (x(t, ε), y(t, ε)) for each simple zero x∗ of the function

f4(x) =

∫ 2π

0

H(θ, x, 0) dθ − α

(∫ π/2

0

G(θ, x, 0) dθ +

∫ 3π/2

π

G(θ, x, 0) dθ

)

+α

(∫ π

π/2

G(θ, x, 0) dθ +

∫ 2π

3π/2

G(θ, x, 0) dθ

)
,

such that (x(0, ε), y(0, ε))→ (x∗, 0) when ε→ 0.

The proof of these four propositions is given in section 2. The proofs are based in a recent
result on the averaging theory applied to discontinuous differential systems obtained by the
authors and also by Douglas Novaes, see the appendix.

In the study of control systems with variable structure appear the autonomous discontinuous
second order differential equations similar to

(9) u′′ + u+ εα sign(u)uu′ = ε
α

π
u′,

see for instance the book [1].

Corollary 5. For ε 6= 0 sufficiently small the control system with variable structure (9) has one

periodic solution u(t, ε), such that
√
u(0, ε)2 + u′(0, ε)2 → 3/4 when ε→ 0.
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In the next corollary we apply Proposition 3 for studying the periodic solutions of the following
small external periodic excitation of a discontinuous nonlinear oscillator

(10) r′′ + ε2α sign(cos θ)

(
(2− 3r) cos

θ

2

)
= −ε2

√
2α

π
r2.

Such kind of differential equations are considered in the book [11]. Note that equation (10) is a
non–autonomous discontinuous second order differential equation.

Corollary 6. For ε 6= 0 sufficiently small the small external periodic excitation of the dis-
continuous nonlinear oscillator (10) has two periodic solutions rk(θ, ε) for k = 1, 2, such that
r1(0, ε)→ cos θ and r2(0, ε)→ 2 cos θ when ε→ 0.

The proof of the two corollaries are given in section 3.

2. Proof of the propositions

In this section we prove the four propositions using the averaging theory for discontinuous
differential systems described in the appendix.

Proof of Proposition 1. We write the discontinuous differential system (5) in polar coordinates
(r, θ) where x = r cos θ and y = r sin θ, and we obtain

dr

dt
= ε
(
H(r cos θ, r sin θ)− α sgn(cos θ)G(r cos θ, r sin θ)

)
sin θ,

dθ

dt
= −1 +

ε

r

((
H(r cos θ, r sin θ)− α sgn(cos θ)G(r cos θ, r sin θ)

)
cos θ

)
.

Now taking as new independent variable the angle θ this previous discontinuous differential
system becomes

(11)

dr

dθ
= ε
(
α sgn(cos θ)G(r cos θ, r sin θ)−H(r cos θ, r sin θ)

)
sin θ +O(ε2)

= εF (θ, r) +O(ε2).

This system is under the assumptions of Theorem 7, where the variables of this theorem are
in our case t = θ, T = 2π, x = r, M = h−1(0) = {x = 0}. So we apply this theorem to our
previous discontinuous differential equation and we compute

f(r) =

∫ 2π

0

F (θ, r)dθ = f1(r),

where f1(r) is the function defined in the statement of Proposition 1. Since by assumptions G
and H are C1 functions in their two variables, it follows that f1(r) is C1. Consequently, if r∗ is
a simple zero of f1(r), i.e. f1(r∗) = 0 and

df1
dr

∣∣∣∣
r=r∗

6= 0,

then the Brouwer degree dB(f1, V, r
∗) 6= 0 being V a convenient open neighborhood of r∗, see

for more details on the Brouwer degree [3] and [9]. Hence, by Theorem 7 it follows that for
ε 6= 0 sufficiently small the discontinuous differential system (11) has a periodic solution r(θ, ε)
such that r(0, ε) → r∗ when ε → 0. Going back through the polar change of variables we
get that for ε 6= 0 sufficiently small the discontinuous differential system (5) has a periodic
solution (x(t, ε), y(t, ε)) such that (x(0, ε), y(0, ε)) → (r∗, 0) when ε → 0. So, the proposition is
proved. �



PERIODIC SOLUTIONS OF DISCONTINUOUS DIFFERENTIAL SYSTEMS 187

Proof of Proposition 2. The discontinuous differential system (6) in polar coordinates (r, θ) be-
comes

dr

dt
= ε
(
H(r cos θ, r sin θ)− α sgn(sin(2θ))G(r cos θ, r sin θ)

)
sin θ,

dθ

dt
= −1 +

ε

r

((
H(r cos θ, r sin θ)− α sgn(sin(2θ))G(r cos θ, r sin θ)

)
cos θ

)
.

Taking as new independent variable the angle θ this discontinuous differential system becomes

(12)

dr

dθ
= ε
(
α sgn(sin(2θ))G(r cos θ, r sin θ)−H(r cos θ, r sin θ)

)
sin θ +O(ε2)

= εF (θ, r) +O(ε2).

Applying Theorem 7 to this discontinuous differential equation, where the variables of this
theorem are in our case t = θ, T = 2π, x = r, M = h−1(0) = {xy = 0}, we compute

f(r) =

∫ 2π

0

F (θ, r)dθ = f2(r),

where f2(r) is the function defined in the statement of Proposition 2. Since f2(r) is C1, if r∗

is a simple zero of f2(r), then the Brouwer degree dB(f2, V, r
∗) 6= 0 being V a convenient open

neighborhood of r∗. Therefore, by Theorem 7 it follows that for ε 6= 0 sufficiently small the
discontinuous differential system (12) has a periodic solution r(θ, ε) such that r(0, ε)→ r∗ when
ε → 0. Going back through the polar change of variables we obtain that for ε 6= 0 sufficiently
small the discontinuous differential system (6) has a periodic solution (x(t, ε), y(t, ε)) such that
(x(0, ε), y(0, ε))→ (r∗, 0) when ε→ 0. This completes the proof of the proposition. �

Proof of Proposition 3. The discontinuous differential system (7) is already in the form (13) for
applying the averaging theory described in Theorem 7, where now the variables of Theorem 7 are
t = θ, T = 2π, x = (x, y),M = h−1(0) = {x = 0}, F (t,x) = F (θ, x, y) = (F1(θ, x, y), F2(θ, x, y))
where

F1(θ, x, y) = y,

F2(θ, x, y) = α sign(x)G(θ, x, y) +H(θ, x, y).

Therefore we apply Theorem 7 to the discontinuous differential system (7) and we obtain

f(x, y) =

∫ 2π

0

F (θ, x, y)dθ,

where f(x, y) = (g1(x, y), g2(x, y)) with

g1(x, y) = y,

g2(x, y) =

∫ 2π

0

H(θ, x, y) dθ + α

(∫ 3π/2

π/2

G(θ, x, y) dθ −
∫ π/2

−π/2
G(θ, x, y) dθ

)
.

A solution (x∗, y∗) of the system g1(x, y) = g2(x, y) = 0 satisfies y∗ = 0 and x∗ is a solution
of f3(x) = 0 where this function is the one defined in the statement of Proposition 3. Since G
and H are C1 functions in their two variables, it follows that g1(x, y), g2(x, y) and f3(x) are C1.
Consequently, if (x∗, 0) is a zero of the system g1(x, y) = g2(x, y) = 0, and the Jacobian

det


∂g1
∂x

∂g1
∂y

∂g2
∂x

∂g2
∂y


∣∣∣∣∣∣∣∣
(x,y)=(x∗,0)

=
df3
dx

∣∣∣∣
x=x∗

6= 0,
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then the Brouwer degree dB(f, V, (x∗, 0)) 6= 0 being V a convenient open neighborhood of (x∗, 0),
see again for more details on the Brouwer degree [3] and [9]. Hence, by Theorem 7 it follows
that for ε 6= 0 sufficiently small the discontinuous differential system (7) has a periodic solution
(x(θ, ε), y(θ, ε)) such that (x(0, ε), y(0, ε))→ (x∗, 0) when ε→ 0. So, the proposition follows. �

Proof of Proposition 4. The discontinuous differential system (8) is in the form (13) for applying
the averaging theory described in Theorem 7, where the variables of Theorem 7 now are t = θ,
T = 2π, x = (x, y), M = h−1(0) = {xy = 0}, F (t,x) = F (θ, x, y) = (F1(θ, x, y), F2(θ, x, y))
where

F1(θ, x, y) = y,

F2(θ, x, y) = α sign(xy)G(θ, x, y) +H(θ, x, y).

By applying Theorem 7 to the discontinuous differential system (8) and we obtain

f(x, y) =

∫ 2π

0

F (θ, x, y)dθ,

where f(x, y) = (g1(x, y), g2(x, y)) with

g1(x, y) = y,

g2(x, y) =

∫ 2π

0

H(θ, x, y) dθ − α

(∫ π/2

0

G(θ, x, y) dθ +

∫ 3π/2

π

G(θ, x, y) dθ

)

+α

(∫ π

π/2

G(θ, x, y) dθ +

∫ 2π

3π/2

G(θ, x, y) dθ

)
.

A solution (x∗, y∗) of the system g1(x, y) = g2(x, y) = 0 satisfies y∗ = 0 and x∗ is a solution
of f4(x) = 0 where this function is the one defined in the statement of Proposition 4. Since
g1(x, y), g2(x, y) and f4(x) are C1, and if (x∗, 0) is a zero of the system g1(x, y) = g2(x, y) = 0,
then the Jacobian

det


∂g1
∂x

∂g1
∂y

∂g2
∂x

∂g2
∂y


∣∣∣∣∣∣∣∣
(x,y)=(x∗,0)

=
df4
dx

∣∣∣∣
x=x∗

6= 0,

then the Brouwer degree dB(f, V, (x∗, 0)) 6= 0 being V a convenient open neighborhood of (x∗, 0).
Therefore, by Theorem 7 it follows that for ε 6= 0 sufficiently small the discontinuous differential
system (8) has a periodic solution (x(θ, ε), y(θ, ε)) such that (x(0, ε), y(0, ε)) → (x∗, 0) when
ε→ 0. In short, the proposition is proved. �

3. Proof of the applications

Here we prove the two corollaries.

Proof of Corollary 5. The autonomous discontinuous differential equation of second order (9) is
a particular case of equation (1) with

G(θ, u, u′) = uu′ and H(θ, u, u′) =
α

π
u′.

Then computing for equation (9) the function f1(r) given in the statement of Proposition 1 we
get

f1(r) = −α
3
r(4r − 3).
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Hence, f1(r) = 0 has a unique positive simple root r = 3/4. Going back through the changes of
variables described in the proof of Proposition 1, we obtain the result stated in the corollary. �

Proof of Corollary 6. The non–autonomous discontinuous differential equation of second order
(10) is a particular case of equation (3) with

G(θ, r, r′) = (2− 3r) cos
θ

2
and H(θ, r, r′) = −

√
2α

π
r2.

Then computing for equation (10) the function f3(x) given in the statement of Proposition 3 we
get

f3(x) = −2
√

2α(x− 2)(x− 1).

Therefore, f3(x) = 0 has two simple roots x = 1 and x = 2. Going back through the changes of
variables described in the proof of Proposition 3, it follows the result stated in the corollary. �

Appendix: Averaging theory of first order for discontinuous differential
systems

We need the following recent result of [8] on averaging theory for computing periodic orbits of
discontinuous differential systems. Its proof uses the theory on the Brouwer degree dB(f, V, 0)
for finite dimensional spaces (see the appendix A of [8] for a definition of the Brouwer degree),
and it is based on the averaging theory for continuous non–smooth differential system stated in
[4].

Theorem 7. We consider the following discontinuous differential system

(13) x′(t) = εF (t,x) + ε2R(t,x, ε),

with
F (t,x) = F1(t,x) + sign(h(t,x))F2(t,x),

R(t,x, ε) = R1(t,x, ε) + sign(h(t,x))R2(t,x, ε),

where F1, F2 : R×D → Rn, R1, R2 : R×D× (−ε0, ε0)→ Rn and h : R×D → R are continuous
functions, T–periodic in the variable t and D is an open subset of Rn. We also suppose that h
is a C1 function having 0 as a regular value. Denote by M = h−1(0), by Σ = {0} ×D *M, by
Σ0 = Σ\M 6= ∅, and its elements by z ≡ (0, z) /∈M.

Define the averaged function f : D → Rn as

(14) f(x) =

∫ T

0

F (t,x)dt.

We assume the following three conditions.

(i) F1, F2, R1, R2 and h are locally L–Lipschitz with respect to x;
(ii) for a ∈ Σ0 with f(a) = 0, there exist a neighbourhood V of a such that f(z) 6= 0 for all

z ∈ V \{a} and dB(f, V, 0) 6= 0.
(iii) If ∂h/∂t(t0, z0) = 0 for some (t0, z0) ∈M, then(

〈∇xh, F1〉2 − 〈∇xh, F2〉2
)
(t0, z0) > 0.

Then, for |ε| > 0 sufficiently small, there exists a T–periodic solution x(·, ε) of system (13) such
that x(0, ε)→ a as ε→ 0.
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ABELIAN SINGULARITIES OF HOLOMORPHIC LIE-FOLIATIONS

ALBETÃ MAFRA AND BRUNO SCÁRDUA

Abstract. We study holomorphic foliations with generic singularities and Lie group trans-

verse structure outside of some invariant codimension one analytic subset. We introduce the

concept of abelian singularity and prove that, for this type of singularities, the foliation is log-
arithmic. The Lie transverse structure is then used to extend the local (logarithmic) normal

form from a neighborhood of the singularity, to the whole manifold.

1. Introduction

Foliations with Lie transverse structure are among the simplest constructive examples of
foliations. They are however a natural object when one considers the possible applications of the
theory of foliations in the classification of manifolds and dynamical systems. By a foliation with a
Lie group transverse structure we mean a foliation that is given by an atlas of submersions taking
values on a given Lie group G and with transition maps given by restrictions of left-translations
on the group G. Such a foliation will be called a G-foliation. The theory of G-foliations is a
well-developed subject and follows the original work of Blumenthal [2].

In the present work we study the possible Lie transverse structures associated to holomorphic
foliations with singularities. This study initiated in [6] where we prove that a one-dimensional
holomorphic foliation with generic singularities in dimension 3 and having a Lie transverse
structure, outside of some analytic invariant subset of codimension one, is logarithmic.

As a consequence of our results, we conclude that, in dimension two, the presence of generic
singularities forces the transverse structure to be abelian. The exact sense of the term generic is
given below. We stress that our results are first steps in the comprehension of the possible Lie
group for holomorphic foliations with singularities.

Abelian singularities. Let F be a germ of a one-dimensional foliation at the origin 0 ∈ Cm.
We recall that F is linearizable without resonances if it is given in some neighborhood U of
0 ∈ Cm by a holomorphic vector field X which is linearizable as

X =

m∑
j=1

λjzj
∂

∂zj
, (1)

with eigenvalues λ1, · · · , λm satisfying the following non-resonance hypothesis:
If n1, · · · , nm ∈ Z are such that

m∑
j=1

njλj = 0,

then n1 = n2 = · · · = nm = 0.
Now we consider a (m − r)-dimensional holomorphic foliation with singularities F in a con-

nected open subset V ⊂ Cm. Denote by sing(F) ⊂ V the singular set of F . The following
definition is motivated by the two dimensional case (cf. Proposition 1):

http://dx.doi.org/10.5427/jsing.2014.10m
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Definition 1 (abelian singularity). A (m − r)-dimensional singularity p ∈ sing(F) ⊂ Cm is
said to be abelian if F is given by a system of commuting vector fields X1, · · · , Xm−r defined
in a neighborhood U of p such that X1, · · · , Xm−r vanish at p and are linearly independent off
sing(F)∩U. The singularity p ∈ sing(F) is generic if we can choose the system above such that:

(i) Each vector field is of the form Xk =
m∑
j=1

λkj zj
∂
∂zj

+ h. o. t..

(ii) The m×(m−r) matrix A = (λkj ), where j = 1, ...,m and k = 1, ...,m− r, is nonresonant
in the following sense: the set of its (m − r) × (m − r) minor determinants is linearly
independent over the integer numbers.

(iii) Some vector field Xj is nonresonant and analytically linearizable at the origin.

Remark 1. Regarding the notions above we have:
(1) A germ of a singular holomorphic vector field X at the origin 0 ∈ Cm is in the Poincaré

domain if the convex hull of its eigenvalues does not the origin 0 ∈ C. Otherwise it is
in the Siegel domain. The so called Poincaré-Dulac theorem states that a Poincaré type
singularity is analytically linearizable in the nonresonant case ([1]). In the generic case,
a nonresonant Siegel type singularity is also linearizable ([5]).

(2) If F has dimension one then the singularity is generic if and only if it is generated by a
generic vector field.

In this paper we consider the case where F has a G-transverse structure outside of some
analytic codimension one subset Λ such that each irreducible component of Λ contains the
origin 0 ∈ Cm. In this case, thanks to the linearization hypothesis, it is natural to assume that
the germ of such a subset Λ at the origin is the germ of a union of coordinate hyperplanes.

A codimension r holomorphic foliation with singularities in a complex manifold V is logarith-
mic if it is given by a system of closed meromorphic one-forms with simple poles {ω1, ..., ωr} in
V . In this paper we prove:

Theorem 1. Let F be a holomorphic foliation defined in an open connected neighborhood V of
the origin 0 ∈ Cm, such that F has an abelian generic singularity at the origin. Assume that F
has a G-transverse structure outside of some invariant codimension one analytic subset Λ ⊂ V ,
such that each irreducible component of Λ contains the origin. Then F is a logarithmic foliation.

Remark 2. Theorem 1 contains the case of dimension two foliations (cf. Proposition 1) and
of codimension one foliations (cf. [3]). We highlight the fact that the conclusion of Theorem 1
states that the foliation is logarithmic in the whole manifold V . From Lemma 1 we will see that
the germ of singularity induced by the foliation at the origin, is already a germ of a logarithmic
foliation. Thus, the main role of the Lie transverse structure is to extend this local (logarithmic)
normal form from a neighborhood of the origin, to the manifold V .

2. Generic abelian singularities

In what follows we motivate and prove some results about the notion of abelian singularity.
The next proposition motivates our approach.

Proposition 1. Let {A1, A2} be an integrable system of linear vector fields on Cm. Assume that
A1 and A2 are nonresonant. Then A1 and A2 commute. Indeed, A1 and A2 are simultaneously
diagonalizable.

Proof. Write A = A1 = (fij)
m
i,j=1. By hypothesis A2 is nonresonant and therefore diagonalizable.

Thus we may assume that A2 is in the diagonal form D with eigenvalues d1, ..., dm. Also by
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hypothesis [A,D] = c1A+ c2D, for some holomorphic functions c1, c2 defined in a neighborhood
of the origin 0 ∈ Cm.

AD =


f11d1 f12d2 . . . f1ndm
f12d1 f22d2 . . . f2ndm

...
...

. . .
...

fn1d1 fn2d2 . . . fnndm


and

DA =


f11d1 f12d1 . . . f1nd1

f21d2 f22d2 . . . f2nd2

...
...

. . .
...

fn1dm fn2dm . . . fnndm


and

AD −DA =


0 f12(d2 − d1) . . . f1n(dm − d1)

f21(d1 − d2) 0 . . . f2n(dm − d2)
...

...
. . .

...
fn1(d1 − dm) fn2(d2 − dm) . . . 0

 .

On the other hand

c1A+ c2D =


c1f11 + c2d1 c1f12 . . . c1f1n

c1f21 c1f22 + c2d2 . . . c1f2n

...
...

. . .
...

c1fn1 c1fn2 . . . c1fnn + c2dm

 .

From AD −DA = c1A+ c2D we obtain:

c1fij = fij(dj − di), c1fji = fji(di − dj)

Assume fij 6= 0 for some i, j. Then c1 = dj − di. Notice that if also fji 6= 0 then c1 = di − dj
and therefore di = dj , contradiction. Therefore, fij 6= 0 =⇒ fji = 0.

Given now an index k ∈ {1, ..., n}, as before we have fik = 0 or fki = 0. If fik 6= 0 we get
c1 = dk − di and therefore dk − di = di− dj and thus dk − 2di + dj = 0, contradiction. If fki 6= 0
then c1 = di−dk and thus di−dj = di−dk, that implies dj = dk, again a contradiction provided
that k 6= j. We conclude that fik = 0 for all k 6= i and fki = 0, ∀k 6= j. This means that, except
for the elements fii on the diagonal of A, at most one element fij is different from zero. Since
by hypothesis A1 = A is also nonresonant and diagonalizable, we conclude that A is also in the
diagonal form and therefore A and D commute. �

A germ of a codimension one holomorphic foliation singularity at the origin is given in a
neighborhood V of the origin 0 ∈ Cm by an integrable holomorphic one-form ω. We can write
ω = ων + ων+1 + · · · as a sum of homogeneous one-forms, where ων is the first nonzero jet
of ω. According to Cerveau-Mattei [3], under generic conditions on the coefficients of ων , the
foliation is given by an integrable system of n − 1 commuting vector fields, all of them with
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non-degenerate linear part at the origin. By generic we mean, for an open dense Zariski subset
of the affine space of coefficients of ων (see [3] in a more precise description).

In general, abelian singularities are linearizable, i.e., defined by simultaneously linearizable
commuting vector fields, as the following proposition shows:

Proposition 2. An abelian singularity is analytically linearizable provided that it is defined by
commuting vector fields one of which has an analytically linearizable nonresonant singularity.

Proof. It is enough to prove that given two commuting vector fieldsX and Y in a neighborhood U
of 0 ∈ Cm, and such that X has an analytically linearizable nonresonant singularity at 0 ∈ Cm
then X and Y are simultaneously linearizable in a neighborhood of the origin. In fact, in a
suitable local chart x = (x1, · · ·xm) we have

X =
m∑
j=1

λjxj
∂

∂xj
, Y =

m∑
i=1

bi(x)
∂

∂xi
, [X,Y ] =

m∑
i=1

 m∑
j=1

λjxj
∂bi(x)

∂xj
− λibi(x)

 ∂

∂xi
.

Since [X,Y ] = 0 we get
m∑
j=1

λjxj
∂bi(x)

∂xj
− λibi(x) = 0,

for i = 1, 2, · · · ,m.
We write bi in its Laurent series expansion in the variable x

bi =
∑

|(l1,...,lm)|6=0

bil1···lmx
l1
1 · · ·xlmm

xj
∂bi
∂xj

=
∑

|(l1,...,lm)|6=0

ljb
i
l1···lmx

l1 · · ·xlm .

By hypothesis X is nonresonant. Therefore
∑m
j=1 ljλj − λi 6= 0 and Y =

m∑
j=1

µjxj
∂

∂xj
. �

Let now X be a linearizable vector field in neighborhood U of the origin where X can be
written as in (1). We may introduce closed meromorphic one-forms ω1, · · · , ωm−1 on U , linearly
independent and holomorphic on U \ Λ, and such that ωl(X) = 0, l = 1, ...,m− 1 by

ωl =

m∑
j=1

αlj
dzj
zj

(2)

where l = 1, · · · ,m − 1 and the vectors ~αl := (αl1, ..., α
l
m) ∈ Cm are suitably chosen in the

hyperplane z1λ1 + ... + zmλm = 0 in Cm. We extend this fact by defining a nonresonant
linearizable abelian singularity as an abelian singularity which is defined by m−r simultaneously
analytically linearizable nonresonant vector fields. Using this we prove:

Lemma 1. A nonresonant linearizable abelian singularity is a germ of a logarithmic singularity.

Proof. In fact, the singularity is given by a system of vector fields Xk(y) = Aky, where
Ak ∈ GL(m,C) is a diagonal matrix for each k = 1, 2, · · · ,m− r. If

Ak =

 λk1 0 0
0 . . . 0
0 0 λkm
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we define r one-forms ω1, · · · , ωr on U \ Λ as in (2). Condition ωl(Xk) = 0 is equivalent to the
following system of equations

m∑
j=1

αljλ
k
j = 0, l = 1, · · · , r. (3)

Set ~λk =
(
λk1 , · · · , λkm

)
∈ Cm and let Pk ⊂ Cm be the hyperplane given by

Pk =

(z1, · · · , zm) ∈ Cm :

m∑
j=1

λkj zj = 0

 .

Then (3) is equivalent to ~λk ∈ Pk. Because the vector fields Xk are linearly independent off the

singular set of the foliation, which is of codimension ≥ 2, the vectors ~λ1 · · · , ~λm−r are linearly
independent in Cm and therefore the hyperplanes P1, · · · , Pm−r intersect transversely at a linear
subspace Q = P1 ∩ · · · ∩ Pr ⊂ Cm of dimension m − r. Since dim(Q) = m − r, we can choose
linearly independent vectors ~αl := (αl1, ..., α

l
m) ∈ Cm, l = 1, ..., r so that the corresponding one-

forms ω1, ..., ωr defined by ωl =
∑m
j=1 α

l
j
dzj
zj

satisfy ωl(Xk) = 0 and the system {ω1, · · · , ωr} has

maximal rank outside the set {ω1 ∧ · · · ∧ ωr = 0}. Therefore F is logarithmic. �

3. Proof of Theorem 1

In this section we prove Theorem 1. The starting point in our study is the following charac-
terization of G-foliations given by the classical theorem of Darboux-Lie ([2, 4]):

Darboux-Lie theorem. Let F be a G-foliation on V . Then there are one-forms θ1, ..., θr in
V such that: {θ1, ..., θr} is a rank r integrable system which defines F and the forms satisfy the
Maurer-Cartan equation:

dθi =
∑
j,k

cijkθj ∧ θk. (4)

The numbers {ckij} are the structure constants of a Lie algebra basis of G.
If F , V and G are complex (holomorphic) then the θj can be taken holomorphic.

The proof of Theorem 1 is also based on the following two lemmas:

Lemma 2. Let {ω1, ..., ωr} be a maximal rank system of logarithmic one-forms, say

ωl =

m∑
j=1

αlj
dzj
zj
,

defined in an open connected neighborhood U of the origin 0 ∈ Cm. Assume that the coefficients
matrix B = (αlj)j,l is nonresonant in the following sense: the set of its (m− r)× (m− r) minor
determinants is linearly independent over the integer numbers. Let f : U → C be a holomorphic
function such that df ∧ ω1 ∧ ... ∧ ωr = 0 in U . Then f is constant in U .

Proof. We have ω1 ∧ ... ∧ ωr =
∑

j1,...,jr

α1
j1
... αrjr

dzj1∧...∧dzjr
zj1 ...zjr

=
∑

j1<...<jr

∆(j1, ..., jr)
dzj1∧...∧dzjr
zj1 ...zjr

where ∆(j1, ..., jr) is the r × r minor determinant of the matriz A = (αlj)j,l obtained by consid-
ering the lines j1 < ... < jr.
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Write f(z1, ..., zm) =
∑

i1,...,im

fi1,...,imz
i1
1 ...z

im
m . Then

df =

m∑
`=1

∑
i1,...,im

i`fi1,...,imz
i1
1 ..z

i`−1
` ....zimm dz`.

Therefore

df ∧ ω1 ∧ ... ∧ ωr =

m∑
`=1

∑
i1,...,im

i`fi1,...,imz
i1
1 ..z

i`−1
` ....zimm dz` ∧

∑
j1<...<jr

∆(j1, ..., jr)
dzj1 ∧ ... ∧ dzjr

zj1 ...zjr

and then

df ∧ ω1 ∧ ... ∧ ωr =

m∑
`=1

∑
i1,...,im

∑
j1<...<jr

i`fi1,...,im∆(j1, ..., jr) z
i1
1 ..z

i`
` ....z

im
m

dz`
z`
∧ dzj1 ∧ ... ∧ dzjr

zj1 ...zjr

df∧ω1∧...∧ωr =
∑

i1,...,im

`=m∑
j1<...<jr, `=1

(−1)`i`∆(j1, ..., jr) fi1,...,im zi11 ..z
i`
` ....z

im
m

dzj1 ∧ ... ∧ dzjr ∧ dz`
zj1 ...zjr z`

Then df ∧ ∧ω1 ∧ ... ∧ ωr = 0 implies

fi1,...,im

( ∑
`∈{1,...,m}\{j1,...,jr}

[(−1)`i`∆(j1, ..., jr)]
)

= 0

for all j1 < ... < jr and for all i1, ..., im. Therefore, if fi1,...,im 6= 0 then we have∑
`∈{1,...,m}\{j1,...,jr}

(−1)`i`∆(j1, ..., jr) = 0.

By the nonresonance hypothesis this occurs only for (i1, ..., im) = (0, ..., 0).
�

Lemma 3. Let B = (αkj )j,k be a r ×m matrix and let A = (λkj ) a m × (m − r) matrix, such
that BA = 0. Denote by ∆(B; {k1, ..., kr}) the r × r minor determinant obtained by choosing
the columns (k1, ..., kr) in the matrix B and by ∆(A; {k1, ..., kr}c) the (m− r)× (m− r) minor
determinant obtained by deleting in A the lines k1, ..., kr. Then for any pair of choices (k1, ..., kr)

and (k̃1, .., k̃r) we have

sign(σ(k1, ..., kr))

sign(σ(k̃1, ..., k̃r))
∆(B; {k1, ..., kr}}∆(A; {k̃1, ..., k̃r}c) = ∆(B; {k̃1, ..., k̃r})∆(A; {k1, ..., kr}c)

where sign(σ(k1, ..., kr)) is the sign of the permutation (k1, ..., kr, j1, ..., jm−r), where

{j1 < ... < jr} = {1, ...,m} \ {k1, ..., kr}.

Assume that each such minor determinant is nonzero. Then we have

sign(σ(k1, ..., kr))
∆(B; {k1, ..., kr}}
∆(A; {k1, ..., kr}c)

= sign(σ(k̃1, ..., k̃r))
∆(B; {k̃1, ..., k̃r})
∆(A; {k̃1, ..., k̃r}c)

In particular, if A is nonresonant then B is also nonresonant.
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Proof. The proof is standard Linear Algebra. Indeed, we first write BA = 0 as above in the
following linear homogeneous system of equations

m∑
j=1

αljλ
k
j = 0, l ∈ {1, · · · , r}, k ∈ {1, · · · ,m− r}. (5)

From now on it is just Gaussian elimination process. We give a sketch for the case r = 2 and
m = 4. The general case is proved in the same way.

Write

A =


λ1 µ1

λ2 µ2

λ3 µ3

λ4 µ4


and

B =

(
a1 a2 a3 a4

b1 b2 b3 b4

)
.

From BA = 0 we get

a1λ1 + a2λ2 + a3λ3 + a4λ4 = 0 (6)

a1µ1 + a2µ2 + a3µ3 + a4µ4 = 0 (7)

b1λ1 + b2λ2 + b3λ3 + b4λ4 = 0 (8)

b1µ1 + b2µ2 + b3µ3 + b4µ4 = 0 (9)

Multiplying equation (5) by b2 and equation (7) by −a2 and then summing up these resulting
equations we eliminate λ2 in the first and the third equations obtaining:

(b2a1 − a2b1)λ1 + (b2a3 − a2b3)λ3 + (b2a4 − a2b4)λ4 = 0

Eliminating in a similar way µ2 in the second and fourth equations we obtain

(b2a1 − a2b1)µ1 + (b2a3 − a2b3)µ3 + (b2a4 − a2b4)µ4 = 0

Using these two equations and eliminating the term b2a3 − a2b3 we obtain∣∣∣∣ λ1 µ1

λ3 µ3

∣∣∣∣ ∣∣∣∣ a1 a2

b1 b2

∣∣∣∣ = −
∣∣∣∣ λ3 λ4

µ3 µ4

∣∣∣∣ ∣∣∣∣ a2 a4

b2 b4

∣∣∣∣
Notice that, during the Gaussian elimination process, no division is performed. Thus, we do not
need to make considerations regarding whether the coefficients are zero or not. �

Proof of Theorem 1. By Proposition 2 and Lemma 1, in a small neighborhood U ⊂ V of the

origin the foliation is defined by a system of logarithmic one-forms ω1, ..., ωr where ωl =
m∑
j=1

αlj
dzj
zj

and simultaneously by linear vector fields X1, ..., Xm−r of the form

Xk(z1, .., zm) =

m∑
i=1

λki zi
∂

∂zi
.

Since ωl(Xk) = 0 we have

m∑
j=1

αljλ
k
j = 0, l ∈ {1, · · · , r}, k ∈ {1, · · · ,m− r}. (10)
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Let B = (αlj)j,l be the matrix of coefficients of the forms ωl and A = (λkj ) the matrix of
coefficients of the vector fields Xk. From equation (10) we have BA = 0. Since A is nonresonant,
by Lemma 3, B is also nonresonant.

On the other hand, by hypothesis the foliation is a Lie-foliation in V \ Λ. Let therefore
{θ1, · · · , θr} be a system of holomorphic one-forms in V \Λ defining F and satisfying the Maurer-
Cartan equation as stated in Darboux-Lie theorem. Since {ωl}l=1,...,r and {θl}l=1,...,r define the
same foliation outside a codimension 1 analytical subset, given by the union of Λ with the
singular locus of F (which has codimension ≥ 2), it is clear that there is a holomorphic map
F : U \ Λ→ GL(r,C) given by F (z) = (fij)

r
i,j=1 such that

θi =

r∑
l=1

filωl. (11)

Since each ωl is closed we have from the above equation

dθi =

r∑
l=1

dfil ∧ ωl. (12)

From equations (4) and (11) we have

dθi =
∑
j,k

cijkθj ∧ θk =
∑
l<t

(∑
j,k

cijk (fjlfkt − fjtfkl)
)
ωl ∧ ωt. (13)

Claim 1. We have dfi1 ∧ ω1 ∧ · · · ∧ ωm−1 = 0.

Proof. Indeed, from equation (13) above we have

dθi ∧ ω2 ∧ · · · ∧ ωr = 0.

From this last equation and equation (12) we obtain

dfi1 ∧ ω1 ∧ · · · ∧ ωm−1 = 0.

�

Similarly we prove that

dfij ∧ ω1 ∧ · · · ∧ ωm−1 = 0, ∀i, j. (14)

Since the matrix B of the coefficients of the forms ωl is nonresonant, by Lemma 2 each
fij is constant in a neighborhood of the origin in U . On the other hand, each one-form θj is
defined in V \Λ, and each irreducible component of Λ contains the origin. Therefore, by classical
Levi-Hartogs’ extension theorem (applied to each irreducible component of Λ) each one-form θi
extends to Λ as a meromorphic one-form Θi in V . We claim:

Claim 2. Each extension Θi is a closed meromorphic one-form with simple poles in V . Moreover
the polar set (Θi)∞ is contained in Λ.

Proof. First we observe that the extension Θi is closed by the Identity Principle (also note that
since Λ is a thin set, V \Λ is connected). In order to see that the poles of Θi are contained in Λ
it is enough to observe that Θi ans θi coincide in V \Λ, where θi is holomorphic. Finally, to see
that each irreducible component of Λ is also contained in the polar set of each Θi it is enough to
use the fact that this is true in a neighborhood of the origin and, by hypothesis, each irreducible
component of Λ contains the origin. �

Since each Θi is a simple poles closed meromorphic one-form in V , the foliation F is logarith-
mic in V . This ends the proof of Theorem 1. �
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SOME REMARKS ABOUT THE TOPOLOGY OF CORANK 2 MAP GERMS

FROM R2 TO R2

J.A. MOYA-PÉREZ AND J.J. NUÑO-BALLESTEROS

Abstract. Let f : (R2, 0) → (R2, 0) be a finitely determined map germ. The link of f is
obtained by taking a small enough representative f : U ⊂ R2 → R2 and the intersection of its

image with a small enough sphere S1
ε centered at the origin in R2. We will use Gauss words

to classify topologically corank 2 map germs. In particular, we will center our attention in
map germs that belong to the Thom-Boardman class Σ2,0.

1. Introduction

In a previous paper [9] we defined the Gauss word, which is a complete topological invariant
for a finitely determined map germ f : (R2, 0) → (R2, 0) and we used it to classify corank 1
map germs. The following logical step is to try to extend this classification to germs of corank
2. This classification is also motivated by the fact that, as we will see in proposition 3.7, some
examples of links are not realizable by corank 1 map germs, even if |deg(f)| ≤ 1 (see figure 1).

Figure 1.

This classification was completed for the Σ2,0 Thom-Boardman class in the case of K - equiv-
alence following Mather’s techniques of classification (see for example [5]) and Nishimura proved
in [10] that, dealing with K - C0 - classes, the absolute value of deg(f) becomes a complete topo-
logical invariant. In the complex case, we can find related results in [7] and a full clasification
for weighted homogeneous map germs from C2 to C2 in an article of T.Gaffney and D.Mond in
[4].

The fact that we are not able to consider our germs as 1-parameter unfoldings of functions,
as we did in the corank 1 case, makes things to become much more complex. The absolute value
of the topological degree does not have to be necessarily less or equal than 1 and although our
Gauss words continue being a complete topological invariant, since their links are not constituted
as the union of 2 curves (as we did in [9]) the simplifications of letters are not allowed anymore.
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In this work, we will classify corank 2 map germs with some additional convenient restrictions.
Firstly we will suppose that f is of type Σ2,0 (that is, f has corank 2, but the pair (f, df) has
corank 0 at the origin). Departing from this point, we will establish a prenormal form of this kind
of germs by using their A2-classes and Eisenbud-Levine formula([2]) will let us to compute their
topological degree. As final step we will consider particular cases and under some restrictions
on the number of monomials which appear in the second coordinate germ, we will obtain the
different topological classes that we have in each case.

2. The link of a finitely determined map germ

We say that two smooth maps f : M → N and g : M ′ → N ′ between smooth manifolds are A-
equivalent if there exist diffeomorphisms φ : M →M ′ and ψ : N → N ′ such that g = ψ ◦f ◦φ−1.
If φ, ψ are homeomorphisms instead of diffeomorphisms, then we say that f, g are topologically
equivalent.

In the same way, two smooth map germs f, g : (R2, 0) → (R2, 0) are A-equivalent if there
exist diffeomorphism germs φ, ψ : (R2, 0) → (R2, 0) such that g = ψ ◦ f ◦ φ−1. If φ, ψ are
homeomorphisms instead of diffeomorphisms, then we say that f, g are topologically equivalent.

We say that f : (R2, 0)→ (R2, 0) is k-determined if for any map germ g with the same k-jet,
we have that g is A-equivalent to f . We say that f is finitely determined if it is k-determined
for some k.

Let f : U → V be a smooth proper map, where U, V ⊂ R2 are open subsets. We denote by
S(f) = {p ∈ U : Jfp = 0} the singular set of f , where Jf is the Jacobian determinant. It is a
consequence of the Whitney’s work [12] that f is stable if and only if the following two conditions
hold:

(1) 0 is a regular value of Jf , so that S(f) is a smooth curve in U .
(2) The restriction f |S(f) : S(f) → V is an immersion with only transverse double points,

except at isolated points, where it has simple cusps.

We denote ∆(f) = f(S(f)) and we define X(f) as the closure of f−1(∆(f))\S(f). If f is stable,
then S(f) is a smooth plane curve and ∆(f), X(f) are plane curves whose only singularities are
simple cusps or transverse double points.

Given a finitely determined map germ f : (R2, 0) → (R2, 0), if it is real analytic, we can

consider its complexification f̂ : (C2, 0) → (C2, 0). It is well known that f̂ is also finitely
determined as a complex analytic map germ. Then, by the Mather-Gaffney geometric criterion
[11], it has an isolated instability. In other words, we can find a small enough representative

f̂ : U → V , where U, V are open sets, such that

(1) f̂−1(0) = {0},
(2) the restriction f̂ |U\{0} is stable.

From the condition (2), both the cusps and the double folds are isolated points in U \ {0}. By
the curve selection lemma [6], we deduce that they are also isolated in U . Thus, we can shrink

the neighbourhood U if necessary and get a representative such that f̂ |U\{0} is stable with only
simple folds. Coming back to the real map f , we have the following immediate consequence.

Corollary 2.1. Let f : (R2, 0) → (R2, 0) be a finitely determined map germ. Then there is a
representative f : U → V , where U, V ⊂ R2 are open sets, such that

(1) f−1(0) = {0},
(2) f : U → V is proper,
(3) the restriction f |U\{0} is stable with only simple folds.
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We finish this section with an important result due to Fukuda [3], which tell us that any
finitely determined map germ, f : (Rn, 0) → (Rp, 0), with n ≤ p, has a conic structure over its
link. In order to simplify the notation, we only state the result in our case n = p = 2.

Given ε > 0, we denote:

S1
ε = {x ∈ R2 : ‖x‖2 = ε}, D2

ε = {x ∈ R2 : ‖x‖2 ≤ ε}.
and given a map germ f : (R2, 0)→ (R2, 0) we consider a representative f : U → V and put:

S̃1
ε = f−1(S1

ε ), D̃2
ε = f−1(D2

ε ).

Theorem 2.2. Let f : (R2, 0) → (R2, 0) be a finitely determined map germ. Then, up to A-
equivalence, there is a representative f : U → V and ε0 > 0, such that, for any ε with 0 < ε ≤ ε0
we have:

(1) S̃1
ε is diffeomorphic to S1.

(2) The map f |S̃1
ε

: S̃1
ε → S1

ε is stable, in other words, it is a Morse function all of whose

critical values are distinct.
(3) f |D̃2

ε
is topologically equivalent to the cone of f |S̃1

ε
.

Definition 2.3. Let f : (R2, 0)→ (R2, 0) be a finitely determined map germ. We say that the

stable map f |S̃1
ε

: S̃1
ε → S1

ε is the link of f , where f is a representative such that (1), (2) and (3)

of theorem 2.2 hold for any ε with 0 < ε ≤ ε0. This link is well defined, up to A-equivalence.

Since any finitely determined map germ is topologically equivalent to the cone of its link, we
have the following immediate consequence.

Corollary 2.4. Two finitely determined map germs f, g : (R2, 0) → (R2, 0) are topologically
equivalent if their associated links are topologically equivalent.

3. Gauss words

In this section we recall briefly (for more information and examples see [9]) how we define
an adapted version of the Gauss word in our particular case of study and some consequences of
such definition.

Definition 3.1. Let γ : S1 → S1 be a stable map, that is, such that all its singularities are of
Morse type and its critical values are distinct. We fix orientations in each S1 and we also choose
base points z0 ∈ S1 in the source and a0 ∈ S1 in the target.

Suppose that γ has r critical values labeled by r letters a1, . . . , ar ∈ S1 and let us denote their
inverse images by z1, . . . , zk ∈ S1. We assume they are ordered such that a0 ≤ a1 < · · · < ar
and z0 ≤ z1 < · · · < zk and following the orientation of each S1.

We define a map σ : {1, . . . , k} → {a1, . . . , ar, a1, . . . , ar} in the following way: given i ∈
{1, . . . , k}, then γ(zi) = aj for some j ∈ {1, . . . , r}; we define σ(i) = aj , if zi is a regular
point and σ(i) = aj , if zi is a singular point (i.e., the bar aj is used to distinguish whether the
inverse image of the critical value is regular or singular). We call Gauss word to the sequence
σ(1) . . . σ(k).

For instance, the link of the cusp f(x, y) = (x, xy+y3) has two critical values with four inverse
images and the associated Gauss word is abab (see figure 2).

It is obvious that the Gauss word is not uniquely determined, since it depends on the chosen
orientations and base points in each S1. Different choices will produce the following changes in
the Gauss word:

(1) a cyclic permutation in the letters a1, . . . , ar;
(2) a cyclic permutation in the sequence σ(1) . . . σ(k);



SOME REMARKS ABOUT THE TOPOLOGY OF CORANK 2 MAP GERMS FROM R2 TO R2 203

(1) (2) (3)

z

z

z

z

a

b

b a

z abab

4

3

2

1

1z z z2 3 4

Figure 2.

(3) a reversion in the set of the letters a1, . . . , ar;
(4) a reversion in the sequence σ(1) . . . σ(k).

We say that two Gauss words are equivalent if they are related through these four operations.
Under this equivalence, the Gauss word is now well defined.

In order to simplify the notation, given a stable map γ : S1 → S1, we denote by w(γ) the
associated Gauss word and by ' the equivalence relation between Gauss words. We also denote
by deg(γ) the topological degree. Then, we can state the main result of this section (see [9]).

Theorem 3.2. Let γ, δ : S1 → S1 be two stable maps. Then γ, δ are topologically equivalent if
and only if 

w(γ) ' w(δ), if γ, δ are singular,

|deg(γ)| = |deg(δ)|, if γ, δ are regular.

Given a finitely determined map germ f : (R2, 0) → (R2, 0), we denote by w(f) the Gauss
word of its link and by deg(f) the local topological degree.

If f : (R2, 0)→ (R2, 0) is a finitely determined map germ, then we can compute Gauss word
of the link of f just by looking at the relative position of the branches of the three curves S(f),
∆(f) and X(f).

Example 3.3. Let us consider the finitely determined map germ f(x, y) = (x, y3 − x2y). The
discriminant ∆(f) has a tree structure with one vertex at the origin and 4 adjacent edges labeled
by 4 letters a1, . . . , a4. Analogously, S(f)∪X(f) has also a tree structure with one vertex at the
origin and 8 adjacent edges labeled by Z1, . . . , Z8. We assume that the edges are well ordered
a1 < · · · < a4 and Z1 < · · · < Z8 with respect to the chosen base points and orientations in
the source and the target. We define the map σ : {1, . . . , 8} → {a1, . . . , a4, a1, . . . , a4} in the
following way: given i ∈ {1, . . . , 8}, then γ(Zi) = aj for some j ∈ {1, . . . , 4}; we define σ(i) = aj ,
if Zi ⊂ X(f) and σ(i) = aj , if Zi ⊂ S(f). Then, σ(1) . . . σ(8) is equal to the Gauss word of the
link of f , obtaining in this case the word a1a2a1a2a3a4a3a4 (see figure 3).

As a direct consequence, we have the following corollary.

Corollary 3.4. Let f, g : (R2, 0) → (R2, 0) be two finitely determined map germs. Then, if f
and g are topologically equivalent, their links are topologically equivalent.

Now,by using theorem 3.2 and corollaries 2.4 and 3.4 we can state the following result:
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Corollary 3.5. Let f, g : (R2, 0)→ (R2, 0) be two finitely determined map germs. Then f, g are
topologically equivalent if and only if

w(f) ' w(g), if f, g are singular outside the origin,

|deg(f)| = |deg(g)|, if f, g are regular outside the origin.

Remark 3.6. If f is regular outside the origin and |deg(f)| = r, then f is topologically equiv-
alent to the germ z → zr, with z = x+ iy.

Before finishing this section, let us state a result that will give us a necessary condition that
a stable map γ : S1 −→ S1 should verify to be the link of a corank 1 map germ.

Proposition 3.7. Any finitely determined map germ f : (R2, 0) −→ (R2, 0) of corank 1, with
link γ, verifies that

mult(γ) =

{
0, if deg(f) = 0,

1, if deg(f) = ±1.

We will define the multiplicity of a stable map γ : S1 −→ S1 as mult(γ) = minp∈S1 mult(p),
with mult(p) = #γ−1(p).

Proof. The three possible values of the topological degree of f are a consequence of a known
result (see for example [9]). Let us suppose that f(x, y) = (x, gx(y)), with

gx(y) = yn + an−2(x)yn−2 + · · ·+ a1(x)y.

If deg(f) = 0, n is even, n− 1 is odd and, as a consequence, the both curves g+
x , g

−
x , that will

form the link of f will have both an odd number of folds. Thus, γ will not be surjective and
mult(γ) = 0. If deg(f) = ±1, n is odd, n − 1 is even and the union of both partial curves will
completely fill S1, so mult(γ) = 1. �

4. Topological classification of map germs of type Σ2,0

In this section of the chapter we will classify corank 2 map germs, f : (R2, 0) −→ (R2, 0)
which are of type Σ2,0.

First of all we will state a result that will give us two prenormal forms of map germs of this
type.
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Theorem 4.1. Let f : (R2, 0) −→ (R2, 0) a corank 2 map germ of type Σ2,0. Then, f can be
written in one of the following prenormal forms:

(1) (xy, g(x, y))
(2) (x2 + y2, h(x, y)),

where g, h ∈M2
2

Proof. Firstly, we know that if we consider a map germ f of type Σ2,0, its 2-jet j2f(0) is situated
in one of the following A2-classes (see for example [5]):

(xy, x2 + y2), (xy, x2), (xy, 0), (x2 + y2, 0).

Therefore, f will present one of the following forms:

(1) (xy + a(x, y), b(x, y)), with a(x, y) ∈M3
2, b(x, y) ∈M2

2

(2) (x2 + y2 + c(x, y), d(x, y)), with c(x, y) ∈M3
2, d(x, y) ∈M2

2

By applying Morse’s lemma we know that if we consider a function germ f : (R2, 0) −→ (R, 0)
of the form f(x, y) = u(x, y) + v(x, y), with u(x, y) being a non degenerate quadratic form and
with v(x, y) ∈M3

2, we can choose a suitable change of coordinates

α : (R2, 0) −→ (R2, 0)
(x, y) → (X,Y )

such that u = f ◦ α−1.
As we have a non degenerate quadratic form in the first component, if we apply this change

of coordinates in (1) and (2), we arrive to the desired result. �

The first step to classify topologically this kind of germs will be to compute their topological
degree. Taking it into account, we state and prove the following result.

Proposition 4.2. Let f : (R2, 0)→ (R2, 0) be a finitely determined map germ of type Σ2,0.

(1) If f(x, y) = (xy, g(x, y)), f can have degree 0,±1 or ±2.
(2) If f(x, y) = (x2 + y2, h(x, y)), f has degree 0.

Proof. let us prove first (2). If our germ f has as first component x2 + y2 it is not surjective.
Then, deg(f) = 0.

For (1), we can suppose, without loss of generality, that

g(x, y) = axp + byq + k(x, y)

where

p, q ≥ 2, a, b > 0, and k(x, y) ∈ 〈xy〉.
As we know that (xy, g(x, y)) is K-equivalent to (xy, axp+byq) and that the topological degree

is a K-invariant we only need to compute the topological degree of (xy, axp + byq). We will do
it by applying Eisenbud-Levine’s formula ([2]), given by

deg(f) = sign〈, 〉ϕ,

the signature of the quadratic form associated to a linear function ϕ : Q(f) → R defined
conveniently, with

Q(f) =
E2

〈f1, f2〉
.

Thus, we have that

Q(f) =
E2

〈xy, axp + byq〉
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and a basis of this space will be given by

{1, x, x2, . . . , xp−1, y, y2, . . . , yq−1, J(f)}

with J(f) = qbyq − paxp.
We define the map

ϕ : Q(f) −→ R
J(f) → 1
[1] → 0
[x] → 0
[y] → 0
...

...
...

[xp−1] → 0
[yq−1] → 0

We will suppose that a = b = ±1, generalizing the result later.
The matrix of

〈, 〉ϕ : Q(f)×Q(f) −→ R
(p, q) → ϕ(pq)

with respect to the basis of Q(f) is

A =



1 x x2 · · · xp−1 y y2 · · · yq−1 J

1 0 0 0 · · · 0 0 0 · · · 0 1
x 0 0 0 · · · ∓ 1

p+q 0 0 · · · 0 0

x2 0 0 0 · · · 0 0 0 · · · 0 0
...

...
...

...
...

...
...

...
...

xp−1 0 ∓ 1
p+q 0 · · · 0 0 0 · · · 0 0

y 0 0 0 · · · 0 0 0 · · · ± 1
p+q 0

y2 0 0 0 · · · 0 0 0 · · · 0 0
...

...
...

...
...

...
...

...
...

yq−1 0 0 0 · · · 0 ± 1
p+q 0 · · · 0 0

J 1 0 0 · · · 0 0 0 · · · 0 0


taking into account the following facts:

• Each element of the form xiyj ∈ 〈xy〉 and as a consequence is 0 in Q(f)
• Each element of the form Jxi, Jyj , xp+i, yq+j can be written as linear combination of

the components of f , that is, they are 0 in Q(f)
• The elements xp and yq can be written in the following form:

– xp = ∓qyq±pxp±q(±xp±yq)
±(p+q) = ∓1

p+qJ ±
q
p+q (±xp ± yq), with ϕ(xp) = ∓ 1

p+q

– yq = ±qyq∓pxp±p(±xp±yq)
±(p+q) = ±1

p+qJ ±
p
p+q (±xp ± yq), with ϕ(yq) = ± 1

p+q

Therefore, by computing the determinant of the matrix (xI − A) we obtain the following
characteristic polynomials, depending on the parity of p and q:

• If p and q are odd, det(xI − A) = (x2 − 1)(x2 − 1
(p+q)2 )

p+q−2
2 and, as a consequence,

deg(f) = sign〈, 〉ϕ = 0.

• If p and q are even, det(xI −A) = (x2− 1)(x2− 1
(p+q)2 )

p+q−4
2 (x∓ 1

p+q )(x± 1
p+q ) and, as

a consequence, deg(f) = sign〈, 〉ϕ =

{
0, if ab > 0,

±2, if ab < 0.
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• If p and q have different parity, det(xI −A) = (x2 − 1)(x2 − 1
(p+q)2 )

p+q−3
2 (x± 1

p+q ) and,

as a consequence, deg(f) = sign〈, 〉ϕ = ±1.

Let us see now that we are able to generalize this result for any a, b ∈ R, with a, b 6= 0. We
will prove this by constructing a homotopy.

Let f0(x, y) = (xy, axp + byq), with a > 0 (analogous for a < 0), f1(x, y) = (xy, xp + byq) and
we consider the family

ft(x, y) = (xy, ((1− t)a+ t)xp + byq),

with t ∈ [0, 1].
If we prove that for any t, f−1

t (0) = {0} and that if t = 0, ft = f0 and if t = 1, ft = f1, we
will have that f0 and f1 are homotopic and, as a consequence, deg(f0) = deg(f1).

As (1 − t)a + t 6= 0 for any t, we will have that if we want that both terms of ft vanish, x
and y must be 0. Then, for any t, f−1

t (0) = {0}. On the other hand, by substituting, if t = 0,
ft(x, y) = (xy, axp + byq) = f0(x, y) and if t = 1, ft(x, y) = (xy, xp + byq) = f1(x, y). Then, f0

and f1 are homotopic and deg(f0) = deg(f1).
Analogously, we will have that deg(xy, xp + byq) = deg(xy, xp + yq) if b > 0. Then,

deg(xy, axp + byq) = deg(xy, xp + yq).

�

Now, putting together theorem 4.1 and proposition 4.2, we have the following corollary.

Corollary 4.3. Let f : (R2, 0)→ (R2, 0) be a finitely determined map germ of type Σ2,0. Then,
|deg(f)| ≤ 2.

Proof. If f is of type Σ2,0, by theorem 4.1 it can be written in the form (xy, g(x, y)) or in the
form (x2 + y2, h(x, y)), and we have just seen that the absolute value of their topological degree
is less or equal than 2. �

Before starting to compute the different topological classes of this kind of germs, we should
remember the concepts of admissible weights and weighted degrees of a weighted homogeneous
map germ which were introduced by Gaffney and Mond in [4] and will be very helpful for us in
our classification.

Definition 4.4. Let f : (R2, 0) → (R2, 0) be a weighted homogeneous map germ. We will
say that its weights w1, w2 and its weighted degrees d1, d2 are admissible if they verify the two
following conditions:

(1) (w1, w2) = (d1, d2) = 1
(2) w1 = w2 = 1 (homogeneous case) or d1 = k1w1w2, d2 = k2w1w2 + w1 + w2 (type 1) or

d1 = k1w1w2 + w1, d2 = k2w1w2 + w2 (type 2).

Once we have introduced this concept, let us see its relation with finitely determined map
germs.

Proposition 4.5. Let f : (R2, 0)→ (R2, 0) be a weighted homogeneous finitely determined map
germ. Then, w1, w2, d1, d2 must be admissible.

Proof. Given a weighted homogeneous finitely determined map germ f : (R2, 0) → (R2, 0),

since it is real analytic, we can consider its complexification f̂ : (C2, 0) → (C2, 0). It is well

known that f̂ is also weighted homogeneous and finitely determined as a complex analytic map
germ.Then, by applying [Proposition 5.3, 4], its weights w1, w2 and weighted degrees d1, d2 must

be admissible for f̂ , and, as a consequence, for f . �
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Remark 4.6. Let us see how we apply this result to a finitely determined map germ in our
particular case of study.

• f(x, y) = (xy, g(x, y))
If f is weighted homogeneous, that is,

g(x, y) =

p∑
i=0

ai(x
w2)i(yw1)p−i

we must have that (w1, w2) = (w1 + w2, pw1w2) = 1. Departing from the basis that
w1, w2 must be relatively primes, we have the following consequences, according to the
value of p.

– If p = 1, f is generically finitely determined.
– If p = 2, f won’t be finitely determined if w1 and w2 are odd.
– If p = 3, f won’t be finitely determined if w1 + w2 = 3k, with k ∈ N.
– In general, if p = tα1

1 . . . tαmm , f won’t be finitely determined if there exists i such
that w1 + w2 = kti, with 1 ≤ i ≤ m and k ∈ N.

• f(x, y) = (x2 + y2, h(x, y))
Because of the first component, we are only able to study this kind of germ in the

homogeneous case w1 = w2 = 1, with

h(x, y) =

p∑
i=0

aix
iyp−i

and (2, p) = 1. We arrive quickly to the conclusion that if p = 2k, f won’t be finitely
determined.

4.1. Germs with prenormal form (xy, g(x, y)). We consider the special case of weighted
homogeneous map germs, that is,

g(x, y) =

p∑
i=0

ai(x
w2)i(yw1)p−i,

with (w1+w2, pw1w2) being the weighted degrees of our germ and (w1, w2) = 1. We also suppose
that p ≤ 3. Then, the following results will give us a complete topological classification of these
particular cases.

Theorem 4.7. (p = 1) Let f : (R2, 0)→ (R2, 0) be a finitely determined map germ of corank 2
of the form f(x, y) = (xy, axw2 + byw1). Then,

(1) if w1, w2 are odd, f is topologically equivalent to the fold (x, y2),
(2) if w1, w2 have different parity, f is topologically equivalent to the cusp (x, xy + y3).

Proof. Let us prove first (1).
If w1, w2 are odd, we know by the proof of theorem 4.2 that deg(f) = 0. In addition to this,

if we compute its singular set, we get the equation w1by
w1 − w2ax

w2 = 0. Since this equation
is irreducible, we can conclude that S(f), and, as a consequence ∆(f), only present a single
branch.

Let us see that we are going to have a single topological class which is the class of the fold.
To prove this is enough to see that for any a, b ∈ R \ {0} there are points where f does not have
any inverse image.

Let us consider the point (1, 0). We get the equations xy = 1 and axw2 + byw1 = 0, obtaining
that

y =

(
−a
b

)1/(w1+w2)

.
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Thus, if ab > 0 f does not have any inverse image and the result is proved (see figure 4).

0
2

∆(ƒ) link(ƒ)

Figure 4.

1
3

∆(ƒ) link(ƒ)

Figure 5.

Analogously, if we take now the point (−1, 0) we have that every map germ f with ab < 0
does not have any inverse image either and we arrive to the conclusion again that we have a
single configuration of inverse images in the discriminant curve, which is the one of the fold.

If w1 and w2 are of distinct parity, applying an analogous procedure as in (1) to prove the
existence of points with a single inverse image, we obtain the desired result (see figure 5).

�

Theorem 4.8. (p = 2) Let f : (R2, 0)→ (R2, 0) be a finitely determined map germ of corank 2
of the form f(x, y) = (xy, ax2w2 + bxw2yw1 + cy2w1). Then,

1 if w1, w2 have the same parity, f is not finitely determined,
2 if w1, w2 have distinct parity, we have three cases,

• if (w1 − w2)2b2 + 16w1w2ac > 0,
– f is topologically equivalent to the map germ (xy, x2 + xy2 + y4) if ac > 0
– f is topologically equivalent to the map germ (xy, x2 + 20xy2 − y4) if ac < 0

• if (w1 − w2)2b2 + 16w1w2ac < 0, f is topologically equivalent to the map germ
(xy, x2 + xy2 − y4)
• if (w1 − w2)2b2 + 16w1w2ac = 0, f is not finitely determined.

Proof. If w1, w2 are both even or odd the result follows from remark 4.6. Let us suppose that
w1 and w2 have different parity. The Jacobian determinant is given by

J(f) = −2w2ax
2w2 + b(w1 − w2)xw2yw1 + 2w1cy

2w1 ,

that can be factorized in the form

−2w2(xw2 − λ1y
w1)(xw2 − λ2y

w1),

with λi = λi(a, b, c, w1, w2) ∈ C, i = 1, 2. These λi are obtained by solving the quadratic
equation given by the Jacobian determinant, whose discriminant is

(w1 − w2)2b2 + 16w1w2ac = 0.

Then, if this discriminant is positive we have two different real solutions for λi and as a conse-
quence two branches in our singular set S(f), if it is negative our singular set is empty outside
of the origin and in the case that the discriminant vanishes, λ1 = λ2 and f won’t be finitely de-
termined. If the discriminant is negative, by remark 3.6 and proposition 4.2, taking into account
that ac must be necessarily negative, we have that f will be topologically equivalent to the germ
(xy, x2 − y2). Since this germ is not finitely determined we can choose another member of this
topological class that is finitely determined. let us take, for example, (xy, x2 + xy2 − y4).

Thus, we center our attention in the case (w1 − w2)2b2 + 16w1w2ac > 0. If we call

Ci ≡ xw2 − λiyw1 = 0
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for i = 1, 2, and apply the coordinate changes{
x = αtw1

y = βtw2

we have that

f |Ci(t) = (αβtw1+w2 , (aλ2
i + bλi + c)t2w1w2),

whose derivative never vanishes out of 0 and it will present double folds if and only if αβ = 0,
which is impossible. Let us observe that these curves are going to be symmetrical with respect
to the y-axis (figure 6). From this point, we must consider two different cases:

∆(ƒ)

Figure 6.

• If ac > 0, by proposition 4.2 we know that deg(f) = 0. Taking into account that our
discriminant set has 2 branches and the link of f can’t have more than one connected
component, if we are able to prove that for any b we have points with no inverse images,
we finish.

If we consider the point (0,−1) we obtain the equations

xy = 0 and ax2w2 + bxw2yw1 + cy2w1 = −1,

getting the equality y =
(−1

c

)1/(2w1)
if x = 0 and x =

(−1
a

)1/(2w2)
if y = 0. In both

cases if a and c are positive the equalities don’t have any real solution. Thus, f does not
present any inverse image (see figure 7).

∆(ƒ)

0

2 24

Figure 7.

Considering the point (0, 1) and applying a totally analogous procedure we arrive
to the conclusion that if a, c < 0 f does not present any inverse image either (see
figure 8). Then, we have in both cases a single configuration of inverse images in the
discriminant, obtaining the associated link and Gauss word that appear in figure 9. Thus,
f is topologically equivalent to the known corank 1 normal form (x, y4−xy2−x2y). If we
want to take a normal form of corank 2 we can choose, for example, (xy, x2 + xy2 + y4).
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∆(ƒ)

0
2 2

4

Figure 8.

cb

d
a

adbc

Figure 9.

• If ac < 0, using again proposition 4.2, we know that deg(f) = ±2. Taking into account
that we are dealing with a map germ whose discriminant only has two branches if we
are able to prove that the maximum number of inverse images of f is 4 we finish.

Let us consider the equations

xy = d and ax2w2 + bxw2yw1 + cy2w1 = e,

with (d, e) ∈ R2. From here, we get the equality

cy2(w1+w2) + bdw2yw1+w2 − ey2w2 + ad2w2 = 0.

Applying Descartes method and using the hypothesis ac < 0 we arrive to the conclusion
that we can have three sign changes for y > 0 in the best of the cases and since all the
exponents are even except w1 + w2, this is the only term whose sign is going to change
when we consider y < 0. Then, we will have in this last case a single inverse image and
a total of 4 inverse images, as we wanted to prove.

Thus, the only possible configuration of the inverse images in the discriminant of a
map germ of this type will be the one that appears in figure 10, having its correspondent
associated link and Gauss word (figure 11).

∆(ƒ)

2

4 42

Figure 10.
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a
b

c
d

ababcdcdabcd

Figure 11.

To finish, let us choose a representative of this topological class, for example,

(xy, x2 + 20xy2 − y4).

�

Theorem 4.9. (p = 3) Let f : (R2, 0)→ (R2, 0) be a finitely determined map germ of corank 2
of the form f(x, y) = (xy, ax3w2 + bx2w2yw1 + cxw2y2w1 + dy3w1). let us denote by

A = −3w2a
(2w1 − w2)c

3
−
(

(w1 − 2w2)b

3

)2

,

B = −3w2a3w1d−
(w1 − 2w2)b

3

(2w1 − w2)c

3
,

C =
(w1 − 2w2)b

3
3w1d−

(
(2w1 − w2)c

3

)2

.

Then:

(1) Let us suppose that w1, w2 have different parity,
• if B2 − 4AC > 0, f is topologically equivalent to the simple cusp (x, xy + y3),
• if B2 − 4AC < 0, f is topologically equivalent to one of the map germs that appear

in table 1,
• if B2 − 4AC = 0, f is not finitely determined.

(2) In the case that w1, w2 are both odd,
• if B2 − 4AC > 0, f is topologically equivalent to one of the map germs that appear

in the table 2,
• if B2 − 4AC < 0, f is topologically equivalent to one of the map germs that appear

in table 3,
• if B2 − 4AC = 0, f is not finitely determined.

Proof. If we compute the Jacobian determinant of f we get

Jf(x, y) = −3w2ax
3w2 + (w1 − 2w2)bx2w2yw1 + (2w1 − w2)cxw2y2w1 + 3w1dy

3w1 .

Let us realize that if we make the coordinate changes
x = xw2

y = yw1

we get the cubic form

Jf(x, y) = −3w2ax
3 + (w1 − 2w2)bx2y + (2w1 − w2)cxy2 + 3w1dy

3.
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Degree Germ Associated link

1 (xy, x6 + 7x4y3 + 8x2y6 + y9)

a

b
c

d e
f

ababcdcdefef

(xy, x6 + 2x4y3 + 9x2y6 + y9)

a b

c
d

e
f

abcbabcdedcbcdefedef

(xy, x6 − x4y3 + 7x2y6 + y9)

a
b

c

d

e

f

abcbcdefedcbabcdedef
Table 1.

Degree Germ Associated link

0 (x, y2)

a b

ab

(xy, x3 − x2y3 − xy6 + y9)

a

b

ababab
Table 2.

From this point we apply a known result (see for example [5]) which tell us that a cubic form
will be of symbolic, hyperbolic, parabolic or elliptic type if and only if its associated quadratic
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Degree Germ Associated link

0 (xy, x3 − x2y3 + 3xy6 + y9)

d

f

c cacbcdfdeda
b

e

(xy, x3 − 6x2y3 + 4xy6 + y9)

a
bc

e
f

d

abcdcdefedcbabafef

(xy, x3 + 6x2y3 + 6xy6 + y9)

ab

c

d

e

f

abcdedcdefedcbcdcb

Table 3.

form obtained by computing the Hessian determinant is of symbolic, hyperbolic, parabolic or
elliptic type respectively. Thus, if we compute the Hessian determinant of Jf(x, y) we get the
quadratic form Ax2 +Bxy+Cy2 with A,B,C depending on the values of the initial coefficients
a, b, c, d and of the weights w1, w2 and undoing the coordinate changes we made earlier we get
the function Ax2w2 + Bxw2yw1 + Cy2w1 which we will use to determine the different cases of
study. Therefore, we have the following possibilities:

(1) Let us suppose that w1 and w2 have different parity. Firstly, if we consider as we did in
the case p = 2 the coordinate changes{

x = αtw1

y = βtw2

together with the image of the restriction of f to each one of the curves of the singular
set, Ci, we get

f|Ci(t)(t) = (αβtw1+w2 , (aλ3
i + bλ2

i + cλi + d)t3w1w2),

realizing that each one of these branches is symmetric with respect to the y-axis. Now, let
us see the different configurations of inverse images that we can have in the discriminant,
in order to obtain the distinct topological classes. As first step we will prove that
#f−1(z) ≤ 5, ∀z ∈ R2.

Let us take a point (e, f) ∈ R2 and let us consider the equations{
xy = e

ax3w2 + bx2w2yw1 + cxw2y2w1 + dy3w1 = f.

Taking in the first equation x = e
y , with y 6= 0 and substituting we get

a(
e

y
)3w2 + b(

e

y
)2w2yw1 + c(

e

y
)w2y2w1 + dy3w1 = f.
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As last step we multiply both sides of the equation by y3w2 , obtaining the final equation

dy3(w1+w2) + cew2y2(w1+w2) − fy3w2 + be2w2yw1+w2 + ae3w2 = 0.

Now, putting in order the monomials according to their weighted degree and taking
into account that the order of appearance of (c,−f, b) can suffer variations due to the
different values of (w1, w2), we apply Descartes rule of signs. Since we are working with a
a polynomial consisting of 5 monomials, the worst configuration (with a biggest number
of inverse images) will be given by + − + − +. Then, we will have at most 4 inverse
images for y > 0 or y < 0 indistinctly(let us take y > 0). If y < 0, taking into account
the parity of the weighted degrees of the monomials, we have the configuration −−−++
(or − − + + +, depending on the parity of w2), obtaining a single inverse image and a
total of 5 inverse images as we wanted to prove. If (c,−f, b) would appear in a distinct
order, by applying an analogous procedure we would arrive to the same result.

Secondly, we are going to prove that our germ f is always going to have points with
a single inverse image and points with 3 inverse images. To do this we take a point
(0, f) ∈ R2 and consider the equations{

xy = 0

ax3w2 + bx2w2yw1 + cxw2y2w1 + dy3w1 = f.

Since xy vanishes, x or y must be 0 and using the second equation we get in the first case

y =
(
f
d

)1/(3w1)

and in the second case x =
(
f
a

)1/(3w2)

. Therefore, if w1 is even and w2 is

odd we will have 3 inverse images if fd > 0 and a single one if fd < 0; analogously, if w1

is odd and w2 is even we will have 3 inverse images if fa > 0 and a single one if fa < 0.
Then, from this point, what we know for sure is that the sectors of our bifurcation set
in the image of f created by the discriminant curves that contain the y-axis are going
to have one of them 3 inverse images and the other, a single one.

With all these previous calculations we are now in conditions to obtain the different
topological classes.
• If B2− 4AC > 0, we have a single branch in our singular set and as a consequence,

the only possible configuration of inverse images in its single discriminant curve is
the one that appear in figure 12, which is clearly identified with the Gauss word
and the link of the simple cusp (figure 13). Then, f is topologically equivalent to
the simple cusp.

3

1

Figure 12.

abab

a
b

Figure 13.

• If B2 − 4AC < 0 we have three branches and two possible configurations of in-
verse images in the discriminant curves (figure 14), obtaining in the first case
the associated link and Gauss word that appears in figure 15 , with normal form
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(xy, x6 + 7x4y3 + 8x2y6 + y9) and in the second case the two different topological
classes that appear in figure 16, having as normal forms (xy, x6+2x4y3+9x2y6+y9)
and (xy, x6 − x4y3 + 7x2y6 + y9) respectively.

3

1 1

3 3

1

3

5 5

3 3

1

Figure 14.

a

b
c

d e
f

ababcdcdefef

Figure 15.

a b

c
d

e
f

abcbabcdedcbcdefedef

a
b

c

d

e

f

abcbcdefedcbabcdedef

Figure 16.

• If B2 − 4AC = 0 we will have a non reduced component in our singular set and f
won’t be finitely determined.
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(2) If w1 and w2 are odd, we consider again the coordinate changes{
x = αtw1

y = βtw2

together with the image of the restriction of f to each one of the curves of the singular
set, Ci. In this case, these images are symmetric with respect to the x-axis. Now, let us
see the different configurations of inverse images that we can have in the discriminant, in
order to obtain the distinct topological classes. Firstly, we will prove that # f−1(z) ≤ 6,
∀z ∈ R2.

Following a totally analogous procedure to the case of weights with different parity,
taking a point (e, f) ∈ R2 we arrive to the equation

dy3(w1+w2) + cew2y2(w1+w2) − fy3w2 + be2w1yw1+w2 + ae3w2 = 0

and applying Descartes method we conclude that points situated in the image of f are
going to present 6 inverse images at most.

Let us see now that f is always going to have points with 2 inverse images in the y-
axis. To prove this, we consider a point (0, f) ∈ R2. Since the first component of f must

vanish we get the equalities y =
(
f
d

)1/(3w1)

, with a single inverse image

(
0,
(
f
d

)1/(3w1)
)

and x =
(
f
a

)1/(3w2)

, with a single inverse image

((
f
a

)1/(3w2)

, 0

)
, getting a total of 2

inverse images, as we wanted to prove.
With all these previous remarks we are in conditions of giving a restricted list of the

possible distribution of inverse images that we can have in the discriminant curves.
• If B2−4AC > 0 our singular set and as a consequence the discriminant has a single

real branch. Therefore, we only have two possible distributions of inverse images
(figure 17), getting in the first case the link and Gauss word that appear in the
left hand side of figure 18, with the associated normal form of the fold (x, y2), and
in the last case the one that appear in the right hand side of figure 18, with the
associated normal form (xy, x3 − x2y3 − xy6 + y9).

0

2 2

4

Figure 17.

• If B2 − 4AC < 0 our singular set, and as a consequence the discriminant, has 3
distinct real branches and the initial number of possible configurations of inverse
images in the discriminant is much bigger (see figure 19). Let us see that (d) and
(e) can’t occur.
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ab

a

bab

ababab

Figure 18.

2

2

2

4

4

4 0

2

2

4

4

6

2

2

0

4

4

2

4
2

2

4

4
6 4

6

64

4
2

(a) (b) (c)

(d) (e)

Figure 19.

If we had the configuration of (d), we would have points of the form (e, 0) ∈ R2

with 6 inverse images. let us suppose that e > 0. We obtain the equation

dy3(w1+w2) + cew2y2(w1+w2) + be2w1yw1+w2 + ae3w2 = 0.

If we apply Descartes method to this polynomial, the only possible signs configura-
tion to get 6 inverse images is +−+− for y > 0, obtaining +−+− for y < 0. If (d)
was possible, taking a point of the form (e, 0) with e < 0 we should have 4 inverse
images. But this is impossible because applying again Descartes method and using
the sign of coefficients (a, b, c, d) we have had to choose to obtain 6 inverse images
when e > 0 we obtain a signs configuration of the form ++++ for any y. Therefore,
we have just arrived to a contradiction and the configuration (d) is not possible.
To prove that (e) is not possible either we will choose a point of the form

(ew1+w2 , te3w1w2) ∈ R2,
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that is, a point of a generic cusp and we consider the equations{
xy = ew1+w2

ax3w2 + bx2w2yw1 + cxw2y2w1 + dy3w1 = te3w1w2 .

If we suppose that y 6= 0, we can take x = ew1+w2

y and by substituting in the second

equation and multiplying both terms by y3w2 we have

a(ew1+w2)3w2 + b(ew1+w2)2w2yw1+w2 + c(ew1+w2)w2y2(w1+w2)

−tew1w2y3w2 + dy3(w1+w2) = 0,

that is, a polynomial constituted by 5 monomials and where, applying Descartes
method, we are going to have in the worst of the cases 4 sign changes, and as a
consequence, 4 inverse images for e > 0 and e < 0. Then, (e) is not possible.
Thus, we only have 3 possible configurations ((a), (b) and (c)) obtaining for each
one a single topological class given by its correspondent associated link and Gauss
word (see figure 20).

a
bc

e
f

d

abcdcdefedcbabafef

ab

c

d

e

f

abcdedcdefedcbcdcb

d

f

c

cacbcdfded

a
b

e

(a) (b)

(c)

Figure 20.

To finish we associate to (a) the normal form (xy, x3 − 6x2y3 + 4xy6 + y9), to (b)
(xy, x3 + 6x2y3 + 6xy6 + y9) and to (c) (xy, x3 − x2y3 + 3xy6 + y9).
• If we consider the remaining case, B2−4AC = 0, following and analogous argument

to the case of weights with different parity we conclude that f won’t be finitely
determined.

�
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4.2. Germs with prenormal form (x2 + y2, h(x, y)). As we did with germs with prenormal
form (xy, g(x, y)), we will suppose that h(x, y) is a weighted homogeneous polynomial, that is,

h(x, y) =

p∑
i=0

bi(x
w2)i(yw1)p−i,

although, in general, f won’t be weighted homogeneous. We distinguish two different cases,
according to the parity of p.

4.3. p = 2k. The following theorem will give us the classification of all germs of this type.

Theorem 4.10. Let f be of type Σ2,0,

f(x, y) = (x2 + y2,

p∑
i=0

bi(x
w2)i(yw1)p−i),

with p = 2k. Then, f is not finitely determined.

Proof. We will prove it for p = 2, being analogous for the remaining cases.
If w1 or w2 are greater than 1, when we compute the Jacobian determinant of f we obtain a

expression of the form 2yA or 2xB with A,B depending on w1, w2, x, y. In the first case, we have
the curve y = 0 in the singular set, getting an image (x2, ax2w2) that clearly presents double
points. If we have x = 0 by an analogous procedure we arrive to the same conclusion.

If w1 = w2 = 1 we have branches of the form x = λy in the singular set, and as a consequence,
each one of the discriminant curves will have the form ((λy)2 + y2, a(λy)2 + b(λy)y + cy2) that
present double points of the form y1 = −y2. Then, f is not finitely determined either. �

4.4. General case. Firstly, we will see that if one of the weights is even and the other is different
from 1, f won’t be finitely determined.

Theorem 4.11. Let f be of type Σ2,0,

f(x, y) = (x2 + y2,

p∑
i=0

bi(x
w2)i(yw1)p−i).

Then, if w1 or w2 is even, with the other weight being greater than 1, f is not finitely determined.

Proof. Let us suppose that w1 is even and w2 > 1. If we compute the Jacobian determinant of
f we get

Jf(x, y) = 2x

p−1∑
i=0

w1(p− i)bi(xw2)i(yw1)p−i−1 − 2y

p∑
i=1

w2ibi(x
w2)i−1(yw1)p−i.

Since w2 > 1 we can get one x out of the second summation, obtaining

Jf(x, y) = 2x(

p−1∑
i=0

w1(p− i)bi(xw2)i(yw1)p−i−1 − y
p∑
i=1

w2ibi(x
w2)i−2(yw1)p−i.

Therefore, one of the branches of S(f) will always be given by the equation x = 0 and

f|x=0(y) = (y2, ypw1),

that will always present double points of the form y1 = −y2. Thus, f is not finitely determined.
�

Let us see now what happen when both weights are odd. We will give some particular results
about it.
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Theorem 4.12. (p = 1) Let f be of type Σ2,0, f(x, y) = (x2 + y2, axw2 + byw1), with w1, w2

both odd.Then, f is topologically equivalent to the germ (x2 + y2, x3 + y5).

Proof. Let us suppose that w1, w2 are both odd and greater than 1 (if one of them was 1, f
wouldn’t be of type Σ2,0 anymore). In this case

Jf(x, y) = 2xy(w1by
w1−2 − w2ax

w2−2),

obtaining that our singular set S(f) will have 3 branches, x = 0, y = 0 and yw1−2 = w2ax
w2−2

w1b
.

In the first two f does not present any problem. Let us see that it does not present any problem

in the third one either. To see this we make the coordinates change


x = αtw1−2

y = βtw2−2

with

β = (w2a)
1/(w1−2) ∈ C and α = (w1b)

1/(w2−2) ∈ C. We have that

f |
yw1−2=

w2ax
w2−2

w1b

(t) = (A(t), B(t)),

with A(t) = α2t2(w1−2) + β2t2(w2−2) and B(t) = aαw2tw2(w1−2) + bβw1tw1(w2−2). It is clear that
although A(t) is going to present double points of the form t1 = −t2, it is not going to happen
with B(t). Then, f is finitely determined.

Thus, ∆(f) will have three branches and we can only have two possible configurations (see
figure 21):

∆(ƒ)
(a) (b)

0

2

2

4

4

2
0

2

2

4

4

6

Figure 21.

Let us see that (b) is not possible. To prove this we consider a point (e, 0) ∈ R2 and we will
prove by Descartes method that it will present at most 2 inverse images. We have the equations

x2 + y2 = e

axw2 + byw1 = 0

obtaining a single equation of the form A(y
w1
w2 )2+y2 = e with A > 0. We consider the coordinate

change y = zw2 in order to be able to work with integer exponents and we get Az2w1+z2w2−e = 0
that, applying Descartes method will always present at most 1 root if z > 0 and 1 root if z < 0,
having a total of 2 roots z1 and z2 and as a consequence y1 and y2. Therefore, the only possible
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configuration is given by (a) and, since the 3 branches of the singular set are symmetric with
respect to the origin of coordinates the only possible topological class is the associated to the
link and Gauss word of figure 22.

d

f

c cacbcdfdeda
b

e

Figure 22.

Then, f is topologically equivalent to (x, y4 − x2y2 − 1
4x

3y) and to the corank 2 normal form

(x2 + y2, x3 + y5).
�

Theorem 4.13. (p = 3, homogeneous case) Let f be of type of Σ2,0, f(x, y) = (x2 + y2, ax3 +
bx2y + cxy2 + dy3). Then, if we denote by

A = b(
3d− 2b

3
)− (

2c− 3a

3
)2,

B = −bc− (2c− 3a)(3d− 2b)

9
,

C =
c(3a− 2c)

3
− (

3d− 2b

3
)2

we have that

(1) if B2 − 4AC > 0, f is topologically equivalent to the fold,
(2) if B2− 4AC < 0, f is topologically equivalent to one of the germs that appear in table 4,

Degree Germ Associated link

0 (x2 + y2, x3 + y5)

d

f

c cacbcdfdeda
b

e

(x2 + y2, x3 + x2y − 3xy2 + y3)

ab

c

d

e

f

bcdedcdefedcbcdca

Table 4.

(3) if B2 − 4AC = 0, f is not finitely determined.
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Proof. Applying the result used earlier for map germs of the form (xy, g(x, y)) in the case
p = 3 we obtain coefficients A = A(a, , b, c, d), B = B(a, b, c, d) and C = C(a, b, c, d) such
that Jf(x, y) will present a symbolic, elliptical, hyperbolic or parabolic quadratic form if and
only if Ax2 +Bxy+Cy2 presents a symbolic, elliptical, hyperbolic or parabolic quadratic form.
Therefore, we have several cases:

(1) If B2 − 4AC > 0, S(f) presents a single branch x = λy whose image will be, as happen
with all the germs of this form, symmetric with respect to the x-axis. Since the only
possible configuration of inverse images is the one that appears in figure 23, f will be
topologically equivalent to the fold.

2
0

Figure 23.

(2) If B2 − 4AC < 0, S(f) will present three distinct real branches, obtaining in the dis-
criminant the possible configurations of figure 24 and from each one of them a sin-

∆(ƒ)
(a) (b)

0

2

2

4

4

2
0

2

2

4

4

6

Figure 24.

gle topological class, symmetric with respect to the origin of coordinates. In case
(a) we have the associated link and Gauss word of figure 25, taking as normal form
(x2 + y2, x3 + y5) and in case (b) we obtain the link of figure 26, taking as normal form
(x2 + y2, x3 + x2y − 3xy2 + y3).

(3) If B2 − 4AC = 0 we obtain a non reduced component in S(f). Then, f is not finitely
determined.

�
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Figure 25.
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LIPSCHITZ GEOMETRY OF COMPLEX CURVES

WALTER D NEUMANN AND ANNE PICHON

Abstract. We describe the Lipschitz geometry of complex curves. To a large part this is well

known material, but we give a stronger version even of known results. In particular, we give
a quick proof, without any analytic restrictions, that the outer Lipschitz geometry of a germ

of a complex plane curve determines and is determined by its embedded topology. This was
first proved by Pham and Teissier, but in an analytic category. We also show the embedded

topology of a plane curve determines its ambient Lipschitz geometry.

1. Introduction

The germ of a complex set (X, 0) ⊂ (CN , 0) has two metrics induced from the standard
hermitian metric on CN : the outer metric given by distance in CN and the inner metric given
by arc-length of curves on X. Both are well defined up to bilipschitz equivalence, i.e., they only
depend on the analytic type of the germ (X, 0) and not on the embedding (X, 0) ⊂ (CN , 0).
Studies of what information can be extracted from this metric structure have generally worked
under analytic restrictions, e.g., that equivalences be restricted to be analytic or semi-algebraic
or similar. In this note we prove the metric classification of germs of complex plane curves, but
without any analytic restrictions (equivalence of item (1) of the following theorem with the other
items):

Theorem 1.1. Let (C1, 0) ⊂ (C2, 0) and (C2, 0) ⊂ (C2, 0) be two germs of complex curves. The
following are equivalent:

(1) (C1, 0) and (C2, 0) have same Lipschitz geometry, i.e., there is a homeomorphism of
germs φ : (C1, 0)→ (C2, 0) which is bilipschitz for the outer metric;

(2) there is a homeomorphism of germs φ : (C1, 0)→ (C2, 0), holomorphic except at 0, which
is bilipschitz for the outer metric;

(3) (C1, 0) and (C2, 0) have the same embedded topology, i.e., there is a homeomorphism of
germs h : (C2, 0)→ (C2, 0) such that h(C1) = C2;

(4) there is a bilipschitz homeomorphism of germs h : (C2, 0)→ (C2, 0) with h(C1) = C2.

The equivalence of (1), (3) and (4) is our new contribution. The equivalence of (2) and (3)
was first proved by Pham and Teissier [7]. By Teissier [8, Remarque, p.354] (see also Fernandes
[5]) it then also follows that the outer bilipschitz geometry of any curve germ (X, 0) ⊂ (CN , 0)
determines the embedded topology of its general plane projection (Corollary 5.2).

For completeness we give quick proofs of all the equivalences. We start with the result for
inner geometry, which will be used in examining outer geometry.

Acknowledgments. We thank Bernard Teissier for helpful comments on the first version of
this paper. This research was supported by NSF grant DMS12066760 and by the ANR-12-JS01-
0002-01 SUSI.

1991 Mathematics Subject Classification. 14B05, 32S25, 32S05, 57M99.
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2. Inner geometry

An algebraic germ (X, 0) ⊂ (CN , 0) is homeomorphic to the cone on its link X ∩Sε, where Sε
is the sphere of radius ε about the origin with ε sufficiently small. If it is endowed with a metric,
it is metrically conical if it is bilipschitz equivalent to the metric cone on its link. This basically
means that the metric tells one no more than the topology (and is therefore uninteresting).

Proposition 2.1. Any space curve germ (C, 0) ⊂ (CN , 0) is metrically conical for the inner
geometry.

Proof. Take a linear projection p : CN → C which is generic for the curve (C, 0) (i.e., its kernel
contains no tangent line of C at 0) and let π := p|C , which is a branched cover of germs. Let
Dε = {z ∈ C : |z| ≤ ε} with ε small, and let Cε be the part of C which branched covers Dε. Since
π is holomorphic away from 0 we have a local Lipschitz constant K(x) at each point x ∈ Cr{0}
given by absolute value of the derivative map of π at x. On each branch of C this K(x) extends
continuously over 0, so the infimum and supremum K− and K+ of K(x) on Cεr{0} are defined
and positive. For any arc γ in Cε which is smooth except where it passes through 0 we have
K−`(γ) ≤ `′(γ) ≤ K+`(γ), where ` respectively `′ represent arc length using inner metric on Cε
respectively the metric lifted from Bε. Since Cε with the latter metric is strictly conical, we are
done. �

3. Outer geometry determines embedded topological type

In this section, we prove (1) ⇒ (3) of Theorem 1.1, i.e., that the embedded topological type
of a plane curve germ (C, 0) ⊂ (C2, 0) is determined by the outer Lipschitz geometry of (C, 0).

We first prove this using the analytic structure and the outer metric on (C, 0). The proof is
close to Fernandes’ approach in [5]. We then modify the proof to make it purely topological and
to allow a bilipschitz change of the metric.

The tangent space to C at 0 is a union of lines L(j), j = 1, . . . ,m, and by choosing our
coordinates we can assume they are all transverse to the y-axis.

There is ε0 > 0 such that for any ε ≤ ε0 the curve C meets transversely the set

Tε :=
{

(x, y) ∈ C2 : |x| = ε
}
.

Let µ be the multiplicity of C. The lines x = t for t ∈ (0, ε0] intersect C in µ points
p1(t), . . . , pµ(t) which depend continuously on t. Denote by [µ] the set {1, 2, . . . , µ}. For each

j, k ∈ [µ] with j < k, the distance d(pj(t), pk(t)) has the form O(tq(j,k)), where q(j, k) = q(k, j)
is either a characteristic Puiseux exponent for a branch of the plane curve C or a coincidence
exponent between two branches of C in the sense of e.g., [1, Chapitre 1, p. 12]. We call such
exponents essential. For j ∈ [µ] define q(j, j) =∞.

Lemma 3.1. The map q : [µ] × [µ] → Q ∪ {∞}, (j, k) 7→ q(j, k), determines the embedded
topology of C.

Proof. There are many combinatorial objects that encode the embedded topology of C, for
example the Eisenbud-Neumann splice diagram [4] of the curve or the Eggers tree [3] (both are
described, with the relationship between them, in C.T.C. Wall’s book [9]). The “carrousel tree”
described below is closely related (first described in [6]). All three are rooted trees with edges
or vertices decorated with numeric labels.

To prove the lemma we will construct the carrousel tree from q. We also describe how one
derives the splice diagram from it.

The q(j, k) have the property that q(j, l) ≥ min(q(j, k), q(k, l)) for any triple j, k, l. So for any
q ∈ Q ∪ {∞}, q > 0, the relation on the set [µ] given by j ∼q k ⇔ q(j, k) ≥ q is an equivalence
relation.
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Name the elements of the set q([µ]× [µ]) ∪ {1} in decreasing order of size:

∞ = q0 > q1 > q2 > · · · > qs = 1.

For each i = 0, . . . , s let Gi,1, . . . , Gi,µi be the equivalence classes for the relation ∼qi . So µ0 = µ
and the sets G0,j are singletons while µs = 1 and Gs,1 = [µ]. We form a tree with these
equivalence classes Gi,j as vertices, and edges given by inclusion relations: the singleton sets
G0,j are the leaves and there is an edge between Gi,j and Gi+1,k if Gi,j ⊆ Gi+1,k. The vertex
Gs,1 is the root of this tree. We weight each vertex with its corresponding qi.

The carrousel tree is the tree obtained from this tree by suppressing valence 2 vertices: we
remove each such vertex and amalgamate its two adjacent edges into one edge. We will describe
how one gets from this to the splice diagram, but we first give an illustrative example.

We will use the plane curve C with two branches given by

y = x3/2 + x13/6, y = x7/3 .

Fig. 1 gives pictures of sections of C with complex lines x = 0.1, 0.05, 0.025 and 0. The
central three-points set corresponds to the branch y = x7/3 while the two lateral three-points
sets correspond to the other branch.

0.1

0.05

0.025

0

Figure 1. Sections of C

The carrousel tree for this example is the tree on the left in Fig. 2 and the procedure we will
describe for getting from it to the splice diagram is then illustrated in the middle and right trees.
We will follow the computer science convention of drawing the tree with its root vertex at the
top, descending to its leaves at the bottom. At any non-leaf vertex v of the carrousel tree we

Carrousel tree

1◦

3
2◦

13
6◦ 13

6◦

7
3 ◦

◦◦◦◦◦◦◦◦◦

1◦

3
2◦

2

13
6◦

14
6 ◦

◦ ◦

Eggers tree

=

1◦

3
2◦

2

14
6 ◦ 13

6◦

◦ ◦

Splice diagram

◦
1

3
◦

2

7

1

22

◦
1

��

3 ◦
1

��

3

◦ ◦

Figure 2. Carrousel tree to splice diagram

have a weight qv, 1 ≤ qv ≤ q1, which is one of the qi’s. We write it as mv/nv, where nv is the lcm
of the denominators of the q-weights at the vertices on the path from v up to the root vertex. If
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v′ is the adjacent vertex above v along this path, we put rv = nv/nv′ and sv = nv(qv − qv′). At
each vertex v the subtrees cut off below v consist of groups of rv isomorphic trees, with possibly
one additional tree. We label the top of the edge connecting to this additional tree at v, if it
exists, with the number rv, and then delete all but one from each group of rv isomorphic trees
below v. We do this for each non-leaf vertex of the carrousel tree. The resulting tree, with the
qv labels at vertices and the extra label on a downward edge at some vertices is easily recognized
as a mild modification of the Eggers tree.

We construct the splice diagram starting from this tree. We first replace every leaf by an
arrowhead. Then at each vertex v which did not have a downward edge with an rv label we add
such an edge (ending in a new leaf which is not an arrowhead). Each still unlabeled top end of
an edge is then given the label 1. Finally, starting from the top of the tree we move down the
tree adding a label to the bottom end of each edge ending in a vertex v which is not a leaf as
follows. If v is directly below the root the label is m′v := mv. For a vertex v directly below a
vertex v′ other than the root the label is m′v := sv + rvrv′m

′
v′ if rv′ does not label the edge v′v

and m′v := (sv + rvm
′
v′)/rv′ if it does (see [4, Prop. 1A.1]). �

As already noted, this discovery of the embedded topology involved the complex structure
and outer metric. We must show we can discover it without use of the complex structure, even
after applying a bilipschitz change to the outer metric.

Recall that the tangent space of C is a union of lines L(j). We denote by C(j) the part of C
tangent to the line L(j). It suffices to discover the topology of each C(j) independently, since the
C(j)’s are distinguished by the fact that the distance between any two of them outside a ball of
radius ε around 0 is O(ε), even after bilipschitz change to the metric. We therefore assume from
now on that the tangent to C is a single complex line.

The points p1(t), . . . , pµ(t) we used to find the numbers q(j, k) were obtained by intersecting
C with the line x = t. The arc p1(t), t ∈ [0, ε0] satisfies d(0, p1(t)) = O(t). Moreover, the other
points p2(t), . . . , pµ(t) are in the transverse disk of radius rt centered at p1(t) in the plane x = t.
Here r can be as small as we like, so long as ε0 is then chosen sufficiently small.

Instead of a transverse disk of radius rt, we can use a ball B(p1(t), rt) of radius rt centered at
p1(t). This B(p1(t), rt) intersects C in µ disks D1(t), . . . , Dµ(t), and we have d(Dj(t), Dk(t)) =

O(tq(j,k)), so we still recover the numbers q(j, k). In fact, the ball in the outer metric on C
of radius rt around p1(t) is BC(p1(t), rt) := C ∩ B(p1(t), rt), which consists of these µ disks
D1(t), . . . , Dµ(t).

We now replace the arc p1(t) by any continuous arc p′1(t) on C with the property that
d(0, p′1(t)) = O(t), and if r is sufficiently small it is still true that BC(p′1(t), rt) consists of µ
disks D′1(t), . . . , D′µ(t) with d

(
D′j(t), D

′
k(t)

)
= O(tq(j,k)). So at this point, we have gotten rid

of the dependence on analytic structure in discovering the topology, but not yet dependence on
the outer geometry.

A K-bilipschitz change to the metric may make the components of BC(p′1(t), rt) disintegrate
into many pieces, so we can no longer simply use distance between pieces. To resolve this,
we consider both B′C(p′1(t), rt) and B′C(p′1(t), r

K4 t) where B′ means we are using the modified
metric. Then only µ components of B′C(p1(t), rt) will intersect B′C(p1(t), r

K4 t). Naming these

components D′1(t), . . . , D′µ(t) again, we still have d(D′j(t), D
′
k(t)) = O(tq(j,k)) so the q(j, k) are

determined as before. �

4. Embedded topological type determines outer geometry

In this section, we prove (3) ⇒ (2) of Theorem 1.1. The implication (2) ⇒ (1) is trivial, so
we then have the equivalence of the first three items of Theorem 1.1.
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We will use the following lemma:

Lemma 4.1. Let (C, 0) ⊂ (CN , 0) be a germ of complex plane curve and let p : CN → C be
a linear projection whose kernel does not contain any tangent line to C. Then there exists a
neighborhood U of 0 in C and a constant M > 1 such that for each u, u′ ∈ U r {0}, there is an
arc α̃ in C joining u to a point u′′ with p(u′′) = p(u′) and

d(u, u′) ≤ L(α̃) + d(u′′, u′) ≤Md(u, u′)

where L(α̃) denotes the length of α̃.

Proof. There exists a neighbourhood U of 0 in C such that the restriction p|C is a bilipschitz
local homeomorphism for the inner metric on U r {0} (see proof of Proposition 2.1). Choose
any δ > 1. If 0 is not in the segment [p(u), p(u′)], we set α = [p(u), p(u′)]. If 0 ∈ [p(u), p(u′)],
we modify this segment to a curve α avoiding 0 which has length at most δ times the length of
[p(u), p(u′)]. Consider the lifting α̃ of α by p|C with origin u and let u′′ be its extremity. We
obviously have:

d(u, u′) ≤ L(α̃) + d(u′, u′′) .

On the other hand, L(α̃) ≤ K0L(α) ≤ δK0d(p(u), p(u′)), where K0 is a bound for the local
inner bilipschitz constant of p on U r {0}. As d(p(u), p(u′)) ≤ d(u, u′), we then obtain:

L(α̃) ≤ δK0d(u, u′).

If we join the segment [u, u′] to α̃ at u we get a curve from u′ to u′′, so

d(u′, u′′) ≤ (1 + δK0)d(u, u′).

We then obtain:

L(α̃) + d(u′, u′′) ≤ (1 + 2δK0)d(u, u′),

and M = 1 + 2δK0 is the desired constant. �

Proof of (3) ⇒ (2) of Theorem 1.1. Let (C1, 0) ⊂ (C2, 0) be an irreducible plane curve which
is not tangent to the y-axis. Then there exists a minimal integer n > 0 such that (C1, 0) has
Puiseux parametrization

γ1(w) =
(
wn,

∑
i≥n

aiw
i
)
.

Denote A := {i : ai 6= 0}. Recall that the embedded topology of C1 is determined by n and the
essential integer exponents in the sum

∑
i≥n aiw

i, where an i ∈ A r {n} is an essential integer

exponent if and only if gcd{j ∈ {n} ∪ A : j ≤ i} < gcd{j ∈ {n} ∪ A : j < i} (equivalently i
n

is a characteristic exponent). Denote by Ae the subset of A consisting of the essential integer
exponents.

Now let (C2, 0) ⊂ (C2, 0), given by

γ2(w) =
(
wn,

∑
i≥n

biw
i
)
,

be a second plane curve with the same embedded topology as C1, so that the set of essential
integer exponents Be ⊂ B := {i : bi 6= 0} is equal to Ae.

We will prove that the homeomorphism Φ: C1 → C2 defined by Φ(γ1(w)) = γ2(w) is bilips-
chitz on small neighborhoods of the origin.

We first prove that there exists K > 0 and a neighborhood U of 0 in C such that for each
pair (w,w′) with w ∈ U , w 6= w′ and wn = (w′)n, we have

d
(
γ1(w), γ1(w′)

)
≤ Kd

(
γ2(w), γ2(w′)

)
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For (w,w′) as above, consider the two real arcs s ∈ [0, 1] 7→ γ1(sw) and s 7→ γ1(sw′) and their
images by Φ. Then we have

d
(
γ1(ws), γ1(w′s)

)
= sn

∣∣∣∣∑
i>n

ais
i−n(wi − (w′)i

)∣∣∣∣
and

d
(

Φ
(
γ1(ws)

)
,Φ
(
γ1(w′s)

))
= sn

∣∣∣∣∑
i>n

bjs
i−n(wi − (w′)i

)∣∣∣∣
Let i0 be the minimal element of {i ∈ A;wi 6= (w′)i}. Then i0 is an essential integer exponent,

so ai0 and bi0 are non-zero. Moreover, as s tends to 0 we have

d
(
γ1(ws), γ1(w′s)

)
∼ si0 |wi0 − (w′)i0 ||ai0 |

and d
(
Φ
(
γ1(ws)

)
,Φ
(
γ1(w′s)

))
∼ si0 |wi0 − (w′)i0 ||bi0 | and hence the ratio

d
(
γ1(ws), γ1(w′s)

)/
d
(

Φ
(
γ1(ws)

)
,Φ
(
γ1(w′s)

))
(∗)

tends to the non zero constant ci0 =
|ai0 |
|bi0 |

.

Notice that the integer i0 depends on the pair of points (w,w′). But i0 is either n or an
essential integer exponent for γ1. Therefore there are a finite number of values for i0 and ci0 .
Moreover, the set of pairs (w,w′) such that wn = (w′)n consists of a disjoint union of n lines.
So there exists s0 > 0 such that for each such (w,w′) with |w| = 1 and each s ≤ s0, the quotient
(∗) belongs to [1/K,K] where K > 0. Then U = {w : |w| ≤ s0} is the desired neighbourhood of
0.

We now prove that Φ is bilipschitz on γ1(U). Consider the projection p : C2 → C given by
p(x, y) = x. Let w and w′ be any two complex numbers in U . Let α be the segment in C joining
wn to (w′)n and let α̃1 (resp. α̃2) be the lifting of α by the restriction p|C1

(resp. p|C2
) with

origin γ1(w) (resp. γ2(w)). Consider the unique w′′ ∈ C such that γ1(w′′) is the extremity of α̃1.
Notice that γ2(w′′) is the extremity of α̃2. We have

d
(
γ1(w), γ1(w′)

)
≤ L(α̃1) + d

(
γ1(w′′), γ1(w′)

)
.

According to Section 2, p|C1
(resp. p|C2

) is an inner bilipschitz homeomorphism with bilip-
schitz constant say K1 (resp. K2). We then have L(α̃1) ≤ K1K2L(α̃2). Therefore setting
C = max(K1K2,K), we obtain:

d
(
γ1(w), γ1(w′)

)
≤ C

(
L(α̃2) + d

(
γ2(w′′), γ2(w′)

))
(∗∗)

Applying Lemma 4.1 to the restriction p|C2 with u = γ2(w) and u′ = γ2(w′), we then obtain:

d
(
γ1(w), γ1(w′)

)
≤ CMd

(
γ2(w), γ2(w′)

)
This proves Φ is Lipschitz. It is then bilipschitz by symmetry of the roles.
In the general case where C1 and C2 are not necessarily irreducible, the same arguments work

taking into account a Puiseux parametrization for each branch and the fact that the sets of
characteristic exponents and coincidence exponents between branches coincide. �

5. Outer geometry of space curves

Before proving the final equivalence of Theorem 1.1 we give a quick proof, based on the
preceding proof, of the following result of Teissier [8, pp. 352–354].

Theorem 5.1. For a complex curve germ (C, 0) ⊂ (CN , 0) the restriction to C of a generic
linear projection ` : CN → C2 is bilipschitz for the outer geometry.
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Our notion of generic linear projection to C2, defined in the proof below, is equivalent to
Teissier’s, which says that the kernel of the projection should contain no limit of secant lines to
the curve.

Proof of Theorem 5.1. We have to prove that the restriction `|C : C → `(C) is bilipschitz for the
outer metric. We choose coordinates (x, y) in C2 so `(C) is transverse to the y-axis at 0 and

coordinates (z1, . . . , zn) in Cn with z1 = x ◦ `. So ` has the form (z1, . . . , zN ) 7→ (z1,
∑N

1 bjzj)
and any component of C has a Puiseux expansion of the form (n is the multiplicity of the
component):

γ(w) =
(
wn,

∑
i≥n

a2iw
i, . . . ,

∑
i≥n

aNiw
i
)
.

We first assume (C, 0) is irreducible. We again denote A := {i : ∃j, aji 6= 0} and call an exponent
i ∈ Ar {n} an essential integer exponent if and only if

gcd{j ∈ {n} ∪A : j ≤ i} < gcd{j ∈ {n} ∪A : j < i}.

Define a1n = 1 and a1i = 0 for i > n. We say ` is generic if
∑N
j=1 bjaji 6= 0 for each essential

integer exponent i. We now assume ` is generic.
As in the proof of the second part of Theorem 1.1 there then exists K > 0 and a neighborhood

U of 0 in C such that for each pair (w,w′) with w ∈ U and wn = (w′)n we have

1

K
d
(
`γ(w), `γ(w′)

)
≤ d
(
γ(w), γ(w′)

)
≤ Kd

(
`γ(w), `γ(w′)

)
.

Lemma 4.1 then completes the proof, as before.
The proof when C is reducible is essentially the same, but the genericity condition must take

both characteristic and coincidence exponents into consideration. Namely, ` should be generic
as above for each individual branch of C; and for any two branches, given by (with n now the
lcm of their multiplicities)

γ(w) =
(
wn,

∑
i≥n

a2iw
i, . . . ,

∑
i≥n

aNiw
i
)
, γ′(w) =

(
wn,

∑
i≥n

a′2iw
i, . . . ,

∑
i≥n

a′Niw
i
)
,

we require
∑N
j=1 bj(aji−λia′ji) 6= 0 for each n-th root of unity λ, where i is the smallest exponent

for which some aji − a′ji is non-zero. �

Corollary 5.2. Let (C1, 0) ⊂ (CN1 , 0) and (C2, 0) ⊂ (CN2 , 0) be two germs of complex curves.
The following are equivalent:

(1) (C1, 0) and (C2, 0) have same Lipschitz geometry i.e., there is a homeomorphism of
germs φ : (C1, 0)→ (C2, 0) which is bilipschitz for the outer metric;

(2) there is a homeomorphism of germs φ : (C1, 0)→ (C2, 0), holomorphic except at 0, which
is bilipschitz for the outer metric;

(3) the generic plane projections of (C1, 0) and (C2, 0) have the same embedded topology. �

6. Ambient geometry of plane curves

To complete the proof of Theorem 1.1 we must show the implication (3)⇒ (4) of that theorem,
since (4)⇒ (3) is trivial. We will use a carrousel decomposition of (C2, 0) with respect to a plane
curve, so we first describe this (it is essentially the one described in [2]).

The tangent space to C at 0 is a union
⋃m
j=1 L

(j) of lines. For each j we denote the union of

components of C which are tangent to L(j) by C(j). We can assume our coordinates (x, y) in

C2 are chosen so that no L(j) is tangent to an axis. Then L(j) is given by an equation y = a
(j)
1 x

with a
(j)
1 6= 0.
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We choose ε0 > 0 sufficiently small that the set {(x, y) : |x| = ε} is transverse to C for all
ε ≤ ε0. We define conical sets V (j) of the form

V (j) :=
{

(x, y) : |y − a(j)1 x| ≤ η|x|, |x| ≤ ε0
}
⊂ C2 ,

where the equation of the line L(j) is y = a
(j)
1 x and η > 0 is small enough that the cones are

disjoint except at 0. If ε0 is small enough C(j) ∩ {|x| ≤ ε0} will lie completely in V (j).
There is then an R > 0 such that for any ε ≤ ε0 the sets V (j) meet the boundary of the

“square ball”

Bε :=
{

(x, y) ∈ C2 : |x| ≤ ε, |y| ≤ Rε
}

only in the part |x| = ε of the boundary. We will use these balls as a system of Milnor balls.
We now describe our carrousel decomposition for each V (j), so we will fix j for the moment.
We first truncate the Puiseux series for each component of C(j) at a point where truncation

does not affect the topology of C(j). Then for each pair κ = (f, pk) consisting of a Puiseux

polynomial f =
∑k−1
i=1 a

(j)
i xp

(j)
i and an exponent p

(j)
k for which there is a Puiseux series

y =

k∑
i=1

a
(j)
i xp

(j)
i + . . .

describing some component of C(j), we consider all components of C(j) which fit this data. If

a
(j)
k1 , . . . , a

(j)
kmκ

are the coefficients of xp
(j)
k which occur in these Puiseux polynomials we define

Bκ :=
{

(x, y) : ακ|xp
(j)
k | ≤

∣∣∣y − k−1∑
i=1

a
(j)
i xp

(j)
i

∣∣∣ ≤ βκ|xp(j)k |
∣∣∣y − (

k−1∑
i=1

a
(j)
i xp

(j)
i + a

(j)
kj x

p
(j)
k )
∣∣∣ ≥ γκ|xp(j)k | for j = 1, . . . ,mκ

}
.

Here ακ, βκ, γκ are chosen so that ακ < |a(j)kν | − γκ < |a
(j)
kν |+ γκ < βκ for each ν = 1, . . . ,mκ. If

ε is small enough, the sets Bκ will be disjoint for different κ.
The intersection Bκ ∩ {x = t} is a finite collection of disks with smaller disks removed. We

call Bκ a B-piece. The closure of the complement in V (j) of the union of the Bκ’s is a union
of pieces, each of which has link either a solid torus or a “toral annulus” (annulus × S1). We
call the latter annular pieces or A-pieces and the ones with solid torus link D-pieces (a B-piece
corresponding to an inessential exponent has the same topology as an A-piece, but we do not
call it annular).

This is our carrousel decomposition of V = V (j). We call Bε r
⋃
V (j) a B(1) piece (even

though it may have A- or D-topology). It is metrically conical, and together with the carrousel
decompositions of the V (j)’s we get a carrousel decomposition of the whole of Bε.

Proof of (3) ⇒ (4) of Theorem 1.1. Let (C1, 0) ⊂ (C2, 0) and (C2, 0) ⊂ (C2, 0) have the same
embedded topological type. Consider two carrousel decompositions of (C2, 0): one with respect
to C1 and the other with respect to C2, constructed as above. The proof consists of constructing
a bilipschitz map of germs h : (C2, 0)→ (C2, 0) which sends the carrousel decomposition for C1

to the one for C2 (being careful to include matching pieces for inessential exponents which occur
in just one of C1 and C2). We first construct it to respect the carrousels, but not necessarily
map C1 to C2. Once this is done, we adjust it so that C1 is mapped to C2.

Let L
(j)
1 and L

(j)
2 , j = 1, . . . ,m, be the tangent lines to C1 and C2 and C

(j)
1 resp. C

(j)
2 the

union of components of C1 resp. C2 which are tangent to L
(j)
1 resp. L

(j)
2 . We may assume we
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have numbered them so C
(j)
1 and C

(j)
2 have matching embedded topology. Let V

(j)
1 and V

(j)
2 ,

j = 1, . . . ,m, be the conical sets around the tangent lines as defined earlier.
The B(1) pieces of the carrousel decompositions for C1 and C2 are metrically conical with the

same topology, so there is a conical bilipschitz diffeomorphism between them. We can arrange

that it is a translation on each x = t section of each ∂V
(j)
1 . We will extend it over the cones V

(j)
1

and V
(j)
2 using the carrousels.

Consider the Puiseux series y =
∑k
i=1 a

(j)
i xp

(j)
i + . . . describing some component of C

(j)
1 and

the Puiseux series y =
∑k
i=1 b

(j)
i xp

(j)
i + . . . describing the corresponding component of C

(j)
2 . If

a term with inessential exponent appears in one of the series, we include it also in the other,
even if its coefficient there is zero. This way, when we construct the carrousel as above we have
corresponding B-pieces for the two carrousels. Moreover, we can choose the constants ακ, βκ, γκ
used to construct these corresponding B-pieces to be the same for both. The {x = t} sections of
a pair of corresponding A-pieces will then be congruent, so we can map the one A-piece to the
other by preserving x coordinate and using translation on each x = t section. The same holds
for D-pieces. It then remains to extend to the B-pieces.

A B-piece Bκ1 in the decomposition for C1 is determined by some κ1 = (f1, pk) with

f1 =

k−1∑
i=1

aix
pi ,

and is foliated by curves of the form y = f1 + ξxpk for varying ξ (we call pk the rate of Bκ). The
corresponding piece Bκ2

for C2 is similarly determined by some κ2 = (f2, pk) with

f2 =

k−1∑
i=1

bix
pi

and is foliated by curves y = f2 + ξxpk . The x = ε0 section of Bκ1 has a free cyclic group action
generated by the first return map of the foliation, and the same is true for Bκ2 . We choose a
smooth map (Bκ1

∩{x = ε0})→ (Bκ2
∩{x = ε0}) which is equivariant for this action and on the

boundary matches the maps, coming from A- and D-pieces, already chosen. This map extends
to the whole of Bκ1

by requiring it to preserve the foliation and x-coordinate.
By construction, the resulting map of germs φ : (C2, 0)→ (C2, 0) is an isometry on the A- and

D-pieces and bilipschitz on the B(1) piece. We must check that it is bilipschitz on the B-pieces
of type Bκ. Pick such a B and suppose the rate of B is r. The Lipschitz constant of φ is bounded
in a neighborhood of the link B(ε) := B ∩ {|x| = ε} of B by compactness. For 0 < ε′ < ε, if we
move points inwards x-distance ε− ε′ along the leaves of the foliation of B, each section at x = t

with |t| = ε moves to the section at x = ε′

ε t while scaling by a factor of (ε′/ε)r. The same holds
for the images of these sections in the carrousel for C2. So to high order the Lipschitz constant
of φ at a point of the x = t section equals the Lipschitz constant at the corresponding point of

the x = ε′

ε t section. It follows that the local Lipschitz constant is bounded on the whole of B,
so φ is bilipschitz.

However, φ maps C1 not to C2, but to a small deformation of it, since we constructed the
carrousels by first truncating our Puiseux series beyond any terms which contributed to the
topology. But it is not hard to see that, by a small change of the constructed map inside the
D-pieces which intersect C1, one can change φ so it maps C1 to C2 while changing the bilipschitz
coefficient by an amount which approaches zero as one approaches the origin. Namely, let D1

be such a piece and D2 = φ(D1) the corresponding piece for the curve C2. In each x = t slice
D1(t) := D1∩{x = t} we take the map D1(t)→ D1(t) which moves the point p1(t) := D1(t)∩C1

to p2(t) := φ−1(D2(t) ∩ C2) and maps each ray from p1(t) to a point p ∈ ∂D1(t) linearly to the
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ray from p2(t) to p. This gives a map ψ : D1 → D1 whose bilipschitz constant rapidly approaches
1 as t→ 0 and φ ◦ ψ does what is required on this piece. �
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THE RIGHT CLASSIFICATION OF UNIVARIATE POWER SERIES IN

POSITIVE CHARACTERISTIC

NGUYEN HONG DUC

Abstract. While the classification of univariate power series up to coordinate change is

trivial in characteristic 0, this classification is very different in positive characteristic. In this

note we give a complete classification of univariate power series f ∈ K[[x]], where K is an
algebraically closed field of characteristic p > 0 by explicit normal forms. We show that the

right determinacy of f is completely determined by its support. Moreover we prove that the

right modality of f is equal to the integer part of µ/p, where µ is the Milnor number of f . As
a consequence we prove in this case that the modality is equal to the proper modality, which

is the dimension of the µ-constant stratum in an algebraic representative of the semiuniversal

deformation with trivial section.

1. Introduction

In [Arn72] V.I. Arnol’d introduced the “modality”, or the number of moduli, for real and
complex hypersurface singularities and he classified singularities with modality smaller than or
equal to 2. In oder to generalize the notion of modality to the algebraic setting, the author and
Greuel in [GN13] introduced the modality for algebraic group actions and applied it to high jet
spaces.

Let the algebraic group G act on the variety X. Then there exists a Rosenlicht stratification
{(Xi, pi), i = 1, . . . , s} of X w.r.t. G, i.e. the Xi is a locally closed G-invariant subset of X,
X = ∪si=1Xi and the pi : Xi → Xi/G a geometric quotient. For each open subset U ⊂ X we
define

G-mod(U) := max
1≤i≤s

{dim
(
pi(U ∩Xi)

)
},

and for x ∈ X we call

G-mod(x) := min{G-mod(U) | U a neighbourhood of x}

the G-modality of x.
Let K be an algebraically closed field of characteristic p ≥ 0, let K[[x]] = K[[x1, . . . , xn]]

be the formal power series ring and let the right group, R := Aut(K[[x]]), act on K[[x]] by
(Φ, f) 7→ Φ(f). Two elements f, g ∈ K[[x]] are called right equivalent, f ∼r g, if they belong to
the same R-orbit, or equivalently, there exists a coordinate change Φ ∈ Aut(K[[x]]) such that
g = Φ(f).

Let f ∈ 〈x〉 ⊂ K[[x]] and let µ(f) := dimK[[x]]/〈fx1
, . . . , fxn

〉 be its Milnor number. We
call f isolated if µ(f) < ∞. By [BGM12, Thm. 5], f is isolated if and only if it is finitely
right determined, i.e. f is right k-determined for some k. Here f is right k-determined if each
g ∈ K[[x]] s.t. jkg = jkf , is right equivalent to f , where jkf denotes the k-jet of f in the
k-th jet space Jk := 〈x〉/〈x〉k+1. The minimum of such k is called the right determinacy of f .
For each isolated f , the right modality of f , R-mod(f), is defined to be the Rk-modality of jkf
in Jk with k ≥ 2µ(f) and Rk the k-jet of R. Notice that if f is right equivalent to g then
R-mod(f) = R-mod(g) (cf. [GN13, Prop. A.4]).

http://dx.doi.org/10.5427/jsing.2014.10p
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In Section 2, we show that the right determinacy of an isolated univariate formal power
series f is equal to d(f), which is defined by a concrete formula determined by the support
of f (Definition 2.1, Proposition 2.8). Moreover we give an explicit normal form for any (not
necessary isolated) univariate power series f w.r.t. right equivalence (Theorem 2.11). We prove
in Section 3 that the right modality of an isolated series f is equal to the integer part of µ(f)/p
(Theorem 3.1). As a consequence we show that the right modality is equal to the dimension
of the µ-constant stratum in an algebraic representative of the semiuniversal deformation with
trivial section (Corollary 3.6).

Acknowledgement. We would like to thank the referees for their careful reading of the man-
uscript and helpful comments which improved the presentation of this paper. The result of this
article is part of my thesis [Ng13] under the supervision of Professor Gert-Martin Greuel at
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This author’s research was partially supported by Vietnam National Foundation for Science and
Technology Development(NAFOSTED) grant 101.04-2014.23, and DAAD (Germany).

2. Normal forms of univariate power series

Let f =
∑
n≥0 cnx

n ∈ K[[x]] be a univariate power series, let supp(f) := {n ≥ 0 | cn 6= 0} be

the support of f and mt(f) := min{n | n ∈ supp(f)} the multiplicity of f . If char(K) = 0 and
if ϕ(x) = a1x + a2x

2 + . . . , a1 6= 0, is a coordinate change, then the coefficients ai of ϕ can be
determined inductively from the equation f(x) = c0 + (ϕ(x))mt(g) with g(x) := f − c0. Hence f
is right equivalent to c0 + xmt(g).

In the following we investigate f ∈ K[[x]] with char(K) = p > 0. The aim of this section
is to give a normal form of f . It turns out that it depends in a complicated way on the
divisibility relation between p and the support of f . To describe this relation we make the
following definition, where later on ∆ will be supp(f).

Definition 2.1. For each n ∈ N and each non-empty subset ∆ ⊂ N \ {0}, we define

(a) m := m(∆) := min{n | n ∈ ∆}.
(b) e := e(∆) := min{e(n) | n ∈ ∆}, where e(n) := max{i | pi divides n}.
(c) q := q(∆) := min{n ∈ ∆ | e(n) = e}.
(d) k := k(∆) := 1 and e0(∆) := e+ 1 if e(m) = e (i.e. m = q), otherwise,

k := k(∆) := max{k∆(n) | m ≤ n < q, n ∈ ∆},

where

k∆(n) :=

⌈
q − n

pe(n) − pe

⌉
denotes the ceiling of

q − n
pe(n) − pe

and

e0 := e0(∆) := min{e(n) | m ≤ n < q, n ∈ ∆}.
(e) d := d(∆) := q + pe(k − 1).
(f) Λ̄(∆) = ∅ if e(m) = e, otherwise,

Λ̄(∆) := {n ∈ N | m < n ≤ d, e0 ≤ e(n)} ∪ {q}.

(g) If e(m) > e (i.e. m < q) we define
∆0 := {n ∈ ∆ | n < q}, q0 := q(∆0), d0 := d(∆0), d̄0 := min{d, d0},
Λ0(∆) := ∅ if e(m) = e0,
Λ0(∆) :=

{
n ∈ N | m < n ≤ d̄0, e0 < e(n)

}
∪ {q0} if e(m) > e0, and

Λ1(∆) := {n ∈ N | q ≤ n ≤ d, e ≤ e(n) < e0}.
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(h) If e(m) = e then Λ(∆) := ∅, otherwise,

Λ(∆) := Λ0(∆) ∪ Λ1(∆).

Remark 2.2. If f ∈ K[[x]] with µ(f) <∞ and ∆ = supp(f) then

(a) m(∆) = mt(f), the multiplicity (or, the order) of f .
(b) q(∆) = µ(f) + 1, the first exponent in the expansion of f which is not divisible by p.
(c) k∆(n) is the minimum of l for which

mt (ϕ(xn)− xn) ≥ mt (ϕ(xq)− xq) = q + l

with q := q(∆) and ϕ = x + ul+1x
l+1 + terms of higher order, ul+1 6= 0, a coordinate

change.
Indeed,

ϕ(xn) =
(
x+ ul+1x

l+1 + . . .
)n

=

[(
x+ ul+1x

l+1 + . . .
)n/pe(n)

]pe(n)

=
[
xn/p

e(n)

+ (n/pe(n)) · ul+1x
n/pe(n)+l + . . .

]pe(n)

= xn + (n/pe(n))p
e(n)

up
e(n)

l+1 xn+lpe(n)

+ . . . .

It yields that

mt (ϕ(xn)− xn) ≥ q + l⇔ l ≥ q − n
pe(n) − 1

.

This proves the claim.
(d) k(∆) is then the minimum of l for which

ϕ(f) = f mod xq+l

with q = q(∆) and a coordinate change ϕ as above. This is used to show that:
(e) d(∆) is the right determinacy of f , cf. Proposition 2.8.

Remark 2.3. The following facts (a)-(e) are immediate consequences of the definition.
Property (f) follows from elementary calculations.

(a) e(∆) < e0(∆), k(∆) > 0.
(b) If q(∆) = q(∆′) =: q and ∆ ∩ N<q = ∆′ ∩ N<q, then d(∆) = d(∆′) and Λ(∆) ≡ Λ(∆′).

That is, q(∆) is the “determinacy” of Λ(∆).
(c) If p does not divide m(∆), then

1. e(∆) = e(m(∆)) = 0 and q(∆) = m(∆).
2. k(∆) = 1 and d(∆) = m(∆).

(d) If e(m(∆)) = e(∆), then
1. q(∆) = m(∆).
2. k(∆) = 1 and d(∆) = m(∆).

(e) If n+ lpe(n) ≤ d(∆) for some l and some n ∈ ∆, then l ≤ k(∆).
(f) If k(∆) = k∆(n), then

k(∆)− 1 +
n

pe(n)
=

⌊
d(∆)

pe(n)

⌋
,

where
⌊
d(∆)
pe(n)

⌋
denotes the floor (or, integer part) of d(∆)

pe(n) .
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In fact, one has, by denoting e := e(∆), q := q(∆), k := k(∆), d := d(∆), that

d

pe(n)
−
(
k − 1 +

n

pe(n)

)
=

q + pe(k − 1)

pe(n)
−
(
k − 1 +

n

pe(n)

)
=

pe(n) − pe

pe(n)
·
(

q − n
pe(n) − pe

− k + 1

)
.

Then

0 <
d

pe(n)
−
(
k +

n

pe(n)
− 1

)
< 1

since k =
⌈

q−n
pe(n)−pe

⌉
. This gives us the formula.

Example 2.4. Let p = char(K) = 2, let

f = x8 + x36 + x37 + terms of higher order in K[[x]],

and let
∆ := supp(f) = {8, 36, 37, . . .}.

Then
e = 0, q = 37, k = k∆(8) = 5, d = 41,

e0 = 2, q0 = 36, d0 = 60, d̄0 = d = 41.

and
Λ(f) = {16, 24, 32, 36, 37, 38, 39, 40, 41},

]Λ(f) = 9 =

⌊
q

pe0

⌋
−
⌊
m

pe0

⌋
+ 2.

The following proposition is the first key step in the classification.

Proposition 2.5. With the notions as in Definition 2.1, assume that e(∆) = 0. Then

]Λ(∆) ≤
⌊
q

p

⌋
− m

p
+ 1.

More precisely,

(i) If e(m) < e0 then ]Λ(∆) = 0.

(ii) If e(m) = e0 then ]Λ(∆) =
⌊
q
pe0

⌋
− m

pe0
+ 1.

(iii) If e(m) > e0 and

(1) if p > 2 then ]Λ(∆) ≤
⌊
q
pe0

⌋
− m

pe0
+ 1;

(2) if p = 2 then ]Λ(∆) ≤
⌊
q
pe0

⌋
− m

pe0
+ 2.

Proof. (i) It is easy to see that, e(m) < e0 if and only if e(m) = e and then Λ(∆) = ∅.
(ii) Since e(m) = e0, Λ0(∆) = ∅ and k∆(m) = k. Then

Λ(∆) = Λ1(∆) = {n ∈ N | q ≤ n ≤ d, e(n) < e0}
and hence

]Λ(∆) = k −
(⌊

d

pe0

⌋
−
⌊
q

pe0

⌋)
=

⌊
q

pe0

⌋
− m

pe0
+ 1

since k − 1 + m
pe(m) =

⌊
d

pe(m)

⌋
due to Remark 2.3(f).

(iii) Since e(m) > e0 one has

k(∆0)− 1 =

⌈
q0 − n

pe(n) − pe0

⌉
− 1 <

q0 −m
pe0+1 − pe0
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for some n ∈ ∆0, e(n) > e0, and

Λ0(∆) =
{
n′ ∈ N | m < n′ ≤ d̄0, e(n

′) > e0

}
∪ {q0},

Λ1(∆) = {n′ ∈ N | q ≤ n′ ≤ d, e(n′) < e0} .

This implies that

]Λ0(∆) =

⌊
d̄0

pe0+1

⌋
− m

pe0+1
+ 1

and

]Λ1(∆) = (d− q + 1)−
(⌊

d

pe0

⌋
−
⌊
q

pe0

⌋)
= k −

(⌊
d

pe0

⌋
−
⌊
q

pe0

⌋)
.

We consider the following cases:

Case 1: k∆(q0) = k.

Then k − 1 + q0
pe0

=
⌊
d
pe0

⌋
by Remark 2.3(f). We obtain

]Λ(∆) = ]Λ0(∆) + ]Λ1(∆) =

⌊
q

pe0

⌋
−
(
q0

pe0
−
⌊

d̄0

pe0+1

⌋
+

m

pe0+1
− 2

)
≤

⌊
q

pe0

⌋
−
(
q0

pe0
−
⌊

d0

pe0+1

⌋
+

m

pe0+1
− 2

)
≤

⌊
q

pe0

⌋
−
(
q0

pe0
− q0 + (k(∆0)− 1) pe0

pe0+1
+

m

pe0+1
− 2

)
<

⌊
q

pe0

⌋
−
(

(p2 − 2p)q0 +m

pe0+2 − pe0+1
+

m

pe0+1
− 2

)
≤

⌊
q

pe0

⌋
−
(
m

pe0
− 2

)
,

due to k(∆0)− 1 < q0−m
pe0+1−pe0

, respectively q0 > m. Hence

]Λ(∆) ≤
⌊
q

pe0

⌋
− m

pe0
+ 1.

Case 2: k∆(q0) < k.
Then

k =

⌈
q − n

pe(n) − 1

⌉
<

q −m
pe0+1 − 1

+ 1

for some n ∈ ∆0, e(n) > e0. It yields that

d = q + k − 1 > (k − 1)pe0+1 +m
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and hence

]Λ(∆) =

⌊
q

pe0

⌋
−
(⌊

d

pe0

⌋
−
⌊

d̄0

pe0+1

⌋
+

m

pe0+1
− k − 1

)
≤

⌊
q

pe0

⌋
−
(⌊

d

pe0

⌋
−
⌊

d

pe0+1

⌋
+

m

pe0+1
− k − 1

)
≤

⌊
q

pe0

⌋
−
(⌊

(p− 1)d

pe0+1

⌋
+

m

pe0+1
− k − 1

)
≤

⌊
q

pe0

⌋
−
(

(p− 1)(k − 1) +
m

pe0
− k − 1

)
=

⌊
q

pe0

⌋
− m

pe0
+ 2− (p− 2)(k − 1).

This completes the proposition. �

Note that if f ∈ K[[x]] and mt(f) = 0 then mt(f − f(0)) > 0. Applying the results from
mt(f) > 0 to f − f(0) we obtain that f ∼r f(0) + g, where g is a normal form of f − f(0) (cf.
Theorem 2.11). From now on we assume that mt(f) > 0. We denote, by using notations as in
Definition 2.1 for ∆ = supp(f),

e(f) := e(∆), q(f) := q(∆), k(f) := k(∆), d(f) := d(∆)

and

Λ̄(f) := Λ̄(∆), Λ(f) := Λ(∆).

Remark 2.6. (a) The above numbers mt, e, q, k, d and the sets Λ and Λ̄ are invariant w.r.t.
right equivalence.

(b) Let f =
∑
n≥1 cnx

n ∈ K[[x]] and let

f̄(x) =
∑

n≥m(f)

cnx
n/pe(f)

.

Then f̄ ∈ K[[x]], f(x) = f̄(xp
e(f)

) and e(f̄) = 0. Moreover,

k(f) = k(f̄), ]Λ(f) = ]Λ(f̄), ]Λ̄(f) = ]Λ̄(f̄)

and if ζ(f) denotes one of mt(f), e(f), q(f), d(f) then

ζ(f) = pe(f)ζ(f̄).

(c) Note that µ(f) < ∞ if and only if e(f) = 0 and then q(f) = µ(f) + 1. By [BGM12,
Thm. 2.1] f is then right (2q(f)−mt(f))-determined. In Proposition 2.8 we will show
that d(f) is the right determinacy of f .

Lemma 2.7. If e(mt(f)) = e(f) then f ∼r xmt(f).

Proof. By Remark 2.6, there exists f̄ ∈ K[[x]] such that f(x) = f̄(xp
e(f)

) and e(f̄) = 0. This
implies that µ(f̄) = q(f̄)− 1 and then µ(f̄) = mt(f̄)− 1 since e(mt(f)) = e(f). It follows from
[BGM12, Thm. 2.1] that f̄ is right (mt(f̄) + 1)-determined. That is,

f̄ ∼r cmxmt(f̄) ∼r xmt(f̄)

and hence f ∼r xmt(f) with the same coordinate change.
In fact, in this case an inductive proof as in the case of characteristic 0 works. �

The next proposition is the second key step in the classification.
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Proposition 2.8. With f and d(f) as above, assume that µ(f) < ∞ then d(f) is exactly the
right determinacy of f .

Proof. We may assume that e(mt(f)) > e(f) since the case e(mt(f)) = e(f) follows from Lemma
2.7. Let us denote ∆ := supp(f) and use the notions as in Definition 2.1.

Step 1: Let us show that if g ∈ K[[x]] with jd(f) = jd(g) and d := d(f) then f ∼r g.
By Remark 2.3(b), d(g) = d(f) = d since

supp(f) ∩ {n ∈ N | n ≤ q} = supp(g) ∩ {n ∈ N | n ≤ q}.
It suffices to show that

f ∼r f0 := jd(f).

Indeed, we write
f = f0 + f1 with mt(f1) ≥ d+ 1.

and assume without loss of generality, that

f1 = bq+lx
q+l + terms of higher order, with bq+l 6= 0.

Then the coordinate change ϕ1(x) = x+ul+1x
l+1 with ul+1 a root of the following non-constant

polynomial:

qcqX +
∑

q−n

pe(n)−1
=l

(n/pe(n))p
e(n)

cnX
pe(n)

+ bq+l = 0

is sufficient to increase the multiplicity of f1 and does not change f0 by Remark 2.2(d). We thus
finish by induction.

Step 2: We now show that f is not right (d− 1)–determined.
For this we need the following

Claim: f ∼r g if and only if jdg ∈ Rk · jdf , where

Rk := {ψ = u0x+ u1x
2 + . . .+ uk−1x

k | u0 6= 0} ⊂ R
and it acts on the jet space Jd by (ψ, jdh) 7→ jd(ψ(jdh)).
Proof of the claim. The “if”-statement follows easily from the first step. We assume that f ∼r g,
i.e. g = ϕ(f) with

ϕ = u0x+ u1x
2 + . . . , u0 6= 0.

Setting
ψ := u0x+ u1x

2 + . . .+ uk−1x
k

and ϕ1 := ϕ ◦ ψ−1 we obtain that ϕ = ϕ1 ◦ ψ and that

ϕ1 = x+ akx
k+1 + terms of higher order.

Note that k = k(f) = k(ψ(f)) due to Remark 2.6(a). It follows from Remark 2.2(d) that

jd (ϕ1(ψ(f))) = jd(ψ(f)).

Hence
jdg = jdϕ(f) = jd (ϕ1(ψ(f))) = jd(ψ(f)) = jd(ψ(jdf)).

This completes the claim.
We write, for new indeterminates u0, . . . , uk−1, t,

f + txd − ψ(jdf) =

d∑
i=m

bi(u0, . . . , uk−1, t)x
i
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with ψ := u0x+ u1x
2 + . . .+ uk−1x

k and bi ∈ K[u0, . . . , uk−1, t], and define

V := Z(bm, . . . , bd) := {(u1, . . . , uk−1, t) ∈ Ak | bi(u0, . . . , uk−1, t) = 0}
with the structure sheaf OV and its algebra of global section

OV (V ) = K[u0, . . . , uk−1, t]/〈bm, . . . , bd〉.
We prove the second step by contradiction. Suppose the assertion were false. Then for all

t ∈ K, f would be right equivalent to f + txd, equivalently, jdf + txd ∈ Rk · jdf for all t due to
the above claim. This implies that the map p defined by

p : V → A1

(u0, . . . , uk−1, t) 7→ t

is surjective. It yields that dimV ≥ 1. We may assume without loss of generality that
dimO V ≥ 1, where O = (1, 0, . . . , 0) ∈ V and dimO V denotes the maximal dimension of irre-
ducible components of V containing O. Since OV,O ⊂ R := K[[u′0, u1, . . . , uk−1, t]]/〈bm, . . . , bd〉
with u′0 = u0 − 1,

dimR ≥ dimOV,O = dimO V ≥ 1.

By the Curve Selection Lemma, there exists a non-constant K–algebra homomorphism

φ : K[[u′0, u1, . . . , uk−1, t]] → K[[τ ]]

u′0 7→ u′0(τ)

ui 7→ ui(τ)

t 7→ t(τ)

such that
bi (1 + u′0(τ), u1(τ), . . . , uk−1(τ), t(τ)) = 0 for all i = m, . . . , d.

Since bm = cm(um0 − 1), it follows that

(1 + u′0(τ))
m − 1 = 0

and therefore u′0(τ) = 0. Notice that, the series ui(τ), i = 1, . . . , k − 1 could not be all equal to
zero since φ 6= 0 and since

bd(1, u1, . . . , uk−1, t) = qcquk−1 + t+ b′d(u1, . . . , uk−1), with mt(b′d) ≥ 2.

We set
l := min{j | uj(τ) 6= 0},

L := min{n+ lpe(n) | n ∈ ∆}
and

I := {n ∈ ∆ | L = n+ lpe(n)}.
By Remark 2.2 we can conclude that m < L < d and that

ψ(f)− f =
∑
n∈I

(
n/pe(n)

)pe(n)

cnul(τ)p
e(n)

xL + terms of higher order

where
ψ = x+ ul(τ)xl+1 + . . .+ uk−1(τ)xk.

It follows that

bL (1, u1(τ), . . . , uk−1(τ), t(τ)) =
∑
n∈I

(
n/pe(n)

)pe(n)

cnul(τ)p
e(n)

6= 0,

which is a contradiction. This proves the second step. �
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In Corollary 2.9, Lemma 2.10 and Theorem 2.11 below we do not assume that f is an isolated
singularity, i.e. µ(f) may be infinite or, equivalently, e(f) may be bigger than 0.

Corollary 2.9. Let f ∈ K[[x]] and d = d(f). Let g ∈ K[[x]] be such that e(f) = e(g) and
jd(f) = jd(g). Then f ∼r g.

We have in particular that f ∼r jd(f).

Proof. By Proposition 2.8, it suffices to prove the corollary for the case that e := e(f) = e(g) > 0.
Taking f̄ ∈ K[[x]] and ḡ ∈ K[[x]] such that f(x) = f̄(xp

e

), g(x) = ḡ(xp
e

) as in Remark 2.6 we
have

e(f̄) = e(ḡ) = 0, d̄ := d(f̄) = d/pe.

Since jd(f) = jd(g), jd̄(f̄) = jd̄(ḡ) and hence f̄ ∼r ḡ according to Proposition 2.8. This implies
f ∼r g with the same coordinate change. �

Lemma 2.10. With f , mt(f) and Λ̄(f) as above, we have

f ∼r xmt(f) +
∑

n∈Λ̄(f)

λnx
n,

for suitable λn ∈ K.

Proof. We decompose f = f0 + f1 with

f0 :=
∑

e(f)≤e(i)<e0

cix
i and f1 :=

∑
e(n)≥e0

cnx
n.

Then mt(f0) = q(f) and e(mt(f0)) = e(f0) = 0 and hence f0 ∼r xq(f) by Lemma 2.7. That is,
ϕ(f0) = xq(f) for some coordinate change ϕ ∈ Aut(K[[x]]). It yields that

g := ϕ(f) = ϕ(f0) + ϕ(f1) = xq(f) + ϕ(f1).

By Remark 2.6, d(g) = d(f) and

ϕ(f1) =
∑

e(n)≥e0

λnx
n

for some λn ∈ K. Hence

f ∼r g ∼r jd(g)(g) = xmt(f) +
∑

n∈Λ̄(f)

λnx
n

due to Corollary 2.9. �

From Proposition 2.5 and Remark 2.6(b), replacing f by f̄ if e(f) > 0, and denoting
∆ := supp(f) we can conclude that

]Λ(f) ≤
⌊
q

pe0

⌋
− m

pe0
+ 2 ≤

⌊
d

pe0

⌋
− m

pe0
+ 2 = ]Λ̄(f).

The following theorem is therefore stronger than Lemma 2.10 because it reduces the number of
parameters.

Theorem 2.11 (Normal form of univariate power series). With f , mt(f) and Λ(f) as above,
we have

f ∼r xmt(f) +
∑

n∈Λ(f)

λnx
n

for suitable λn ∈ K.
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Proof. We set ∆ := supp(f) and use the notations as in Definition 2.1. It is sufficient to prove
the theorem for the case that e(m) > e, because the case e(m) = e follows from Lemma 2.7.
Then

Λ0(∆) =
{
n ∈ N | m < n ≤ d̄0, e0 < e(n)

}
∪ {q0},

Λ1(∆) = {n ∈ N | q ≤ n ≤ d, e ≤ e(n) < e0} .
We decompose f = f0 + f1 with

f0 :=
∑
i<q

cix
i and f1 :=

∑
n≥q

cnx
n.

Applying Lemma 2.10 to f0 we obtain, by denoting Λ′0(∆) := Λ(∆) ∩ {n ∈ N | n < q} that

f0 ∼r xm +
∑

n∈Λ̄(∆0)

bnx
n = xm +

∑
n∈Λ′0(∆)

bnx
n mod xq,

for suitable λn ∈ K, since

Λ̄(∆0) ∩ {n ∈ N | n < q} ⊂ Λ′0(∆).

This means that there exists a coordinate change ϕ such that

ϕ(f0) = xm +
∑

n∈Λ′0(∆)

bnx
n mod xq.

We denote g := ϕ(f),

g0 := xm +
∑

n∈Λ′0(∆)

bnx
n,

and

g1 := g − g0 :=
∑
n≥q

bnx
n, bq 6= 0.

We will construct a series h such that f ∼r h and

h = xm +
∑

n∈Λ(∆)

λnx
n mod xd

by eliminating inductively all terms of exponent in

I := {i ∈ N | q ≤ i ≤ d, e ≤ e(i)} \ Λ(∆).

If we succeed then by Corollary 2.9

f ∼r h ∼r jdh ∼r xm +
∑

n∈Λ(∆)

λnx
n.

Let i1 be the minimum exponent in I for which bi1 6= 0. According to Remark 2.3 the coordinate
change

ϕ1(x) = x+ ul+1x
l+1

with l :=
i1 − q0

pe0
and ul+1 a root of the non-constant polynomial:

∑
n+lpe(n)=i1

bn
(
n/pe(n)

)pe(n)

Xpe(n)

+ bi1 = 0,

makes the coefficient of xi1 vanish, and no term of exponent i in I with i < i1 occurs. We prove
the last claim by contradiction. Suppose the claim were false, then we could find j ∈ I, j < i1
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such that the coefficient of xj in ϕ1(g) differs from zero. That is, j is an exponent of a term in
(x+ ul+1x

l+1)n for some n ∈ Λ(∆) with bn 6= 0. Then there exists an i ∈ N such that

j = n+ ilpe(n).

Note that i > 0 by the definition of i1. This implies that

n+ ilpe(n) ≥ n+ lpe(n) > j for all n ∈ Λ(∆) with bn 6= 0,

because

• if e(n) ≤ e0 then n is either q or q0, and hence

q0 + lpe0 = i1 > j

and
q + lpe ≥ q0 + lpe0 = i1 > j

since l ≤ k due to Remark 2.3(e).
• If e(n) > e0 then e(j) ≥ e(n) > e0 and therefore j > d̄0. This implies that

d̄0 = d0 < j < i1 < d

and therefore

l =
i1 − q0

pe0
≥ k(∆0).

It follows that

n+ ilpe(n) ≥ n+ lpe(n) ≥ q0 + lpe0 = i1 > j.

This contradiction shows that there is no term of exponent i in I with i < i1 in ϕ1(g). Hence
we obtain by induction a series h as required. �

Note that the families over Λ(f) resp. Λ̄(f) in Theorem 2.11 resp. Lemma 2.10 contain all
possible normal forms having the same set Λ resp. Λ̄ (and hence having the same m, q, k and d).
The number of parameters of normal forms in the µ–constant stratum (proof of Theorem 3.1)
could be bigger.

The following example shows that this normal form is in general not the best one we can get.
This means that, we can sometimes reduce the number of parameters even more.

Example 2.12. We consider

f = x8 + x36 + x37 + terms of higher order

in characteristic 2, as in Example 2.4. Then d(f) = 41 and

Λ(f) = {16, 24, 32, 36, 37, 38, 39, 40, 41}.
It follows from Theorem 2.11 that

f ∼r x8 + λ1x
16 + λ2x

24 + λ3x
32 + λ4x

36 + λ5x
37 + λ6x

38 + λ7x
39 + λ8x

40 + λ9x
41

for suitable λi ∈ K.
On the other hand, applying Lemma 2.7 to f1 := f − (x8 + x36) we get f1 ∼r x37. That is,

ϕ(f1) = x37 for some coordinate change ϕ. It yields

ϕ(f) = a0x
8 + a1x

16 + a2x
24 + a3x

32 + a4x
36 + x37 mod x41.

By Proposition 2.8,

f ∼r ϕ(f) ∼r a0x
8 + a1x

16 + a2x
24 + a3x

32 + a4x
36 + x37 + a5x

40

and hence
f ∼r x8 + b1x

16 + b2x
24 + b3x

32 + b4x
36 + b5x

37 + b6x
40.
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This shows that, we can find a “better normal form” for f . Moreover by the coordinate change

x+ b6/b5x
4,

we can even get rid of the term b6x
40 and obtain that

f ∼r x8 + c1x
16 + c2x

24 + c3x
32 + c4x

36 + c5x
37.

In the following, we will give a set of terms of f which can not be removed by coordinate
changes and then we conjecture the “best normal form” for f .

Remark 2.13. Let f ∈ K[[x]] be such that µ(f) <∞. Let ∆ := supp(f) and let

qi := min{n ∈ ∆ | e(n) ≤ i}.

Then

q(f) = q0 ≥ q1 ≥ . . . ≥ qe(m) = m = qi, for all i ≥ e(m).

We can see easily that the set {q0, . . . , qe(m)} is the set of exponents of terms which can not be
removed by coordinate changes. However it is not true in general that

f ∼r
e(m)∑
i=1

λix
qi

for suitable λi ∈ K as the following example shows:

f = x8 + x36 + x37 + x38 ∈ K[[x]] with char(K) = 2.

Then

q0 = q1 = q = 37, q2 = 36, q3 = m = 8.

It is not difficult to see that

f 6∼r λ0x
8 + λ1x

36 + λ2x
37

for any λ0, λ1, λ2 ∈ K.

We like to pose the following conjecture.

Conjecture 2.14. With notations as in Remark 2.13, let Λ∗(f) := ∅ if e(m) = 0, otherwise

Λ∗(f) := {n ∈ N | m < n ≤ q, e(n) ≥ i if qi ≤ n < qi−1}.

Then f is right equivalent to

xmt(f) +
∑

n∈Λ∗(f)

λnx
n

for suitable λn ∈ K, and moreover this is a modular family. That is, for each λ = (λn)n∈Λ∗(f),
there are only finitely many λ′ = (λ′n)n∈Λ∗(f) such that

xmt(f) +
∑

n∈Λ∗(f)

λnx
n ∼r xmt(f) +

∑
n∈Λ∗(f)

λ′nx
n.
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3. Right modality

Theorem 3.1. Let charK = p > 0. Let f ∈ 〈x〉 ⊂ K[[x]] be a univariate power series such that
its Milnor number µ := µ(f) is finite. Then

R-mod(f) = bµ/pc .

For the proof we need the following lemmas which are proven in [GN13] for unfoldings but
the proof works in general (for algebraic families of power series).

Let us recall the notion of unfoldings (see, [GN13]). Let T be an affine variety over K with the
structure sheaf O and its algebra of global section O(T ). An element ft(x) := F (x, t) ∈ O(T )[[x]]
is called an algebraic family of power series over T . A family ft(x) is said to be modular if for
each t ∈ T there are only finitely many t′ ∈ T such that ft′ is right equivalent to ft. An
unfolding, or deformation with trivial section of a power series f at t0 ∈ T over T is a family
ft(x) satisfying ft0 = f and ft ∈ 〈x〉 for all t ∈ T .

Remark 3.2. Let f ∈ 〈x〉 ⊂ K[[x]] be a univariate power series with Milnor number µ < ∞.

Then the system {x, x2, . . . , xµ} is a basis of the algebra 〈x〉/〈x · ∂f∂x 〉. By [GN13, Prop. 2.14]
the unfolding over Aµ,

ft(x) := f +

µ∑
i=1

ti · xi

with t := (t1, . . . , tµ) the coordinates of t ∈ Aµ, is an algebraic representative of the semiuniversal
deformation with trivial section of f .

Lemma 3.3. With f and ft(x) as in Remark 3.2, assume that there exists a finite number of

algebraic families of power series h
(i)
t (x) over varieties T (i), i ∈ I and an open subset U ⊂ Aµ

satisfying: for all t ∈ U there exists an i ∈ I and ti ∈ T (i) such that ft(x) is right equivalent to

h
(i)
ti (x). Then

R-mod(f) ≤ max
i=1,...,l

dimT (i).

Proof. cf. [GN13, Proposition 2.15(i)]. �

Lemma 3.4. If ft(x) is a modular unfolding of f over T then

R-mod(f) ≥ dimT.

Proof. It follows from [GN13, Propositions 2.12(ii) and 2.15(ii)]. �

Proof of Theorem 3.1. We first prove the inequality R-mod(f) ≤ bµ/pc. Indeed, let

I := {∆ ⊂ {1, . . . , q(f)}| q(f) ∈ ∆},

and let

hs∆(x) := xm(∆) +
∑

n∈Λ(∆)

s
(n)
∆ xn, ∆ ∈ I

the finite set of families over A∆ ≡ Al∆ with l∆ = ]Λ(∆) and s
(n)
∆ , n ∈ Λ(∆) the coordinates of

s∆ in A∆.
Notice that if ∆ ∈ I, then e(∆) = 0, q(∆) ≤ q(f) and therefore, by Proposition 2.5,

dimA∆ = ]Λ(∆) ≤ bq(∆)/pc ≤ bq(f)/pc = bµ/pc .

With ft as in Remark 3.2, setting

∆t := {n ∈ supp(ft) | n ≤ q(f)}
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for each t ∈ Aµ, we conclude that ∆t ∈ I and Λ(∆t) = Λ(supp(ft)) according to Remark 2.3(b).
By Theorem 2.11, ft ∼r hs∆t

for some s∆t
.

This implies that the finite set of families hs∆(x),∆ ∈ I satisfies the assumption of Lemma 3.3.
Hence

R-mod(f) ≤ max
∆∈I

dimA∆ ≤ bµ/pc .

In order to prove the other inequality we consider the two following cases.
Case 1: m(f) = p.

Then q := q(f) = µ(f) + 1, k := k(f) =
⌊
q−p
p−1

⌋
, d := d(f) = q + k − 1 and

Λ(f) = {n ∈ N | q ≤ n ≤ d, e(n) = 0}
and ]Λ(f) = bq/pc due to Proposition 2.5. It follows from Theorem 2.11 that

f ∼r g := xp +
∑

n∈Λ(f)

cnx
n

for suitable cn ∈ K with cq 6= 0. Consider the unfolding

gλ := g +
∑

n∈Λ(f)

λnx
n

of g over S :=
{
λ = (λn)n∈Λ(f) ∈ A]Λ(f) | λq + cq 6= 0

}
, where λn, n ∈ Λ(f) are the coordinates

of λ. Let us show that gλ is a modular unfolding. In fact, if λ′ = (λ′n)n∈Λ(f) ∈ S for which
gλ ∼r gλ′ , then there exists a coordinate change

ϕ := ax+ alx
l+1 + . . .

such that
ϕ(gλ) = gλ′ .

Looking at the coefficient of xp we deduce that ap = 1 and therefore a = 1. We have moreover
that l ≥ k, because if l < k, equivalently, q + l > p(l + 1) then p(l + 1) ∈ supp(ϕ(gλ)) but
p(l + 1) 6∈ supp(gλ′), that is ϕ(gλ) 6= gλ′ , a contradiction. It then follows from Remark 2.2(d)
that

jd(gλ) = jd(ϕ(gλ)) = jd(gλ′),

i.e. λ = λ′. This implies that gλ is a modular unfolding and hence

R-mod(f) = R-mod(g) ≥ ]Λ(f) = bq/pc = bµ/pc
due to Lemma 3.4
Case 2: m(f) > p.

By the upper semicontinuity of the right modality (cf. [GN13, Prop. 2.7]) one has

R-mod(f) ≥ R-mod(fs)

with fs = f + s · xp, for all s in some neighbourhood W of 0 in A1. Take a s0 ∈ W \ {0} then
R-mod(fs0) = bµ/pc by the first case and hence

R-mod(f) ≥ R-mod(fs0) = bµ/pc .
�

Remark 3.5. We have R-mod(f) ≥ ]Λ(f) by Theorem 3.1 and Proposition 2.5 with equality if
m(f) ≤ p. Moreover, if m(f) = p, then fλ ∼r fλ′ for λ, λ′ ∈ Λ(f) implies λ = λ′, which follows
from the proof of Theorem 3.1.

The example f = xp+1 with R-mod(f) = 1 but Λ(f) = ∅ shows that a strict inequality
R-mod(f) > ]Λ(f) can happen.
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With f and the semiuniversal unfolding ft(x) as in Remark 3.2 we define

∆µ := {t ∈ Aµ | µ(ft) = µ}
the µ-constant stratum of the unfolding ft.

Corollary 3.6. Let f ∈ 〈x〉 ⊂ K[[x]] with the Milnor number µ <∞. Then

R-mod(f) = dim ∆µ.

Proof. For each t = (t1, . . . , tµ) ∈ Aµ, if the set Nt := {i = 1, . . . , µ | ti 6= 0, e(i) = 0} is not
empty, then µ(ft) = n− 1 < µ with n := min{i | i ∈ Nt}. This implies that

∆µ = {t = (t1, . . . , tµ) ∈ Aµ | ti = 0 if e(i) = 0}.
It yields that

dim ∆µ = ] {1 ≤ n ≤ µ | e(n) > 0} = bµ/pc
and hence R-mod(f) = dim ∆µ by Theorem 3.1. �
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THE GEOMETRY OF DOUBLE FOLD MAPS

G. PEÑAFORT-SANCHIS

Abstract. We study the geometry of a family of singular map germs (C2, 0) → (C3, 0) called
double folds. As an analogy to David Mond’s fold map germs of the form

f(x, y) = (x, y2, f3(x, y)), f3 ∈ O2,

double folds are of the form
f(x, y) = (x2, y2, f3(x, y)).

This family provides lots of interesting germs, such as finitely determined homogeneous corank
2 germs. We also introduce analytic invariants adapted to this family.

1. Introduction

A classification of complex analytic map germs from the plane to 3-space under A-equivalence,
that is, changes of coordinates in the source and target, was carried out by David Mond [8]. Like
in the work of a taxonomist, Mond’s list starts with the simplest singular map germs, the so
called fold maps. We say that a map germ f : (C2, 0) → (C3, 0) is a fold map if its first two
coordinate functions form a Whitney fold, T : (C2, 0) → (C2, 0), T (x, y) = (x, y2). The image
of a fold map f(x, y) = (x, y2, f3) looks like the graph of the function f3 ‘folded’ along the OX
axis. The third coordinate function of a fold map can be any but, under A-equivalence, we
can assume that it is of the form yp, where p = T ∗P for some germ P in the ring of germs of
functions in two variables O2. Hence, the normal form of a fold map is

f(x, y) = (x, y2, yp).

Fold maps are easy to study because they are germs of corank 1 and because they behave well
under the action of the group G = {1, i}, generated by the reflection i(x, y) = (x,−y). One can
see that all lifted double points of a double fold f (that is, pairs (z, z′) ∈ C2 × C2 such that
f(z) = f(z′) and, if z = z′, then f is singular at z) are of the form (z, i(z)).

In this work we explore a family which is also related to a group, while it contains lots of
interesting corank 2 maps. In general, corank 2 maps are much harder to study than corank 1
ones, but the group action and some ideas lent by the fold case are going to help us. To generate
the simplest corank 2 maps for our studies, we can not allow linear terms in f . Thus, we are going
to ‘fold’ twice, once through OX and once through OY axis. We denote α : (C2, 0) → (C2, 0)
the folded hankerchief

α(x, y) = (x2, y2).

Take the reflections i1(x, y) = (−x, y) and i2(x, y) = (x,−y) and the rotation i3(x, y) = (−x,−y).
We write G for the group {1, i1, i2, i3}. The orbit of any z ∈ C2 is Gz = α−1(α(z)) and z is a
singular point of α if and only if z belongs to Fix(i1) ∪ Fix(i2) = OX ∪ OY . Now, related to
the group G, we have a family of maps of the form

f(x, y) = (x2, y2, f3(x, y)),

which we call double folds.

Work supported by DGICYT Grant MTM2012-33073 and FPUMEC Grant AP2010-4509.
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Section 2 covers the basics about double folds. First we compute their multiple point schemes
(this was first done by Marar and Nuño-Ballesteros, who introduced double folds in [5]). Then
we introduce a decomposition of the multiple point spaces related to the group G. In Section 3
we restrict ourselves to the double fold family and define the notion of DF-stability (and that
of SDF-stability). DF-stable singularities are the ones preserved by small perturbations inside
the double fold world. We show that the DF-stable singularities are the stable singularities,
plus another kind of singularities, namely the standard self tangencies (and also the standard
quadruple points in the special double fold case). We introduce an equivalent notion, DF-
genericity, to characterize DF-stability in terms of transversality conditions on the facets of the
Coxeter complex of the group G. Section 4 deals with DF-stabilizations, where only DF-stable
singularities appear. We use these deformations and the decomposition of the multiple point
spaces given in 2 to relate certain numbers to double folds. These numbers are candidates for
A-invariants (up to a permutation of indices induced by an isomorphism of G). In Section 5 we
consider general families of map germs (Cn, 0)→ (Cn+1, 0), constructed in the same manner as
the folds and double folds: choosing a finite map germ α : Cn → Cn and attaching any (n+ 1)-
th coordinate function to obtain a map germ of the form (α, fn+1). We find results relating
the A-equivalence of this kind of germs to some subgroup of K-equivalence adapted to each α.
These results imply that the numbers introduced in section 4 are A-invariant among the finitely
determined quasihomogeneous double folds.

Thanks are due to David Mond and to the author’s supervisors, Juan José Nuño Ballesteros
and Washington Luiz Marar, for guidance and useful conversations about the topic of this paper.
The author wants to thank also the referee for many valuable comments and suggestions.

2. multiple point schemes

Definition 2.1. We call double fold (abbreviated as DF ) any map germ f : (C2, 0) → (C3, 0)
of the form f(x, y) = (x2, y2, f3(x, y)). The function germ f3 ∈ O2 can be written in the form
f3(x, y) = P0(x2, y2) + xP1(x2, y2) + yP2(x2, y2) + xyP3(x2, y2), for some Pi ∈ O2. Under
A-equivalence, we can eliminate P0. Then we obtain a double fold in normal form

f(x, y) = (x2, y2, xp1 + yp2 + xyp3),

with pi = α∗Pi, for some Pi ∈ O2. We call special double folds (abbreviated as SDF ) the double
folds in normal form such that p3 = 0.

Example 2.2. Fold and double fold families are not exclusive. The cross-cap is usually param-
eterized as a fold in normal form (x, y) 7→ (x, y2, xy), but it can also be regarded as double fold
with parameterization (x, y) 7→ (x2, y2, x+ y) (see figure 1).

Multiple point spaces were introduced by Mond [9] as a key tool to study map germs

(Cn, 0)→ (Cp, 0), n < p.

Initial papers about map germs (C2, 0) → (C3, 0) (like [7], [8] and [9]) focussed mainly on the
case of corank 1, but some recent ones (for instance [5], [6] and the present paper) deal with
corank 2 germs. Altough this was done first by Marar and Nuño-Ballesteros, who introduced
double folds in [5], we shall sumarize here the computations of some of their multiple point
spaces for a better understanding.

Multiple point spaces in the target are computed as described in [10]. Let f : X → (Cn+1, 0)
be a finite map germ, where X is a n-dimensional Cohen-Macaulay space. Let f∗OX denote
OX as On+1-module via f . The k-multiple point space in the target is given by the (k − 1)-th
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Figure 1. The cross-cap is a double fold.

Fitting ideal of the module f∗OX defined next: Take a presentation of f∗OX , that is, an exact
sequence

Opn+1
λ−→ Oqn+1

ϕ−→ f∗OX −→ 0.

The matrix M(f) which represents λ is called a presentation matrix for f∗OX . The k-th Fit-
ting ideal of f∗OX is the ideal Fk(f) generated by the minors of size min(p, q) − k of M(f) if
k < min(p, q), and Fk(f) = On+1 otherwise. The following method to compute certain presen-
tation matrices can be found in [10, Section 2.2]: Assume f = (f1, . . . , fn+1) : X → Cn+1 is such
that f̃ = (f1, . . . fn) : X → (Cn, 0) is finite. If g1, . . . gr are generators of f̃∗OX , then they are
generators of f∗OX too. Therefore, we obtain an epimorphism ϕ : Orn+1 → OX which sends the
canonical vector ei to the generator gi. For any 1 ≤ i ≤ r, there exist germs aij ∈ On, 1 ≤ j ≤ r
such that fn+1gi =

∑r
j=1 f̃

∗aijgj . If X1, . . . , Xn+1 denote the variables in Cn+1 and δij is the
Kronecker’s delta function, then the matrix M(f) with entries aij(X1, . . . , Xn) − δijXn+1 is a
presentation matrix for f∗OX .

Given a double fold f(x, y) = (x2, y2, xp1 + yp2 + xyp3), we use the method explained above
to find M(f). Take g1 = 1, g2 = x, g3 = y, g4 = xy as generators of α∗O2. For i = 1, we have
f3g1 = xp1 + yp2 + xyp3 = 0 · g1 + α∗P1g2 + α∗P2g3 + α∗P3g4. Therefore, the elements of the
first column of the matrix are −Z,P1, P2, P3. After computing f3gi for i = 2, 3, 4, we get the
matrix

M(f) =


−Z XP1 Y P2 XY P3

P1 −Z Y P3 Y P2

P2 XP3 −Z XP1

P3 P2 P1 −Z

 ,

where Pi represents Pi(X,Y ). Since M(f) has size 4 × 4, f has no points with multiplicity
greater than 4. For special double folds, the space of quadruple points in the image is given by
the ideal F3(f) = 〈P1(X,Y ), P2(X,Y ), Z〉 and F2(f) = (F3(f))2. Hence, triple points of special
double folds appear concentrated at quadruple points.

We define the source double point space D(f) as the zero locus of the pull back f∗(F1(f)).
In the double fold case we have D(f) = V

(
(p1 + yp3)(p2 + xp3)(xp1 + yp2)

)
. Its defining ideal

factorizes as the product of the ideals I1 := 〈p1 + yp3〉, I2 := 〈p2 + xp3〉 and I3 := 〈xp1 + yp2〉.
Analogously, the source triple point space, defined as V (f∗(F2(f)), is given by the product of
the ideals I1,2 := 〈p1 +yp3, p2 +xp3〉, I1,3 := 〈p1 +yp3, p2−xp3〉 and I2,3 := 〈p2 +xp3, p1−yp3〉.
Quadruple points (again with the structure induced by the target) are given by the zeros of
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Figure 2. The image of a double cone.

I := 〈p1, p2, p3〉. We observe the collapse of triple points in the special double fold case: If p3
equals zero, then the radical of I1,2I1,3I2,3 is 〈p1, p2〉, which is the ideal defining the quadruple
point locus.

Definition 2.3. Given a double fold f = (α, xp1 + yp2 +xyp3), we decompose the double point
locus as the union of Di(f), 1 ≤ i ≤ 3, with Di(f) := V (Ii) and the triple point space as the
union of Di,j(f), 1 ≤ i < j ≤ 3, with Di,j := V (Ii,j). Finally, we denote D1,2,3(f) = V (I1,2,3)
the quadruple point locus.

Remark 2.4. It’s immediate that:

• w belongs to Dl(f) if and only if il(w) does so. Moreover f(w) = f(il(w)).
• w belongs to Dl,k(f) if and only if il(w) and ik(w) do so. Moreover

f(w) = f(il(w)) = f(ik(w)).

• w belongs to D1,2,3(f) if and only if i1(w), i2(w) and i3(w) do so. Moreover

f(w) = f(i1(w)) = f(i2(w)) = f(i3(w)).

Example 2.5. Take the family (x, y) 7→ (x2, y2, λ1x + λ2y + λ3xy), λi ∈ C. Assume λ3 6= 0,
then its double points are the following: D1(f) = V (λ1 + yλ3) is the line y = −λ1/λ3, which is
obviously i1-invariant, D2(f) is the i2-invariant line x = −λ2/λ3 and, if λ2 6= 0, then D3(f) is
the i3-invariant line y = −λ1x/λ2. We find the triple points where these lines meet:

D1,2(f) = {(−λ2/λ3,−λ1/λ3)}, D1,3(f) = {(λ2/λ3,−λ1/λ3)}

and

D2,3(f) = {(−λ2/λ3, λ1/λ3)}

(see figure 3). In the case λ3 = 0 we have a special double fold. Thus, its triple points should
appear collapsed at quadruple points, with equations p1 = p2 = 0. Since p1 = λ1 and p2 = λ2, the
appearance of quadruple point forces λ1 = λ2 = 0 and hence, the map is the folded hankerchief.
Another map that fits into this family is the so called double cone (x, y) 7→ (x2, y2, xy) (Figure
2). It parameterizes the cone Z2 = XY , but does so in a two-to-one way. Indeed, its double
point branch D3(f) = V (xp1 + yp2) = V (0) equals C2.
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D1(f)

1

D2(f)

1

D3(f)

1

Figure 3. Image and double points of a double fold (see Example 2.5).

3. double fold stability

In this section we study the singularity types which are characteristic of the double folds.
By a singularity type we mean an A-equivalence class of multigerms f : (C2, S) → (C3, y).
A singularity type, represented by f0, is stable if it appears in any section fs, s ∈ C, of any
deformation of f0. It is well known that in the case C2 → C3 the stable types are transverse
double points, triple points and cross-caps. Our goal is to make a version of the concept of
stability adapted specifically for double folds. Some types, despite not being stable, are preserved
by deformations which occur inside the double fold world. We call them DF-stable types and
these deformations DF-deformations. This concept can be adapted to the special double fold
case and we shall use the notation (S)DF to refer respectively to both, the double fold and the
special double fold case.

Definition 3.1. We call (S)DF-deformation of f0 any germ F : (C2×C, 0)→ (C3, 0) of the form
F (x, t) = ft(x), such that the germ ft : (C2, 0)→ (C3, 0) is a (special) double fold for all t. We
call (S)DF-unfolding any map germ F : (C2×C, 0)→ (C3×C, 0) of the form F (x, t) = (ft(x), t)
such that ft(x) is a (S)DF-deformation.

Definition 3.2. We say a multigerm ξ is (S)DF-stable if any (S)DF-unfolding F of a multigerm
f of type ξ is trivial. That is, if there exist some unfoldings of the identity Ψ,Φ such that
f × id = Ψ ◦ F ◦ Φ. A (special) double fold f : U → C3 is (S)DF-stable if all its multigerms at
f−1(f(w)), w ∈ U are (S)DF-stable.

Remark 3.3. Every stable type is (S)DF-stable.

A priori, it might seem difficult to identify all possible (S)DF-stable maps, but a better
understanding of the map α will help us to do so. The map α is the invariant map associated
to the Coxeter group G (see [3] for Coxeter group theory). For any Coxeter Group there is a
Coxeter complex, in this case C := {C2 \ (OX ∪ OY ), OX \ {0}, OY \ {0}, {0}}. The Coxeter
complex stratifies the space in a way such that the behavior of the group, and thus that of
α, changes whenever we go from a facet to another. Consequently, much information about a
double fold is contained in the way its multiple point spaces meet the Coxeter complex. The
following proposition is an example of this.

Lemma 3.4. The germ of a fold f(x, y) = (x2, y2, xp1 + yp2 +xyp3) centered at a point w ∈ C2

is a cross-cap if and only if one of the three conditions is verified:
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i) w ∈ OX \ {0} and the restricted function (p2 + xp3)|OX has a simple zero at w.
ii) w ∈ OY \ {0} and the restricted function (p1 + yp3)|OY has a simple zero at w.
iii) w = 0 and p1(w) 6= 0 6= p2(w).

Proof. A monogerm of map from C2 to C3 is a cross-cap if and only if its source double point
space is smooth (this follows immediately from [6, Theorem 3.3]). Since cross-caps are singular
monogerms, they lie on OX ∪OY . Assume first that w ∈ OX \{0}. Looking at the 2×2 minors
of the differential of f at w it follows that f is singular at w if and only if p2 + xp3 vanishes
at w. Now the source double point space of the germ of f at w is D2(f), given by the zeros
of p2 + xp3 (notice that, by Remark 2.4, the branches of double points D1(f) and D3(f) at
OX \ {0} produce multigerms, not monogerms). Therefore, the double point space of the germ
of f at w is smooth if and only if the Milnor number of the germ of function p2 +yp3 at w equals
0. This happens if and only if at least one of the partial derivatives ∂p2+xp3

∂x and ∂p2+xp3
∂y does

not vanish at w. Since p2 and p3 are functions of x2 and y2, we deduce that ∂p2+xp3
∂y vanishes at

OX. Hence, f has a cross-cap at w ∈ OX \ {0} if and only p2 + xp3 vanishes at w and ∂p2+xp3
∂x

does not, that is, if and only if the restriction (p2 + xp3)|OX has a simple zero at w. The case
w ∈ OY \ {0} is analogous. Assume now w = 0. The source double point of f is the germ of
complex space given by the zeros of (p1 +xp3)(p2 + p3)(xp1 + yp2). The non vanishing of p1 and
p2 at 0 is a necessary and sufficient condition for this germ of complex space to be smooth. �

Points where the source double point space meets the facets of the Coxeter complex in a
generic way are called (S)DF-generic. We shall determine the different possible (S)DF-generic
singularities and then show that they are exactly the (S)DF-stable singularities. Let us state
the (S)DF-genericity conditions rigorously:

Definition 3.5. Let f = (α, xp1 + yp2 + xyp3) : U → C3 be a double fold. We say that a point
w ∈ C2, that belongs to a facet C ∈ C, is DF-generic if:

1) (p1 + yp3)|C , (p2 + xp3)|C and (xp1 + yp2)|C are transverse to {0} at w, with the
exception (xp1 + yp2)|{0} (notice that no double fold in canonical form could verify this
transversality condition).

2) (p1 + yp3, p2 + xp3)|C , (p1 + yp3, p2 − xp3)|C and (p2 + xp3, p1 − yp3)|C are transverse
to {(0, 0)} at w.

3) w is not a quadruple point of f .
A double fold f : U → C3 is DF-generic if all points w ∈ U are DF-generic

Conditions 1) and 2) adapt to the special double fold case just taking p3 = 0 but, since
quadruple points are more likely to appear at special double folds (they are the zeros of just two
equations in C2), the SDF genericity conditions don’t include condition 3).

Definition 3.6. Let f = (α, xp1 + yp2) : U → C3 be a special double fold, we say that a point
w ∈ C2, that belongs to a facet C ∈ C, is SDF-generic if:

1) p1|C , p2|C and (xp1+yp2)|C are transverse to {0} at w, with the exception (xp1+yp2)|{0}.
2) (p1, p2)|C is transverse to {(0, 0)} at w.

A special double fold f : U → C3 is SDF-generic if all points w ∈ U are SDF-generic

Remark 3.7. It is immediate from its defining ideals that every point belonging to D1(f)∩OX
or to D2(f) ∩ OY must belong to D3(f) too. It is also immediate that D3(f) always crosses
the facet {0}. Apart from these exceptions, which are inherent to the double fold family, the
genericity conditions imply the following more geometric assertion: Given a regular stratification
of D(f), the strata have their expected dimension (double points have dimension 1 and triple
(quadruple) points have dimension 0) and are transverse to the strata of the Coxeter complex C.
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Figure 4. Images of a standard self tangency and a standard quadruple point.

Let us introduce our new candidates to be (S)DF-generic multigerms.

Definition 3.8. We call a standard self tangency the multigerm formed by two smooth branches
with Morse contact. We call a standard quadruple point the multigerm formed by four smooth
branches such that every three of them meet transversally. These singularities are depicted in
Figure 4.

Proposition 3.9. All standard self tangencies are A-equivalent. All standard quadruple points
are A-equivalent.

Proof. In [12] it is shown that the A-class of a bigerm with smooth branches is determined
by the contact type of its branches. Since there is only one contact class of Morse type, all
standard self tangencies are equivalent. Let f be a multigerm of standard quadruple point.
Any three of its branches form a triple point and there is only one A-class of triple points.
Therefore, there exists a change of coordinates that takes f to a multigerm whose branches send
(x, y) respectively to (x, y, 0), (x, 0, y), (0, x, y) and g(x, y) for some regular monogerm g with
Im g = {U1X + U2Y + U3Z = 0}, Ui ∈ O3. The plane tangent to Im g is determined by the
equation t1X+t2Y +t3Z = 0, with ti = Ui(0, 0). If we assume t1 = 0, then the intersection of the
tangent plane with the branches {Y = 0} and {Z = 0} is the line {Y = Z = 0}. This contradicts
the transversality of these three branches. We deduce t1 6= 0 and, analogously, t2 6= 0 6= t3. The
change (X,Y, Z) 7→ (U1X,U2Y, U3Z) defines a germ of diffeomorphism that takes our multigerm
to the one with image {XY Z(X + Y + Z) = 0}. Now the four branches of our multigerm send
(x, y) to (u1x, u2y, 0), (u1x, 0, u3y), (0, u2x, u3y) and

(a1x+ b1y, a2x+ b2y,−(a1 + b1)x− (a2 + b2)y),

where ui = Ui ◦ f , and a1, a2, b1, b2 are some function germs in O2. We take germs of diffeo-
morphisms at the source, at the four different points where our multigerm is centered. The first
three diffeomorphisms send (x, y) respectively to (x/u1, y/u2), (x/u1, y/u3) and (x/u2, y/u3).
The fourth diffeomorphism is the inverse of the germ

(x, y) 7→ (a1x+ b1y, a2x+ b2y).

These four source coordinate changes take the multigerm to one multigerm defined by four
branches sending (x, y) respectively to (x, y, 0), (x, 0, y), (0, x, y) and (x, y,−x − y). Hence, all
germs of standard quadruple point are equivalent. �

Lemma 3.10. The (S)DF-generic points are regular points, transverse double points, cross-caps,
standard self tangencies and triple points (resp. standard quadruple points).
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Proof. Given a (special) double fold f and a point w = (x0, y0) ∈ C2 satisfying the (S)DF-
genericity conditions, we shall determine the type of singularity of the multigerm of f at
f−1(f(w)). First of all, notice that singular points lie in OX∪OY and the genericity condition 2)
implies that all triple points belong to the facet C2\(OX∪OY ). Hence, from genericity condition
1), together with Lemma 3.4, it follows that all points where f is singular are cross-caps.

Now suppose that f is regular at w and the point w belongs to Dl(f), 1 ≤ l ≤ 3. Take the
vector fields along f defined by the cross product η := ∂f

∂x ×
∂f
∂y and ηl = η ◦ il, for 1 ≤ l ≤ 3.

The branches of the multigerm of f at w and ilw are transverse unless η × ηl or, equivalently,
ξl := (η− ηl)× (η+ ηl) vanish at w. We study the different cases a), b) and c), where w belongs
to D1(f), D2(f) and D3(f) respectively.

Case a) Let w belong to D1(f), then we have:
ξ1|w = 4x0y0(4x0

∂(xp1+xyp3)
∂y |w, 4y0 ∂(xp1+xyp3)∂x |w, (∂(xp1+xyp3)∂y |w ∂yp2∂x |w −

∂(xp1+xyp3)
∂x |w ∂yp2∂y |w)).

Suppose first w /∈ OX ∪ OY , then ξ1|w vanishes if and only if ∂p1+yp3
∂x |w = ∂p1+yp3

∂y |w = 0,
that is, if and only if p1 + yp3 is not transverse to {0} at w. This is in contradiction with
the first genericity condition. Suppose now w ∈ OX ∪ OY and notice w /∈ OY because it
would be a singular point. Thus, we have w ∈ OX \ {0}. We claim that the bigerm of f at
(±x0, 0) forms a standard self tangency at (X0, 0, 0), where X0 = x20. The genericity conditions
imply that P1 has a simple zero at (X0, 0) and P2 does not vanish at (X0, 0). Let the germ
of f : C2 → C3 at x0 parameterize one of the branches and let φ : C3 → C be the germ at
(X0, 0, 0) which defines the other branch implicitly. Then, following Montaldi [11], the contact
between the branches is given by the K-class of the composition φ ◦ f . The branches are given
by (Z2 ±

√
XP1)2 − Y P 2

2 ± 2Y
√
XP2P3 − XY P 2

3 = 0. After choosing the preimage (x0, 0)
and composing we get the function 4x(p1 + yp3)(xp1 + yp2), which is of Morse type in (x0, 0).
Therefore, the multigerm of f at (±x0, 0) is a standard self tangency.

Case b) is symmetric interchanging indices 1 and 2, and OX and OY .
Case c) If w ∈ D3(f), then we can assume w ∈ D3(f) \ (OX ∪ OY ) because otherwise

w ∈ D1(f) ∪D2(f). We have

ξ3|w = 4x0y0

(
4x0

∂(xp1 + yp2)

∂y
|w, −4y0

∂(xp1 + yp2)

∂x
|w,(∂(xp1 + yp2)

∂y
|w
∂xyp3
∂x

|w −
∂(xp1 + yp2)

∂x
|w
∂xyp3
∂y
|w
))

,

which vanishes if and only if ∂xp1+yp2∂x and ∂xp1+yp2
∂y vanish in w, if and only if xp1 + yp2 is not

transverse to {0} at w.
As we have seen before, all triple points (and therefore all quadruple points) belong to the

facet C2 \ (OX ∩ OY ), where the second genericity condition implies that the branches are
transverse. Therefore, all triple points are transverse (respectively all quadruple points are
standard quadruple points). �

Lemma 3.11. Every (special) double fold admits a (S)DF-deformation ft defined in a neigh-
borhood U × V of (0, 0) ∈ C2 × C such that, for every t ∈ V , ft is (S)DF-generic.

Proof. Let f = (α, xp1 + yp2 +xyp3) be a representative defined at some neighborhood U of the
origin. we consider DF-deformations of the form fa,b,c = (α, x(p1 + a) + y(p2 + b) + xy(p3 + c)).
Denote ∆ the analytic space of the points (a, b, c) ∈ C3, such that for some point w in U the map
fa,b,c does not satisfy all genericity conditions. We claim that ∆ is a proper subspace of C3. Take
the first function, p1+yp3, of the first condition and any facet of the Coxeter complex C ∈ C. We
consider the map ψ : C×C3 → C, given by ψ(w, a, b, c) = p1(w)+a+y(p3(w)+c). This is clearly
a submersion. Therefore, the Basic Transversality Lemma [2, Lemma 4.6] tells us that, for almost
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every (a, b, c) ∈ C3, the map fa,b,c is transverse to 0. We can proceed analogously for all the
maps given by the DF-genericity conditions to finally show that, for almost every (a, b, c) ∈ C3,
all the genericity conditions hold at every point in U . Thus, ∆ is a proper subspace. Hence, we
can find some particular (a, b, c) ∈ C3 and some neighborhood V of 0, such that t(a, b, c) /∈ C3

for any t ∈ V . If we take the DF-deformation

ft(x, y) = (x2, y2, x(p1 + ta) + y(p2 + tb) + xy(p3 + tc)

defined at U × V , then for any t ∈ V , the map ft has only DF -generic points at U . The special
double fold case is analogous. �

Theorem 3.12. (S)DF-stable and (S)DF-generic points are the same. As a consequence:
The DF-stable singularities are
• Transverse double points, cross-caps and triple points.
• Standard self tangencies.

The SDF-stable singularities are
• Transverse double points and cross-caps.
• Standard self tangencies.
• Standard quadruple points.

Proof. By Lemma 3.11, the DF-stable singularities must be DF-generic. Now take a DF-generic
point w of a double fold f . If w is a transverse double point, a cross-cap or a triple point, then it
is stable and, hence, DF-stable. Suppose w is a standard self tangency and Let F = (ft, t) be a
DF-unfolding of f . Assume w ∈ D1(f). Then, as we have seen in the proof of Lemma 3.10, the
point belongs to OX \ {0}, (p1 + yp3)|OX has a simple zero at w and the functions p2 + xp3 and
xp1 + yp2 don’t vanish at w. Therefore, there exist a neighborhood U × V of (w, 0) and a curve
of points wt ∈ U ∩OX \ {0}, with t ∈ V and w0 = w, such that (p1 + yp3)|OX has a simple zero
and the functions p2 + xp3 and xp1 + yp2 don’t vanish at wt. All this points are also standard
self tangencies and, since they are all A-equivalent by 3.9, they are DF-stable. The proof holds
in the special case and is analogous for standard quadruple points. �

4. counting (s)df-stable points

A usual way to study germs is to count the number of stable 0-dimensional points of each
type which appear in a stabilization of the original germ. One can show that these numbers can
be obtained as the dimension (as C-vector space) of certain local algebras related to the different
stable 0-dimensional types. We adapt these techniques specifically to (S)DF-deformations and
to (S)DF-stable points.

Definition 4.1. We call (S)DF-stabilization any (S)DF-deformation F such that there exists a
neighborhood U × V of (0, 0) ∈ C2 × C such that, for every t ∈ V , ft is (S)DF-stable.

Remark 4.2. By Lemma 3.11 and Theorem 3.12, every (special) double fold admits a (S)DF-
stabilization.

Definition 4.3. For any (special) double fold f we define:
STi(f) = 1

2 dimCO1/j
∗
i Ii(f), for i = 1, 2,

Ci(f) = dimCO1/j
∗
kIi(f), for (i, k) = (1, 2), (2, 1),

T (f) = dimCO2/I1,2(f) (in the special DF case: QD(f) = 1
4 dimCO2/〈p1, p2〉),

where j1 and j2 denote the inclusions of OX and OY into C2 respectively.
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Figure 5. A non SDF-stable special double fold (see Example 4.6).

Remark 4.4. We don’t include indices for the triple points in different branches because the
complex spaces Di,j(f) are all isomorphic, since O2/I1,2(f) ∼= O2/I1,3(f) ∼= O2/I2,3(f) via the
isomorphisms induced by i1 and i2.

Proposition 4.5. Let STi(f), Ci(f) and T (f) (respectively QD(f)) be finite. Let fs be a (S)DF-
stabilization of f . Then, for a small enough s 6= 0, the following equalities hold:

STi(f) = # standard self tangencies f(Di(fs)),
Ci(f) = # cross-caps in Di(fs) \ {0},
T (f) = # triple points of fs (QD(f) = # standard quadruple points of fs).

Proof. Take the zero locus of the different ideals which appear in 4.3. If STi(f), Ci(f) and T (f)
(respectively QD(f)) are finite, then the spaces are 0-dimensional. In this case, the codimension
of any of these spaces equals the number of generators of its defining ideal. Hence, the spaces are
complete intersection and the Principle of Conservation of Number (see for example [4, Theorem
6.4.7]) applies to them. We only need to check that, if the multigerm of fs at f−1s (fs(w)) is
(S)DF-generic, then the numbers are 1 if it is the considered singularity and 0 otherwise. �

Example 4.6. Take the family of special double folds

(x, y) 7→ (x2, y2, x(a1x
2 + b1y

2 − c1) + y(a2x
2 + b2y

2 − c2)).

The double points D1(f) and D2(f) are given by a1x2 + b1y
2 = c1 and a2x2 + b2y

2 = c2. In the
real case, these two spaces collapse to the point 0 if c1 = c2 = 0. For the germ

f(x, y) = (x2, y2, x(x2 + 2y2) + y(2x2 + y2))

(Figure 5), we can easily compute ST1 = 1/2 dimC(O1/〈x2〉) = 1 and similarly ST2 = 1 and
C1 = C2 = 2. We also have QD = 1/4 dimC(O2/〈2x2 + y2, 2y2 + x2〉) = 1. Now take the
2-parameter deformation ft = (x2, y2, x(x2 + 2y2 − t1) + y(2x2 + y2 − t2)), where t = (t1, t2).
We see that, for almost every fixed t with t1 6= 0 6= t2, ft is a SDF-stable map where we can
find (Figure 6) a standard self tangency and two cross-caps along D1(ft) \ {0} and the same on
D2(ft) \ {0}. We also see the cross-cap at ft(0) and a standard quadruple point. For these good
values of t we can also see that, apart from the restrictions on Di(f) ∩D3(f) and D3(f) ∩ {0}
(see Remark 3.7), the regular stratification of D(ft) is transverse to every facet of the Coxeter
complex.
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Figure 6. A SDF-stable deformation of the surface shown in figure 5.

Example 4.7. If we take the double cone (x, y) 7→ (x2, y2, xy) of Example 2.5, we see easily
that STi = 0, Ci = dimCO1/m1 = 1 for i = 1, 2 and T = dimCO2/m2. In fact

ft(x, y) = (x2, y2, tx+ ty + xy)

is a DF-stabilization of the double cone where each section t 6= 0 has, as in figure 3, three
cross-caps (one in D1(f) \ {0}, one in D2(f) \ {0} and the other at 0) and one triple point.

Remark 4.8. Let ST (f), C(f), T (f) (and respectively QD(f) in the special case) denote the
number of standard self tangencies, cross-caps, triple points (and standard quadruple points)
respectively that appear taking a (S)DF-stabilization of f . It is known that C(f) and T (f)
are well defined A-invariants of f . It is immediate that Q(f) is also invariant, because any
map showing a quadruple point can be deformed (outside the special double fold world) into
another that shows 4 triple points. It is not clear whether ST is A-invariant or not, but it
is easy to see that the numbers with indices STi(f) and Ci(f) are not. Given a double fold
f , we can interchange x and y at the source and then permute the first two coordinates at
the target to obtain a new double fold, say g, such that ST1(f) = ST2(g), ST2(f) = N1(g),
C1(f) = C2(g) and C2(f) = C1(g). Apart from the permutation of indices 1 and 2 that this
change of coordinates produces, examples suggest that changes of coordinates don’t make the
singularities jump from one space Di(f) to another one. Therefore, the numbers STi(f) and
Ci(f) seem to be A-invariant, modulo a simultaneous permutation of all indices 1 and 2 (and
that would make ST A-invariant). However, we have only succeeded in showing it for finitely
determined quasi homogeneous double folds (Corollary 5.6).

5. A-equivalence and Kα-equivalence

The aim of this section is to mimic a result of David Mond [8, Theorem 4.1:1], which shows
the coincidence between the A-equivalence of folds f : (C2, 0) → (C3, 0), f(x, y) = (x, y2, f3)
and some easier to use equivalence of the third coordinate function, f3, defined ad hoc. This
equivalence is given by a subgroup of K called KT which behaves well with respect to the
Whitney Fold T (x, y) = (x, y2). We take, instead of the Whitney Fold, any finite mapping
α : (Cn, 0) → (Cn, 0) and consider mappings (α, fn+1) : (Cn, 0) → (Cn+1, 0). We define the
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group Kα and the generalization of one direction of Mond’s results comes easily: Kα-equivalence
for fn+1 implies A-equivalence for (α, fn+1).

As usual, we denote Rn the group of germs of biholomorphism ϕ : (Cn, 0)→ (Cn, 0).

Definition 5.1. Let α : (Cn, 0) → (Cn, 0) be a finite germ. We define Rα as the subgroup
consisting of the germs ϕ ∈ Rn such that there exists a germ ϕ̂ ∈ Rn such that

ϕ̂ ◦ α = α ◦ ϕ.

We say that two germs g, h ∈ On are Kα-equivalent if there exist a function κ ∈ α∗O2, κ(0) 6= 0
and a germ of diffeomorphism ϕ ∈ Rα, such that

g = κ · h ◦ ϕ.

Example 5.2. Let α(x, y) = (x2, y2), then any diffeomorphism ϕ ∈ Rα is of the form

ϕ(x, y) = (xϕ1, yϕ2) or ϕ(x, y) = (yϕ1, xϕ2)

for some functions ϕ1, ϕ2 ∈ α∗O2, ϕi(0, 0) 6= 0. In particular, if g, h ∈ C[x, y] are homogeneous
Kα-equivalent polynomials, the factors κ and h ◦ ϕ are homogeneous. Hence, on one hand, κ
is a constant in C∗. On the other hand, since ϕ is a diffeomorphism, both h and h ◦ ϕ are
homogeneous of the same degree. We can replace ϕ by its linear part without changing the
composition. Thus, we can assume that ϕ is of the form (x, y) 7→ (ax, by) or (x, y) 7→ (by, ax).

Lemma 5.3. A diffeomorphism ϕ ∈ Rn belongs to Rα if and only if the algebras α∗On and
(α ◦ ϕ)∗On are equal.

Proof. Let ϕ ∈ Rα with ϕ̂ ◦ α ◦ ϕ = α. Any function h ◦ α ∈ α∗On is equal to

(h ◦ ϕ̂) ◦ α ◦ ϕ ∈ (α ◦ ϕ)∗On.

Now take h◦α◦ϕ ∈ (α◦ϕ)∗On. This function is equal to h◦ϕ̂−1◦ϕ̂◦α◦ϕ = (h◦ϕ̂−1)◦α ∈ α∗On.
Now suppose that the two sub-algebras above are equal, then there exist some functions ϕ̂i

such that αi = ϕ̂i ◦α ◦ϕ. Take ϕ̂ = (ϕ̂1, . . . , ϕ̂n). Then we have α = ϕ̂ ◦α ◦ϕ. As α is finite and
ϕ is a biholomorphism, α and α ◦ ϕ have the same finite multiplicity. Therefore ϕ̂ must have
multiplicity 1, and hence is a biholomorphism. �

Theorem 5.4. Let α : (Cn, 0) → (Cn, 0) be a finite germ and fn+1, gn+1 be two Kα-equivalent
functions of On, then the map germs (Cn, 0) → (Cn+1, 0) f = (α, fn+1) and g = (α, gn+1) are
A-equivalent.

Proof. f ∼Kα g implies that there exists θα : (Cn × C, 0)→ (C, 0) of the form

θα(X,Z) = θ(α(X), Z)

for some germ of function θ and such that θα(0, ·) is a germ of biholomorphism, and there exists
ϕ ∈ Rαn such that g(X) = θα(X, f ◦ ϕ(X)). Since ϕ ∈ Rαn, then there exists some germ of
biholomorphism ϕ̂ such that α = ϕ̂ ◦ α ◦ ϕ. We define ψ1 : Cn+1 → Cn by ψ1 = ϕ̂ ◦ π1 and
ψ2 = θ ◦ (ψ1, π2), where πi represents the projection over the i-th component of Cn × C. Now
we define ψ = (ψ1, ψ2) : (Cn+1, 0)→ (Cn+1, 0) and, for every X ∈ Cn, we have

ψ ◦ (α, f) ◦ ϕ(X) =
(
ϕ̂(α(ϕ(X))), θ(ϕ̂(α(ϕ(X))), f(ϕ(X)))

)
=(

α(X), θα(X, f(ϕ(X)))
)

= (α, g)(X).

As a consequence of ϕ̂ and θα(X, ·) being biholomorphisms, we have that ψ is a biholomorphism.
�
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Again, examples suggest that the converse of Theorem 5.4 also holds: A-equivalence of
(α, fn+1) and (α, gn+1) implies Kα-equivalence of fn+1 and gn+1. However we have not suc-
ceed in proving this in general. It was proved by Mond in [8] that it holds when α is the
Whitney Fold. We have only succeeded in showing it for finitely determined quasihomogeneous
double folds.

It is shown in [5] that any quasihomogeneous double fold must be a homogeneous one. There
are only two ways to obtain a homogeneous double fold f(x, y) = (α, xp1 + yp2 + xyp3). One is
p3 = 0 and the other p1 = p2 = 0. Every finitely determined double fold must have a reduced
double point space, which is given by (p1+yp3)(p2+xp3)(xp1+yp2) = 0. We deduce immediately
that every finitely determined quasihomogeneous double fold must be, in fact, a homogeneous
special double fold.

Theorem 5.5. Let f = (α, f3) and g = (α, g3) be A-equivalent finitely determined quasihomo-
geneous double folds , then f3 and g3 are Kα-equivalent.

Proof. Suppose there exist ψ and ϕ such that g = ψ ◦ f ◦ ϕ. Denote by ϕi,xj the derivative of
the i-th component with respect to the variable xj . Taking into account that p1, p2 ∈ m2, the
2-jet of the first two coordinate functions of the equality g = ψ ◦ f ◦ ϕ gives us

x2 = ψ1,X(ϕ2
1,xx

2 + ϕ1,xϕ1,yxy + ϕ2
2,yy

2) + ψ1,Y (ϕ2
2,xx

2 + ϕ2,xϕ2,yxy + ϕ2
2,yy

2),

y2 = ψ2,X(ϕ2
1,xx

2 + ϕ1,xϕ1,yxy + ϕ2
2,yy

2) + ψ2,Y (ϕ2
2,xx

2 + ϕ2,xϕ2,yxy + ϕ2
2,yy

2).

Since dϕ is invertible, we have ϕ1,xϕ2,y 6= 0 or ϕ1,yϕ2,x 6= 0. In the first case from the equations
we obtain ϕ1,y = ϕ2,x = 0 and, in the second case ϕ1,x = ϕ2,y = 0. Suppose we are in the first
case (the second one is analogous). Then the differential of ϕ is of the form dϕ(u, v) = (au, bv)
for some a, b ∈ C∗.

Notice that w is a source double point of g if and only if it is so for f ◦ ϕ, if and only if ϕ(w)
is a source double point of f . Since f and g are finitely determined, their double point spaces
are reduced and thus ϕ|D(g) : D(g) → D(f) is an isomorphism between complex space germs.
We claim that ϕ|D3(g) is an isomorphism between D3(g) and D3(f). We proceed by reduction
to the absurd: suppose there is a irreducible component R of D3(g), such that ϕ(R) 6⊂ D3(f).
For example, suppose ϕ(R) ⊂ D1(f) (the other case, ϕ(R) ⊂ D2(f), is analogous). Since f and
g are finitely determined, their diagonal double points are isolated and thus, since R ⊂ D3(g)
and ϕ(R) ⊂ D1(f), we have ϕ(i3(R)) = i1(ϕ(R)). Let (u, v) be the tangent vector to the curve
germ R, we have the equality dϕ(i3(u, v)) = i1(dϕ(u, v)), that is (−au,−bv) = (−au, bv). The
last equality implies (u, v) is a horizontal vector. Since g is homogeneous, the equation which
defines R is also homogeneous and, thus, it is independent of x. This is implies that y divides
xq1 + yq2, which in turn implies that y divides q1. Then y2 divides q1q2(xq1 + yq2). This is a
contradiction, because g is finitely determined and, thus, D(g) = V (q1q2(xq1 + yq2)) must be
reduced.

Now we have the isomorphism of complex spaces ϕ|D3(g) : D3(g) → D3(f), that is, we have
the equality 〈g3〉 = ϕ∗〈f3〉. This implies the existence of a function h, with h(0, 0) 6= 0, such
that g3 = h · f3 ◦ ϕ. Since g3 y f3 are homogeneous, we can take the diffeomorphism ϕ̃ = dϕ
and the constant κ = h(0, 0) 6= 0 and get g3 = κ · f3 ◦ ϕ. Moreover, as we have seen before, ϕ̃ is
a diagonal linear change and thus it belongs to Rα. �

Notice that the Kα-equivalence of f3 and g3 splits into two simultaneous equivalences between
P1, P2 and Q1, Q2. In the diagonal case we get an expression

xQ1(x2, y2) + yQ2(x2, y2) = κaxP1(a2x2, b2y2) + κbyP2(a2x2, b2y2).
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This is equivalent to Q1(x, y) = κaP1(a2x, b2y) and Q2(x, y) = κbP2(a2x, b2y). In the antidiag-
onal case we obtain the expression

xQ1(x2, y2) + yQ2(x2, y2) = κayP1(a2y2, b2x2) + κbxP2(a2y2, b2x2),

which is equivalent to Q1(x, y) = κbP2(a2y, b2x) and Q2(x, y) = κaP1(a2y, b2x). Now the next
corollary follows immediately.

Corollary 5.6. Let f and g be two A-equivalent quasihomogeneous finitely determined special
double folds, then:

STi(f) = STj(g),
Ci(f) = Ci(g),
QD(f) = QD(g),
µ(Di(f)) = µ(Dj(g)),

where j = i in the diagonal case, and in the antidiagonal the pairs (i, j) are (1, 2), (2, 1), (3, 3).
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KOENDERINK TYPE THEOREMS FOR FRONTS

KENTARO SAJI

Dedicated to Professor Shyuichi Izumiya on the occasion of his 60th birthday

Abstract. We prove Koenderink type theorems with the terminology of the singular curva-

tures of cuspidal edges of wave fronts.

1. Introduction

In 1984 and 1990, J. J. Koenderink showed theorems that relate to how one actually sees
a surface. Let f : U → R3 be a non-singular smooth surface in R3 and M = f(U). Let
π : R3 → P be the orthogonal projection onto a plane P ⊂ R3 and π0 : R3 → S2 the central
projection onto a unit sphere S2 of R3 centered at 0 ∈ R3. We denote the singular set of a map
g by S(g). Koenderink showed the following:

Theorem. ([11, Appendix], [12, page 433]) Suppose p ∈ S(π ◦ f), and π ◦ f(S(π ◦ f)) is a
regular curve near p. Let κ1 be the curvature of the plane curve π ◦ f(S(π ◦ f)) ⊂ P , and κ2

the curvature of the normal section of M at p by the plane that contains the kernel of π. Then

K = κ1κ2

holds at p, where K is the Gaussian curvature of M .
Suppose p ∈ S(π0 ◦ f), and π0 ◦ f(S(π0 ◦ f)) is a regular curve near p. Let κg be the geodesic

curvature of the curve π0 ◦ f(S(π0 ◦ f)) and d be the distance of p from 0. Then K = κgκ2/d
holds at p.

See [15, p223] for further considerations of this type problem. See also [3, 2, 14, 8, 9, 10]. If f
has a singular point, generically the Gaussian curvature is unbounded. Thus this theorem does
not hold at the singular points of f . In [16], it was shown that if f is a front, then the Gaussian

curvature form KdÂ is bounded, and introduced the singular curvature function on the singular
set which consists of cuspidal edges. The singular curvature has a certain geometric property.
So it is natural to expect a Koenderink type theorem of fronts using the Gaussian curvature
form and the singular curvature. In this paper, we give Koenderink type theorems for cuspidal
edges with the terminology of the Gaussian curvature form and the singular curvature. We also
give the same type theorems for the cuspidal edges in the hyperbolic space.

2. Singular curvature and statement of results

Let (U ;u, v) ⊂ R2 be a domain, N a three dimensional manifold, and W a five dimensional
contact manifold with a Legendrian fibration pr : W → N . A smooth map f : U → N is called a
front if there exists a Legendrian immersion lift Lf : U →W of f ; that is, L is an immersion, the
pull-buck of the contact form vanishes on U , and pr ◦Lf = f holds. We remark that a front in a
two dimensional manifold can be defined in a similar manner by replacing U with an interval, N
with a two dimensional manifold, and W with a three dimensional contact manifold respectively.
Let us consider the case W is the unit tangent bundle T1R

3 with the canonical contact form

http://dx.doi.org/10.5427/jsing.2014.10r
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and pr is the Legendrian fibration pr : T1R
3 → R3. In this case, a smooth map f : U → R3 is

a front if there exists a unit vector field ν along f such that Lf = (f, ν) : U → R3 × S2 = T1R
3

is an immersion and the following orthogonality condition holds:

(dfp(Xp) · ν(p)) = 0 (X ∈ TU, p ∈ U),

where ( · ) is the Euclidean inner product of R3. Let f : U → R3 be a front. Set

λ(u, v) = det

(
∂f

∂u
,
∂f

∂v
, ν

)
(u, v),

called the signed area density function. We also set

(2.1) dÂ = λ du ∧ dv,
called the signed area form. Suppose p ∈ U is a singular point of f , then λ(p) = 0 holds. If
dλ(p) 6= 0 holds, then there is a regular smooth curve γ(t) : (−ε, ε) → U (γ(0) = p) such that
the image of γ coincides with S(f) near p. Furthermore, there exists a non-vanishing vector field
η along γ satisfying

〈η(t)〉R = ker dfγ(t).

We call γ the singular curve and η the null vector field.
It was shown in [13], if η(0) transverse to γ′(0), then the map germ f at p is A-equivalent to a

map germ (u, v) 7→ (u, v2, v3) at 0; that is, there exist diffeomorphic germs σ : (R2,0)→ (R2, p)
and τ : (R3, f(p)) → (R3,0) such that τ ◦ f ◦ σ(u, v) = (u, v2, v3) holds as map germs at 0. A
singular point p of a front f is called a cuspidal edge if f at p isA-equivalent to (u, v) 7→ (u, v2, v3).

Now we suppose that the singular curve γ of a front f : U → R3 consists of cuspidal edges.
Then we can choose the null vector field η such that (γ′(t), η(t)) is a positively oriented frame
field along γ, where ′ = d/dt. We then define the singular curvature as follows ([16]):

κs(t) = sgn(dλ(η))
det(γ̂′(t), γ̂′′(t), ν ◦ γ(t))

|γ̂′(t)|3
,

where γ̂ = f ◦ γ. For the geometric meanings of the singular curvature, and further details, see
[16, 17].

Now we consider the Gaussian curvature form of fronts.

Proposition 2.1 ([16]). Let f : U → R3 be a front, and K the Gaussian curvature of f which

is defined on the set of regular points of f . Then K dÂ can be continuously extended as a
globally defined 2-form on U , where dÂ is the signed area form as in (2.1).

A similar proposition as above also holds for plane curves. Let c : I → R2 be a front, and κ
the curvature of c, defined on the set of regular points. By the same method, one can show that
κ ds can be continuously extended as a globally defined 1-form on I, where s is the arclength
parameter of c.

Let f : U → R3 be a front and p ∈ U a cuspidal edge. Then one can see that a section
of M = f(U) near f(p) by a plane through f(p) which transverse to dfp(M) is a 3/2-cusp, in
particular a front (see [13, Proposition 2.9], for example). Several curvatures of fronts in the
plane are investigated in [18].

Using the notions of the curvature forms above, we state the Koenderink type theorems for
fronts.

Theorem 2.2. Let f : U → R3 be a front, p ∈ U a cuspidal edge, and γ the singular curve with
γ(0) = p. Set γ̂ = f ◦ γ, ξp = ν(p) × γ̂′(p)/|γ̂′(p)| and vθ = cos θξp + sin θν(p). Let Pθ be a

plane normal to vθ and πθ the orthogonal projection πθ : R3 → Pθ with respect to vθ. Let κ1(t)
be the curvature of the plane curve γ1(t) := πθ ◦ γ̂(t), and κ2(s) the curvature of the intersection
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curve γ2 of M at p by the plane P :=
〈
ξp, ν(p)

〉
R

, where s is the arclength parameter of γ2. If

θ ∈ (0, π/2) then

(2.2) KdÂ =
1

cos θ
(sin θκs − κ1) dt ∧ κ2 ds

holds at p, where κs is the singular curvature. Here, we give a orientation of γ2(s) passing
through p from the region {λ < 0} to the region {λ > 0}. Also we give a orientation of Pθ such
that {− sin θξp + cos θν(p), γ′1(0)} forms a positive basis, and P such that {ξp, ν(p)} forms a
positive basis.

3. Proof of theorem 2.2

Let f : U → R3 be a front and p ∈ U a cuspidal edge. Then by [16, Lemma 3.2], we can take
a coordinate system (u, v) near p satisfying

• (u, v) is compatible with the orientation of U ,
• p = 0 and the u-axis is the singular curve,
• the null vector field is ∂v on U ,
• λv(0) > 0, and
• |fu(u, 0)| = 1.

We call such a coordinate system (u, v) adapted coordinate system with respect to p. In an
adapted coordinate system (u, v), since λv > 0, it holds that

(3.1) κs(u) = det(fu, fuu, ν)(u, 0) = (fuu · ν × fu) (u, 0),

where fuu = ∂2f/∂u2, for example.

Proof of theorem 2.2. We take an adapted coordinate system (u, v). Since fv(u, 0) = 0 and
fvv(0, 0) 6= 0, there exists a smooth function ϕ satisfying ϕ(0) 6= 0 and

(3.2) fv(u, v) = vϕ(u, v).

In this setting, the Gaussian curvature form has the following expression on U :

K dÂ =
− (fuu · ν) (ϕ · νv)− v (ϕ · νu)

2

(ϕ · ϕ)− (fu · ϕ)
2

√
(ϕ · ϕ)− (fv · ϕ)

2
du ∧ dv.

This is equal to

(3.3) − (fuu · ν) (fvv · νv)√
(fvv · fvv)− (fu · fvv)2

du ∧ dv

at p. On the other hand, we calculate the curvatures κ1 and κ2. Let γ1(u) be the plane curve
πθ ◦ f(u, 0). Then the curvature κ1 of γ1 is

(3.4) κ1 =
(
− cos θ (fuu · ν(p)) + sin θ

(
fuu · ξp

))
.

Let γ2 be the plane curve of the intersection of f(M) at p by P and κ2 its curvature. Since
(fu(u, v) · fu(p)) 6= 0, by the implicit function theorem, there exists a function u = u(v) such
that

(f(u(v), v) · fu(p)) = 0.

Hence γ2 is expressed by

γ2(v) =
( (
f(u(v), v) · ξp

)
, (f(u(v), v) · ν(p))

)
.



KOENDERINK TYPE THEOREMS FOR FRONTS 267

Using (3.2), since ν = fu × ϕ/|fu × ϕ|, one can compute κ2 ds as follows

(3.5) κ2 ds =
det(fu, ϕ, ϕv)

(ϕ · ϕ)− (fu · ϕ)
2 dv = − (νv · fvv)√

(fvv · fvv)− (fu · fvv)2
dv,

at p, where s is the arclength parameter of γ2. By (3.4) and (3.5), we have (2.2). �

To get the spherical projection version of the theorem, we need the following lemma.

Lemma 3.1. Let γ : I → R3 be a smooth curve and κ its curvature as a space curve. Take a
point p ∈ I satisfying that γ(p) and γ′(p) are linearly independent. Let π0 : R3 → S2 be the
central projection onto a unit sphere S2 centered at 0 and κg be the geodesic curvature of π0 ◦γ
as a spherical curve. Then

(3.6) κ(p) =
κg(p)

d

holds, where d is the distance of p from 0.

Proof. Direct computations. �

By Lemma 3.1 and Theorem 2.2, we have the following:

Corollary 3.2. In the same setting as in Theorem 2.2, suppose that γ̂(0) and γ̂′(0) are linearly
independent, and γ̂(0) and vθ are parallel. Let π0 : R3 → S2 be the central projection onto a
unit sphere S2 centered at 0 and κg the geodesic curvature of π0 ◦ γ̂ as a spherical curve. If
θ ∈ (0, π/2), then

(3.7) KdÂ =
1

cos θ

(
sin θκs −

κg
d

)
κ2 du ∧ dv

holds at p, where d is the distance of f(p) from 0.

4. Horospherical Koenderink type theorem

Recently an extrinsic geometry on submanifolds in the hyperbolic space is discovered by
Shyuichi Izumiya and investigated [5, 7]. See also [4, 6]. It is called horospherical geometry. In
this section, we show a horospherical geometric Koenderink type theorem for cuspidal edges. It
should be noted that horospherical geometric Koenderink type theorems for regular surfaces in
the hyperbolic space are shown in [9]. See also [8, 10].

To state a Koenderink type theorem, we prepare some notion. Let R4
1 be the Minkowski 4-

space with the inner product 〈 , 〉 = (−,+,+,+). We denote by H3
+(−1), LC∗+ and S3

1(1) ⊂ R4
1

the hyperbolic space, the lightcone and the de Sitter space defined by

H3
+(−1) = {x ∈ R4

1 | 〈x,x〉 = −1, u0 > 0},
LC∗+ = {x ∈ R4

1 | 〈x,x〉 = 0, u0 > 0},
S3

1(1) = {x ∈ R4
1 | 〈x,x〉 = 1}.

Let (U ;u, v) ⊂ R2 be a domain and f : U → H3
+(−1) a smooth regular surface. Define a vector

e(u, v) =
fu ∧ fv ∧ f
|fu ∧ fv ∧ f |

(u, v),
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where fu = ∂f/∂u, for example. Here for any x1,x2,x3 ∈ R4
1, the vector x1∧x2∧x3 is defined

as

x1 ∧ x2 ∧ x3 = −det

 x1
1 x1

2 x1
3

x2
1 x2

2 x2
3

x3
1 x3

2 x3
3

 e0 − det

 x1
0 x1

2 x1
3

x2
0 x2

2 x2
3

x3
0 x3

2 x3
3

 e1

+ det

 x1
0 x1

1 x1
3

x2
0 x2

1 x2
3

x3
0 x3

1 x3
3

 e2 − det

 x1
0 x1

1 x1
2

x2
0 x2

1 x2
2

x3
0 x3

1 x3
2

 e3

where e0, e1, e2, e3 is the canonical basis of R4
1 and xi = (xi0, x

i
1, x

i
2, x

i
3) (i = 1, 2, 3). We can

easily show that 〈x,x1 ∧ x2 ∧ x3〉 = det(x, x1, x2, x3), so that x1 ∧ x2 ∧ x3 is orthogonal to
any xi (i = 1, 2, 3). Thus we have 〈e, fu〉 = 〈e, fv〉 = 〈e, f〉 = 0 and 〈e, e〉 = 1. This map
e : U → S3

1(1) is called the de Sitter Gauss image. We also define a map

l±(u, v) = f(u, v)± e(u, v) : U → LC∗+,

which is called the lightcone Gauss image. We consider the lightcone Gauss image as a Gauss
map. See [5] for details. With this notion, we consider fronts in the hyperbolic space as follows.
Consider the following double fibration:

• H3
+(−1)× LC∗+ ⊃ ∆2 = {(x,y) | 〈x,y〉 = −1},

• π21 : ∆2 → H3
+(−1), π22 : ∆2 → LC∗+,

• θ21 = 〈dx,y〉 |∆2
, θ22 = 〈x, dy〉 |∆2

.

Here,

π21(x,y) = x, π22(x,y) = y, 〈dx,y〉 = −y0 dx0+

3∑
i=1

yi dxi, and 〈x, dy〉 = −x0 dy0+

3∑
i=1

xi dyi.

We remark that θ21 and θ22 define the same tangent hyperplane field over ∆2 which is denoted
by K2. In [4], it has been shown that (∆2,K2) is a contact manifold such that each fibration
π2i (i = 1, 2) is a Legendrian fibration. See [4] for details.

As we have seen in Section 2, a smooth map f : U → H3
+(−1) is a front if there exists

a map l : U → LC∗+ such that (f, l) : U → ∆2 is a Legendrian immersion with respect to
K2. The map l is called a ∆2-dual of f . One can show that −dpl is a linear transformation

−dpl : TpU →
(
〈l(p), f(p)〉R

)⊥ ⊂ Tf(p)R
4
1, by an identification Tf(p)R

4
1 = R4

1, where ⊥ means
the orthogonal complement. It is called the hyperbolic shape operator. The hyperbolic Gaussian
curvature is defined as

Kh(p) = det(−dpl),
and the hyperbolic Gaussian curvature form is defined as

Kh dÂ = Khλh du ∧ dv,
where λh is the the signed area density function λh(u, v) = det(fu, fv, l, f). If Kh identically
vanishes, then f is a one-parameter family of horocycles, more precisely, f is an envelope of a
one-parameter family of horospheres and is a locus swept out by horocycles ([7]). It can be easily

seen that if f is a front, then Kh dÂ can be continuously extended as a globally defined 2-form
on U .

Let f : U → H3
+(−1) be a front and p ∈ U a cuspidal edge. We denote γ(t) : I → U by a

parameterization of S(f). Let l be a ∆2-dual of f . We define the hyperbolic singular curvature
κhs as

κhs (t) = sgn(dλ(η))
det(γ̂′, γ̂′′, l ◦ γ, γ̂)

|γ̂′|3
(t),
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where γ̂(t) = f◦γ(t) and η(t) is a null vector field, namely, non-zero vector field along γ satisfying
〈η(t)〉R = ker dfγ(t) and (γ′, η) is positively oriented. Here, ′ = d/dt and γ̂′′(t) = Dtγ̂

′(t), where

D is the Levi-Civita connection of H3
+(−1). The hyperbolic singular curvature has the same

type geometric meaning as the Euclidean case. See Section 2 and [16, 17].

4.1. Curves in hyperbolic space. For a vector v ∈ S3
1(1), define the hyperplane normal to v

as HP (v, 0) = {x ∈ R4
1 | 〈x,v〉 = 0}. It is well known that the set H2(v) = HP (v, 0)∩H3

+(−1)
is a totally geodesic hyperbolic plane. Let c(s) : I → H2(v) be a regular curve and s an

arclength parameter. Then since TpH
2(v) =

(
〈v, p〉R

)⊥
holds for p ∈ H2(v), the geodesic

curvature of c is det(c′, c′′, v, c) modulo a sign. Thus we define the curvature in H2(v) of c
by κh(s) = det(c′, c′′, v, c)(s). It can be easily seen that if a curve germ c : (I, 0) → H2(v)
is a cusp (A-equivalent to t 7→ (t2, t3) at 0), then κh(s) ds can be continuously extended as a
globally defined 1-form on I, where s is the arclength parameter of c.

4.2. Projections to planes. To state Koenderink type theorems, we need orthogonal projec-
tions in H3

+(−1) to hyperbolic planes. Let us consider a hyperplane

HP (v, 0) = {x ∈ R4
1 | 〈x,v〉 = 0}

for a vector v ∈ S3
1(1). Given a point q ∈ H3

+(−1), there is a unique geodesic in H3
+(−1) which

intersects orthogonally the hyperbolic plane H2(v) = HP (v, 0)∩H3
+(−1) at some point r(q,v).

We call the point r(q,v) the orthogonal projection of q in the direction v to H2(v). The point
r(q,v) is given by

r(q,v) =
1√

1 + 〈q,v〉2
(
q − 〈q,v〉v

)
.

See [9] for details.

4.3. Koenderink type theorem. In this section, we prove the following theorem:

Theorem 4.1. Let f : U → H3
+(−1) be a front, p ∈ U a cuspidal edge, M = f(U) and γ a

singular curve with γ(0) = p. Set γ̂ = f ◦ γ,

ξp = γ̂′(p)/|γ̂′(p)| ∧ l(p) ∧ f(p),

and vθ = cos θξp + sin θl(p). Let rθ the orthogonal projection rθ : H3
+(−1) → H2(vθ) in the

direction vθ. Let κh1 (t) be the curvature in H2(vθ) of the curve γ1(t) = rθ ◦ γ̂(t), and κh2 (s) the
curvature in H2(l(p) ∧ ξp ∧ f(p)) of the intersection curve γ2 of M at f(p) by the hyperplane
HP (l(p) ∧ ξp ∧ f(p), 0), where s is the arclength parameter of γ2. If θ ∈ (0, π/2) then

Kh dÂ =
1

cos θ

(
− cos θ + sin θκhs − κh1

)
dt ∧ κh2 ds

holds at p, where κhs is the hyperbolic singular curvature. Here, we give a orientation of γ2(s)
passing through p from the region {λh < 0} to the region {λh > 0}.

Proof. By changing coordinates on (U ;u, v), we may assume p = 0 and S(f) = {v = 0}. Also
by isometries of H3

+(−1), we may assume

f(u, v) =
(√

f1(u, v)2 + f2(u, v)2 + u2 + 1, f1(u, v), f2(u, v), u
)
,

where dfi = 0 at 0 (i = 1, 2). Then there exist functions g1(u), g2(u), h1(u, v), h2(u, v) such that
fi(u, v) = u2gi(u) + vhi(u, v) (i = 1, 2). Since S(f) = {v = 0}, it holds that ∂hi/∂v(u, 0) = 0
(i = 1, 2). Thus there exist functions h̄i(u, v) such that hi(u, v) = vh̄i(u, v) (i = 1, 2). By a
rotation of H3

+(−1), we may assume h̄1(0) = 0. Thus we have f1(u, v) = u2a1(u) + v2b1(u, v)
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and f2(u, v) = u2a2(u) + uv2a3(u) + v3b2(u, v). where a1(u), a2(u), a3(u), b1(u, v), b2(u, v) are
functions, and b1(0)b2(0) 6= 0.

Then l(0) = (0, 0, 1, 0), ξ0 = (0, 1, 0, 0) and vθ = (0, cos θ, sin θ, 0) holds. By a direct calcula-
tion, we have

κhs = −2a1(0), κh1 = 2a2(0) cos θ − 2a1(0) sin θ, κh2 ds = −3b2(0)

2b1(0)
ds

at 0 since one can consider γ̂(t) = f(t, 0) and γ2(t) = f(0, t). On the other hand,

Kh du ∧ dv =
3(1 + 2a2(0))b2(0)

2b1(0)
du ∧ dv

holds at 0. By these computations, we have the result. �
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Abstract. An implicit second order ordinary differential equation is said to be completely

integrable if there exists at least locally an immersive two-parameter family of geometric

solutions on the equation hypersurface like as in the case of explicit equations. An implicit
equation may have an immersive one-parameter family of geometric solutions (or, singular

solutions) and a geometric solution (or, an isolated singular solution). In this paper, we give

a classification of types of completely integrable implicit second order ordinary differential
equations and give existence conditions for such families of solutions.

1. Introduction

An implicit second order ordinary differential equation is given by the form

F (x, y, p, q) = 0,

where F is a smooth function of the independent variable x, the function y, its first and second
derivatives p = dy/dx and q = d2y/dx2 respectively.

It is natural to consider F = 0 as being defined on a subset in the space of 2-jets of smooth
functions of one variable, F : O → R where O is an open subset in J2(R,R). Throughout this
paper, we assume that 0 is a regular value of F . It follows that the set F−1(0) is a hypersurface
in J2(R,R). We call F−1(0) the equation hypersurface. Let (x, y, p, q) be a local coordinate on
J2(R,R) and ξ ⊂ TJ2(R,R) be the canonical contact system (the Engel structure) on J2(R,R).
It is well-known that locally the contact system is given by the vanishing of the two 1-forms
α1 = dy − pdx and α2 = dp− qdx.

We now define the notion of solutions. A smooth solution (or a classical solution) of F = 0
passing through a point z0 is a smooth function germ y = f(x) at a point t0 such that

(t0, f(t0), f ′(t0), f ′′(t0)) = z0 and F (x, f(x), f ′(x), f ′′(x)) = 0.

In other words, there exists a smooth function germ f : (R, t0)→ R such that the image of the 2-
jet extension, j2f : (R, t0)→ (J2(R,R), z0), is contained in the equation hypersurface. It is easy
to see that the map j2f is an integral (Engel) immersion. More generally, a geometric solution of
F = 0 passing through a point z0 is an integral immersion γ : (R, t0)→ (J2(R,R), z0) such that
the image of γ is contained in the equation hypersurface, namely, γ′(t) 6= 0, γ∗α1 = γ∗α2 = 0
and F (γ(t)) = 0 for each t ∈ (R, t0).
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In this paper, the following notions are basic (cf. [3, 6, 10, 11, 12, 20]):

A smooth complete solution on F−1(0) at z0 is defined by a two-parameter family of smooth
function germs y = f(t, r, s) such that

F

(
t, f(t, r, s),

∂f

∂t
(t, r, s),

∂2f

∂t2
(t, r, s)

)
= 0

and the map germ j2
∗f : (R× R2, (t0, r0, s0))→ (F−1(0), z0) defined by

j2
∗f(t, r, s) =

(
t, f(t, r, s),

∂f

∂t
(t, r, s),

∂2f

∂t2
(t, r, s)

)
is an immersion. It follows that the equation hypersurface is foliated locally by a two-parameter
family of smooth solutions.

On the other hand, consider the corresponding definition for geometric solutions. We call
Γ : (R × R2, (t0, r0, s0)) → (F−1(0), z0) a complete solution on F−1(0) at z0 if Γ is a two-
parameter family of geometric solutions of F = 0 and

rank

∂x/∂t ∂y/∂t ∂p/∂t ∂q/∂t
∂x/∂r ∂y/∂r ∂p/∂r ∂q/∂r
∂x/∂s ∂y/∂s ∂p/∂s ∂q/∂s

 (t0, r0, s0) = 3,

where Γ(t, r, s) = (x(t, r, s), y(t, r, s), p(t, r, s), q(t, r, s)). This condition means that Γ is an im-
mersion germ, that is, the equation hypersurface is foliated locally by a two-parameter family
of geometric solutions. We say that an equation F = 0 is smoothly completely integrable (re-
spectively, completely integrable) at z0 if there exists a smooth complete solution (respectively,
a complete solution) on F−1(0) at z0.

In the study of implicit ODEs from the view point of singularity theory, there is a lot of
research. For example, generic singularities and properties were given in the case of first order
in [1, 2, 4, 5, 7, 8, 10, 17, 19], in the case of second order in [14, 15] and in the case of any
order in [9] etc. This paper is focused on the theory of completely integrable implicit ODEs
(cf. [18, 20, 21]). Especially, we shall classify types of completely integrable implicit second
order ODEs. In §2, we give previous results for completely integrable implicit second order
ODEs, for more detail see [3, 19, 20]. In §3, we divide types of completely integrable implicit
second order ODEs into ten and give an existence condition for families of geometric solutions
for each type. In §4, we give examples which are useful to understand the notions of complete
solutions and results. Moreover, as an application of the results, we consider the confluent
hypergeometric equations (the degenerate hypergeometric equations) from the view point of
complete integrability (Example 4.5). In Appendix, we give a corresponding result for completely
integrable implicit first order ODEs. These results had been essentially given by Shyuichi Izumiya
([11]).

All map germs and manifolds considered here are differential of class C∞.

2. Basic notions and previous results

Let F (x, y, p, q) = 0 be an implicit second order ODE. We denote the total derivative of F by
FX = Fx + pFy + qFp, where Fx (respectively, Fy, Fp, Fq) is the partial derivative with respect
to x (respectively, y, p, q).

We say that F = 0 is of (second order) Clairaut type (for short, type C) at z0 if there exists
a function germ α : (F−1(0), z0)→ R such that

FX |F−1(0) = α · Fq|F−1(0),
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and of reduced type (for short, type R) at z0 if there exists a function germ β : (F−1(0), z0)→ R
such that

Fq|F−1(0) = β · FX |F−1(0).

Note that we call F = 0 is of reduced type as of first order type in [20]. Then we have shown
the following result.

Theorem 2.1. ([20])
(1) F = 0 is smoothly completely integrable at z0 if and only if F = 0 is of type C at z0.
(2) F = 0 is completely integrable at z0 if and only if F = 0 is either of type C or of type R

at z0.

We say that a geometric solution γ : (R, t0)→ (F−1(0), z0) is a singular solution of F = 0 at
z0 if for any representative γ̃ : I → F−1(0) of γ and any open subinterval (a, b) ⊂ I at t0, γ̃|(a,b)
is never contained in a leaf of a complete solution (cf. [3, 11, 13]).

Around z ∈ F−1(0) such that the contact plane ξz intersects TzF
−1(0) transversally, it is

easy to see that a complete solution on F−1(0) exists by integrating the line field ξ ∩ TF−1(0).
We call points where transversality fails contact singular points and denote by Σc = Σc(F ) the
set of contact singular points. It is easy to check that the contact singular set is given by

Σc = {z ∈ J2(R,R)| F (z) = 0, FX(z) = 0, Fq(z) = 0}.
From the definition of singular solutions, it is easy to see that a geometric solution

γ : (R, t0)→ (F−1(0), z0)

t is a singular solution only if it is contained in Σc (cf. [21]). We also consider the subset
∆ = ∆(F ) ⊂ Σc which is defined to be the set of points z ∈ Σc such that TzF

−1(0) coincides
with the kernel of α1(z). Explicitly, it is given by ∆ = {z ∈ Σc| Fp(z) = 0}.

Now suppose that F = 0 is completely integrable at z0 and Σc is a 2-dimensional manifold
around z0. We say that a map germ

Φ : (R× R, (t0, a0))→ (Σc, z0)

is a complete solution on Σc at z0 if Φ is an immersion germ and Φ(·, a) is a geometric solution
for each a ∈ (R, a0), that is, an immersive one-parameter family of geometric solutions of F = 0.
Moreover, we call Φ a complete singular solution on Σc at z0 if Φ(·, a) is a singular solution for
each a ∈ (R, a0).

If ξz intersects TzΣc transversally in TzF
−1(0), then integrating the line field ξ ∩ TΣc yields

a complete solution on Σc. We call a point where transversality does not hold a second order
contact singular point and denote the set of such points by Σcc = Σcc(F ) (cf. [3, 20, 21]).

Conditions for existence of a complete solution on F−1(0) and a complete (singular) solution
on Σc for implicit second order ODEs were given under a regularity condition.

Theorem 2.2. ([3]) Suppose that 0 is a regular value of Fq|F−1(0).
(1) F = 0 is completely integrable at z0 if and only if z0 6∈ Σc or Σc is a 2-dimensional manifold
around z0.
(2) Let F = 0 be completely integrable.

(i) The leaves of the complete solution on F−1(0) which meet Σc away from ∆ intersect Σc
transversally.

(ii) The leaves of the complete solution on F−1(0) which meet ∆ are tangent to Σc.
(3) Let F = 0 be completely integrable and Σc 6= ∅.

(i) There exists a complete singular solution on Σc at z0 if and only if z0 6∈ Σcc or Σcc is a
1-dimensional manifold around z0.
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(ii) Suppose that F = 0 admits a complete singular solution on Σc. Then each leaf of the
complete singular solution on Σc intersects Σcc transversally.
(4) Let F = 0 be completely integrable at z0 ∈ Σc. If z0 ∈ ∆, then ∆ is a 1-dimensional manifold
around z0.

Theorem 2.3. ([20]) Suppose that 0 is a regular value of FX |F−1(0).
(1) F = 0 is completely integrable at z0 if and only if z0 6∈ Σc or Σc is a 2-dimensional manifold
around z0.
(2) Let F = 0 be completely integrable.

(i) The leaves of the complete solution on F−1(0) which meet Σc away from ∆ intersect Σc
transversally.

(ii) The leaves of the complete solution on F−1(0) which meet ∆ are tangent to Σc.
(3) Let F = 0 be completely integrable and Σc 6= ∅.

(i) There exists a complete solution on Σc at z0 if and only if z0 6∈ Σcc or Σcc is a 1-dimensional
manifold around z0.

(ii) Suppose that F = 0 admits a complete solution on Σc. Then each leaf of the complete
solution on Σc intersects Σcc transversally.

Remark 2.4. The important differences between Theorems 2.2 and 2.3 are (3) and (4). One is
an existence condition for a complete singular solution on Σc and the other is only for a complete
solution on Σc. Moreover, if F = 0 is completely integrable at z0 ∈ ∆ and 0 is a regular value
of Fq|F−1(0), then ∆ is a 1-dimensional manifold around z0. However, ∆ is not necessarily a
1-dimensional manifold around z0 when 0 is a regular value of FX |F−1(0), see Examples 4.1 and
4.4.

Proposition 2.5. ([18, 20]) Let F = 0 be completely integrable at z0 ∈ Σc.
(1) If 0 is a regular value of Fq|F−1(0), then F = 0 is of type C at z0.
(2) If 0 is a regular value of FX |F−1(0), then F = 0 is of type R at z0.

Proposition 2.6. ([20]) Let F = 0 be completely integrable at z0 and Σc be a 2-dimensional
manifold around z0. Then the second order singular set Σcc is contained in ∆.

3. Completely integrable implicit second order ODEs

In this section, we analyse completely integrable implicit second order ODEs in detail. Let
F (x, y, p, q) = 0 be an implicit second order ODE at z0. If z0 /∈ Σc, then F = 0 satisfies either
Fq(z0) 6= 0 or FX(z0) 6= 0.

First we assume that Fq(z0) 6= 0. By the implicit function theorem, F = 0 can be represented
by an explicit equation at least locally. In this case, F = 0 is of type C at z0 and we call this
type Cq. Next we assume that FX(z0) 6= 0. Then F = 0 is of type R at z0 and we call this type
RX . In both cases, there is a unique geometric solution passing through each point of F−1(0).
It follows that there is a complete solution on F−1(0) and no singular solution.

By Theorem 2.1, a completely integrable ODE at z0 is either of type C or of type R at z0.
If z0 ∈ Σc, then F = 0 satisfies either Fp(z0) 6= 0 or Fy(z0) 6= 0 by the assumption that F = 0
is regular at z0 (see §1). The main purpose of this paper is to classify types of the completely
integrable implicit second order ODEs at a point in detail, and to give existence conditions for
a complete (singular) solution on Σc for each type respectively. It is concluded that there are
ten kinds of types, see Table 1.



COMPLETELY INTEGRABLE IMPLICIT SECOND ORDER ODE’S 275

Conditions Type Name
z0 6∈ Σc Fq(z0) 6= 0 C Cq

FX(z0) 6= 0 R RX
z0 ∈ Σc Fp(z0) 6= 0 z0 is a regular point of Fq|F−1(0) C RCp

z0 is a regular point of FX |F−1(0) R RRp
Fy(z0) 6= 0, z0 is a regular point of Fq|F−1(0) C RCy
Fp(z0) = 0 z0 is a regular point of FX |F−1(0) Σc = ∆ R RR1

y

Σc ) ∆ = Σcc R RR2
y

Σc ) ∆ ) Σcc R RR3
y

z0 is a singular point of Fq|F−1(0) C SCy
and FX |F−1(0) R SRy

Table 1. A classification of types of completely integrable implicit second order ODEs at z0.

3.1. On the types RCp and RRp. If z0 ∈ Σc and Fp(z0) 6= 0, by the implicit function
theorem, there exists a smooth function g : V → R, where V is an open set in R3, such that in a
neighbourhood of z0, (x, y, p, q) ∈ F−1(0) if and only if −p+g(x, y, q) = 0. Thus we may assume
without loss of generality that F (x, y, p, q) = −p+ g(x, y, q) = 0. Under this notations, Fq = gq
and FX = gx + g · gy − q. It follows that z0 is a regular point of either Fq|F−1(0) or FX |F−1(0).

If z0 is a regular point of Fq|F−1(0), then F = 0 is of type C at z0 and Σc is a 2-dimensional
manifold around z0 by Proposition 2.5 and Theorem 2.2. We call this type RCp. By z0 6∈ ∆ and
Proposition 2.6, we have z0 6∈ Σcc. Hence F = 0 has a complete singular solution on Σc at z0.

On the other hand, suppose that z0 is a regular point of FX |F−1(0). By Proposition 2.5 and
Theorem 2.3, F = 0 is of type R at z0 and Σc is a 2-dimensional manifold around z0. We call this
type RRp. By z0 6∈ ∆ and Proposition 2.6, we have z0 6∈ Σcc. Since the leaves of the complete
solution which meet Σc away from ∆ intersect Σc transversally, F = 0 has a complete singular
solution on Σc at z0.

3.2. On the type RCy. If z0 ∈ Σc and Fy(z0) 6= 0, again by the implicit function theorem,
there exists a smooth function f : U → R, where U is an open set in R3, such that in a
neighbourhood of z0, (x, y, p, q) ∈ F−1(0) if and only if −y+f(x, p, q) = 0. Thus we may assume
without loss of generality that F (x, y, p, q) = −y + f(x, p, q) = 0. Define the diffeomorphism
φ : U → F−1(0), (x, p, q) 7→ (x, f(x, p, q), p, q) and u0 = φ−1(z0). Below, if Fy(z0) 6= 0, we keep
the notations of the above.

Suppose that z0 is a regular point of Fq|F−1(0). By Proposition 2.5 and Theorem 2.2, F = 0 is
of type C at z0 and Σc is a 2-dimensional manifold around z0. We call this type RCy. Moreover,
F = 0 has a complete singular solution on Σc at z0 if and only if z0 6∈ Σcc or Σcc is a 1-dimensional
manifold around z0 by Theorem 2.2.

Remark 3.1. If Σcc is a 1-dimensional manifold around z0, then ∆ = Σcc and Σcc is an isolated
singular solution passing through z0 (see, [3, Proposition 1.4]). In this case, F = 0 have a
two-parameter family of geometric solutions, a one-parameter family of singular solutions and
an isolated singular solution passing through z0 ∈ Σcc, see Example 4.2.

3.3. On the type RR1
y. Let z0 ∈ Σc and Fy(z0) 6= 0. Suppose that z0 is a regular point

of FX |F−1(0). By Proposition 2.5 and Theorem 2.3, F = 0 is of type R at z0 and Σc is a 2-
dimensional manifold around z0. In this case, there are three types. First one is Σc = ∆ around
z0 (type RR1

y), second is Σc ) ∆ = Σcc around z0 (type RR2
y), and the last is Σc ) ∆ ) Σcc

around z0 (type RR3
y). We may assume that Fp(z0) = 0, namely, z0 ∈ ∆.
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Let F = 0 be of the type RR1
y at z0. By Theorem 2.3, F = 0 has a complete solution of Σc

at z0 if and only if z0 6∈ Σcc or Σcc is a 1-dimensional manifold around z0. In this case, we have
the following result, see Examples 4.1 and 4.4.

Theorem 3.2. Let F = 0 be of type RR1
y at z0 ∈ ∆. If z0 6∈ Σcc, then there exists a unique

geometric solution passing through z0.

Proof. We denote F (x, y, p, q) = −y+f(x, p, q) = 0. Since F = 0 is of type R at z0, there exists
a smooth function germ α : (F−1(0), z0)→ R such that

fq = α · (fx − p+ qfp).(1)

A complete solution, Γ : (R×R2, 0)→ (F−1(0), z0), is given by integrating the vector field φ∗X,
where X : U → TU is given by

X = (−α,−α · q, 1)

(cf. [3, Lemma 3.1]). By (1), we have

(fx − p+ qfp)q = (αx + qαp) · (fx − p+ qfp) + α · ((fx − p+ qfp)x + q(fx − p+ qfp)p) + fp.

It follows from the assumption Σc = ∆ that

(fx − p+ qfp)q|φ−1(Σc) = α|φ−1(Σc) · ((fx − p+ qfp)x + q(fx − p+ qfp)p)|φ−1(Σc).

In this case, a complete solution on Σc, Φ : (R × R, 0) → (Σc, z0), is given by integrating the
vector field φ∗Y , where Y : φ−1(Σc)→ Tφ−1(Σc) is given by

Y = (−α|φ−1(Σc), (−α · q)|φ−1(Σc), 1)

(cf. [20, Lemma 3.5]). It follows that Γ|Γ−1(Σc) = Φ and hence there is a geometric solution
on Σc. Let γ : (R, t0) → (Σc, z0); γ(t) = (x(t), y(t), p(t), q(t)) be a geometric solution passing
through z0. Since z0 6∈ Σcc, we have x′(t)+α·q′(t) = 0 at t0. It follows that we can reparametrise
γ(t) as (x(t), y(t), p(t), t). By the analogous way in the proof of Lemma 3.2 in [21], we can show
uniqueness of the geometric solution passing through z0. 2

Proposition 3.3. Let F = 0 be of type RR1
y at z0 ∈ ∆. If Σcc is a 1-dimensional manifold

around z0, then Σcc is a singular solution passing through z0.

Proof. It is easy to see that Σcc is a geometric solution passing through z0. By definition,

φ−1(Σc) = (fx − p+ qfp)
−1(0)

and

φ−1(Σcc) = (fx − p+ qfp)
−1(0) ∩ ((fx − p+ qfp)x + q(fx − p+ qfp)p)

−1(0).

To show that Σcc is not a leaf of the complete solution on F−1(0) (and on Σc) at z0, it is sufficient
to check that the scalar product of grad((fx − p+ qfp)x + q(fx − p+ qfp)p) and the vector field
X is non-zero at u0. Now

〈grad((fx − p+ qfp)x + q(fx − p+ qfp)p), (−α,−α · q, 1)〉
= −α · ((fx − p+ qfp)x + q(fx − p+ qfp)p)x − α · q((fx − p+ qfp)x + q(fx − p+ qfp)p)p

+ ((fx − p+ qfp)x + q(fx − p+ qfp)p)q.(2)

It follows from (1) that (2) is equal to 2(fxp + qfpp)− 1 at u0. By the assumption Σc = ∆, there
exists a smooth function germ β such that fp = β · (fx− p+ qfp) at least locally. Differentiating
this equality with respect to x and p, we get

fxp = βx · (fx − p+ qfp) + β · (fx − p+ qfp)x
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and

fpp = βp · (fx − p+ qfp) + β · (fx − p+ qfp)p.

It follows that (2) is non-zero at u0. 2

3.4. On the type RR2
y. Suppose that F = 0 is of type RR2

y at z0. See Example 4.2. Then
Σc ) ∆ = Σcc around z0. By Theorem 2.3, F = 0 has a complete solution on Σc at z0 if and
only if Σcc is a 1-dimensional manifold around z0. In this case, we have the following result.

Theorem 3.4. Let F = 0 be of type RR2
y at z0 ∈ ∆. F = 0 has a complete singular solution

on Σc at z0 if and only if Σcc is a 1-dimensional manifold around z0.

Proof. By Theorem 2.3, each leaf of the complete solution on F−1(0) which meet Σc away
from Σcc intersect Σc transversally, and each leaf of the complete solution on Σc intersects Σcc
transversally. Therefore the complete solution on Σc is the complete singular solution on Σc. 2

By the definition of Σcc,

(fx − p+ qfp)x + q(fx − p+ qfp)p = 0, (fx − p+ qfp)q = 0

at z0 ∈ Σcc. Since z0 is a regular point of FX |F−1(0), (fx − p + qfp)p 6= 0 at z0. The equation
F = 0 satisfies either

(i) ((fx − p+ qfp)x + q(fx − p+ qfp)p)q 6= 0

or

(ii) ((fx − p+ qfp)x + q(fx − p+ qfp)p)q = 0

at z0. It follows that z0 is a regular point of (fx−p+qfp)x+q(fx−p+qfp)p, or of (fx−p+qfp)q.

Proposition 3.5. Let F = 0 be of type RR2
y at z0 ∈ ∆. Suppose that Σcc is a 1-dimensional

manifold around z0.
(1) If F = 0 satisfies the condition (i), then each leaf of the complete solution on F−1(0) is

intersects Σcc transversally and hence Σcc is a singular solution passing through z0.
(2) If F = 0 satisfy the conditions (ii) and Fpq|Σcc

≡ 0 around z0, then each leaf of the complete
solution on F−1(0) is tangent to Σcc. If γ(t) = (x(t), y(t), p(t), q(t)) ∈ Σcc is a geometric
solution, γ(t) is represented by the form (a, b, c, t), where a, b, c ∈ R. Moreover, γ(t) is a leaf of
the complete solution on F−1(0).

Proof. (1) Since φ−1(Σcc) = (fx − p+ qfp)
−1(0) ∩ ((fx − p+ qfp)x + q(fx − p+ qfp)p)

−1(0), it
is sufficient to check that the scalar product of grad((fx − p+ qfp)x + q(fx − p+ qfp)p) and the
vector field X is non-zero at u0. By the same calculations in Proposition 3.3,

〈grad((fx − p+ qfp)x + q(fx − p+ qfp)p), (−α,−α · q, 1)〉 = 2(fxp + qfpp)− 1

at u0. The condition (i) guarantees that 2(fxp + qfpp)− 1 6= 0 at u0. Therefore each leaf of the
complete solution on F−1(0) intersects Σcc transversally and hence Σcc is a singular solution
passing through z0.

(2) Since φ−1(Σcc) = (fx − p + qfp)
−1(0) ∩ ((fx − p + qfp)q)

−1(0), it is sufficient to check
that the scalar product of grad(fx − p + qfp)q and the vector field X is zero. By the direct
calculations, the consequence follows from the condition Fpq|Σcc ≡ 0 around z0.

Let γ(t) = (x(t), y(t), p(t), q(t)) ∈ Σcc be a geometric solution passing through z0. By differ-
entiating fp(x(t), p(t), q(t)) = 0 with respect to t, we get

(fxp + qfpp)(x(t), p(t), q(t)) · x′(t) + fpq(x(t), p(t), q(t)) · q′(t) = 0.
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By the condition (ii), we have fxp + qfpp = 1/2 at u0 and hence x′(t) ≡ 0. This means that x(t)
is constant on Σcc around z0. Differentiating (1) with respect to p, we have

fpq = αp · (fx − p+ qfp) + α · (fx − p+ qfp)p.

It follows that α|Σcc
≡ 0 around z0. By the form of the vector field X (see, in the proof of

Theorem 3.2), Γ|Γ−1(Σcc) = γ. 2

3.5. On the type RR3
y. Suppose that F = 0 is of type RR3

y at z0. See Example 4.3. Then
Σc ) ∆ ) Σcc around z0. In this subsection, assume that ∆ is a 1-dimensional manifold around
z0 and z0 6∈ Σcc, since we consider complete solutions. By Theorem 2.3, F = 0 has a complete
solution on Σc at z0. If ∆ is not a geometric solution passing through z0, the complete solution
on Σc is the complete singular solution on Σc. On the other hand, if ∆ is a geometric solution
passing through z0, we have the following result.

Proposition 3.6. Let F = 0 be of type RR3
y at z0 ∈ ∆\Σcc. If γ(t) = (x(t), y(t), p(t), q(t)) ∈ ∆

is a geometric solution passing through z0, then γ(t) is represented by the form (a, b, c, t) where
a, b, c ∈ R. Moreover, γ(t) is a leaf of both complete solutions on F−1(0) and Σc.

Proof. Since z0 6∈ Σcc, we have (fx − p + qfp)x + q(fx − p + qfp)p 6= 0 at u0. Differentiating
equalities (fx−p+ qfp)(x(t), p(t), q(t)) = 0 and fp(x(t), p(t), q(t)) = 0 with respect to t, we have(

(fx − p+ qfp)x + q(fx − p+ qfp)p (fx − p+ qfp)q
fxp + qfpp fpq

)(
x′(t)
q′(t)

)
=

(
0
0

)
.

Since γ(t) is a geometric solution, (x′(t), q′(t)) 6= (0, 0) on ∆. Thus

det

(
(fx − p+ qfp)x + q(fx − p+ qfp)p (fx − p+ qfp)q

fxp + qfpp fpq

)
= 0

on ∆. It follows that α|∆ ≡ 0 and hence x′(t) ≡ 0. This means that x(t) is constant on ∆
around z0. By the forms of the vector field X for a complete solution on F−1(0) and of the
vector field Y for a complete solution on Σc (which appeared in the proof of Theorem 3.2), it
follows that Γ|Γ−1(∆) = Φ|Φ−1(∆) = γ. 2

3.6. On the type SCy. Suppose that F = 0 is of type C at z0 ∈ Σc and z0 is a singular point
of Fq|F−1(0) and FX |F−1(0). We call this type SCy. See Example 4.4.

Proposition 3.7. Let F = 0 be of type SCy at z0. If Σc is a 2-dimensional manifold around
z0, then z0 6∈ Σcc.

Proof. Let F (x, y, p, q) = −y+ f(x, p, q) = 0. Since F = 0 is of type C at z0, there is a function
germ α : (F−1(0), z0)→ R such that

fx − p+ qfp = α · fq.(3)

By differentiating (3) with respect to p, we have fxp − 1 + qfpp = αp · fq + α · fpq. Hence
fxp + qfpp = 1 at u0. By a direct calculation,

(fx − p+ qfp)xq + q(fx − p+ qfp)pq = (fxq + qfpq)x + q(fxq + qfpq)p + fxp + qfpp.(4)

On the other hand, by (3),

(fx − p+ qfp)xq + q(fx − p+ qfp)pq

= (αxq + qαpq) · fq + αq · (fqx + qfpq) + (αx + qαp) · fqq + α · (fxqq + qfpqq).(5)

By definition, φ−1(Σc) = f−1
q (0). Since Σc is a 2-dimensional manifold around z0, there is

a regular function germ g : (U, u0) → R and a function germ k : (U, u0) → (R, 0) such that
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φ−1(Σc) = g−1(0) and fq = k · g at least locally. By a direct calculation, the right hand of (4)
is given by

((kx+qkp)x+q(kx+kp)p) ·g+2(kx+qkp) ·(gx+qgp)+k ·((gx+qgp)x+q(gx+qgp)p)+fxp+qfpp.

Also the right hand of (5) is given by

(αxq + qαpq) · k · g + αq · ((kx + qkp) · g + k · (gx + qgp)) + (αx + qαp) · (kq · g + k · gq)
+ α · ((kxq + qkpq) · g + kq · (gx + qgp) + (kx + qkp) · gq + k · (gxq + qgpq)) .

If z0 ∈ Σcc, then g = gx + qgp = gq = 0 at u0. This contradicts the fact that (4) = (5), namely
1=0 at u0. 2

Under the assumption of Proposition 3.7, it follows from z0 6∈ Σcc that there is a complete
solution on Σc at z0. According to Theorem 3.11 in below, a geometric solution passing through
z0 on Σc is a singular solution for type C. Hence the complete solution on Σc is the complete
singular solution on Σc at z0.

3.7. On the type SRy. Suppose that F = 0 is of type R at z0 ∈ Σc and z0 is a singular point
of Fq|F−1(0) and FX |F−1(0). We call this type SRy. We can also prove the following result by
using the same arguments in the proof of Proposition 3.7, so we omit the proof.

Proposition 3.8. Let F = 0 be of type SRy at z0. If Σc is a 2-dimensional manifold around
z0, then z0 6∈ Σcc.

Moreover, we have the following result.

Proposition 3.9. Let F = 0 be of type SRy and not of type C at z0. If Σc is a 2-dimensional
manifold around z0, then ∆ is a 1-dimensional manifold around z0. Moreover, ∆ is not a
geometric solution passing through z0.

Proof. By (1), fq = α · (fx − p+ qfp) with α(z0) = 0. Since φ−1(Σc) = (fx − p+ qfp)
−1(0) is a

2-dimensional manifold around z0, there exist a regular function germ g : (U, u0) → (R, 0) and
a function germ k : (U, u0)→ (R, 0) such that fx − p+ qfp = k · g and k−1(0) ⊂ g−1(0) at least
locally. By a direct calculation, we have

(fx − p+ qfp)xq + q(fx − p+ qfp)pq = 1

at u0. On the other hand,

(fx − p+ qfp)xq + q(fx − p+ qfp)pq = kq · (gx + qgp) + (kx + qkp) · gq
at u0. Hence kq · (gx + qgp) + (kx + qkp) · gq = 1 at u0. If gq(u0) = 0, then kq(u0) 6= 0. It follows
that k is represented by λ(x, p, q) · (q−µ(x, p)) at least locally, where λ and µ are function germs
with λ(u0) 6= 0. Since k−1(0) ⊂ g−1(0), g(x, p, µ(x, p)) = 0. By differentiating this equality with
respect to x and p, we have

gx(x, p, µ(x, p)) + µx(x, p)gq(x, p, µ(x, p)) = 0

and

gp(x, p, µ(x, p)) + µp(x, p)gq(x, p, µ(x, p)) = 0.

This contradicts the fact that g is regular at u0. Therefore we have gq 6= 0 at u0.
By the definition of ∆, φ−1(∆) = g−1(0)∩f−1

p (0). To show that ∆ is a 1-dimensional manifold
around z0, it is sufficient to show that the matrix

A =

(
gx gp gq
fxp fpp fpq

)
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has rank 2 at u0. Since fx− p+ qfp and fq are singular at u0, fxp + qfpp = 1 and fpq = 0 at u0.
Therefore rankA = 2 at u0.

Next suppose that γ : (R, t0) → (∆, z0); γ(t) = (x(t), y(t), p(t), q(t)) is a geometric solution
passing through z0. By differentiating equalities g(x(t), p(t), q(t)) = 0 and fp(x(t), p(t), q(t)) = 0
with respect to t, we have(

(gx + qgp)(x(t), p(t), q(t)) gq(x(t), p(t), q(t))
(fxp + qfpp)(x(t), p(t), q(t)) fpq(x(t), p(t), q(t))

)(
x′(t)
q′(t)

)
=

(
0
0

)
.

Since the determinant of the matrix (
gx + qgp gq
fxp + qfpp fpq

)
does not vanish at t0, (x′(t), q′(t)) = (0, 0) at t0. This contradicts the fact that γ(t) is a geometric
solution passing through z0. 2

As a conclusion, if F = 0 is of type SRy, not of type C at z0 and Σc is a 2-dimensional
manifold around z0, then there is a complete singular solution on Σc at z0 by Propositions 3.8
and 3.9.

Finally, in this section, we give an important difference between type C and type R.

Lemma 3.10. Let F = 0 be of type RCy at z0. If z0 ∈ ∆ \ Σcc, then ∆ is not a geometric
solution passing through z0.

Proof. By Theorem 2.2, ∆ is a 1-dimensional manifold around z0. Suppose that

γ : (R, t0)→ (∆, z0); γ(t) = (x(t), y(t), p(t), q(t))

is a geometric solution passing through z0. Differentiating

fp(x(t), p(t), q(t)) = 0 and fq(x(t), p(t), q(t)) = 0

with respect to t, we have(
(fxp + qfpp)(x(t), p(t), q(t)) fpq(x(t), p(t), q(t))
(fxq + qfpq)(x(t), p(t), q(t)) fqq(x(t), p(t), q(t))

)(
x′(t)
q′(t)

)
=

(
0
0

)
.

Moreover, differentiating (3) with respect to p and q, fxp − 1 + qfpp = αp · fq + α · fpq and
fxq + fp + qfpq = αq · fq + α · fqq respectively. Then

det

(
(fxp + qfpp)(x(t), p(t), q(t)) fpq(x(t), p(t), q(t))
(fxq + qfpq)(x(t), p(t), q(t)) fqq(x(t), p(t), q(t))

)
= fqq(x(t), p(t), q(t)).

The condition z0 6∈ Σcc guarantees that fqq 6= 0 at u0. It follows that (x′(t), q′(t)) = (0, 0) at t0.
This contradicts the fact that γ(t) is a geometric solution passing through z0. 2

Theorem 3.11. Let F = 0 be of type C at z0. If γ(t) = (x(t), y(t), p(t), q(t)) ∈ Σc is a geometric
solution passing through z0, then γ(t) is the singular solution.

Proof. First we assume that z0 is a regular point of Fq|F−1(0). If z0 6∈ ∆, then γ(t) is a singular
solution passing through z0 and hence we may regard that γ(t) ⊂ ∆ by Theorem 2.2. Also if
z0 6∈ Σcc, then γ(t) is not a geometric solution passing through z0 by Lemma 3.10. We may
assume that γ(t) ⊂ Σcc. Then we can conclude that γ(t) is a singular solution passing through
z0, see Remark 3.1.
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Next we assume that z0 is a singular point of Fq|F−1(0). Also we may regard that γ(t) ⊂ ∆.
By differentiating fp(x(t), p(t), q(t)) = 0 with respect to t,

(fxp + qfpp)(x(t), p(t), q(t)) · x′(t) + fpq(x(t), p(t), q(t)) · q′(t) = 0.

Since fxp − 1 + qfpp = αp · fq + αp · fpq, we have

(1 + α · fpq(x(t), p(t), q(t))) · x′(t) + fpq(x(t), p(t), q(t)) · q′(t) = 0.

By the assumption, fpq(u0) = 0. Hence x′(t0) = 0 and q′(t0) 6= 0. It follows from the form of
smooth complete solution, γ(t) is the singular solution passing through z0. This completes the
proof of Theorem 3.11. 2

As a consequence, if F = 0 is of type C and there exists a geometric solution on the contact
singular set, then uniqueness for geometric solutions does not hold.

4. Examples

We give examples of completely integrable second order ODEs. For more examples, refer to
[3, Examples 5.1 and 5.2] etc.

Example 4.1. Let F (x, y, p, q) = y + (1/2)p2q2n+1 = 0, where n is a natural number. In this
case, FX = p(1 + q2n+2) and Fq = (1/2)(2n+ 1)p2q2n. Hence F = 0 is of type R at z0 ∈ F−1(0).
Since 0 is a regular value of FX |F−1(0), and

Σc = {(x, y, p, q) | y = p = 0} = ∆, Σcc = {(x, y, p, q) | y = p = q = 0},

F = 0 is of type RR1
y at z0 ∈ Σc. By Theorems 2.3, 3.2 and Proposition 3.3, there exist a

complete solutions on F−1(0) and Σc, and a singular solution. Indeed, the complete solutions
Γ : R× R2 → F−1(0),Φ : R× R→ Σc and the singular solution γ : R→ Σcc are given by

Γ(t, r, s) =
(
− 2n+ 1

2
r

∫
(1 + t2n+2)−

6n+5
4(n+1) t2ndt+ s,

−1

2
r2t2n+1(1 + t2n+2)−

2n+1
2(n+1) , r(1 + t2n+2)−

2n+1
4(n+1) , t

)
,

Φ(t, a) = (a, 0, 0, t) and γ(t) = (t, 0, 0, 0). We can observe that Γ|Γ−1(Σc) = Φ.

Example 4.2. Let F (x, y, p, q) = −y + pqn − (n/(2n+ 1))q2n+1 = 0, where n is a natural
number. In this case, FX = −p + qn+1 and Fq = −nqn−1(−p + qn+1). Hence F = 0 is of type
C and of type R for n = 1, and of type R for n ≥ 2 at z0 ∈ F−1(0). Since 0 is a regular value
of FX |F−1(0) and

Σc =

{
(x, y, p, q) | y =

n+ 1

2n+ 1
q2n+1, p = qn+1

}
, ∆ = {(x, y, p, q) | y = p = q = 0} = Σcc,

F = 0 is of type RR2
y at z0 ∈ ∆. Note that F = 0 is also of type RCy at z0 if n = 1. By Theorems

2.3 and 3.4, there exist a complete solution on F−1(0) and a complete singular solution on Σc.
Moreover, F = 0 satisfies the condition (i) of Proposition 3.5 in §3.4, Σcc is an isolated singular
solution. Indeed, the complete solution on F−1(0), the complete singular solution on Σc and the
isolated singular solution are given by

Γ(t, r, s) =

(
tn + r,

n2

(n+ 1)(2n+ 1)
t2n+1 + stn,

n

n+ 1
tn+1 + s, t

)
,

Φ(t, a) =

(
n+ 1

n
tn + a,

n+ 1

2n+ 1
t2n+1, tn+1, t

)
and γ(t) = (t, 0, 0, 0).
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If n = 1, the complete solution on F−1(0) can be parametrised by

Γ(t, r, s) =

(
t,

1

6
t3 +

1

2
rt2 + st+ rs− 1

3
r3,

1

2
t2 + rt+ s, t+ r

)
.

Example 4.3. Let

F (x, y, p, q) = −y + (1/2)x2 − (1/n)pqn + (1/n)xqn + (1/2n2)q2n − (1/n(2n+ 1))q2n+1 = 0,

where n is a natural number. In this case, FX = x+ (1/n)qn−p− (1/n)qn+1 and Fq = qn−1FX .
Since 0 is a regular value of FX |F−1(0) and

Σc =

{
(x, y, p, q) | y =

1

2
x2 − 1

2n2
qn+1 +

n+ 1

n2(2n+ 1)
q2n+1

}
,

∆ =

{
(x, y, p, q) | y =

1

2
x2, p = x, q = 0

}
, Σcc = ∅,

F = 0 is of type RR3
y at z0 ∈ ∆. Note that if n = 1, then F = 0 is also of type RCy at z0.

By Theorem 2.3, there exist complete solutions on F−1(0) and Σc. Since ∆ is not a geometric
solution, the complete solution on Σc is the complete singular solution on Σc. The complete
solution on F−1(0) and the complete singular solution on Σc at 0 are given by

Γ(t, r, s) =

(
− 1

n
tn + r,

1

(n+ 1)(2n+ 1)
t2n+1 − 1

n
stn +

1

2
r2,− 1

n+ 1
tn+1 + s, t

)
,

Φ(t, a) =

(
x(t, a),

1

2
x(t, a)2 − 1

2n2
tn+1 +

n+ 1

n2(2n+ 1)
t2n+1, x(t, a) +

1

n
tn − 1

n
tn+1, t

)
,

where

x(t, a) = − 1

n

(
n+ 1

n
tn +

1

n− 1
tn−1 + · · ·+ 1

2
t2 + t+ log |t− 1|

)
+ a.

Example 4.4. Let F (x, y, p, q) = −y + xp − (1/2)x2q + xn = 0, where n is a natural number.
In this case, FX = nxn−1 and Fq = −(1/2)x2. Hence F = 0 is of type R for n = 1 and 2 at
z0 ∈ F−1(0). Also F = 0 is both types of C and R for n = 3, and of type C for n ≥ 4 at z0.

First suppose that n = 1. Since FX = 1, we have Σc = ∅. It follows that F = 0 is of type RX
at z0. The complete solution on F−1(0) at 0 is given by

Γ(t, r, s) =

(
2r

1− rt
,

4r

1− rt
log |1− rt|+ 4r + 2rs

1− rt
+

2r

(1− rt)2
, 2 log |1− rt|+ 2

1− rt
+ s, t

)
.

Second suppose that n = 2. Since 0 is a regular value of FX |F−1(0) and

Σc = {(x, y, p, q) | x = y = 0} = ∆, Σcc = ∅,
F = 0 is of type RR1

y at z0 ∈ ∆. The complete solutions on F−1(0) and Σc are given by

Γ(t, r, s) =

(
re

t
4 ,
r2

2
te

t
2 − 3r2e

t
2 + rse

t
4 , rte

t
4 − 4re

t
4 + s, t

)
,

Φ(t, a) = (0, 0, a, t). We can observe that Γ|Γ−1(Σc) = Φ.
Finally suppose that n ≥ 3. Since 0 is a singular value of Fq|F−1(0) and FX |F−1(0), F = 0 is

of type SCy at z0 ∈ ∆. We have

Σc = {(x, y, p, q) | x = y = 0} = ∆, Σcc = ∅.
The complete solution on F−1(0) and the complete singular solution on Σc are given by

Γ(t, r, s) =

(
t,

2

(n− 2)(n− 1)
tn +

1

2
rt2 + st,

2n

(n− 2)(n− 1)
tn−1 + rt+ s,

2n

n− 2
tn−2 + r

)
,
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Φ(t, a) = (0, 0, a, t). Note that if n = 3, then F = 0 is also of type SRy at z0.

Example 4.5. Let F (x, y, p, q) = xq + (a − x)p − by = 0 be the confluent hypergeometric
equations (the degenerate hypergeometric equations), where a, b ∈ R, see in [16]. The equation
have the confluent hypergeometric function as a solution. However, we can decide by using the
results whether the equation have a complete solution or not. This is a new viewpoint for the
equation as far as we know.

Since we consider the regular equation, we may assume that b 6= 0. By

FX = q(1 + a− x)− p(1 + b) and Fq = x,

Σc = {(x, y, p, q) | x = 0, ap− by = 0, q(1 + a)− p(1 + b) = 0}.
If z0 6∈ Σc, then there exist a complete solution at z0 and also a unique geometric solution passing
through z0. If z0 ∈ Σc and a = −1, b = −1, then FX = q · Fq, Σc is a 2-dimensional manifold
and Σcc = ∅. It follows that F = 0 is of type RCy at z0. By Theorem 2.2, there exist a complete
solution on F−1(0) and a complete singular solution on Σc. The complete solution on F−1(0)
and the complete singular solution on Σc are given by

Γ(t, r, s) =
(
t, ret + (1 + t)s, ret + s, ret

)
, Φ(t, a) = (0, a, a, t).

If z0 ∈ Σc and a = −1, b 6= −1 (respectively, a 6= −1), then Σc is a 1-dimensional manifold.
Hence F = 0 is not completely integrable at z0.

Appendix A. Completely integrable implicit first order ODEs

In this appendix, we quickly review known results for the theory of completely integrable
implicit first order ODEs

F (x, y, p) = 0, p = dy/dx.

For more detail, see [10, 11, 12, 13, 19]. Assume that 0 is a regular value of F . We say that
F = 0 is completely integrable at a point if there exists an immersive one-parameter family of
geometric solutions on F−1(0) at the point. The contact singular set Σc = Σc(F ) is given by

Σc = {z ∈ J1(R,R) | F (z) = 0, FX(z) = 0, Fp(z) = 0}.

Here FX = Fx + pFy. We say that an equation F = 0 is of (first order) Clairaut type (for short,
type C) at z0 if there exists a function germ α : (F−1(0), z0)→ R such that

FX |F−1(0) = α · Fp|F−1(0),

and of reduced type (for short, type R) at z0 if there exists a function germ β : (F−1(0), z0)→ R
such that

Fp|F−1(0) = β · FX |F−1(0),

In [11], it has been shown the following results.

Theorem A.1. ([11]) Let F (x, y, p) = 0 be an implicit first order ODE at z0. The following are
equivalent:

(1) F = 0 is completely integrable at z0.
(2) F = 0 is either of type C or of type R at z0.
(3) z0 6∈ Σc or Σc is a 1-dimensional manifold around z0.
Moreover, if Σc is a 1-dimensional manifold around z0, then Σc is a singular solution of F = 0

passing through z0.
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Now suppose that z0 ∈ Σc. Since F = 0 is regular, Fy(z0) 6= 0. By the implicit function
theorem, there exists a smooth function f : U → R, where U is an open set in R2, such that in
a neighbourhood of z0, (x, y, p) ∈ F−1(0) if and only if −y + f(x, p) = 0. Thus we may assume
without loss of generality that F (x, y, p) = −y+ f(x, p) = 0. It follows that z0 is a regular point
of either Fp|F−1(0) or FX |F−1(0). Therefore, completely integrable implicit first order ODEs have
four kinds of types (cf. [19]), see Table 2.

Conditions Type Name
z0 6∈ Σc Fp(z0) 6= 0 C Cp

FX(z0) 6= 0 R RX
z0 ∈ Σc Fy(z0) 6= 0 z0 is a regular point of Fp|F−1(0) C RCy

z0 is a regular point of FX |F−1(0) R RRy
Table 2. A classification of types of completely integrable implicit first order ODEs at z0.
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LIPS AND SWALLOW-TAILS OF SINGULARITIES OF PRODUCT MAPS

KAZUTO TAKAO

Abstract. Lips and swallow-tails are generic local moves of singularities of a smooth map to

a 2-manifold. We prove that these moves of singularities of the product map of two functions
on a 3-manifold can be realized by isotopies of the functions.

1. Introduction

We consider the relationship between a pair of maps and the product map. Let M,P,Q be
smooth manifolds and let C∞(M, ∗) denote the space of smooth maps from M to a smooth
manifold ∗ endowed with the Whitney C∞ topology. Two smooth maps F ∈ C∞(M,P ) and
G ∈ C∞(M,Q) determine the product map (F,G) ∈ C∞(M,P×Q) by (F,G)(p) = (F (p), G(p)).
Conversely, a smooth map ϕ ∈ C∞(M,P ×Q) can be decomposed into πP ◦ϕ ∈ C∞(M,P ) and
πQ ◦ ϕ ∈ C∞(M,Q), where πP : P × Q → P and πQ : P × Q → Q are the projections. By
Chapter II, Proposition 3.6 of [1], this correspondence gives the homeomorphism

(]) C∞(M,P )× C∞(M,Q) ∼= C∞(M,P ×Q).

The homeomorphism (]) however does not mean the singularity theoretic equivalence. More
specifically, isotopies of F and G do not always induce an isotopy of (F,G), and an isotopy of ϕ
does not always induce isotopies of πP ◦ϕ and πQ ◦ϕ. Here, an isotopy of a map is a homotopy
preserving the topological properties of the map. The partition of a mapping space into isotopy
classes is of general interest in singularity theory, but few things are known about the relation
between the partitions of the both sides of the homeomorphism (]).

We focus on the case where M is closed and 3-dimensional, and P,Q are 1-dimensional. We do
not assume the orientability of M . Suppose F : M → P and G : M → Q are smooth functions
such that ϕ = (F,G) is stable. A singular point of ϕ is then either a fold point or a cusp point.
By Levine’s [5] theorem, we can eliminate the cusp points by a homotopy of ϕ. It implies that
we can eliminate the cusp points by homotopies of F and G. Note that we cannot reduce the
number of cusp points by an isotopy of ϕ. We propose the following question.

Question 1. Can we eliminate the cusp points of ϕ by (quasi-)isotopies of F and G?

Our strategy to attack Question 1 is to deform ϕ by a sequence of global isotopies and local
homotopies which can be realized by (quasi-)isotopies of F,G. Johnson [3, Section 6] showed
what kind of global isotopy of ϕ can be realized by (quasi-)isotopies of F,G (see Corollary 7).
In this paper, we prove the following.

Theorem 2. The local moves of the discriminant set of ϕ as in Figure 1 can be realized by
isotopies of F and G.
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f f

f f

g g
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Figure 1. Local moves which reduce the number of cusp points of ϕ. Here,
(f, g) is the coordinate system given by the product structure of P × Q. We
require that the local moves do not involve tangent lines of the discriminant set
parallel to the axes.

Forgetting the axes, these moves are ones of generic local moves of singularities of ϕ known as
a “lip” and a “swallow-tail”, respectively. See [11] for the classification of generic local moves.
We expect that we can use our method (Proposition 11) to work out other local moves, and we
hope that we can use them to approach a global theory.

We would like to mention here the relation of this work to Heegaard theory of 3-manifolds.
Rubinstein–Scharlemann [13] introduced the graphic for comparing two Heegaard splittings.
Kobayashi–Saeki [4] interpreted the graphic as the discriminant set of the product map of two
functions representing the splittings. Johnson [3] gave an upper bound for the Reidemeister–
Singer distance between two Heegaard splittings in terms of the graphic. The author [14] devel-
oped Johnson’s idea to show that the Reidemeister–Singer distance is at most the sum of the
genera of the splittings plus the number of cusp points of the product map. If Question 1 is
answered positively, it ensures that the Reidemeister–Singer distance is at most the sum of the
genera, which is the best possible bound by Hass–Thompson–Thurston’s [2] example.

Acknowledgement. The author would like to thank Osamu Saeki, Takashi Nishimura and
Kentaro Saji for valuable discussions and conversations. He would also like to thank the referee
for many helpful suggestions.

2. Morse functions and stable maps

In this section, we briefly review standard definitions and facts on singularities of smooth
maps. We refer the reader to [10] for basic notions in Morse theory, and to [1] for detailed
description of stable maps.

A Morse function on a compact smooth manifold M possibly with boundary is a smooth
function F from M to either R or S1 satisfying the following:

• All the critical points of F are non-degenerate and belong to intM .
• The function F is constant on each component of ∂M .
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We regard R and S1 as oriented. This gives the distinction between locally minimal components
and locally maximal components of ∂M with respect to F . A smooth homotopy consisting of
Morse functions is called a quasi-isotopy. Two Morse functions are said to be quasi-isotopic if
there is a quasi-isotopy between them.

We consider generic homotopies of smooth functions from a compact connected surface Σ to
R. Let {αt : Σ → R}t∈[−1,1] be a smooth homotopy. A birth (resp. death) of {αt}t∈[−1,1] is the

pair (o, σ) of o ∈ (−1, 1) and σ ∈ intΣ such that ατ (ξ, η) = τξτ − ξ3
τ + η2

τ for a local coordinate
system (ξ, η) at σ, a local coordinate τ at o whose direction agrees (resp. disagrees) with that
of t, and a local coordinate of the target R. Here {(ξ, η) 7→ (ξτ , ητ )}τ is a smooth family of
coordinate transformations. A passing of {αt}t∈[−1,1] is the pair (o, {σ, σ′}) of o ∈ (−1, 1) and
{σ, σ′} ⊂ intΣ such that σ, σ′ are non-degenerate critical points of αo with the same value, and
{(t, v) ∈ R2 | v is a critical value of αt|U∪U ′} has a transverse crossing at (o, αo(σ)) for small
neighborhoods U,U ′ of σ, σ′, respectively. The homotopy {αt}t∈[−1,1] is said to be generic if
it consists of Morse functions whose critical points have pairwise distinct values except that
{αt}t∈[−1,1] has either a single birth, a single death or a single passing at each t in a finite subset
of (−1, 1). Note that a generic homotopy without births and deaths is a quasi-isotopy.

Theorem 3 (Maksymenko [7]). Two Morse functions from Σ to R are quasi-isotopic if and
only if they have the same number of critical points of each index, and the same sets of locally
minimal and locally maximal components of ∂Σ.

An isotopy of a smooth map ϕ : M → N between general smooth manifolds M,N is a
homotopy {ϕt : M → N}t∈[0,1] which is decomposed as ϕt = HN

t ◦ ϕ ◦HM
t . Here {HM

t }t∈[0,1],

{HN
t }t∈[0,1] are smooth ambient isotopies of M,N , respectively, such that HM

0 = idM and

HN
0 = idN . Two smooth maps are said to be isotopic if there is an isotopy between them.
A stable map from M to N is a smooth map ϕ : M → N such that there exists an open

neighborhood U of ϕ in C∞(M,N) such that every map in U is isotopic to ϕ. We remark
that an equivalent definition of stable map is given by using “right-left equivalent” in place of
“isotopic”. We note that, in the case where M is closed and N is either R or S1, the smooth
map ϕ is stable if and only if ϕ is a Morse function whose critical points have pairwise distinct
values.

Consider the case where M is a closed smooth 3-manifold and N is a smooth surface. Recall
that p ∈ M is a regular point of ϕ if the differential (dϕ)p : TpM → Tϕ(p)N is surjective, and
otherwise a singular point. The set Sϕ of singular points of ϕ is called the singular set and its
image ϕ(Sϕ) is called the discriminant set of ϕ. At a regular point p ∈M \ Sϕ, the map ϕ has
the standard form ϕ(u, x, y) = (u, x) for some coordinate neighborhoods of p and ϕ(p). Standard
forms are also known for generic types of singular points as follows.

A fold point is a singular point p where ϕ has the form ϕ(u, x, y) = (u, x2±y2) for a coordinate
neighborhood U of p = (0, 0, 0) and a coordinate neighborhood of ϕ(p) = (0, 0). The Jacobian
matrix of ϕ(u, x, y) = (u, x2 ± y2) says that the singular set Sϕ ∩ U is the arc {(u, 0, 0)}. It
follows that each singular point on {(u, 0, 0)} is also a fold point by a translation of the local
coordinates. The arc {(u, 0, 0)} is embedded to the arc {(u, 0)} ⊂ N by ϕ.

A cusp point is a singular point p where ϕ has the local form ϕ(u, x, y) = (u, ux − x3 + y2).
One can check that the singular set Sϕ ∩ U is the arc {(3x2, x, 0)}, and consists of fold points
except for the cusp point p = (0, 0, 0). Note that the arc {(3x2, x, 0)} is a regular curve but its
image {(3x2, 2x3)} ⊂ N has a cusp at ϕ(p) = (0, 0).

Assume that the singular set Sϕ consists only of fold points and cusp points. By the above
local observations and the compactness of M , we can see the outline of Sϕ. It is a 1-dimensional
submanifold of M , namely a collection of smooth circles. There are finitely many cusp points
and the restriction ϕ|Sϕ

is an immersion except that each cusp point maps to a cusp. The next
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characterization of stable maps follows from Mather’s theorems [8, Theorem A, Proposition 1.8]
and [9, Theorem 4.1].

Theorem 4 (Mather). A smooth map ϕ from a closed smooth 3-manifold to a smooth surface
is stable if and only if:

• The singular set Sϕ consists only of fold points and cusp points.
• The restriction ϕ|Sϕ

has no double points at cusps, and the immersion ϕ|Sϕ\(cusp points)

has only normal crossings.

The Stein factorization Wϕ of a general smooth map ϕ : M → N is the quotient space M/ ∼,
where p1 ∼ p2 if p1, p2 belong to the same connected component of a level set of ϕ. Let qϕ
denote the quotient map form M to Wϕ. We can see that there is also a unique continuous map
ϕ̄ : Wϕ → N such that ϕ = ϕ̄◦ qϕ. The Stein factorization of a stable map from a closed smooth
3-manifold to a smooth surface is, in fact, a 2-dimensional cell complex. See [6] for example.

3. Two functions and the product map

In this section, we review a local theory of singularities of two functions and the product map.
We use the following notation. Suppose M is a closed smooth 3-manifold and P,Q are either

R or S1. Let F : M → P and G : M → Q be smooth functions, and ϕ denote the product map
(F,G). While we do not assume F,G to be Morse, we assume ϕ to be stable in this section.

The singular set Sϕ includes the critical points of F and G, which can be seen as follows. For
each point p ∈M , there is a local coordinate system (f, g) at ϕ(p) given by the product structure
of P ×Q. The Jacobian matrix of ϕ with respect to this coordinate system is composed of the
gradients of F and G. If p is a critical point of F or G, the Jacobian matrix has rank at most
one, namely p is a singular point of ϕ.

We read information about F,G from the discriminant set of ϕ. Note that ϕ|Sϕ
is an immersion

of circles with finitely many cusps. We can define the slope of the discriminant set ϕ(Sϕ) at
ϕ(p) for each p ∈ Sϕ with respect to the coordinate system (f, g). In particular, a point on the
discriminant set with slope zero (resp. infinity) is called a horizontal (resp. vertical) point. We
can also define the second derivative of ϕ(Sϕ) outside of vertical points and cusps, by regarding
an arc of ϕ(Sϕ) as the graph of a function. In particular, a point with second derivative zero is
called an inflection point. Since zero or non-zero of the second derivative is preserved by rotating
the coordinate system, an inflection point can be defined also for vertical points.

Lemma 5. A point p ∈ M is a critical point of F (resp. G) if and only if ϕ(p) is a vertical
(resp. horizontal) point of the image of a small neighborhood of p in Sϕ.

Lemma 6. A critical point p of F (resp. G) degenerates if and only if p is a fold point of ϕ
and ϕ(p) is a vertical (resp. horizontal) inflection point of the image of a small neighborhood of
p in Sϕ.

The above lemmas were originally described by Johnson [3, Lemmas 10 and 11], and simple
analytic proofs were given by the author [14, Lemmas 11 and 12]. Both Johnson and the author
considered only the case of P = Q = R, but the proofs are independent of whether P,Q are R
or S1.

By Lemmas 5 and 6, the function F (resp. G) is Morse if the discriminant set ϕ(Sϕ) does not
have vertical (resp. horizontal) inflection points. Note that the f -coordinate (g-coordinate) of
each vertical (resp. horizontal) point of ϕ(Sϕ) corresponds to the critical value of F (resp. G).
It follows that the Morse function F (resp. G) is stable if ϕ(Sϕ) does not have vertical (resp.
horizontal) double tangent lines.
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Corollary 7. A deformation of ϕ(Sϕ) by an ambient isotopy of P×Q can be realized by isotopies
of F,G if it keeps ϕ(Sϕ) without horizontal or vertical, inflection points and double tangent lines.

Proof. Let {Ht}t∈[0,1] be a smooth ambient isotopy of P × Q such that H0 = idP×Q. By the
definitions, {Ht ◦ ϕ}t∈[0,1] is an isotopy of ϕ and consists of stable maps. It induces homotopies
{Ft = πP ◦Ht ◦ϕ}t∈[0,1] of F and {Gt = πQ ◦Ht ◦ϕ}t∈[0,1] of G. The deformed discriminant set
Ht(ϕ(Sϕ)) is the discriminant set of Ht ◦ ϕ = (Ft, Gt) for each t ∈ [0, 1]. Since Ht(ϕ(Sϕ)) does
not have horizontal or vertical, inflection points and double tangent lines, Ft and Gt are stable
for each t ∈ [0, 1]. The homotopies {Ft}t∈[0,1] and {Gt}t∈[0,1] are therefore isotopies. �

4. Restrictions to level surfaces

In this section, we consider the relation between a product map restricted to an appropriate
domain and the family of the restrictions of one function to level surfaces of the other function.

We use the following notation again. Suppose M is a closed smooth 3-manifold and P,Q are
either R or S1. Let F : M → P and G : M → Q be smooth functions, and ϕ denote the product
map (F,G). We do not assume F,G to be Morse nor ϕ to be stable at this stage.

We consider the restriction of F to a level surface of G. Suppose p ∈ M is a regular point
of G, and hence the level set G−1(G(p)) is a regular surface near the point p. The point p is
a critical point of F |G−1(G(p)) if and only if p is a singular point of ϕ, which can be seen as
follows. The gradient of the restriction F |G−1(G(p)) is the projection of the gradient of F to the
orthogonal complement of the gradient of G. It is zero if and only if the gradients of F and G
are linearly dependent. They are linearly dependent if and only if the differential (dϕ)p is not
surjective.

Lemma 8. A critical point p of F |G−1(G(p)) is non-degenerate if and only if p is a fold point of
ϕ.

Proof. Since p is a regular point of G, there is a local coordinate system (ξ, η, τ) of M at
p = (0, 0, 0) such that G(ξ, η, τ) = τ +G(p) and (ξ, η) is a local coordinate system of G−1(G(p))
at p. This gives us ϕ(ξ, η, τ) = (F (ξ, η, τ), τ + G(p)) and F |G−1(G(p))(ξ, η) = F (ξ, η, 0). By
Morin’s [12, Lemme 1] characterization, the point p is a fold point of ϕ if and only if the critical
point p of F (ξ, η, 0) is non-degenerate. �

We consider the restrictions of F to the level surfaces of G in a domain V ⊂ M which is
defined as follows. Note that there is a canonical covering R2 → P ×Q by identifying S1 with
R/Z. Let R̄ ⊂ R2 be the region {(f, g) ∈ R2 | h−(g) ≤ f ≤ h+(g), g− ≤ g ≤ g+}, where
g−, g+ ∈ R are constants such that g− < g+ and h−, h+ : R → R are smooth functions such
that h−(g) < h+(g) for every g ∈ [g−, g+]. We assume that R̄ is embedded to R ⊂ P × Q by
the covering map. Let V be a connected component of the preimage ϕ−1(R). From now on, we
consider ϕ, F,G restricted to V , which allows us to assume that P = Q = R. We assume that G
does not have critical points in V , and that the discriminant set of ϕ does not intersect the two
edges {f = h−(g), h+(g), g− ≤ g ≤ g+} of R. Each level set G−1(g)∩V is then a regular surface
whose boundaries are regular level curves of F |G−1(g). The space V is therefore a Σ-bundle over
[g−, g+], namely the direct product Σ × [g−, g+]. Here Σ is a compact connected surface and
each Σ× {g} is the level surface G−1(g) ∩ V .

The restrictions of F to the level surfaces of G determine a homotopy {αt : Σ→ R}t∈[g−,g+].
That is to say, αt(σ) = F (σ, t) for each point (σ, t) in Σ× [g−, g+] = V . The range of each αt is
contained in [h−(t), h+(t)], and each component of ∂Σ is either at the minimal level h−(t) or at
the maximal level h+(t). In particular, {αt}t∈[g−,g+] preserves the sets of locally minimal and
locally maximal components of ∂Σ. By Lemma 8 and the definition of a quasi-isotopy, we have
the following.



LIPS AND SWALLOW-TAILS OF SINGULARITIES OF PRODUCT MAPS 291

Corollary 9. The homotopy {αt}t∈[g−,g+] is a quasi-isotopy if and only if the singular set Sϕ∩V
consists only of fold points.

The “only if” direction of this corollary extends to the following.

Lemma 10. If the homotopy {αt}t∈[g−,g+] is generic, the map ϕ is stable in V .

Proof. At each birth or death, {αt}t∈[g−,g+] has the local form ατ (ξ, η) = τξτ − ξ3
τ + η2

τ with
the notation of Section 2. Choosing a local coordinate system (u, x, y) of M as u = τ , x = ξτ ,
y = ητ , the map ϕ has the local form ϕ(u, x, y) = (u, ux − x3 + y2), which is of a cusp point.
Taking this together with the “only if” direction of Corollary 9, the singular set Sϕ ∩ V consists
only of fold points and cusp points. The conditions of a generic homotopy about the critical
values imply the second condition in Theorem 4. �

The discriminant set ϕ(Sϕ ∩ V ) is the so-called Cerf graphic of {αt}t∈[g−,g+]. That is to say,

the intersection of ϕ(Sϕ ∩ V ) with each line lt = {(f, g) ∈ R2 | g = t} corresponds to the critical
values of αt, and we can read from ϕ(Sϕ ∩ V ) how the critical values of αt moves with t.

We can read more about the behavior of {αt}t∈[g−,g+] from the Stein factorization qϕ(V ).
For a general homotopy {βt : Σ → R}t∈[g−,g+], we call the Stein factorization of the map

(σ, t) 7→ (βt(σ), t) from Σ × [g−, g+] to R2 the Cerf complex of {βt}t∈[g−,g+]. Note that for
each t ∈ [g−, g+], the intersection of the Cerf complex qϕ(V ) of {αt}t∈[g−,g+] with the preimage

ϕ̄−1(lt) is the Stein factorization Wαt of αt, and that the composition πP ◦ ϕ̄|qϕ(V )∩ϕ̄−1(lt) is the
map ᾱt : Wαt

→ R. Suppose ϕ is stable in V and lt is disjoint from cusps and crossing points of
the discriminant set ϕ(Sϕ ∩ V ). The function αt is Morse by Lemma 8, and the critical points
have pairwise distinct values. The Stein factorization Wαt

= qϕ(V ) ∩ ϕ̄−1(lt) is then a graph
whose vertex has valence 1, 2 or 3. Here, points in qϕ(Sϕ∩V )∩ ϕ̄−1(lt) are considered as vertices
of the graph Wαt

. We remark that Wαt
has no valence 2 vertices if M is orientable. We can

see that a vertex of valence 2 or 3 corresponds to an index 1 critical point of αt. Regarding ᾱt
as a height function, a locally minimal (resp. locally maximal) valence 1 vertex corresponds to
an index 0 (resp. 2) critical point of αt except that those at the minimal level h−(t) (resp. the
maximal level h+(t)) correspond to minimal (resp. maximal) components of ∂Σ.

For example, consider the situation of the bottom left of Figure 1. We can choose a par-
allelogram R as in the top of Figure 2 after an appropriate isotopy of ϕ(Sϕ). There exists a
component V of the preimage ϕ−1(R) containing the two cusp points. The left of the bottom
four rows of Figure 2 shows the possible structures of qϕ(V ), and the right shows the correspond-
ing structures of Wαt for t = g−, g

−, g+, g+. We remark that the structures as in the bottom
row may not appear if M is orientable.

5. Moves of product maps

For the proof of Theorem 2, we make more general statements about moves of singularities
of product maps.

We use the following notation. Suppose M is a closed smooth 3-manifold and P,Q are either
R or S1. Let F : M → P and G : M → Q be smooth functions, and ϕ denote the product
map (F,G). Let R ⊂ P × Q, V ⊂ M and {αt : Σ → R}t∈[g−,g+] be as described in Section 4.
We consider ϕ, F,G restricted to V and we can assume that P = Q = R. We assume that ϕ is
stable in V , and the following:

(1) The region R is a parallelogram

{(f, g) ∈ R2 | f− + a(g − g−) ≤ f ≤ f+ + a(g − g−), g− ≤ g ≤ g+},
where f− < f+, g− < g+, a ∈ R and f+ < f− + a(g+ − g−).
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lg+

lg+

lg−

lg−

Figure 2. A choice of R and the four possible structures of qϕ(V ) and the
corresponding structures of Wαt

.

(2) The discriminant set ϕ(Sϕ ∩ V ) has neither horizontal points nor vertical points.
(3) The Stein factorization qϕ(V ) has at least one edge which maps to one of the edges
{f = f± + a(g − g−), g− ≤ g ≤ g+} of R.

We can then regard a modification of the homotopy {αt}t∈[g−,g+] as an isotopy of the function
F in the sense of the following proposition.
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Proposition 11. Let {βt : Σ → R}t∈[g−,g+] be a generic homotopy from βg− = αg− to

βg+ = αg+ . Then there exists a smooth function F̃ isotopic to F such that F̃ |M\V = F |M\V , and

ϕ̃ = (F̃ , G) is stable, and the Stein factorization qϕ̃(V ) is homeomorphic to the Cerf complex of
{βt}t∈[g−,g+].

Proof. We can assume that a = 1, f− = 0, f+ = 1
3 , g− = 0 and g+ = 1 after an isotopy of

ϕ(Sϕ) by the condition (1) and Corollary 7. Let β̄t(σ) = βt(σ)− t for t ∈ [0, 1], σ ∈ Σ, and let

c =
∣∣inf

{
∂
∂t β̄t(σ) | t ∈ [0, 1], σ ∈ Σ

}∣∣. We define a continuous homotopy {β̂t}t∈[0,1] by

β̂t(σ) =


(

1− 6c+2
2c+1 t

)
β̄0(σ) + 4

3 t
(
t ∈
[
0, 1

3

])
1

6c+3 β̄3t−1(σ) + t+ 1
9

(
t ∈
[

1
3 ,

2
3

])(
6c+2
2c+1 t−

4c+1
2c+1

)
β̄1(σ) + 2

3 t+ 1
3

(
t ∈
[

2
3 , 1
]) .

In the first interval
[
0, 1

3

]
, the derivative ∂

∂t β̂t(σ) is positive since

∂

∂t
β̂t(σ) = −6c+ 2

2c+ 1
β̄0(σ) +

4

3
= −6c+ 2

2c+ 1
α0(σ) +

4

3

and 0 ≤ α0(σ) ≤ 1
3 . It is positive also in the last interval

[
2
3 , 1
]

similarly. In the middle interval,
since

∂

∂t
β̂t(σ) =

1

6c+ 3

∂

∂t
β̄3t−1(σ) + 1

and

−3c ≤ ∂

∂t
β̄3t−1(σ) ≤ 3c,

we have
1

2
<
−3c

6c+ 3
+ 1 ≤ ∂

∂t
β̂t(σ) ≤ 3c

6c+ 3
+ 1 <

3

2
.

The derivative ∂
∂t β̂t(σ) is thus positive for t ∈ [0, 1] except that the right and left derivatives

may disagree at t = 1
3 ,

2
3 .

Note that the ranges of β̂0, β̂ 1
3
, β̂ 2

3
, β̂1 are bounded as follows:

β̂0(σ) = β̄0(σ) = β0(σ) = α0(σ) ∈
[
0,

1

3

]
,

β̂ 1
3
(σ) =

1

6c+ 3
β̄0(σ) +

4

9
∈
[

4

9
,

1

18c+ 9
+

4

9

]
⊂
[

4

9
,

5

9

]
,

β̂ 2
3
(σ) =

1

6c+ 3
β̄1(σ) +

7

9
∈
[

7

9
,

1

18c+ 9
+

7

9

]
⊂
[

7

9
,

8

9

]
,

β̂1(σ) = β̄1(σ) + 1 = β1(σ) = α1(σ) ∈
[
1,

4

3

]
.

Since {β̂t}t∈[0, 13 ] connects β̂0 and β̂ 1
3

linearly, we can see that β̂t(σ) ∈
[
t, 1

3 + t
]

for t ∈
[
0, 1

3

]
. The

same holds for t ∈
[

2
3 , 1
]
. We can see that the same holds also for t ∈

[
1
3 ,

2
3

]
since β̂ 1

3
(σ) ∈

[
4
9 ,

5
9

]
,

β̂ 2
3
(σ) ∈

[
7
9 ,

8
9

]
and 1

2 <
∂
∂t β̂t(σ) < 3

2 . The range of β̂t is thus contained in
[
t, 1

3 + t
]

for t ∈ [0, 1]

as well as that of αt.
Note that the differential (dβ̂t)σ is a scalar multiplication of (dβt′)σ, where t′ = 0 if t ∈

[
0, 1

3

]
,

t′ = 3t − 1 if t ∈
[

1
3 ,

2
3

]
or t′ = 1 if t ∈

[
2
3 , 1
]
. The homotopy {β̂t}t∈[0,1] therefore keeps

∂Σ without critical points as well as {βt}t∈[0,1]. In particular, {β̂t}t∈[0,1] preserves the sets of
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locally minimal and locally maximal components of ∂Σ. By deforming {β̂t}t∈[0,1] in a collar

neighborhood of ∂Σ, we can obtain a homotopy {β̃t}t∈[0,1] such that the locally minimal (resp.

the locally maximal) components of ∂Σ are at the level t (resp. 1
3 + t) for each t ∈ [0, 1].

The homotopy {β̃t}t∈[0,1] then determines a continuous function F̃ : M → P . That is to

say, F̃ (σ, t) = β̃t(σ) for each point (σ, t) in V = Σ× [0, 1] and F̃ |M\V = F |M\V . By arbitrarily

small deformation in V , we can make {β̃t}t∈[0,1] generic and F̃ smooth keeping the differential
∂
∂t F̃ (σ, t) = ∂

∂t β̃t(σ) positive. The map ϕ̃ = (F̃ , G) is then stable by Lemma 10. The Stein
factorization qϕ̃(V ) is homeomorphic to the Cerf complex of {βt}t∈[g−,g+] by the constructions

of {β̄t}t∈[0,1], {β̂t}t∈[0,1] and {β̃t}t∈[0,1].
The condition (3) implies that Σ has non-empty boundary, and hence V = Σ × [0, 1] is a

handlebody. By the condition (2) and Lemma 5, the original function F has no critical points in

the handlebody V . By ∂
∂t F̃ (σ, t) > 0, the new function F̃ also has no critical points in V . The

topologies of the level sets F−1(f)∩ V and F̃−1(f)∩ V change with f according to singularities

of F |∂V and F̃ |∂V , respectively. Since F |∂V and F̃ |∂V coincide, there is a homeomorphism of V

which takes each F−1(f)∩V to F̃−1(f)∩V . It is known that the canonical homomorphism from
the mapping class group of a handlebody to the mapping class group of the boundary surface is
injective. It follows that the homeomorphism is isotopic to the identity, and so F̃ is isotopic to
F . �

Corollary 12. Assume the following in addition to the above. Then there exists a smooth
function F̃ isotopic to F such that F̃ |M\V = F |M\V , and ϕ̃ = (F̃ , G) is a stable map without
cusp points in V .

(4) The discriminant set ϕ(Sϕ ∩ V ) has no cusps and no crossing points on the two edges
{f− + a(g − g−) ≤ f ≤ f+ + a(g − g−), g = g−, g+} of R.

(5) The intersections of the Stein factorization qϕ(V ) with the preimages ϕ̄−1(lg−), ϕ̄−1(lg+)
have the same numbers of locally minimal valence 1 vertices, valence 2 or 3 vertices and
locally maximal valence 1 vertices.

Proof. By the condition (4) and Lemma 8, αg− , αg+ are Morse functions whose critical points
have pairwise distinct values. By the condition (5) and the arguments in Section 4, αg− , αg+
have the same number of critical points of each index. By Theorem 3, there exists a quasi-
isotopy {βt}t∈[g−,g+] from βg− = αg− to βg+ = αg+ . Corollary 12 follows from the proposition
and Corollary 9. �

The local moves in Theorem 2 are the simplest ones to which we can apply the above. We
can see that the choice of R in Figure 2 satisfies the conditions (1), (2) and (4). We can also see
that the structures of qϕ(V ) in Figure 2 satisfies the conditions (3) and (5). By Corollary 12, we
can cancel the pair of cusp points, and the result is uniquely as in the bottom right of Figure 1.
Similarly, we can obtain the local move of the top of Figure 1. This completes the proof of
Theorem 2.
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