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Preface by proceedings editors

This 12™ edition of the Workshop on Real and Complex
Singularities was organized by both the Brazilian group of
singularities and the Japanese researchers community, and had
the great pleasure to celebrate the 60" birthday of Professor
Shyuichi lzumiya from Hokkaido University, Sapporo, Japan.

For the first time, the workshop was held in two weeks, where
in the first week (July 16—20, 2012) elementary and basic mini-
courses were delivered for PhD students, post-docs and young
researchers, by Lé D. Trang, David Mond, Nicolas Dutertre,
Hans Schénemann and Valery Romanovsky. In the second week
(July 23—27, 2012), in addition to the plenary and parallel talks
on specialized topics, two mini-courses on current topics of
researches were also delivered by Toru Ohmoto and Anne
Pichon.

We thank all members of the scientific and organizing
committees for their contributions and help for building fruitful
and high level school and workshop during the two weeks.

We especially thank the Fapesp agency, Capes, INCT-Mat, USP
(Brazil) and JSPS (Japan) for their fundamental financial
support. Without their help it would have been impossible to
develop these important scientific meetings.

Also, we would like to thank all administrative staffs of ICMC-
USP for their important and fundamental technical supports.

O. Saeki, V.H. Jorge Pérez, T. Nishimura and R. Araujo dos
Santos



Preface by Goo Ishikawa

Professor Shyuichi Izumiya is our leader, collaborator, colleague
and our friend. He has written over 100 papers and enjoyed
over 460 citations by 142 authors (up to 21 July 2012). He
supervised lots of graduate students (Doctors and Masters) and
undergraduate students as well.

Shyuichi lzumiya was born on A July 1952 at Sapporo city,
Hokkaido prefecture, Japan. 7" July is the day of “Tanabata”
(the star festival). He lived in Takikawa city, in Hokkaido, and
studied at Nishi Elementary School in Takikawa until the
autumn of his 6" grade year. Then he moved back to Sapporo
and graduated at Misono Elementary School in Sapporo city,
Ryoyo Junior High School and Asahigaoka High School also in
Sapporo.

From 1971 to 1975, he studied in Department of Mathematics,
Faculty of Science, Hokkaido University, and he was awarded
the degree of BSc in Mathematics. From 1976 to 1978, he
studied and got the degree of MSc in Mathematics in
Department of Mathematics, Faculty of Science, Hokkaido
University, for the thesis entitled “Homotopy classification of
regular sections which are equivariant with respect to finite
group actions”, which was a work supervised by Professor
Haruo Suzuki. Then from 1978 to 1984, he studied in
Department of Mathematics, Faculty of Science, Hokkaido
University, where he was awarded the degree of DSc in
Mathematics for the thesis entitled “Generic bifurcation of
varieties”, supervised by Professor Haruo Suzuki.

As for the research and professional experience of Shyuichi
lzumiya, he was an assistant professor at the Department of
Mathematics, Faculty of Science, Nara Women’s University,



from 1978 to 1985. From 1985 to 1987, he was a lecturer at
the Department of Mathematics, Faculty of Science, Hokkaido
University, where from 1987 to 1995, he was an associate
professor and after 1995 he became a professor. Currently, he
is a professor at Research Center for Integrative Mathematics,
Hokkaido University.

A partial list of academic activities follows:

1990.9 Visiting fellow at the Chinese Academy of Science.
1991.4-1992.2 Visiting fellow at the Department of Pure
Mathematics, Liverpool University, UK.

1993.2 Visiting fellow at the center for non-linear analysis,
Carnegie Mellon University, USA.

1995.4-5 Visiting fellow at the Banach International
Mathematical Center, Warsaw, Poland.

1996.8 Visiting fellow at the Department of Pure Mathematics,
Liverpool University, UK.

2000.9-12 Researcher at Isaac Newton Institute for
Mathematical Sciences, University of Cambridge, UK.

2010.3 Honorary professor at Northeast Normal University,
China.

A partial list of Shyuichi’s students supervised during the
master degree:

Asayama, Mikuri / Ashino, Takashi / Chino, Sachiko / Fusho,
Takesi / Hayashi, Ryota / Ichiwara, Hisatoshi / Ito, Hiroki /
Kikuchi, Makoto / Kanazawa, Sunao / Kogo, Yasuko / Kurokawa,
Hitoshi / Kurokawa, Yasuhiro / Maruyama, Kunihide /
(Matsuoka, Sachiko) / (Minami, Tatsuya) / Miyawaki Norio /
Murata Yusuke / Nagai, Takayuki / (Nakai, Hitoshi) / Ohtani,
Saki / Sano, Takashi / Sato, Takami / Takahashi, Masatomo /
Takiyama, Akihiro / Tamaoki, Aiko / Torii, Erika / (Watanabe,
Kazuo) / (Yamamoto, Takahiro) / (with a lot of omission).



--- Mother’s teaching ---

Shyuichi remembers that his mother said to him in his
Childhood: “Be gentle to girls !” Following her saying, Shyuichi
keeps to support women’s activities and women
mathematicians. He is proud of that.

Shyuichi supervised the following students during the PhD
degree:

Yasuhiro Kurokawa / Takashi Sano / Wei-Zhi Sun / Donghe Pei /
Nobuko Takeuchi / Takaharu Tsukada / Masatomo Takahashi /
Liang Chen / Masaki Kasedou / Takayuki Nagai / Yang Jiang

Shyuichi's mathematical works cover the following three major
areas:

— Basic Singularity Theory
— Applications to Differential Equations
— Applications to Differential Geometry

Shyuichi started his mathematical carrier by Equivariant
Topology and Singularity Theory, and then he studied on
generic bifurcation of varieties and global theory, characteristic
classes and obstructions. Shyuichi says that the motivation to
study new topics was just to provide problems for his Master
Students. Then always, he completes the joint-work by writing
joint papers.

Then Shyuichi showed that stability in the tangent sense for
mappings between foliated manifolds, implies infinitesimal
stability in the tangent sense, (the converse of L. A. Favaro’s
theorem). After that, Shyuichi began to make good connections
with S3o Carlos’s singularity group in Sao Paulo, Brazil.



In the paper with Sachiko Matsuoka, Shyuichi studied functions
on varieties from the viewpoint of Thom-Mather’s theory. He
continued to study on topology of Legendre singularities,
Legendrian unfoldings and differential equations, and how to
define singular solutions, Complete integrability and Clairaut-
type equations and Geometric singularities of weak solutions of
PDE.

In the paper with Georgios T. Kossioris, Shyuichi classified
generic bifurcations of singularities of viscosity solutions to
Hamilton-Jacobi equations (shock waves). In particular, he
discovered the phenomena that viscosity solutions are not
necessarily covered by characteristic curves starting from the
initial fronts. The discovery gave shocks to specialists of PDE for
several years.

Then Shyuichi started to apply singularity theory to affine
differential geometry. Frederic Gauss used “Gauss maps” and
height functions for his famous surface theory. Then René
Thom suggested lan Porteous to apply singularity theory to
submanifold theory in Euclidean geometry: I.R. Porteous, The
normal singularities of a submanifold, J. Diff. Geom. 5 (1971),
543-564. Moreover, by applying Arnol’d-Zakalyukin’s Lagrange
and Legendre singularity theory and its improvements to those
situations, Shyuichi has found that geometric meanings of
singularities of families of functions become clearer. Then
Shyuichi began to develop Thom-Porteous’s idea by applying to
affine geometry, hyperbolic geometry, Minkowski geometry
and so on.

In the joint paper with Takashi Sano, Shyuichi has found the
relation of affine curvature, sextactic points etc. with
singularities of affine-cubed functions or affine height
functions. Then Shyuichi had many works on time-like surfaces



in Minkowski space, light-cone Gauss maps, special curves and
special surfaces, hyperbolic Gauss maps, and so on.

After the investigation in those paper, Shyuichi discovered a
new geometry, horospherical geometry, in the hyperbolic
space. In horospherical geometry, horospheres are regarded as
the totally umbilic flat surfaces. Moreover, Shyuichi wrote a
joint paper with S. Janeczko on gravitational lensing.

Shyuichi's co-authors are: Asayama, Mikuri / Buosi, Marcelo /
Chen, Liang / Chino, Sachiko / Davydov, Aleksey / Fusho, Takesi
/ Hayakawa, Atsushi / Honda, Atsufumi / Ishikawa, Goo /
Janeczko, Stanistaw / Jiang, Yang / Katsumi, Haruyo / Kikuchi,
Makoto / Kogo, Yasuko / Kossioris, Georgios T. / Kossowski,
Marek / Kurokawa, Yasuhiro / Li, Bing / Makrakis, George N. /
Marar, Washington Luiz / Maruyama, Kunihide / Nagai,
Takayuki / Nishimori, Toshiyuki / Nufio Ballesteros, Juan José /
Pei, Dong He / Romero Fuster, Maria del Carmen / Ruas, Maria
Aparecida Soares / Saito, Sachiko / Saji, Kentaro / Sano, Takashi
/ Sato, Takami / Sun, Wei Zhi / Takahashi, Masatomo /
Takeuchi, Nobuko / Takiyama, Akihiro / Tamaoki, Aiko / Tari,
Farid / Torii, Erika / Watanabe, Kazuo / Yamaguchi, Keizo /
Yamasaki, Takako / Yildirrm, Handan / Yu, Jian Ming / (over 43
mathematicians).

Shyuichi has projects (ongoing and in near future):

(1) To construct lightlike geometry in Lorentz-Minkowski space
(with several people). To study on tightness which depends on
causality.

(2) To obtain mathematical interpretations and generalisations
of Randall-Sundrum model and Karch-Randall model in brane
world scenario by applied singularity theory.



(3) Recurrence to applications of singularity theory to nonlinear
partial differential equations.

Shyuichi lzumiya wrote the following books:

---Matrices and Systems of Linear Equations (Japanese, with
Rentaro Agemi, Goo Ishikawa, Atsuro Sannami, Ungou Chin,
Toshiyuku Nishimori), Kyoritsu Shuppan Co., Ltd. (1996).

---Linear Mappings and Eigen Values (Japanese, with Goo
Ishikawa, Rentaro Agemi, Atsuro Sannami, Ungou Chin,
Toshiyuku Nishimori) Kyoritsu Shuppan Co., Ltd. (1996).

---Applied Singularity Theory (Japanese, with Goo Ishikawa),
Kyoritsu Shuppan Co., Ltd. (1998).

---Geometry and Singularities (Japanese, with Takashi Sano,
Osamu Saeki, Kazuhiro Sakuma), Kyoritsu Shuppan Co., Ltd.
(2001).

Mathematics on Shapes Understandable by Cutting, Looking
and Touching (Japanese, with Nobuko Takeuchi), JUSE Press.
Ltd. (2005).

---Elementary Linear Algebra (Japanese), Kyoritsu Shuppan Co.,
Ltd. (2008).

---Coordinates Geometry—An Introduction to Analytic
Geometry (Japanese, with Nobuko Takeuchi, Mitsutaka

Murayama), JUSE Press. Ltd (2008).

---Exercises of Coordinates Geometry (Japanese, Nobuko
Takeuchi, Mitsutaka Murayama), JUSE Press. Ltd (2008).

Moreover, Shyuichi is now preparing a book on singularity



theory and applications, with Maria Aparecida Soares Ruas,
Maria Carmen Romero Fuster and Farid Tari.

Shyuichi is an editor of several Journals and contributes as
referees of lots of papers.

Shyuichi has sent me a message on his dream (future plan):
— Shyuichi’s Dream —

“I (Shyuichi) am observing the restoration of submanifold
theory in physics by recent movements in brane cosmology and
particle physics. | suppose that, also in mathematics, it should
be the time to reconstruct the extrinsic geometry. The
approach by singularity theory should be most appropriate for
that. Through my recent investigations along this direction, |
feel that several analogies to Gauss’ idea of extrinsic geometry
have appeared in theoretical physics, like AdS/CFT
correspondence, covariant entropy bound, the holographic
principle etc.. Then | hope to clarify, mathematically, such
correspondences between extrinsic geometry and physics. It is
my present dream.

| would be happy if | could continue to extend the areas and
viewpoints of my investigations by the communications with
worldwide mathematicians.”

The 60th birthday is called “Kanreki” in Japan. “Kanreki” means
a “cycle of calendar”. It is regarded that one will be re-born at
his/her 60th birthday. Shyuichi, please keep, even after
Kanreki, being attractive, friendly, young, active, gentle and
mad on Mathematics !

Happy Birthday to Shyuichi ! Thank you. Obrigado.
Goo Ishikawa
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GEOMETRY AND SINGULARITIES OF THE PRONY MAPPING

DMITRY BATENKOV AND YOSEF YOMDIN

ABsTrRACT. The Prony mapping provides the global solution of the Prony system of equations
oAk =my, k=0,1,...,2n - 1.

This system appears in numerous theoretical and applied problems arising in Signal Re-

construction. The simplest example is the problem of reconstruction of linear combina-

tion of d-functions of the form g(x) = Z?:l a;6(x — x;), with the unknown parameters

ai, i, t=1,...,n, from the “moment measurements” my = fa:kg(x)dcc.

The global solution of the Prony system, i.e., the inversion of the Prony mapping, encoun-
ters several types of singularities. One of the most important ones is a collision of some of
the points ;. The investigation of this type of singularities has been started in [21] where the
role of finite differences was demonstrated.

In the present paper we study this and other types of singularities of the Prony mapping,
and describe its global geometry. We show, in particular, close connections of the Prony
mapping with the “Vieta mapping” expressing the coefficients of a polynomial through its
roots, and with hyperbolic polynomials and “Vandermonde mapping” studied by V. Arnold.

1. INTRODUCTION

Prony system appears as we try to solve a very simple “algebraic signal reconstruction” prob-
lem of the following form: assume that the signal F(z) is known to be a linear combination of

shifted d-functions:
d

F(x)= Zajé(x—xj). (1.1)

j=1

We shall use as measurements the polynomial moments:

mg =my (F) = /xkF (z)d . (1.2)
After substituting F' into the integral defining m; we get
d d
my(F) = /xk Zajé(:n —zj)dz = Zajm?.
j=1 j=1
Considering a; and x; as unknowns, we obtain equations
d
mk(F):Zajmf,k:O,l,.... (1.3)
j=1

2000 Mathematics Subject Classification. 94A12 62J02, 14P10, 42C99.

Key words and phrases. Singularities, Signal acquisition, Non-linear models, Moments inversion.

This research is supported by the Adams Fellowship Program of the Israel Academy of Sciences and Human-
ities, ISF grant 264/09 and the Minerva Foundation.
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This infinite set of equations (or its part, for k =0,1,...,2d — 1), is called Prony system. It can
be traced at least to R. de Prony (1795, [19]) and it is used in a wide variety of theoretical and
applied fields. See [2] for an extensive bibligoraphy on the Prony method.

In writing Prony system (1.3) we have assumed that all the nodes z1,...,z4 are pairwise
different. However, as the left-hand side p = (mq, ..., maq—1) of (1.3) is provided by the actual
measurements of the signal F', we cannot guarantee a priori, that this condition is satisfied for
the solution. Moreover, we shall see below that multiple nodes may naturally appear in the
solution process. In order to incorporate possible collisions of the nodes, we consider “confluent
Prony systems”.

Assume that the signal F'(x) is a linear combination of shifted d-functions and their derivatives:

s dj—1
F(x)= Z Z a; 009 (z — x;). (1.4)
j=1 £=0
Definition 1.1. For F'(z) as above, the vector D (F') Lof (diy...,ds) is the multiplicity vector

of F, s = s(F) is the size of its support, T (F) ef (z1,...,2s), and rank (F) Lef Siiidj s its

rank. For avoiding ambiguity in these definitions, it is always understood that a; 4,1 # 0 for
all j =1,...,s (i.e. d; is the maximal index for which a; 4,1 # 0).
For the moments my, = my(F) = [2*F(x) dz we now get

s dj—l

k! _
my = Z Z amef ¢

j=1 £=0

Considering x; and a;, as unknowns, we obtain a system of equations

s bl
‘ k—¢
—ajx;  =mg, k=0,1,...,2d -1, (1.5)
2 2 g

which is called a confluent Prony system of order d with the multiplicity vector D = (dy, ..., ds).
The original Prony system (1.3) is a special case of the confluent one, with D being the vector
(1,...,1) of length d.

The system (1.5) arises also in the problem of reconstructing a planar polygon P (or even an
arbitrary semi-analytic quadrature domain) from its moments

mi(xr) =//2z’f><pdxdy, c=aay,
R

where xp is the characteristic function of the domain P C R2. This problem is important in
many areas of science and engineering [11]. The above yields the confluent Prony system

s dj*l
my = Z Z cijk(k—1)---(k—i+ 1)zf_i, cij €C, z; € C\{0}.

j=1 i=0
Definition 1.2. For a given multiplicity vector D = (dy, ..., ds), its order is Y 5_, d;.

As we shall see below, if we start with the measurements pu(F) = p = (mo, ..., mag—1), then
a natural setting of the problem of solving the Prony system is the following:

Problem 1.3 (Prony problem of order d). Given the measurements

w=(mg,...,mag—1) € Cc2d
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in the right hand side of (1.5), find the multiplicity vector D = (dy,...,ds) of order

’I":idj éd,
j=1

and find the unknowns x; and aj g, which solve the corresponding confluent Prony system (1.5)
with the multiplicity vector D (hence, with solution of rank r).

It is extremely important in practice to have a stable method of inversion. Many research
efforts are devoted to this task (see e.g. [3, 7, 10, 17, 18, 20| and references therein). A basic
question here is the following.

Problem 1.4 (Noisy Prony problem). Given the noisy measurements
fi = (mg, ..., mMaq_1) € C*

and an estimate of the error |my — my| < ek, solve Problem 1.3 so as to minimize the recon-
struction error.

In this paper we study the global setting of the Prony problem, stressing its algebraic structure.
In Section 2 the space where the solution is to be found (Prony space) is described. It turns out
to be a vector bundle over the space of the nodes x1,...,24. We define also three mappings:
“Prony”, “Taylor”, and “Stieltjes” ones, which capture the essential features of the Prony problem
and of its solution process.

In Section 3 we investigate solvability conditions for the Prony problem. The answer leads
naturally to a stratification of the space of the right-hand sides, according to the rank of the
associated Hankel-type matrix and its minors. The behavior of the solutions near various strata
turns out to be highly nontrivial, and we present some initial results in the description of the
corresponding singularities.

In Section 4, we study the multiplicity-restricted Prony problem, fixing the collision pattern
of the solution, and derive simple bounds for the stability of the solution via factorization of the
Jacobian determinant of the corresponding Prony map.

In Section 5 we consider the rank-restricted Prony problem, effectively reducing the dimension
to 2r instead of 2d, where r is precisely the rank of the associated Hankel-type matrix. In this
formulation, the Prony problem is solvable in a small neighborhood of the exact measurement
vector.

In Section 6 we study one of the most important singularities in the Prony problem: collision
of some of the points x;. The investigation of this type of singularities has been started in [21]
where the role of finite differences was demonstrated. In the present paper we introduce global
bases of finite differences, study their properties, and prove that using such bases we can resolve
in a robust way at least the linear part of the Prony problem at and near colliding configurations
of the nodes.

In Section 7 we discuss close connections of the Prony problem with hyperbolic polynomials
and “Vandermonde mapping” studied by V.I.Arnold in [1] and by V.P.Kostov in [13, 14, 15|, and
with “Vieta mapping” expressing the coefficients of a polynomial through its roots. We believe
that questions arising in theoretical study of Prony problem and in its practical applications
justify further investigation of these connections, as well as further applications of Singularity
Theory.

Finally, in Appendix A we describe a solution method for the Prony system based on Padé
approximation.
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2. PRONY, STIELTJES AND TAYLOR MAPPINGS

97

In this section we define “Prony”, “Taylor”, and “Stieltjes” mappings, which capture some
essential features of the Prony problem and of its solution process. The main idea behind
the spaces and mappings introduced in this section is the following: associate to the signal
F(z) = S>%, a;i6(x — z;) the rational function R(z) = S°¢_ | 9. (In fact, R is the Stieltjes

i=1 z—x;
integral transform of F'). The functions R obtained in this way can be written as R(z) = ggzg

with deg P < deg @ — 1, and they satisfy R(oco) = 0. Write R as

d
a;

0= 2 iy

i=1

Developing the summands into geometric progressions we conclude that R(z) = S 52 my(2)*+1,

z
with
d

E k
myg = a;x; ,

i=1
so the moment measurements my, in the right hand side of the Prony system (1.3) are exactly
the Taylor coefficients of R(z). We shall see below that this correspondence reduces solution of
the Prony system to an appropriate Padé approximation problem.

Definition 2.1. For each w = (71,...,24) € C% let s = s(w) be the number of distinct
coordinates 7;, j =1,...,s, and denote T'(w) = (71, ..., 7s). The multiplicity vector is

D =D (w) =(dy,...,ds),
where d; is the number of times the value 7; appears in {z1,...,24}. The order of the values in
T (w) is defined by their order of appearance in w.
Example 2.2. For w = (3,1,2,1,0,3,2), we have
s(w)y=4, T(w)=(3,1,2,0),and D (w)=(2,2,2,1).
Remark 2.3. Note the slight abuse of notations between Definition 1.1 and Definition 2.1. Note
also that the order of D (w) equals to d for all w € CY.

Definition 2.4. For each w € C%, let s = s(w), T (w) = (11,...,7s) and D (w) = (dy,...,ds)
be as in Definition 2.1.
(1) Vi, is the vector space of dimension d containing the linear combinations

s dj—1

9= > 70" (x—1) (2.1)

j=1 £=0
of d-functions and their derivatives at the points of T' (w). The “standard basis” of V,, is
given by the distributions
80 =09 (x—15), j=1,...,8(w); £=0,...,d; — 1. (2.2)
(2) W, is the vector space of dimension d of all the rational functions with poles T' (w) and
multiplicities D (w), vanishing at oo :

S

R(z) = , Q(z):H(z—Tj)dj,degP(z)<degQ<d.

j=1
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The “standard basis” of W,, is given by the elementary fractions
1

Rjo=——,
(z—15)

j=1,...,840=1,...,d;.

Now we are ready to formally define the Prony space P; and the Stieltjes space S as certain
(trivial) vector bundles over C¢.
Definition 2.5. The Prony space P, is the vector bundle over C?, consisting of all the pairs

The topology on Py is induced by the natural embedding P; € C? x D, where D is the space of
distributions on C with its standard topology.

Definition 2.6. The Stieltjes space Sy is the vector bundle over C?, consisting of all the pairs
(w,7) : weCh veW,.

The topology on S, is induced by the natural embedding S; C C¢ x R, where R is the space of
complex rational functions with its standard topology.

Definition 2.7. The Stieltjes mapping SM : P; — Sy is defined by the Stieltjes integral
transform: for (w, g) € Py

SM ((w,g)) = (w, 7). 7(2):/00 glw)dz

oo 2 X
Sometimes we abuse notation and write for short SM (g) = 7, with the understanding that SM
is also a map SM : V,, — W,, for each w € CZ.

The following fact is immediate consequence of the above definitions.

Proposition 2.8. SM is a linear isomorphism of the bundles Py and Sy (for each w € C?, SM
is a linear isomorphism of the vector spaces Vi, and Wy, ). In the standard bases of V,, and W,
the map SM is diagonal, satisfying

SM (6;0) = (1) 'R 4 (2).
Furthermore, for any (w,g) € Py
P(z)
(2)

——

irreductble

SM (g) =

deg P < deg @ = rank (g) < d. (2.3)

QO

Definition 2.9. The Taylor space T4 is the space of complex Taylor polynomials at infinity of
degree 2d — 1 of the form Zii}l mk(%)kﬂ. We shall identify 7; with the complex space C2?
with the coordinates my, ..., mog_1.

Definition 2.10. The Taylor mapping TM : S; — 7T is defined by the truncated Taylor
development at infinity:

TM (w,7)) = 2%31 Qg (i)kﬂ, where v (z) = iak (1)k+1.

z
k=0 k=0
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We identify 7M ((w,7)) as above with (ag,...,a2s—1) € C??. Sometimes we write for short
TM (’7) = (OLQ, - ,()éQd,l).

Finally, we define the Prony mapping PM which encodes the Prony problem.
Definition 2.11. The Prony mapping PM : P; — C2? for (w, g) € P, is defined as follows:

PM ((w,g)) = (mo, ..., mag_1) € C*, mi =my (g) = /xkg (x)d .

By the above definitions, we have
PM=TMoSM. (2.4)

Solving the Prony problem for a given right-hand side (my, ..., maq—1) is therefore equivalent to
inverting the Prony mapping PM. As we shall elaborate in the subsequent section, the identity
(2.4) allows us to split this problem into two parts: inversion of 7 M, which is, essentially, the
Padé approximation problem, and inversion of SM, which is, essentially, the decomposition of
a given rational function into the sum of elementary fractions.

3. SOLVABILITY OF THE PRONY PROBLEM

3.1. General condition for solvability. In this section we provde a necessary and sufficient
condition for the Prony problem to have a solution (which is unique, as it turns out by Proposition
3.2). As mentioned in the end of the previous section, our method is based on inverting (2.4)
and thus relies on the solution of the corresponding (diagonal) Padé approzimation problem [4].
Problem 3.1 (Diagonal Padé approximation problem). Given = (my, ..., maq_1) € C*?, find
a rational function Ry(z) = % € Sy with deg P < deg@ < d, such that the first 2d Taylor

coefficients at infinity of Rq(z) are {mk}id:?)l.

Proposition 3.2. If a solution to Problem 3.1 exists, it is unique.

Proof. Writing R (z) = ggg, Ry (2) = 511((?)’ with deg P < deg Q@ < d and deg P; < deg Q1 < d,
we get

PQ. — P,
Rom . PQ-PQ
Q1
and this function, if nonzero, can have a zero of order at most 2d — 1 at infinity. O

Let us summarize the above discussion with the following statement.

Proposition 3.3. The tuple

{s, D = (dy,...,ds), r= Zdj <d, X = {xj}j:17 A=Aajet;oy . e:o,“.,dj—1}

j=1

is a (unique, up to a permutation of the nodes {x;}) solution to Problem 1.8 with right-hand
side

1= (mo,...,maq_1) € C*
if and only if the rational function

2d—1

s dj
Roxa(s) =33 (<17 (=) = 37 B 0 ()

7
j=1¢=1 (z — ) k=0
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is a (unique) solution to Problem 3.1 with input p. In that case,

*© g(x)dx -

Rp x,a(z)= / % where g (x) = Z Z a; 009 (z — x;),
oo 2T ==

i.e., Rp x a (%) is the Stieltjes transform of g (x).

Proof. This follows from the definitions of Section 2, (2.4), Proposition 3.2 and the fact that the
problem of representing a given rational function as a sum of elementary fractions of the specified
form (i.e., inverting SM) is always uniquely solvable up to a permutation of the poles. (I

The next result provides necessary and sufficient conditions for the solvability of Problem 3.1.
It summarizes some well-known facts in the theory of Padé approximation, related to “normal
indices” (see, for instance, [4]). However, these facts are not usually formulated in the literature
on Padé approximation in the form we need in relation to the Prony problem. Consequently, we
give a detailed proof of this result in Appendix A. This proof contains, in particular, some facts
which are important for understanding the solvability issues of the Prony problem.

Definition 3.4. Given a vector p = (mq, ..., maq—1), let My denote the d x (d + 1) Hankel
matrix

mo mq mao e mgq
- mi mo ms N ma+1
Mg = ) : . . ] (3.1)
mq—1 Mg Md41 ... M2d—1

For each e < d, denote by M, the e x (e + 1) submatrix of My formed by the first e rows and
e + 1 columns, and let M, denote the corresponding square matrix.

Theorem 3.5. Let 1 = (mo,...,maq—1) be given, and let v < d be the rank of the Hankel matriz
My as in (3.1). Then Problem 3.1 is solvable for the input u if and only if the upper left minor
|M..| of My is non-zero.

As an immediate consequence of Theorem 3.5 and Proposition 3.3, we obtain the following
result.

Theorem 3.6. Let 1 = (my,...,maq—1) be given, and let r < d be the rank of the Hankel matriz
My as in (3.1). Then Problem 1.3 with input u is solvable if and only if the upper left minor
|M..| of M, is non-zero. The solution, if it exists, is unique, up to a permutation of the nodes
{z;}. The multiplicity vector D = (du, ..., ds), of order ~7_ d; =r, of the resulting confluent
Prony system of rank r is the multiplicity vector of the poles of the rational function Rp x 4 (2),
solving the corresponding Padé problem.

As a corollary we get a complete description of the right-hand side data p € C?? for which
the Prony problem is solvable (unsolvable). Define for r = 1,...,d sets ¥, C C?? (respectively,
¥/ C?*%) consisting of u € C>¢ for which the rank of My = r and |M,| # 0 (respectively,
|M,| = 0). The set ¥, is a difference 3, = X1 \ X2 of two algebraic sets: X! is defined by
vanishing of all the s x s minors of My, r < s < d, while Y2 is defined by vanishing of |M,.|. In
turn, X/ = X1\ ¥72, with /' = £1 N1 %2 and X2 defined by vanishing of all the 7 x  minors of

M. The union ¥, U, consists of all y for which the rank of My = r, which is $1\ /2.

Corollary 3.7. The set ¥ (respectively, ') of u € C2¢ for which the Prony problem is solvable
(respectively, unsolvable) is the union ¥ = UI_ 3, (respectively, X' = U4_ ¥ ). In particular,
Y C {p € C? det My = 0}.
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So for a generic right hand side p we have |My| # 0, and the Prony problem is solvable. On
the algebraic hypersurface of p for which |My| = 0, the Prony problem is solvable if |My_1| # 0,
etc.

Let us now consider some examples.

Example 3.8. Let us fix d = 1,2,.... Consider u = (mo,...,maq_1) € C2¢, the right hand
sides of the Prony problem, to be of the form p = py = (dx¢) = (0,...,0, 1 ,0,...,0),

position ¢+1
with all the my, = 0 besides my =1, £=0,...,2d — 1, and let Mﬁ be the corresponding matrix.

Proposition 3.9. The rank of Mﬁ is equal to £+ 1 for £ < d — 1, and it is equal to 2d — ¢ for
¢ >d. The corresponding Prony problem is solvable for £ < d —1, and it is unsolvable for £ > d.

Proof. For d =5 and ¢ = 2,4,5,9, the corresponding matrices Mf are as follows.

M2 = , (solvable)

[N eloloNeoleoBal ==

M = (unsolvable)

—_— o o0 OO0 oo
SO OO0 OO0 o oo
OO OHrHr O OO oo
OO OO = IO oo oo
_ o o o OI IO o O OO

cCcoococo ~Roooo
cCoococo oo OO
coococo co~o O
cocoo coo RO
cCcoococo coo o~

—H O OO0 OO o ~Oo

o

In general, the matrices M f have the same pattern as in the special cases above, so their rank is
£4+1for ¢ <d—1,and 2d — ¢ for £ > d, as stated above. Application of Theorem 3.6 completes
the proof. O

In fact, py is a moment sequence of

1
0
and this signal belongs to Py if and only if £ < d — 1. In notations of Corollary 3.7 we have

F(x) = 56 (2),

,LL,@G EZJrla ng_]—7
M@ E Zéd*[? f 2 d

It is easy to provide various modifications of the above example. In particular, for
w=pe=(0,...,0,1,1,...,1),
the result of Proposition 3.9 remains verbally true.
Example 3.10. Another example is provided by fi, ¢,, with all the mj; = 0 besides
me, =1, my, =1, 0< 0 <d</ly <2d—1.

For {1 < ¢5—d+1 the rank of the corresponding matrix My is r = 2d+ ¢ — {5 +1 while |M,.| =0,
so the Prony problem for such iy, ¢, is unsolvable. For d =5 and ¢; = 2, ¢ = 8 the matrix is
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as follows:

MS(ZS) _

oo o
_— o o o

0
1
0
0

OO = OO
OO O oo
= O O O O

0 0 0

3.2. Near-singular inversion. The behavior of the inversion of the Prony mapping near the
unsolvability stratum ¥’ and near the strata where the rank of My drops, turns out to be pretty
complicated. In particular, in the first case at least one of the nodes tends to infinity. In the
second case, depending on the way the right-hand side p approaches the lower rank strata, the
nodes may remain bounded, or some of them may tend to infinity. In this section we provide
one initial result in this direction, as well as some examples. We believe that a comprehensive
description of the inversion of the Prony mapping near ¥’ and near the lower rank strata is
important both in theoretical study and in applications of Prony-like systems, and consider it
to be an important direction for future research.

Theorem 3.11. As the right-hand side p € C?\ ¥ approaches a finite point pg € X', at least

one of the nodes x1,...,xq in the solution tends to infinity.
Proof. By assumptions, the components my, ..., mog_1 of the right-hand side
p=(mo,...,mag—1) € c

remain bounded as p — pp. By Theorem 6.17, the finite differences coordinates of the solution
PM 71(u) remain bounded as well. Now, if all the nodes are also bounded, by compactness we
conclude that PM ~'() — w € Py. By continuity in the distribution space (Lemma 6.9) we
have PM (w) = up. Hence the Prony problem with the right-hand side o has a solution w € Py,
in contradiction with the assumption that pg € X'. O

Example 3.12. Let us consider an example: d = 2 and po = (0,0, 1,0). Here the rank £ of M,
is 2, and |Ms| = 0, so by Theorem 3.6 we have py € ¥, C ¥’. Consider now a perturbation
w(e) = (0,€,1,0) of pg. For € # 0 we have p(e) € ¥o C X, and the Prony system is solvable for
pe. Let us write an explicit solution: the coefficients cq, ¢; of the polynomial Q(z) = co+c12+ 22

we ﬁnd fI‘OIn (he S}/Stem (A.**):
Co —
c =
1 1

whose solution is ¢; = —2, ¢y = %. Hence the denominator Q(z) of R(z) is Q(z) = & — 12422,

and its roots are x1 = %7 To = % The coefficients by, by of the numerator P(z) = by+b; 2
we find from (A.x):

o d-1)

0 € 1 N bo ’

i.e., by =0, bg = €. Thus the solution of the associated Padé problem is

PO e & 1 &
R = e " e m)  wBG—m) wBG-m)

Finally, the (unique up to a permutation) solution of the Prony problem for p. is
€2 €2 1+ z\/g 1-— z\/g

R — Aoy = ——— rH = ——-—- xr = ———

Z\/g, 2 Z\/§7 1 % ) L2 %

As € tends to zero, the nodes x1, zo tend to infinity while the coefficients a1, as tend to zero.

)

[
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As it was shown above, for a given p € ¥ (say, with pairwise different nodes) the rank of the
matrix M, is equal to the number of the nodes in the solution for which the corresponding 6-
function enters with a non-zero coefficients. So u approaches a certain pg belonging to a stratum
of a lower rank of My if and only if some of the coefficients a; in the solution tend to zero. We
do not analyze all the possible scenarios of such a degeneration, noticing just that if ug € ¥,
i.e., the Prony problem is unsolvable for pg, then Theorem 3.11 remains true, with essentially
the same proof. So at least one of the nodes, say, x;, escapes to infinity. Moreover, one can show
that ajx?d*1 cannot tend to zero - otherwise the remaining linear combination of d-functions
would provide a solution for pyg.

If po € ¥, i.e., the Prony problem is solvable for pug, all the nodes may remain bounded, or

some xz; may escape to infinity, but in such a way that ajx?d_l tends to zero.

4. MULTIPLICITY-RESTRICTED PRONY PROBLEM

Consider Problem 1.4 at some point py € 3. By definition, po € X, for some ro < d. Let
o = PM ((wo, go)) for some (wo, go) € Pg. Assume for a moment that the multiplicity vector
Do = D (go) = (d1,...ds,), Zj‘;l d; = ro, has a non-trivial collision pattern, i.e., d; > 1 for at
least one j = 1,...,so. It means, in turn, that the function Rp, x, 4 () has a pole of multiplicity
d;. Evidently, there exists an arbitrarily small perturbation fi of 119 for which this multiple pole
becomes a cluster of single poles, thereby changing the multiplicity vector to some D’ # Dy.
While we address this problem in Section 6 via the bases of divided differences, in this section
we consider a “multiplicity-restricted” Prony problem.

Definition 4.1. Let x = (z1,...,2,) € C* and D = (di,...,ds) with d = }7_, d; be given.
The d x d confluent Vandermonde matrix is

Vl)g Vz)o e Vs,O
V:V(X’D):V(m17d17"'7x87d8): Vi1 Va1 Ve (41>
Vid-1 V2d-1 --- Vsd-1

where the symbol v; i denotes the following 1 x d; row vector

vie & [k, ket k(=) (k—dy)ah ]
Proposition 4.2. The matriz V defines the linear part of the confluent Prony system (1.5) in
the standard basis for V., namely,

al,O M mo ]
. m1
a _ .
V(xl,dl,...,fﬁs,ds) Ld_l ! = ’ ) (42)
LOs,d,—1] L"Md—1]

Definition 4.3. Let PM (wyg, go) = po € Xy, with D (go) = Dg and s (go) = so. Let Pp, denote
the following subbundle of P, of dimension sy + r¢:

Pp, ={(w,g9) € Pa: D(g) = Do}.
The multiplicity-restricted Prony mapping PM7, : Pp, — C*0770 is the composition
PMp, =moPM [Py s

where 7 : C2¢ — C®0*70 is the projection map on the first so 4 7 coordinates.
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Inverting this PMp,  represents the solution of the confluent Prony system (1.5) with fixed

structure Dy from the first £ =0,1,...,s0 + r9 — 1 measurements.
Theorem 4.4 ([7]). Let u§ = PMp, ((wo,go)) € C°F0 with the unperturbed solution
so dj—1
go = Z Z aj,gd(@ (x —15).
j=1 £=0

In a small neighborhood of (wo,go) € Pp,, the map PMp, is invertible. Consequently, for
small enough €, the multiplicity-restricted Prony problem with input data i* € C™oF50 satisfying
l2* — psll < e has a unique solution. The error in this solution satisfies

2 /9 so+To 1 S0 + 70 dj—2¢ |CL ) @—1‘
st = A (e 2g) 1o ).
Bazel < 7 \5 270 laja, 1] )

2 /2\%fr0 1
| AT (*)

B @ 6 |aj7dj_1|€7

A

where § & min,; |7, — 75| (for consistency we take aj 1 =0 in the above formula).

Proof outline. The Jacobian of PMp,  can be easily computed, and it turns out to be equal to
the product

jPM}BO =V (r,di+1,...,7,ds, + 1) diag {EJ}

where V' is the confluent Vandermonde matriz (4.1) on the nodes (11,. .., 7s, ), with multiplicity
vector ~

Do=(dy+1,...,ds, +1),
while E is the (d; 4 1) x (d; + 1) block

100 - 0

o1 0 --- a;.0
E; =

0 0 O ajyd].,l

Since po € %, the highest order coefficients a; 4, 1 are nonzero. Furthermore, since all the 7;
are distinct, the matrix V is nonsingular. Local invertibility follows. To estimate the norm of
the inverse, use bounds from [6]. O

Remark 4.5. Note that as two nodes collide (6 — 0), the inversion of the multiplicity-restricted
Prony mapping PM7p,, becomes ill-conditioned proportionally to §—(sotro),

Let us stress that we are not aware of any general method of inverting PM7p, , i.e., solving
the multiplicity-restricted confluent Prony problem with the smallest possible number of mea-
surements. As we demonstrate in [5], such a method exists for a very special case of a single
point, i.e., s = 1.

5. RANK-RESTRICTED PRONY PROBLEM

Recall that the Prony problem consists in inverting the Prony mapping PM : Py — T4. So,
given pu = (mo, ..., mag—1) € Tq we are looking for (w, g) € Py such that

mg(g) = /mkg(x)dm = my,

with £k =0,1,...,2d — 1. If p € ¥, with r < d, then in fact any neighborhood of p will contain
points from the non-solvability set X’. Indeed, consider the following example.
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Example 5.1. Slightly modifying the construction of Example 3.10, consider i, ¢, € C*? with
all the my = 0 besides my, = 1 and my, = ¢, such that ¢o > ¢; +d — 1. For example, if d =5
and /1 = 2, ¢5 = 8, the corresponding matrix is

001000
010000
MEEI =110 0 0 0 0
00000 ¢
0000 ¢ 0

For € = 0 the Prony problem is solvable, while for any small perturbation € # 0 it becomes
unsolvable. However, if we restrict the whole problem just to d = 3, it remains solvable for any
small perturbation of the input.

We therefore propose to consider the rank-restricted Prony problem analogous to the con-
struction of Section 4, but instead of fixing the multiplicity D (g) we now fix the rank r (recall
Definition 1.1).

Definition 5.2. Denote by P, the following vector bundle:
Pr={(w,g9): weC", geVyu},
where V,, is defined exactly as in Definition 2.4, replacing d with r.
Likewise, we define the Stieltjes bundle of order r as follows.
Definition 5.3. Denote by S, the following vector bundle:
S ={w,v): wel, yeWy,},
where W, is defined exactly as in Definition 2.4, replacing d with r.

The Stieltjes mapping acts naturally as a map SM : P, — S, with exactly the same definition
as Definition 2.7.

The restricted Taylor mapping 7 M, : S, — C?" is, as before, given by the truncated devel-
opment at infinity to the first 2r Taylor coefficients.

Definition 5.4. Let 7 : C2¢ — C?" denote the projection operator onto the first 2r coordinates.

Denote X &t (3,). The rank-restricted Prony mapping PM : P, — X is given by by

PM; ((w,g)) = (Mo, ..., mar_1), my =my (9) = /xkg (z)de.

Remark 5.5. P, can be embedded in Py, for example by the map =, : P. — Py
o (wg) €Prr— (W,g)ePy: w = x1,...,2,,0,...0 |, ¢’ =g.
——
X (d—r)
With this definition, PM can be represented also as the composition
PM:=moPMoZ,.
Proposition 5.6. The rank-restricted Prony mapping satisfies
PM; =TM,oSM.

Inverting PM represents the solution of the rank-restricted Prony problem. Unlike in the
multiplicity-restricted setting of Section 4, here we allow two or more nodes to collide (thereby
changing the multiplicty vector D (g) of the solution).

The basic fact which makes this formulation useful is the following result.
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Theorem 5.7. Let p € X% Then in a small neighborhood of uf € C?", the Taylor mapping
TM, is continuously invertible.

Proof. This is a direct consequence of the solution method to the Padé approximation problem
described in Appendix A. Indeed, if the rank of M, is full, then it remains so in a small neigh-
borhood of the entire space C?". Therefore, the system (A.xx) remains continuously invertible,
producing the coefficients of the denominator @ (z). Consequently, the right-hand side of (A.x)
depends continuously on the moment vector pu* = (mg,...,mar—1) € C?". Again, since the rank
always remains full, the polynomials P (z) and @ (z) cannot have common roots, and thereby
the solution R = g = TM;l (1*) depends continuously on p* (in the topology of the space of
rational functions). O

In the next section, we consider the remaining problem: how to invert SM in this setting.

6. COLLISION SINGULARITIES AND BASES OF FINITE DIFFERENCES

6.1. Introduction. Collision singularities occur in Prony systems as some of the nodes z; in the
signal F(z) = Y%, a;0(z — ;) approach one another. This happens for y near the discriminant
stratum A C C2?? consisting of those (my, ..., maq_1) for which some of the coordinates {z;} in
the solution collide, i.e., the function Rp, x,4 (z) has multiple poles (or, nontrivial multiplicity
vector D). As we shall see below, typically, as u approaches 1o € A, i.e. some of the nodes z; col-
lide, the corresponding coefficients a; tend to infinity. Notice, that all the moments my = my (F')
remain bounded. This behavior creates serious difficulties in solving “near-colliding” Prony sys-
tems, both in theoretical and practical settings. Especially demanding problems arise in the
presence of noise. The problem of improvement of resolution in reconstruction of colliding nodes
from noisy measurements appears in a wide range of applications. It is usually called a “super-
resolution problem” and a lot of recent publications are devoted to its investigation in various
mathematical and applied settings. See [8] and references therein for a very partial sample.

Here we continue our study of collision singularities in Prony systems, started in [21]. Our
approach uses bases of finite differences in the Prony space P, in order to “resolve” the linear
part of collision singularities. In these bases the coefficients do not blow up any more, even as
some of the nodes collide.

Example 6.1. Let » = 2, and consider the signal F' = a1d (x — 1) + a20 (z — x2) with
Ty = t, xo=1+E¢,

a; = —€ 1, 0122671.

The corresponding Prony system is

k
k o
(alxlf + a21,129 :) my = ktk71 + (j)tkjﬁjl, k=0, 1,2,3.
—

J

def
=pr(te)
As € — 0, the Prony system as above becomes ill-conditioned and the coefficients {a;} blow up,
while the measurements remain bounded. Note that
i = [0 1 2t+p2(t76)}
271 2t +pa(tie) 3t2+pa(tie)

therefore rank My = 2 and [Ms| = 1 # 0, i.e. the Prony problem with input (m,...,ms)
remains solvable for all e. However, the standard basis {0 (z — z1), 0 (x — x2)} degenerates, and
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in the limit it is no more a basis. If we represent the solution
1 1
F(x)=—-0b(x—t)+-0(x—t—¢)
€ €

in the basis

Al (1‘1,1‘2) = (5(1‘ —.231),

1 1
AQ (931,1‘2) = - - (5(56—.1‘1) =+ - -
1 — 42 2 T 41

0 (x —x2),

then we have
F.(z)=1 Dg(t,t+e),

i.e., the coefficients in this new basis are just {by =0, by = 1}. As € — 0, in fact we have
Ag (t,it+e) = (x—1t),

where the convergence is in the topology of the bundle P,..

Our goal in this section is to generalize the construction of Example 6.1 and [21] to handle
the general case of colliding configurations.

6.2. Divided finite differences. For modern treatment of divided differences, see e.g. [9, 12,
16]. We follow [9] and adopt what has become by now the standard definition.

Definition 6.2. Let an arbitrary sequence of points w = (x1,2,...,) be given (repetitions
are allowed). The (n-1)-st divided difference A" * (w) : I — C is the linear functional on the
space II of polynomials in one variable z, associating to each p € II its (uniquely defined) n-th
coefficient in the Newton form

p(@) =S {N " (@, 2} gt (@), G @ E @), (61)
j=1 k=1

Example 6.3. For n = 1, we have A” (z1)p = p(z1), and the 0-th order Newton interpolation
polynomial is the constant

Pi(z)=p(z)- 1L

=q0,w (T)

Example 6.4. For n = 2 consider two cases.
(1) If 2y # x5, we have A (z1,20)p = %, and the first order Newton interpolation
polynomial is

P =ple) 1 +2EEEPED gy,

=ou(®) =q1,u(x)
It can be readily verified that Py (zx) = p (zx) for k = 1,2.
(2) If 1 = 9, then A' (z1,21)p = p’ (1), and so
Py (z) =p (1) +p' (21) (z — 21).
It can be readily verified that Py (z1) = p (z1) and Py (z1) = p' (21).

It turns out that this definition can be extended to all sufficiently smooth functions for which
the interpolation problem is well-defined.
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Definition 6.5 ([9]). For any smooth enough function f, defined at least on x1,...,x,, the
divided finite difference A" ! (zy,...,2,) f is the n-th coefficient in the Newton form (6.1) of
the Hermite interpolation polynomial P, , which agrees with f and its derivatives of appropriate
order on x1,...,T, :

FO@)=PO () 1<j<n 0<0<d; E#{i: z=a5}. (6.2)
Example 6.6. Consider the rational function depending on a parameter z € C :
1
fola) = —.

The Oth divided difference is A® (z1) f = f (21) = ﬁ, and the Newton interpolation polyno-
mial is

1
P = .
1(35) zZ— X1
For n = 2 and 1 # x4, we have A! (x1,m2) = m, and
1 T — X1

PQ(I):

z—x1  (z2—m) (2 —m32)’
thus Py (x3) = f (xx) for k = 1,2. If 21 = 29 then A" (z1,21) = f. (21) = ﬁ, and so
1 _
+ x $12'
Z=T1  (z—x1)
Again, Py (21) = f, (z1) and Pj (z1) = fL (x1).

Therefore, each divided difference can be naturally associated with an element of the Prony
space (see Item 5 in Proposition 6.7 and Definition 6.8 below for an accurate statement).
Let us now summarize relevant properties of the functional A which we shall use later on.

P2 (.27) =

Proposition 6.7. For w = (z1,...,2,) € C*, let s(w), T (w) and D (w) be defined according
to Definition 2.1. Let ¢y (2) = [[;=1 (2 — Tj)dj be defined as in (6.1).

(1) The functional A" " (zy,...,x,) is a symmetric function of its arguments, i.e., it de-
pends only on the set {x1,...,x,} but not on its ordering.
(2) A" (x1,...,2,) is a continuous function of the vector (x1,...,x,). In particular, for
any test function f
lim A"z, ) f = AT () S

(3) A may be computed by the recursive rule

A" (@y,w) f= A" (@1, @
A" (xh .- ~u$n) [= - 2 - )in—ml Pt 1 Ty 7£ T,
{digmn_ (57‘7"27"')1‘7171),]"} |§:zn, T, = Ty,

where A (1) f = f (1) .
(4) (Generalization of Example 6.6) Let f. (z) = (z —x)" . Then for all z ¢ {x1,...,x,}

1
A (2, ) [ = . 6.4
( 1 ) f I (Z) ( )
(5) By (6.2), A" (xy,...,2,) is a linear combination of the functionals

0 (x—1), 1<j<s 0<0<d;.
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In fact, using (6.4) we obtain the Chakalov’s expansion (see [9])

s dj—1

A"z, ) = Z Z aj,gé([) (x—T15), (6.5)

j=1 ¢=0

where the coefficients {a;,} are defined by the partial fraction decomposition'

-y Z et (6.6)

an =1 =0 —7']
(6) By (6.5) and (6.6)
A () = — L e (x—1t). (6.7)
CENELN I P o
Xn

(7) Popoviciu’s refinement lemma [9, Proposition 23]: for every index subsequence
1<o(l)<o(2)<---<o(k)<n,
there exist coefficients o (j) such that

o(k)—k

AN (@), o) = Z a(f) A (@41, 240, Tgk) - (6.8)
j=o(1)—1

Based on the above, we may now identify A with elements of the bundle P,..

Definition 6.8. Let w = (21,...,2,) € C", and X = {ny,ne,...,na} C {1,2,...,7} of size
|X| = a be given. Let the elements of X be enumerated in increasing order, i.e.
1< <ne<---<ng<r

Denote by wx the vector

def

wyxy = (TnysTpgy .-y Tn, ) € CH

Then we denote

Ax (w) & A (wx).

We immediately obtain the following result.

Lemma 6.9. For allw € C" and X C {1,2,...,7}, we have Ax (w) € V4,. Moreover, letting
a = | X| we have

SM (Ax (w)) = A7 (wx) e (3 (6.9)

Finally, (w, Ax (w)) is a continuous section of Py.

IThe coefficients {ajﬁg} may be readily obtained by the Cauchy residue formula

— dm (& )dr” {<zfrj>”1}
T — 10 25e, \dz e (2) S
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6.3. Constructing a basis. The following result is well-known, see e.g. [9, Proposition 35].

Theorem 6.10. Denote Nj = {1,2,...,j} for j = 1,2,...,r. Then for every w € C", the
collection

{AN]' (w)};:l

s a basis for V.

There are various proofs of this statement. Below we show how to construct sets which do
not necessarily remain basis for all w € C”, but only for w in a small neighborhood of a given
wg € C". Theorem 6.10 will then follow as a special case of this construction.

Informally, if two coordinates x; and x; can collide, then it is necessary to allow them to be
glued by some element of the basis, i.e., we will need Ax (w) where 4,j € X (in Theorem 6.10
all coordinates might be eventually glued into a single point because w is unrestricted.) In order
to make this statement formal, let us introduce a notion of configuration, which is essentially a
partition of the set of indices.

Definition 6.11. A configuration C is a partition of the set N, = {1,2,...,r} into s = s(C)
disjoint nonempty subsets
Ui, X = Ny, | X;| =d; > 0.
The multiplicity vector of C is
T(C)=(dy,...,ds).

Every configuration defines a continuous family of divided differences as follows.

Definition 6.12. Let a configuration C = {X }j(zcl)

its elements

. Enumerate each X in increasing order of

X; = {njl <ng < nilj}
and denote for every m =1,2,...,d;

ijd:ef{ni: k;:l,2,...,m}.

For every w € C7, the collection B¢ (w) C V,, is defined as follows:

def m=1,...,d;
Bo (w) = {Ax,,, (w)}sz...,s(C)'

Now we formally define when a partition is “good” with respect to a point w € C".
Definition 6.13. The point w = (z1,...,2,) € C" is subordinated to the configuration
c={x,}9
if whenever x, = x, for a pair of indices k # /¢, then necessarily k, ¢ € X; for some Xj;.
Now we are ready to formulate the main result of this section.

Theorem 6.14. For a given wy € C" and a configuration C, the collection Be (wg) is a basis
for Vi, if and only if wy is subordinated to C. In this case, Be (w) is a continuous family of
bases for Vi, in a sufficiently small neighborhood of wy.

Let us first make a technical computation.

Lemma 6.15. For a configuration C and a point w € C", consider for every fired j = 1,...,s(C)
the set

d;
m=1"

S; YAy, ()} (6.10)
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(1) Define for any pair of indices 1 < k < £ < d; the index set
d f . . .
X ke = {7’L§g < ngwrl << nz} CXj=Xj14 = Xjq;-

Then
Ax; .., (w) € span S;.
(2) For an arbitrary subset Y C X; (and not necessarily containing segments of consecutive
indices), we also have

Ay (w) € span S;.
Proof. For clarity, we denote y; = x,; and [k: /] = Ax,,, (w). By (6.3) we have in all cases

J
(including repeated nodes)

(ye—yp) [kl =k+1:0—[k:{—1]. (6.11)

The proof of the first statement is by backward induction on n = ¢ — k. We start from

n = d;, and obviously [1 : d;] € S;. In addition, by definition of S; we have [1:m] € S; for all

m =1,...,d;. Therefore, in order to obtain all [k : £] with { —k =n—1, we apply (6.11) several
times as follows.

2:n] = (Yu—y)[lin]+[1:in—1]
B:n+1 = (Yynt1—y2)[2:n+1]+[2:n]
[dj—n+2:dj] : (ydj—ydj_n+1)[dj—n+1:dj]—l—[dj—n—l—l:dj—l]
_—

Here the symbol - - - under a term means that the term is taken directly from the previous line,
while AN indicates that the induction hypothesis is used. In the end, the left-hand side terms
are shown to belong to span.S;.

In order to prove the second statement, we employ the first statement, (6.8) and Proposition
6.7, Item 1. [l

Proof of Theorem 6.14. In one direction, assume that wy = (1, ..., z,) is subordinated to C. It
is sufficient to show that every element of the standard basis (2.2) belongs to span {B¢ (wp)}.
Let 7; € T (wp), let d; be the corresponding multiplicity, and let Y; C N, denote the index

set of size d;
def

Y—j = {Z : €Tr; = Tj} .
By the definition of subordination, there exists an element in the partition of C, say Xy, for
which Y; C Xj. By Lemma 6.15 we conclude that for all subsets Z C Y},
X
| k‘l C span {B¢ (wo)}

m=

Az (wo) € span {AXk,m (wo)}
By (6.7), Az (wo) is nothing else but

1
Ay (wg) = AlZ11 T E— N
2 () EQHEY R (/AR
x|Z|
This completes the proof of the necessity. In the other direction, assume by contradiction that
xr = x¢ = T but nevertheless there exist two distinct elements of the partition C, say X, and
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Xp such that k € X, and £ € Xg. Let the sets {S; };(:61) be defined by (6.10). Again, by Lemma
6.15 and (6.7) we conclude that

d(x — 1) € span S, Nspan Sg.

But notice that Be (wg) = Uj(zcl) Sj and y°7_; |S;| = d, therefore by counting dimensions we
conclude that

dim span {B¢ (wo)} < d,

in contradiction to the assumption that Be (wp) is a basis.

Finally, one can evidently choose a sufficiently small neighborhood U C C" of wqg such that
for all w € U, no new collisions are introduced, i.e., w is still subordinated to C. The continuity
argument (Lemma 6.9) finishes the proof. O

Remark 6.16. Another possible method of proof is to consider the algebra of elementary fractions
in the Stieltjes space S, and use the correspondence (6.9).

As we mentioned, Theorem 6.10 follows as a corollary of Theorem 6.14 for the configuration
C consisting of a single partition set NV,.

6.4. Resolution of collision singularities. Let u; € X C C?” be given, and let (wo, go) € P»
be a solution to the (rank-restricted) Prony problem. The point wq is uniquely defined up to a
permutation of the coordinates, so we just fix a particular permutation. Let T (wo) = (71, ..., Ts)-

Our goal is to solve the rank-restricted Prony problem for every input p* € C?” in a small
neighborhood of pf. According to Theorem 5.7, this amounts to a continuous representation of

the solution R« (z) = IQD“*((?) = TM, " (%) to the corresponding diagonal Padé approximation

problem as an element of the bundle P,..

Define 6 = min,»; |7; — 75| to be the “separation distance” between the clusters. Since the
roots of @~ depend continuously on p* and the degree of @, does not drop, we can choose
some pf sufficiently close to pug, for which

(1) all the roots of Q.+ (2) are distinct, and
(2) these roots can be grouped into s clusters, such that each of the elements of the j-th
cluster is at most §/3 away from ;.

Enumerate the roots of ,+ within each cluster in an arbitrary manner. This choice enables us
to define locally (in a neighborhood of uf) r algebraic functions x; (u*), ..., x, (u*), satisfying

S

Qu (2) = [T & =25 (u")).-

j=1

Then we extend these functions by analytic continuation according to the above formula into
the entire neighborhood of 1. Consequently,

%y def * *
w(p*) = (e (1), ze (1))
is a continuous (multivalued) algebraic function in a neighborhood of uf, satisfying
w () = wo.

After this “pre-processing” step, we can solve the rank-restricted Prony problem in this neigh-
borhood of pfj, as follows.
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Algorithm 1 Solving rank-restricted Prony problem with collisions.

Let uf € X% C C?" be given, and let (wo, go) € P, be a solution to the (rank-restricted) Prony
problem. Let wg be subordinated to some configuration C.

The input to the problem is a measurement vector p* = (mg,...,Mar—1) € C?", which is in a
small neighborhood of 1.

(1) Construct the function w = w (u*) as described above.
. . t=1,....d;

(2) Build the basis Be (w) = {Ax,, (w)}jzl,...,szc) for V.

(3) Find the coefficients {Bﬂ}jziizc) such that

SM | Y Bjulx,, (w) | =R(2),

JiL

by solving the linear system

E:@M(w)AXM(w)@ﬁ)ZWW(::/x%Mw)@ﬂdx), k=0,1,...,2r—1.  (6.12)
7.

=g(w)

Theorem 6.17. The coordinates {5;.¢} of the solution to the rank-restricted Prony problem,
given by Algorithm 6.4, are (multivalued) algebraic functions, continuous in a neighborhood of
the point ug .

Proof. Since the divided differences A; , (w) are continuous in w, then clearly for each
k=0,1,...,2r—1
the functions
viek (W) = Aje (w) (a7) = A7 (wx,,) (%)
are continuous® in w, and hence continuous, as multivalued functions, in a neighborhood of 1.

Since Be (w (11*)) remains a basis in a (possibly smaller) neighborhood of pf, the system (6.12),
taking the form

2

ZVM”“ (w) B0 (w) = my, k=0,1,...,2r -1,
4.

remains non-degenerate in this neighborhood. We conclude that the coefficients {5, ¢ (w (1*))}
are multivalued algebraic functions, continuous in a neighborhood of . Il

7. REAL PRONY SPACE AND HYPERBOLIC POLYNOMIALS

In this section we shall restrict ourselves to the real case. Notice that in many applications
only real Prony systems are used. On the other hand, considering the Prony problem over
the real numbers significantly simplifies some constructions. In particular, we can easily avoid
topological problems, related with the choice of the ordering of the points z1,...,z4 € C. So in
a definition of the real Prony space RP; we assume that the coordinates z1,..., x4 are taken
with their natural ordering z1 < o < --- < x4. Accordingly, the real Prony space RPy is
defined as the bundle (w,g), w € [, C R?, g € RV,,. Here [ is the prism in R? defined by
the inequalities 7 < z9 < -+ < x4, and RV, is the space of linear combinations with real
coefficients of d-functions and their derivatives with the support {x1,...,24}, as in Definition

°In fact, v 0,1 (w) are symmetric polynomials in some of the coordinates of w.
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2.4. The Prony, Stieltjes and Taylor maps are the restrictions to the real case of the complex
maps defined above.

In this paper we just point out a remarkable connection of the real Prony space and map-
ping with hyperbolic polynomials, and Vieta and Vandermonde mappings studied in Singularity
Theory (see [1, 13, 14, 15] and references therein).

Hyperbolic polynomials (in one variable) are real polynomials Q(z) = 2%+ Z;l:l \jz479 | with
all d of their roots real. We denote by I'y the space of the coefficients A = (A1,...,\q) C R? of all
the hyperbolic polynomials, and by I'y the set of A € 'y with A\; = 0, [A2] < 1. Recalling (2.3), it
is evident that all hyperbolic polynomials appear as the denominators of the irreducible fractions
in the image of RPy by SM. This shows, in particular, that the geometry of the boundary 9I'" of
the hyperbolicity domain I' is important in the study of the real Prony map PM: it is mapped
by PM to the boundary of the solvability domain of the real Prony problem. This geometry
has been studied in a number of publications, from the middle of 1980s. In [13] V. P. Kostov
has shown that T’ possesses the Whitney property: there is a constant C' such that any two
points A1, Ay € I' can be connected by a curve inside I' of the length at most C|[Ay — Ay ||. “Vieta
mapping” which associates to the nodes z1 < x5 < - -+ < x4 the coefficients of Q(z) having these
nodes as the roots, is also studied in [13]. In our notations, Vieta mapping is the composition
of the Stieltjes mapping SM with the projection to the coefficients of the denominator.

In [1] V.I.Arnold introduced and studied the notion of maximal hyperbolic polynomial, rel-
evant in description of I. Furthermore, the Vandermonde mapping V : R? — R¢ was defined
there by

Y1 = a121 + ... + aq%q,

— d d
Yd = 0127 + ... + aqxy,

with aq,...,aq fixed. In our notations V is the restriction of the Prony mapping to the pairs
(w,g) € RP4 with the coefficients of ¢ in the standard basis of RV, fixed. It was shown in [1]
that for ai,...,aq > 0V is a one-to-one mapping of [],; to its image. In other words, the first d
moments uniquely define the nodes 1 < x5 < --- < x4. For ay, ..., aq with varying signs, this is
no longer true in general. This result is applied in [1] to the study of the colliding configurations.
Next, the “Vandermonde varieties” are studied in [1], which are defined by the equations

a1ry +...+aqgrqy = oq,
{<d
ale{ + ...+ adxfl = Qy.
It is shown that for ai,...,aq > 0 the intersections of such varieties with [], are either con-

tractible or empty. Finally, the critical points of the next Vandermonde equation on the Van-
dermond variety are studied in detail, and on this base a new proof of Kostov’s theorem is
given.

We believe that the results of [1, 13] and their continuation in [14, 15] and other publications
are important for the study of the Prony problem over the reals, and we plan to present some
results in this direction separately.
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APPENDIX A. PROOF OF THEOREM 3.5

Recall that we are interested in finding conditions for which the Taylor mapping 7M : Sg — Ta
is invertible. In other words, given

2d—1 1\ *+1
S(z) = -
() Z 1k (z) ’
k=0
we are looking for a rational function R (z) € Sg such that
d dsy
S(z)—R(z):ﬁ—&-m—k.... (A.1)
Write R (z) = ZE’Z; with @ (2) = Z;'lzo ¢;7) and P(z) = Y924 biz'. Multiplying (A.1) by
Q (z), we obtain
€1 €9
Q(z)S(z)—P(z):Zd+1+Zd+2+.... (A.2)

Proposition A.1. The identity (A.2), considered as an equation on P and Q with
deg P < deg@ < d,
always has a solution.

Proof. Substituting the expressions for S, P and @ into (A.2) we get

dy (Mo |, M1 -1 _ _©1
(c0—|—clz+~-~+cdz)<7+Z—2+...)—b0—---—bd_1z _zd+1+“” (A.3)
The highest degree of z in the left hand side of (A.3) is d—1. So equating to zero the coefficients
of z° in (A.3) for s=d—1,...,—d we get the following systems of equations:
[ 0 0 0 mo Cl_ bd—l-
0 0 mg m 2 ba—2
= (A)
lmo - ma mq—1] [cd] bo |
From this point on, the equations become homogeneous:
[ mo ™y my [co 0]
my ma Md41 c1 0
= (A k)
|Ma—1 Mg mad—1]| |cd 0]

The homogeneous system (A.xx) has the Hankel-type d x (d + 1) matrix My = (m,,;) with

0<?1<d—1and 0 < j < d. This system has d equations and d + 1 unknowns cg, . .
Consequently, it always has a nonzero solution cy, ..
o, ---,¢q of @ into the equations (A.x) we find the coefficients by, ..

., Cq-

.,¢q. Now substituting these coefficients

., bg—1 of the polynomial

P, satisfying (A.x). Notice that if ¢; = 0 for j > ¢ + 1 then it follows from the structure of the
equations (A.x) that b; = 0 for j > £. Hence these P, provide a solution of (A.2), satisfying
deg P < deg @ < d, and hence belonging to Sy.

O

However, in general (A.2) does not imply (A.1). This implication holds only if deg@ = d.
The following proposition describes a possible “loss of accuracy” as we return from (A.2) to (A.1)

and deg Q) < d:
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Proposition A.2. Let (A.2) be satisfied with the highest nonzero coefficient of Q being cp, £ < d.

Then
P(z) d; da

S(2) - Q(z) ~ zdtir T Javere T (A4)

Proof. We notice that if the leading nonzero coefficient of @ is ¢, then we have

1 1 1 1 1
Q ?(m) = g(fo+f1;+...).
So multiplying (A.2) by % we get (A.4). ;

Proof of Theorem 3.5. Assume that the rank of M, is r < d, and that |M,| # 0. Let us find
a polynomial Q(z) of degree r of the form Q(z) = z" + Z;;é cjz?, whose coefficients satisfy
system (A.xx). Put ¢, = (co,...,¢r—1,1)7 and consider a linear system M,c, = 0. Since by
assumptions |M,.| # 0, this system has a unique solution. Extend this solution by zeroes, i.e.,
put cg = (co,...,cr—1,1,0,...,0)7. We want c, to satisfy (A.xx), which is Mycg = 0. This fact
is immediate for the first  rows of M. But since the rank of M, is r by the assumption, its
other rows are linear combinations of the first » ones. Hence ¢y satisfies (A.xx).

Now the equations (A.x) produce a polynomial P(z) of degree at most »r — 1. So we get a ra-
tional function R(z) = SE’Z; € S, C S, which solves the Padé problem (A.2), with deg Q(z) = 7.
Write R(z) = 22 ax(1)*1. By Proposition A.2 we have m; = oy, till k =d + 7 — 1.

Now, the Taylor coefficients «y, of R(z) satisfy a linear recurrence relation

mk:—chmk_s, k=r,r+1,.... (A.5)
s=1
Considering the rows of the system Myc, = 0 we see that my, satisfy the same recurrence relation
(A.5) till k =d+r — 1 (we already know that my = ay, till £ = d +r — 1). We shall show that
in fact my, satisfy (A.5) till k = 2d — 1.
Consider a d x r matrix M, formed by the first » columns of My, and denote its row vectors

by vi = (mio,...,Mir—1), i =1,...,d — 1. The vectors v; satisty
ks
VZ-:—ZCSVZ-,S7 i=r,...,d—1, (A.6)
s=1
since their coordinates satisfy (A.5) till k = d+r—1. Now vq, ..., Vv,_1 are linearly independent,
and hence each v;, i =7,...,d — 1, can be expressed as
r—1
Vi, = Z'yi,svs~ (A7)
s=0
Denote by v; = (mi,...,miq), ¢ =1,...,d — 1 the row vectors of M,. Since by assumptions

the rank of My is r, the vectors ¥; can be expressed through the first r of them exactly in the
same form as v;:

r—1
Vi=) YisVe, i=r...,d—1L (A.8)
s=0

Now the property of a system of vectors to satisfy the linear recurrence relation (A.6) depends
only on the coefficients ~; s in their representation (A.7) or (A.8). Hence from (A.6) we conclude
that the full rows v; of M, satisfy the same recurrence relation. Coordinate-wise this implies
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that my, satisfy (A.5) till & = 2d — 1, and hence my = oy, till K = 2d — 1. So R(z) solves the
original Problem 3.1.
In the opposite direction, assume that R(z) solves Problem 3.1, and that the representation

R(2) = ggg € S, C 8y is irreducible, i.e., deg@ = r. Write Q(z) = 2" + E;;l ¢jz?. Then my,
being the Taylor coefficients of R(z) till k = 2d — 1, satisfy a linear recurrence relation (A.5):
My = — Y g CsMi—s, k =r,r+1,...,2d — 1. Applying this relation coordinate-wise to the
rows of My we conclude that all the rows can be linearly expressed through the first r ones. So
the rank of Md is at most r.

It remains to show that the left upper minor |M,| is non-zero, and hence the rank of M, is
exactly r.

By Proposition 3.3, if the decomposition of R (z) in the standard basis is

s dj 11 o |
R(z) = Zzaﬂ'vé—lL@ZD"
j=1¢=1 (z — ;)
where Y7, d; = r and {z;} are pairwise distinct, then the Taylor coefficients of R (z) are
given by (1.5). Clearly, we must have ajq;, 1 # 0 for all j = 1,...,s, otherwise deg@ < r, a
contradiction. Now consider the following well-known representation of M, as a product of three
matrices (see e.g. [7]):

My =V (21, dr,.. s dy) x dig {47}, x V (@r,di, s dy)T (A.9)

where V' (...) is the confluent Vandermonde matrix (4.1) and each A; is the following d; x d;
block:

as,0 aj,1 T p 1' o Aj,d;—1
. 3= )
.1 (dj—z)amdj—l 0
def
Aj = .. ... 0
d;—1
( 32 )aj,dj—l 0 0
aj.d;—1 0 0

The formula (A.9) can be checked by direct computation. Since {x;} are pairwise distinct and
aja;—1 # 0 forall j =1,...,s, we immediately conclude that |M;| # 0.
This finishes the proof of Theorem 3.5. O
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NAIVE MOTIVIC DONALDSON-THOMAS TYPE HIRZEBRUCH CLASSES
AND SOME PROBLEMS

VITTORIA BUSSI(*) AND SHOJI YOKURA (**)

ABSTRACT. Donaldson-Thomas invariant is expressed as the weighted Euler characteristic of the so-called
Behrend (constructible) function. In [2] Behrend introduced a Donaldson-Thomas type invariant for a mor-
phism. Motivated by this invariant, we extend the motivic Hirzebruch class to naive Donaldson-Thomas type
analogues. We also discuss a categorification of the Donaldson-Thomas type invariant for a morphism from
a bivariant-theoretic viewpoint, and we finally pose some related questions for further investigations.

1. INTRODUCTION

The Donaldson-Thomas invariant xy?7 (M) (abbr. DT invariant) is the virtual count of the moduli
space M of stable coherent sheaves on a Calabi—Yau threefold over k. Here k is an algebraically closed
field of characteristic zero. Foundational materials for DT invariants can be found in [36], [2], [20],
[23]. In [2] Behrend made the important observation that the Donaldson-Thomas invariant 27 (M)
is described as the weighted Euler characteristic x(M, ) of the so-called Behrend (constructible)
function v,. For a scheme X of finite type, the Donaldson-Thomas type invariant xy?7 (X) is defined
as x(X,vx). The Euler characteristic y defined by using the compactly-supported ¢-adic cohomol-
ogy groups (see §2 for more details) satisfies the scissor formula x(X) = x(Z) + x(X \ Z) for a
closed subvariety Z C X. This scissor formula implies that x can be considered as a homomorphism
from the Grothendieck group of varieties x : Ko(V) — Z, and furthermore it can be extended to the
relative Grothendieck group, x : Ko(V/X) — Z for each scheme X. The Grothendieck—Riemann—
Roch version of the homomorphism x : Ko(V/X) — Z is the motivic Chern class transformation
T 1, : Ko(V/X)— HEM(X) ® Q. Namely we have that

e When X is apoint, T_1, : Ko(V/X) — HPM(X) ® Q equals the homomorphism
x:Ko(V) = Z— Q.
e The composite [, oT_;, = x : Ko(V/X) = Z — Q.
Here T_1, : Ko(V/X) — HBEM(X) ® Q is the specialization to y = —1 of the motivic Hirzebruch
class transformation T}, : Ko(V/X) — HPM(X) ® Q[y] (see [5]).

On the other hand the Donaldson-Thomas type invariant y”7'(X) does not in general satisfy the
scissor formula xYPT(X) # xPT(Z) + xPT(X \ Z). Namely, x”7 () cannot be captured as a homo-
morphism xP7 : K4(V) — Z. Instead the following scissor formula holds:

IX\Z,X
).

(1.1) XPT(X 9 X) = (PT(7 225, X) 44 PT(X\ 2 225 x
Here iz x and i x\z,x are the inclusions. For this formula to make sense, we need a Donaldson—-Thomas

type invariant Y7 (X ER Y’) for a morphism f : X — Y, which is also introduced in [2] and simply
defined as x(X, f*vy). Then xP7 can be considered as a homomorphism x?7 : K,(V/X) — Z. Note

(*) Funded by EPSRC
(**) Partially supported by JSPS KAKENHI Grant Number 24540085.
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that in the case when X is a point, Y7 : Ko(V/pt) = Ko(V) — Z is the usual Euler characteristic
homomorphism x : Ko (V) — Z.

In this paper we consider Grothendieck—Riemann—Roch type formulas for x”7', using the motivic
Hirzebruch class transformation 73, ([5]). One of the key features on constructible functions and el-
ements of Ky()/X) when we state such Grothendieck-Riemann-Roch type formulas is that they are
stable under morphisms. For example, ¢ assigning to each variety X a constructible function ¢ x is said
to be stable under a morphism f : X — Y if 0x = f*dy. The 1 assigning to each variety X the
characteristic function 1 x is stable under a (in fact, any) morphism and v assigning to each variety X
the signed Behrend function 7y := (—1)%™ Xy is stable under a smooth morphism.

We also propose to consider a bivariant-theoretic aspect for the “categorification” of the DT invariant.
By this we mean a graded vector space encoding an appropriate cohomology theory whose Euler char-
acteristic is equal to DT invariant. Naive reasons for the latter are the following. The categorification of
the Euler characteristic is nothing but

X(X) = (~1)" dimg H.(X;R).
Note that the compact-support-cohomology H!(X;R) is isomorphic to the Borel-Moore homology
HPM(X;R). The categorification of the Hirzebruch y,,-genus is

Xy(X) =) (1) dime Gri(HI(X; ©))(—y)”

with F' being the Hodge filtration of the mixed Hodge structure of H:(X;C). Since the DT type in-
variant of a morphism satisfies the scissor formula (1.1) due to its definition, we propose to intro-

duce some bivariant-theoretic homology theory ©*(X ER Y) “categorifying” xPT(X ER Y'), that is

YPT(X ER Y)=>,(-1)dim©*(X ER Y’). (Here we denote it “symbolically”; as described in the

case of x,-genus, the above alternating sum of the dimensions might be complicated involving some
other ingredients such as mixed Hodge structures.)

2. DONALDSON-THOMAS TYPE INVARIANTS OF MORPHISMS

Let R be an algebraically closed field of characteristic p, which is not necessarily zero. Let X be a
RK-scheme of finite type. For a prime number ¢ such that ¢ # p and the field Q, of ¢-adic numbers, the
following Euler characteristic

X(X) =) (~1) dimg, HI(X, Qo)
is independent on the choice of the prime number ¢. In fact the following properties hold (e.g., see [17,
Theorem 3.10]):

Theorem 2.1. Let R be an algebraically closed field and X,Y be separated K -schemes of finite type.
Then

(1) If Z is a closed subscheme of X, then x(X) = x(Z) + x(X \ Z).

@) X(X xY) = x(X)x(Y).

(3) x(X) is independent of the choice of { in the above definition

4) If R = C, x(X) is the usual Euler characteristic with the analytic topology.

(5) x(R™) =1 and x(RP™) = m + 1 for Ym > 0

For a constructible function « : X — Z on X the weighted Euler characteristic x(X, «) is defined by

X(X.a) == 3 mx(a~ (m)).
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Let X be embeddable in a smooth scheme M and let C'y; X be the normal cone of X in M and let
7 : Cyy X — X be the projection and Cpy X = > m;C;, where m; € Z are multiplicities and C;’s are
irreducible components of the cycle. Then the following cycle

Cxynr = (=) (Cy) € Z(X)

is in fact independent of the choice of the embedding of X into a smooth M ([1, Lemma 1.1] and [2,
Proposition 1.1], also see [11, Example 4.2.6.]), thus simply denoted by €x without referring to the
ambient smooth M and is called the distinguished cycle of the scheme. Then consider the isomorphism
from the abelian groups Z(X) of cycles to the abelian group F(X) of constructible functions

Eu: Z(X) = F(X)

which is defined by Eu(} ", m;[Z;]) := ), m; Eugz,, where Euy denotes the local Euler obstruction sup-
ported on the subscheme Z;. Then the image of the distinguished cycle € x under the above isomorphism
Eu defines a canonical integer valued constructible function

vx :=Eu(Cx),

which is called the Behrend function. The fundamental properties of the Behrend function are the fol-
lowing.

Theorem 2.2. (1) For a smooth point x of a scheme X of dimension n, vx(x) = (=1)™. In partic-
ular, if X is smooth of dimension n, then vx = (—1)"1x.
(2) vxxy = vxVy.
(3) If f : X = Y is smooth of relative dimension n, then vx = (—1)" f*vy .
(4) In particular, if f : X — Y is étale, then vx = f*vy.
(5) (see also [32]) If Y is the critical scheme of a regular function f on a smooth scheme M, i.e.,
Y = Z(df), thenfory € Y

vy (y) = (=DM (1 = x(Fy)) (= (=D (x(F) - 1)),

where X := f~1(0) is the hypersurface, thus Y is the singularity subscheme of X defined by
the partial derivatives of f, and F), is the Milnor fiber of X at the point y.

Remark 2.3. In [1, §1 Weighted Chern—Mather Classes] Paolo Aluffi introduces the weighted Chern—
Mather class of Y C M, denoted by cyna(Y), as follows:

Comta(Y) 1= Y (= 1)y dim (@, oMoz (),

where (7 (C;)) is the Chern—Mather class of 7(C;), i.e. ¢ (7(C;)) = cu(Eug(c,)). Therefore we

* *

get the following:
CwMa(Y) — Z(_l)dimdeimﬂ'(Ci)mZ_Ci\/Ia(,/T(Ci))

_ Z(_l)dimdeimﬂ'(Ci)mic*(Euﬂ_(Ci))

g

=c, ((_1)dimY Z(_l)dimﬂ'(c’i)mi Eu‘n’(Ci)>

Cx ((—1)dimY1/y) .
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In other words, Aluffi introduces the distinguished constructible function, i.e. the signed Behrend func-
tion (—1)dimyuy =: vy. In [1, Theorem 1.2.] he proves that if X is defined as the zero-scheme of a
nonzero section of a line bundle £ over M, then

(2.4) cu(py) = (=)W XY (£) 1 (M (X) = en(X)),

where Y is the singularity subscheme of the hypersurface X, i.e. the subscheme locally defined by the
partial derivatives of an equation for X, and ¢/ (X)) is Fulton—Johnson class of X or the canonical class
of X (see [11, Example 4.2.6.] and [12]). In this hypersurface case he furthermore shows the following
[1, Theorem 1.5.]: As in (5) of the above Theorem 2.2, if uy is the constructible function defined by

py (y) = (1) X (x(Fy) — 1), then c.(Dy) = (=1)"™ Y eu (py ).
It follows from (2.4) and (—1)%™Y¢, (y ) = ¢, (vy ) that we get

(L) Nedvy) = (=T F (" (X) = eu(X)).

The right-hand-sided invariant (—1)4m X (¢/(X) —¢, (X)) is the so-called Milnor class of X (supported
on the singular locus Y'). Hence, in particular, in the case when the line bundle £ is trivial, i.e., in the
case of (5) of Theorem 2.2, we have that ¢, (vy ) = ¢.(uy ) is nothing but the Milnor class of X.

The weighted Euler characteristic of the above Behrend function is called the Donaldson—Thomas
type invariant and denoted by Y7 (X):

XPT(X) = x(X, vx).
Remark 2.5. We would like to emphasize that using the Aluffi function vx we have that
XPT(X) = x(X,vx) = (1) XX (X, Tx).
In [2, Definition 1.7] Kai Behrend defined the following.
Definition 2.6. The DT-invariant or virtual count of a morphism f : X — Y is defined by
KT DY) = (X o),

where vy is the Behrend function of the target scheme Y.

Remark 2.7. Here we emphasize that y?7'(X EN Y') is defined by the constructible function f*vy on
the source scheme X. From the definition we can observe the following:

) xPT(x 1dx, X) = x(X,vx) = xPT(X) is the DT-invariant of X.

2) XPT(X 5% pt) = (X, ffrp) = x(X,1x) = x(X) is the topological Euler-Poincaré
characteristic of X.

(3) If Y is smooth, whatever the morphism f : X — Y is, we have

XPT(X L vy = (—1)8m Yy (X).

The very special case is that Y = pt, which is the above (2).

The Euler characteristic x(—) satisfies the additivity x(X) = x(Z) + x(X \ Z) for a closed sub-
scheme Z C X. Hence, y is considered as a homomorphism from the Grothendieck group of varieties
X : Ko(V) — Z and furthermore as a homomorphism from the relative Grothendieck group of varieties
over a fixed variety X ([28])

x: Ko(V/X)—Z,
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which is defined by x([V LN X)) =x(V) =x(V,1y) = x(V,h*1lx) = x(X, h.1y). Moreover, the
following diagram commutes:

(2.8) Ko(V/X) Ko(V/Y)

R

Z.

On the other hand we have that xY?7'(X) # xPT(Z) + xPT(X \ Z). Thus xP7(—) cannot be captured
as a homomorphism xP7 : K()) — Z. However, we have that

IX\Z,X
—=7

XPT(X 2955 X) =y PT(7 225 X) 44 PT(X\ 2 X).
Lemma 2.9. If we define xP7([V LN X)) := x(V, h*vx), then we get the homomorphism
XPT Ko(V/X) = Z.

Proof. The definition xPT ([V ox ) := x(V, h*vx) is independent of the choice of the representative
of the isomorphism class [V I x ]. Indeed, let V’ 2y X be another representative of [V I x ], ie.,
we have the following commutative diagram, where ¢ : V' = Visan isomorphism:

1% - 1%

A

X.

Then we have that x(V’, h*vx) = x(V',.*(h*vx)) = x(V, h*vx).
For a closed subvariety W C V, we have

KTV X] = X (V. hvx)
=x(W,h"vx) + x(V\ W, h'vx)
= X(W, (hjw)*vx) + x(V\ W, (b \w) vx)
h hiv\w
= XTI (W =5 X))+ P (VAW ——= X)).
Thus we get the homomorphism xP7 : K (V/X) — Z. O

Lemma 2.10. If f : X — Y satisfies the condition that vx = f*vy (such a morphism shall be called a
“Behrend morphism”) , then the following diagram commutes:

Ko(V/X) !

Ko(V/Y)

XDT XDT
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Proof. 1t is straightforward:

XPT o £V 55 X)) = XPT (v £ X))
(V,(f o h)*wy)
(V,h* f*uvy)

(V,h*vx) (since vy = f*vy)

X
X
X
X
=xPT(vV & X)).

Remark 2.11. An étale map is a typical example of a Behrend morphism.
Remark 2.12. For a general morphism f : X — Y, we have that
f*VY = (_1>reldimeX + e(Xsing U f_l(Y:?ing))7

where reldim f := dim X — dimY is the relative dimension of f and ©(Xsing U f ! (Ysing)) is some
constructible functions supported on the singular locus X ;4 of X and the inverse image of the singular
locus Yy, g of Y. As

vx = (—l)dim X1 x + some constructible function supported on X4,

then

frry = (=) X 1y + f*(some constructible function supported on Ys;n)-

Hence in general we have

xXPT o f(V LN X]) = (=1)reldimF\ DT ([y/ UN X]) + extra terms.
Here the extra terms are supported on the singular locus X;p -
To avoid taking care of the sign, we use the signed Behrend function, i.e., the Aluffi function
vx = (1) Fuy,

which will be used later again. Note that if X is smooth, vx = 1x. Then we define the signed
Donaldson-Thomas type invariant Y27 (X) by Y27 (X L Y) := x(X, f*Dy). (In other words, this
invariant could be called an Aluffi-Behrend—Euler characteristic of a morphism f.) Then for a morphism
[ X — Y wehave f*Dy = Ux 4+ O(Xsing U [~ (Ysing))- In particular the above lemma is modified
as follows:

Lemma 2.13. If f : X — Y satisfies the condition that Vx = f*Vy (such a morphism shall be called
a “signed Behrend morphism”; a smooth morphism is a typical example for vx = f*vy), then the
following diagram commutes:

e

Ko(V/Y)
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3. GENERALIZED DONALDSON-THOMAS TYPE INVARIANTS OF MORPHISMS

Mimicking the above definition of x 7 (X i> Y") and ignoring the geometric or topological interpre-

tation, we define the following.

Definition 3.1. For a morphism f : X — Y and a constructible function 6y € F(Y") we define
XX DY) = (X o),

Lemma 3.2. For a morphism f : X — Y and a constructible function o € F(X) we have

X(Xa a) = X(Y7 f*a)

Corollary 3.3. For a morphism [ : X — Y and a constructible function §y € F(Y') we have
XX DY) = XY £ f 6y,

Remark 3.4. For the constant map 7x : X — pt, the pushforward homomorphism

Txy: F(X)— F(pt) =7Z

is nothing but the fact that 7x . («) = x(X, «) (by the definition of the pushforward). Hence, the above
equality x (X, a) = x(Y, f.«a) is rephrased as the commutativity of the following diagram:

f

F(X) F(Y)

TX 4 TY
F(pt) = Z.
Namely, 7x, = (my © f)x = 7y, o f.. This might suggest that F(—) is a covariant functor, but we
need to be a bit careful. F(—) is a covariant functor provided that the ground field 8 is of characteristic

zero. However, if it is not of characteristic zero, then it may happen that (g o f). # g« © f., for which
see Schiirmann’s example in [17].

Remark 3.5. If we define 1, : Ko(V/X) — F(X) by 1.([V LN X]) := hi1y, then for a morphism
f X — Y we have the following commutative diagrams:

Ko(V/X) i Ko(V/Y)
F(x) . FY)
F(pt) =7Z.

(mx, 0 LH)([V o x D =x([V L x ]) and the outer triangle is nothing but the commutative diagram
(2.8) mentioned before.

Here we emphasize that the above equality x%v (X EN Y) = x(Y, fi f*dy) have the following two
aspects:

e The invariant on LHS for a morphism f : X — Y is defined on the source space X .
e The invariant on RHS for a morphism f : X — Y is defined on the target space Y .
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So, in order to emphasize the distinction, we introduce the following notation:

(X DY) = (Y Ly,

Since we want to deal with higher class versions of the Donaldson—Thomas type invariants and use
the functoriality of the constructible function functor F(—), we assume that the ground field R is of
characteristic zero. We consider MacPherson’s Chern class transformation ¢, : F(X) — HBEM(X),
which is due to Kennedy [21].

For a morphism A : V' — X and for a constructible function dx € F(X) on the target space X, we
have

/ e (h*5x) = x(Vih*6x) = XX (V 1 X),
1%

/ e (heh*8x) = x(X, hoh*6x) = XX (V 25 X).
X

Here c,(h*6x) € HPM (V') on the side of the source space V and ¢, (h.h*dx) € HEM (X) on the side
of the target space X. Hence when we want to deal with them as the homomorphism from Ky (V/X) to
HBM (X)), we should consider the higher analogues c. (h.h*dx ), which we denote by

XV XY = e (W ox) € HBM (V).
On the other hand we denote
XV Ly X)) = e, (hoh*Sx) € HBM(X).
Note that L
o (VLX) =h (X (V X)),
e for an isomorphism idx : X — X, these two classes are identical and denoted simply by

X (X) = cu(6x) = X (X 2255 X)) = 0¥ (X 1% x).

In the following sections we treat these two objects c2X (V/ b x ) and cin(V I x ) separately, since
they have different natures.

4. MOTIVIC ALUFFI-TYPE CLASSES

In [2] the Chern class ¢%* (X) for the Behrend function vy is called the Aluffi class, in which case
V¥ (X) = xPT(X). However, in this paper, for the signed Behrend function 7y the Chern class
c/*(X) shall be called the Aluffi class and denoted by c2¢(X), since this is the class which Aluffi
introduced in [1] as pointed out in [2, §1.4 The Aluffi class]. Note that [, c2¢(X) = (—1)4m X PT(X).
In this sense, the Chern class c2X % X ) defined above shall be called a generalized Aluffi class of a
morphism h : V' — X associated to a constructible function §x € F(X). So the original Aluffi class is
X (X 9% x),

Lemma 4.1. The following formulae hold:

m If v LN X)= (V' LN X), i.e., there exists an isomorphism k : V.= V' such that h = I’ o k,

then we have <2 (V % X) = cfx (V' 15 ),

(2) For a closed subvariety W C V,
h
Sxv I xy = dxw M xy f v\ w Hlvaw, X).
(3) For morphisms h; : V; — X, (i = 1,2),

XX sy, e w0y = S M x) x EX (v 2 X)),
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4) vt (pt — pt) = 0pe(pt) € Z.
Corollary 4.2. Let 6x € F(X) be a constructible function. Then the following hold:
(1) The map 2* : Ko(V/X) — HBEM(X) defined by

XV L X)) =X (VD X) = e (hah*s

* * X
and linearly extended is a well-defined homomorphism.

(2) ¢3% commutes with the exterior product, i.e. for constructible functions dx, € F(X;) and for
o; € Ko(V/Xl),

X1 X0% (a1 X ag) = o (a1) x X (a2).

Remark 4.3. If §x is some function defined on X, such as the characteristic function 1 x, the Behrend

function vy, the signed Behrend function vy, and if it is multiplicative, i.e. dxxy = dx X Jy, then the

X1><X2(

above Corollary 4.2 (2) can be simply rewritten as & a1 X ag) = X (a1) x X (a2).

Remark 4.4. If X is smooth and h : V' — X is proper (here properness is required since we use the
pushforward h, of the Borel-Moore homology groups), then we have
AUV L X)) = e, (hoh*vy) = hucy (W 1x) = hyes(Ly) = haeSM (V)

is the pushforward of the Chern—Schwartz—MacPherson class of V, thus it depends on the morphism
h : V — X, although the degree zero part of it, i.e. the signed Donaldson—Thomas type invariant is
nothing but the Euler characteristic of V, thus it does not depend on the morphism at all. Therefore the
higher class version is more subtle.

The part h,.h*dx can be formulated as follows. Given a constructible function dx € F(X), we define
[0x]: Ko(V/X) = F(X)
by [0x]([V LN X)) := hih*dx and extend it linearly, i.e.,

[6x] (Z mp[V L X]) =y (hh*ox).
h h

If (V LN X) = (V! h—l> X), i.e., there exists an isomorphism & : V' =, V' suchthat h = A’ o k, then we
have

(hW)u(h)*6x = hikik*h*5x = hoh*0x
because k.k* = id 7 x). For a morphism 4 : V' — X and for a closed subvariety W C V, we have

hih*6x = (hlw)«(hlw)"ox + (hlv\w )« (Rl \w)"dx,

h
that is, we have that [0x] | [V LN X - [W Hw, X]|-[V\W M) X]) = 0. Therefore the homo-
morphism [0x] : Ko(V/X) — F(X) is well-defined.
Note that 1, : Ko(V/X) — F(X) is nothing but [1x] : Ko(V/X) — F(X). It is straightforward
to see the following.
Lemma 4.5. For any morphism g : X — Y and any constructible function 6y € F(Y), the following
diagrams commute:

Ko(v/X) I Fxy K(vyy) 2L Fy)

.| R :

Ko(V/Y) W F(Y). Ko(V/X) m F(X).
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The following corollary follows from MacPherson’s theorem [29] and our previous results [34, 38],
and here we need the properness of the morphism g : X — Y, since we deal with the pushforward
homomorphism for the Borel-Moore homology. c2* : Ko(V/X) — HEM (X) is the composite of

[0x]: Ko(V/X) = F(X)

and MacPherson’s Chern class c,, in particular c2¢ : Ko(V/X) — HEM(X) is ¢ = ¢, o [Vx]. Hence
we have the following corollary:

Corollary 4.6. (1) For a proper morphism g : X — Y and any constructible function éy € F(Y),
the following diagram commutes:

g* sy
Ko(V/X) —— HPM(X)

| |

Ko(V/Y) —— HPM(Y).

Cy

(2) For a smooth morphism g : X — Y with ¢(T,) being the total Chern cohomology class of the
relative tangent bundle T, of the smooth morphism and g* : HBM (V') — HBM (X)) the Gysin
homomorphism ([11, Example 19.2.1]), the following diagram commutes:

)

Ko(V/Y) == HEM(Y)

g*l JC(Tg)ﬂg*

Ko(V/X) —— HPM(X).

*

Therefore, if ¢ assigning to each variety X a constructible function 6x € F(X) is stable under a
proper morphism g : X — Y, then we have the following commutative diagrams:

5 5
Cy Cyx

Ko(V/X) — HEM(X) Ko(V/Y) —“ HPM(Y)

| |- v | |ecans”

Ko(V/Y) —— HEM(Y), Ko(V/X) —— HEM(X).

In particular we get the following theorem for the Aluffi class c2¢ : Ko(V/—) — HEM (-):

Theorem 4.7. For a smooth proper morphism g : X — Y the following diagrams commute:

CAZ CAE

Ko(V/X) —— HBEM(X) Ky V)Y) —— HBM(Y)

g*l lg* g*l lC(Tg)ﬂg*

Ko(V/Y) —— HEM(Y), Ko(V/X) —— HFM(X).

*

They are respectively Grothendieck—Riemann—Roch type and a Verdier—Riemann—Roch type formulas.

Remark 4.8. In the above theorem the smoothness of the morphism g : X — Y is crucial and the Aluffi
class homomorphism ¢! : Ko(V/X) — HEM(X) cannot be captured as a natural transformation in a
full generality, i.e. natural for any morphism. Indeed, if it were the case, then

A Kog(V/=) = HPM (<) = HPM(©) 9 Q
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becomes a natural transformation such that for any smooth variety X we have
id
(X 5 X]) = o(Tx) N [X].

Let Ty, : Ko(V/—) = HPM(—) @ Q[y] be the motivic Hirzebruch class transformation [5], which is
the unique natural transformation satisfying the normalization condition that for a smooth X,

Ty, ([X 5 X]) = td,(TX) N [X],

where [X] is the fundamental class and ¢d, (T X) is Hirzebruch characteristic cohomology class of the
tangent bundle T X . Here the Hirzebruch class td, (E) of the complex or algebraic vector bundle E over
X is defined to be (see [15, 16]):
rank E/
o a(l+y)
rank(E)
Here «;’s are the Chern roots of E, i.e., ¢(E) = H (1 + a;). Then td,(E) is a unification of the

i=1
following three well-known characteristic cohomology classes:
rank(E)
o td_1(FE) = H (14 «) = ¢(E), the total Chern class,
i=1
rank(E) o
o tdy(E) = H I td(E), the total Todd class,

i=1

rank(E)

o tdi(F) = H ta:ha = L(E), the total Thom-Hirzebruch L-class.

Then ¢ isequalto T_y, : Ko(V/—) — HEM(-)® Q, since T_1, : Ko(V/-) - HEM ()2 Q

is the unique natural transformation satisfying the normalization condition that
id
T (X = X]) = ¢(Tx) N [X]
for a smooth X. Thus for any variety X, singular or non-singular, we have
id
(X =5 X)) = (X)) = eu(llx)

In particular [, ¢.(lx) = x(X) the topological Euler—Poincaré characteristic, which is a contradiction
to the fact that

/ CAL((X 195, X]) = (—1)8m X DT (),
X

Remark 4.9. In fact 1% is equal to the motivic Chern class transformation
T_1, : Ko(V/X) = HPM(X) = HPM(X)® Q.

Ky(V/X) is aring with the following fiber product

V25X W5 X =V xx w225 X,

Proposition 4.10. The operation h.h*éx of pullback followed by pushforward of a constructible func-
tion makes F(X) a Ko(V/X )-module with the product [V LN X]-6x = h.h*0x. Namely, the following
properties hold:
o [V X]- (8% +6%)
o (VI X+ W5 X)) ox

+ VLX) 8%

v L& X
= X]-6x +[W 5 X 6.

v
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o (VL X WEX) sx=[VLEX]-(WE X] 6x).
idx

o [X — X] -6x =dx.

Then the operation h,h*dx gives rise toamap @ : Ko(V/X)® F(X) — F(X) and the composition
e, i=c,0®: Ko(V/X)®F(X) = HEM(X) of ® and MacPherson’s Chern class transformation c,
is a kind of extension of c,.

Lemma 4.11. For any morphism g : X — Y the following diagram commutes:

Ko(V/Y)®@ F(Y) —2— F(Y)

res | s
Ko(V/X) & F(X) —— F(X).

Corollary 4.12. For a smooth morphism g : X — Y the following diagram commutes:

Ko(V/Y)@ F(Y) — HBM(Y)

g*®9*l J,C(Tg)ﬂg*

Remark 4.13. Fix 0y € F(Y), the composite of the inclusion homomorphism
is, : Ko(V]Y) = Ko(V/Y) @ F(Y)

defined by i5, (@) := @ ® dy and the map @ : Ko(V/Y) @ F(Y) — F(Y) is the homomorphism [dy];
b ois, = [0y]: Ko(V/F) = F(Y).

The right-hand-sided commutative diagram in Lemma 4.5 is the outer square of the following commuta-

tive diagrams:

Ko(V/Y) —2 s Ko(V/Y) @ F(Y) —2— F(Y)

q*l lg*@g* lq*

Ko(V/X) —— Ko(V/X) 8 F(X) —— F(X).

g% 5y

Furthermore, if g : X — Y is smooth, we get the following commutative diagrams:

Ko(V)Y) —2 % Ko(V/Y) @ F(Y) —2— F(Y) —Ss HBM(y)

g*l lg*®g* g" JC(Tg)ﬂg*

Ko(V/X) —— Ko(V/X) @ F(X) —— F(X) — HY(X),

Zg*éy

the outer square of which is the commutative diagram in Corollary 4.6 (2).

Remark 4.14. As to the pushforward we do knot know if there exists a reasonable pushforward “?” :
Ko(V/X)® F(X) = Ko(V/Y) ® F(Y) such that the following diagram commutes:

Ko(V/X)® F(X) —2— F(X)

| o

Ko(V/Y) @ F(Y) —— F(Y).
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Indeed, for [V 2 X]|®0x € Ko(V/X) ® F(X) we have that g, ®([V 2 X]®x) = g.h.h*ox. But
we do not know how to define “?” : Ko(V/X) ® F(X) — Ko(V/Y) @ F(Y) such that

(v ([V 2 X]®6x)) = gohoh*dx.
One possibility would be

P = (g.@2)(V 2 X ®6x) = [V 25 V]2 (65x) = (gh)«(gh)" (2.(6x)) = guruh*g" (2.(5x)),

but here we do not know how to define 7, : F(X) — F(Y) so that g*(?.(d0x)) = dx. At the moment
we can see only that the following diagrams commute:

Lg* sy [

Ko(V/X) — Ko(V/X) @ F(X) F(X) HPM(X)

g*l gx lg*

Ko(V/Y) ——= Ko(V/Y) ® F(Y) F(Y) HPM(Y)

Cx

Cx

i}

Indeed, in the left long square, we do have that
. h h * * * *
(gs 0 @ oiges, ) ([V = X]) = gs (‘P([V = X]®y 5y)) = g« (heh™(g"0y)) = (gh)«(gh)" oy,

(®oisy 09.) (V25 X]) = @ (is, (V25 Y])) = @IV £ Y] @ 8y) = (gh).(gh) by

Thus the left long square is commutative.

5. NAIVE MOTIVIC DONALDSON-THOMAS TYPE HIRZEBRUCH CLASSES

In this section we give a further generalization of the above generalized Aluffi class ¢ (X)), using the
motivic Hirzebruch class transformation T}, : Ko(V/—) = HPM () @ Q[y].

In the above argument, a key part is the operation of pullback-followed-by-pushforward h.h* for
a morphism ~ : V' — X on a fixed or chosen constructible function dx of the target space X. It is
quite natural to do the same operation on K()/X) itself. For that purpose we need to define a motivic
element 6'%°" € Ky(V/X) corresponding to the constructible function dx; in particular we need to define
a reasonable motivic element v°" € K()/X) corresponding to the Behrend function vx € F(X).

By considering the isomorphism 1 : Z(X) =N F(X), 13y nv[V]) == >, nvly, we define
another distinguished integral cycle: D x := 17" (vx) (= 17! o Eu(€x)) . Then we set

I/?Ot = [@X — X}

This can be put in as follows. Lets : F(X) — Ky(V/X) be the section of 1, : Ko(V/X) — F(X)
defined by 5(1g) := [S < X]. Then v°* = s(vx). Another way is v := > n[vy'(n) — X]
(see [10]).

Remark 5.1. Obviously the homomorphism [1x] = 1. : Ko(V/X) — F(X) is not injective and its
kernel is infinite. In the case when X is the critical set of a regular function f : M — C, then there is a
notion of “motivic element” (which is called the “motivic Donaldson—Thomas invariant) corresponding
to the Behrend function (which is in this case described via the Milnor fiber), using the motivic Milnor
fiber, due to Denef—Loeser. In our general case, we do not have such a sophisticated machinery available,
thus it seems to be natural to define a motivic element v?°" naively as above.

Let U : Ko(V/X)® Ko(V/X) — Ko(V/X) be the fiber product mentioned before:

q/([vi>X]®[Wﬁ>X]) =V X WS X] =V oxy W 2XE X,
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Since [0x] = ® o is, : Ko(V/X) EN Ko(V/X)® F(X) 2, F(X) with 6x € F(X), we consider
its “motivic” analogue, which means the following homomorphism

) : Ko(V/X) =% Ko(V/X) ® Ko(V/X) %> Ko(V/X),
where yx € Ko(V/X)and i, : Ko(V/X) = Ko(V/X)®Ko(V/X) is defined by i, (o) := a®x.
Proposition 5.2. Let vx € Ko(V/X). Then the following diagram commutes:

[vx]

Ko(V/X Ko(V/X)

)
1. () /
F(X).

Proof. Letyx =[S LERS ]. Then it suffices to show the following

(]1* o [[s hs, X]D (v 2 x)) = [n* ([s hs, X])} (v 2 x)).
VxxS — s s
This can be proved using the fiber square ﬁ;l lhs

(1.0 [i5 22 x1]) (v & x]) = 1. ([I5 22 x7] (v & x])

— L[V xx S 2 X))
= (ho ;L;)*HVXXS (by the definition of 1)
= h*lfl\;*]leXS
= hohg, h*1g
= h,h*(hg).lg (since hg, h* = h*(hg)s)
= h.h* (n*([s hs, X]))
= [11* ([s hs, X])} (v 2 x)).
O

Corollary 5.3. (1) Let 6x € F(X) and let 6%°" € Ko(V/X) be such that 1,.(6%°") = 6x. Then
we have

"]

Ko(V/X) Ko(V/X)

F(X).

The motivic element §%°" is called a naive motivic lift of dx.



40 VITTORIA BUSSI*) AND SHOJI YOKURA (**)

(2) In particular, we have

[ mot
Vx

Ko(V/X)

Remark 5.4. Here we emphasize that the following diagrams commutes:

Ko(V/X)

Ko(V/X) [vx ']

Ko(V/X)

HB]\/I ® Q

. ®Q

Thus, modulo the torsion and the choices of motivic elements v°!, the composite 71, o [VF°] is a
higher class analogue of the Donaldson-Thomas type invariant. Thus it would be natural to generalize
the Donaldson-Thomas type invariant using the motivic Hirzebruch class T,

Let yx € Ko(V/X),vy € Ko(V/Y). Then for any morphism g : X — Y the following diagrams
commute:

Ko/X) -0 Ko(V/X)  Ko(V/X) —2 Ko(V/X) ® Ko(V/X) —X Ko(V/X)

9*l lg* or 9*J lg*®g* lg*

Eo(V/Y) —— Ko(V/Y), Ko(V/Y) —— Ko(V/Y)® Ko(V/Y) —— Ko(V/Y)

[gx«vx] lgxvx
Ko(V)Y) -2 Ko(v)y)  Ko(V/Y) =2 Ko(V/Y) ® Ko(V/Y) —1 Ko(V/Y)

g*l lg* or g*l lg*®g* lg*

Ko(V/X) —— Ko(V/X), Ko(V/X) —— Ko(V/X)®@ Ko(V/X) — Ko(V/X)

lg*vv] to* vy
Ko(V/X) 7 Ko(v)/x)
| |-
Ko(V/Y) W Ko(V/Y).
The last commutative diagram is a bit more precisely the following

Q’YY

Ko(V/X) == Ko(V/X) @ Ko(V/X) —— Ko(V/X)

Eo(V/Y) —— Ko(V/Y) ® Ko(V/Y) —— Ko(V/Y)

Here we do not know how to define a homomorphism in the middle so that the diagrams commute, just
like in the case discussed in Remark 4.14.
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Corollary 5.5. (1) Letvx € Ko(V/X),vy € Ko(V/Y). For a proper morphism g : X — Y the
following diagrams commute:

Ko(v/X) 2 gev(x) gy Ko(v/X) —=C gEM(x) @ Qly

o | |- o | |-

Ko(V/)Y) ——— HPY(Y)®Qlyl, Ko(V/Y) ——— HPY(Y)®Qlyl,

Ty 0 [g+7x] Ty, [vv]

(2) For a proper smooth morphism g : X —'Y and for vy € Ko(V/Y) the following diagrams are
commutative:

Ko(v/y) —=2 gsaryy g qpy
Q*JV J{tdy(Tg)mg*
Ko(V/X) —— HBM(X) ®Qly.

Ty, [g*vv]

(3) Let 7ot := (—1)4mXymot the signed one. Let TyfT :=T,, o [V%°"]. For a proper smooth
morphism g : X — Y the following diagrams are commutative:

TDT TDT

Ko(V/X) —— HM(X)@Qly] Ko(V/Y) —— HIM({Y)®Qly]

g*l lg* g*l ltdy(Tg)ﬁg*

Ko(V/Y) o HPM(Y)®Qlyl, Ko(V/X) o HPM(X) @ Qly]-

Y%

Remark 5.6. The commutative diagram in Proposition 5.2 can be described in more details as follows:

Ko(V/X) — %+ Ky(V/X) ® Ko(V/X) — Ko(V/X)

1d®i1 l lilx

Ko(V/X) ® Ko(V/X) @ F(X) 2% Ko (V/X) © F(X)

ml l

Ko(V/X) © F(X) F(X)

P

If we denote ®(« ® dx ) simply by « - dx, then the bottom square on the right-hand-side commutative
diagrams means that (o - 8) - 0x = a - (8 - dx), i.e. the associativity.
Remark 5.7. We remark that the following diagrams commute:

(1) for a proper marphismg: X — Y

Ko(V/X) @ @ Ko(V/X) L5 Ko(V/X) —2 HEM(X) ® Qly]

lg*®-~®g* lg* lg*

Ko(V/Y) @@ Ko(V/Y) —— Ko(V/Y) —— HEM(Y) @ Qly)

Y%

n
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(2) for a proper smooth morphismg: X — Y

n

Ko(V/Y)®@ - Ko(V]Y) 5 Ko(V/Y) —2= HEM(Y) @ Qly

lg*®-~~®g* lg* l“(T Ngx

Ko(V/X)®-- @ Ko(V/X) E—— Ko(V/X) —— HIM(X)2Qly],
Here V"~ 1([V — X]) := [V — X]- --+ -[V — X] is the fiber product of n copies of [V — X]. When

n =1, ¥ := idg, (v, x) is understood to be the identity. Let P(t) := > a;t* € Q[t] be a polynomial.
Then we define the polynomial transformation ¥ p(;y : Ko(V/X) — Ko(V/X) by

U (V5 X)) =3 a0 [V — X]).

Then we have the following commutative diagrams.
(1) for a proper morphismg: X — Y

Ve

Ko(V/X) Ko(V/X) —2 HBEM(X) @ Q[y]

lg* Jg* lg*

Eo(V)Y) —— Ko(V/Y) —— HPM(Y) 2 Qly,

Ve Ty,

(2) for a proper smooth morphismg: X — Y

Ko(V)Y) 29 Ko(V)Y) —2s HEM(Y) @ Q[y]

lg* Lq* JC(Tg)ﬁg*

Ko(V/X) —— Ko(V/X) —— HPM(X)@Qly),

Yp( Y%
These are a “motivic” analogue of the corresponding case of constructible functions:
(1) for a proper morphismg: X — Y

F(X) =% F(X) == HPM(X)

|- |- |-
FO) = FO) —— H2N(Y)

(2) for a proper smooth morphismg: X — Y

fP(t)

FY) —— FY) —— HPM(Y)

te
‘Q

lC(Tg)ﬂg*

FX) —— F(X) —— HM(X)
P(t) Cx
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Here Fp(1)(8) := Y a;3". Note also that the following diagram commutes

Ko(V/X) —29% Ko(V/X)

b
F(X) ?m> F(X).

Definition 5.8. (1) We refer to the following class
D D id ~
Ty, T(X) = (Ty* T) (X == X]) = Ty*([Vg(wt])
as the naive motivic Donaldson—Thomas type Hirzebruch class of X.

(2) The degree zero of the naive motivic Donaldson-Thomas type Hirzebruch class is called the
naive motivic Donaldson—-Thomas type x,-genus of X:

ﬁ%m:A%?wm

Remark 5.9. The cases of the three special values y = —1, 0, 1 are the following.

(1) Fory = —1, 7177 (X) = Ty ([7"]) = c(X).

(2) Fory =0, ToPT(X) = Ty, ([7'2°1]) =: td2*(X), which we call an “Aluffi-type” Todd class of
X.

(3) Fory = 1, TPT(X) = T, ([p%°]) =: LA4(X), which we call an “Aluffi-type” Cappell-
Shaneson L-homology class of X.

The degree zero part of these three motivic classes are respectively:

(1) fory = -1, xPT(X) = (=1)4mX\PT(X), the original Donaldson-Thomas type invariant
(i.e. Euler characteristic) of X with the sign;

() fory = 0, x2T(X) = xPT(X), which we call a naive Donaldson-Thomas type arithmetic
genus of X and

(3) fory = 1, x\PT(X) = oPT(X) , which we call a naive Donaldson-Thomas type signature of
X.

Remark 5.10. Since vx(x) = 1 for a smooth point 2 € X, we have that vx = 1x + ax,,,, for

some constructiblee functions ax;, . supported on the singular locus X ;4. For example, consider the
simplest case that X has one isolated singularity x, say vx = I x + agl,,. Then

D?ot _ [X Zd_X) X} —+ (],O[xo io_> X] € KO(V/X)

Here x zI—°> X is the inclusion. Hence we have
T,PT(X)=T

Vi b (7X7)

Vx

=T, (X %5 X+ aglzo =% X))

= Ty*(X) + ao (imo )*Ty* (IO)

= Ty* (X) + ag.
Thus the difference between the motivic DT type Hirzebruch class T, f T(X ) and the motivic Hirzebruch
class T}, (X) is just ag, independent of the parameter y. Of course, if dim X;,,, > 1, then the difference
does depend on the parameter y. For example, for the sake of simplicity, assume that vy = llx+alx,,,, .
Then the difference is

TyfT(X) - Ty*(X) = a(iX.s‘ing)*Ty* (Xsing)v

which certainly depends on the parameter y, at least for the degree zero part Xy(Xsing)-
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If we take a different motivic element 72° = [X %5 X] + [V % X] such that
L[V 2 X]) = a1y,

and dim V' > 1, then the difference 7, (X) — T, (X) = h.(T,,(V)), thus it does depend on the
parameter y, at least for the degree zero part, again.

In the case when X is the critical locus of a regular function f : M — C, the motivic DT invariant
vpotivic which DT-theory people consider, using the motivic Milnor fiber, is the latter case, simply due
to the important fact that the Behrend function can be expressed using the Milnor fiber. For example,
as done in [9], even for an isolated singularity x, the difference Ty*D T(X ) — Ty, (X) is, up to sign,
the x,-genus of (the Hodge structure of) the Milnor fiber at the singularity x¢, so does depend on the
parameter y.

So, as long as the Behrend function has some geometric or topological descriptions, e.g., such as
Milnor fibers, then one could think of the corresponding motivic elements in a naive or canonical way.

We will hope to come back to properties of these two classes td2‘(X), LA4(X) and xPT'(X),
oPT(X) and discussion on some relations with other invariants of singularities.

Remark 5.11. In [9] Cappell et al. use the Hirzebruch class transformation
MHMT,, : Ko(MHM(X)) — HZY(X) @ Qly,y~']

from the Grothendieck group Ko(MHM(X)) of the category of mixed Hodge modules (introduced
by Morihiko Saito), instead of the Grothendieck group Ky(V/X). We could do the same things on
MHMT,, : Ko(MHM(X)) - HBM(X) ® Q[y,y~'] and get MHM-theoretic analogues of the above.
We hope to get back to this calculation.

Remark 5.12. In [14] Géttsche and Shende made an application of the above motivic Hirzebruch class
MHMT,,,. A bit more precisely, for a family 7 : C — B of plane curves they introduce certain invariants
N¢ ) € Ko(MHM(B)) and apply the above functor

MHMT,, : Ko(MHM(B)) — HPM(B) ® Qly,y "]
to these invariant V¢, / -
NlC/B(y) := MHM Ty*(Né/B)7
which are used to make some formulations and some conjectures.
Remark 5.13. In a successive paper, we intend to apply the motivic Hirzebruch transformation to the

motivic vanishing cycle constructed on the Donaldson—-Thomas moduli space and announced in [6, 8].
This will hopefully provide the “right” motivic Donaldson—-Thomas type Hirzebruch class.

6. A BIVARIANT GROUP OF PULLBACKS OF CONSTRUCTIBLE FUNCTIONS AND A
BIVARIANT-THEORETIC PROBLEM

In the above section we mainly dealt with the class ¢2x (V/ LN e )of h : V — X supported on the

. . . h
target space X. In this section we deal with the class 3 (V.= X)of h : V — X supported on the
source space V.

h . . ,

The class X (V' = X) is by definition ¢, (h.h*0x) = hsc.(h*0x) € HBEM(X), and can be
captured as the image of a homomorphism between two abelian groups assigned to the space X, as done
in the previous sections. However, when it comes to the case of ¢3X (V o x ) € HBM(V), one cannot
do so, i.e. one cannot capture it as the image of a homomorphism between two abelian groups assigned
to the space V. So we approach this class from a bivariant-theoretic viewpoint as follows.
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For a morphism f : X — Y and a constructible function §y € F(Y'), we define Fv (X ER Y) as

follows:

oY (X ER Y):= {Z agis,isf*dy | S are closed subvarieties of X, ag € Z} C F(X),
s
where ig : S — X is the inclusion map. Thus, using this notation, for a morphism / : V' — X and for a

constructible function §x € F(X), we have that h*dy € Fox (V LN X) Cc F(V).
For the sake of simplicity, unless some confusion is possible, we simply denote igs,(is)* f*dy by

(fls)*dy (= (is)*f*dy). In particular, let us consider the signed Behrend function 7y as dy, i.e.,

F?v (X L5 Y'), which shall be denoted by FB¢" (X L5 Y'). It is easy to prove the following lemma.

Lemma6.1. (1) IfY is smooth, then FBh (X L5 V) = F(X).

(2) FBh(X 5 pt) = F(X).

(3) If X is smooth, FBeh (X 19X, x) = F(X).

(@) IfY is singular and f(X) 0 Yying = 0, FEh(X L v) = F(X).

(5) If Y is singular, f(X) N Ysing # 0 and there exists a point y € f(X) N Yging such that
v (y) > 1, BB (X L) € F(X).

Remark 6.2. In an earlier version of the paper, in the above lemma we stated “ If X is singular, then

id . . .. . id
FBeh(X =5 X) C F(X) and in particular, the characteristic function 1x ¢ FBh(X =5 X)”
However the referee pointed out that this is not obvious, and we have realized that

FPeh(X 9% X) = F(X)

is also possible. If X is a plane curve with a node xg, then vx (zo) = Eux(x¢) = 2, in which case we

get FBeh (X Mx, x ) & F(X). Let X be the union of a reduced surface ¥ with an isolated singular
point ¢ such that Euy (z¢) = m with |m| > 1 and a reduced curve C' with the isolated singular point
being the same x( such that Euc(zo) = m — 1, where we assume that Y N C' = {z(}. For example,
the following is such a (non-pure dimensional) surface: Let Y be a projective cone of a non-singular
curve of degree d(> 3) with the cone point zg. Then Euy (z¢) = 2d — d? (see [29, p. 426]). Hence
vy = (=1)2Euy = Euy. Now let C be a plane curve with z being a (2d — d* + 1)-ple point such
that Y N C = {zo}. Then let us set X = Y U C. Then we have vx = (—1)2 Euy +(—1)* Euc, hence
vx(mg) =2d —d?> — (2d —d*> +1) = —1,and vx(y) = 1 fory € Y — {x0} and vx(y) = —1 for
y € C'— {zo}. Then we have

Ix =iy, iy vx + (—1ic.ic™ vx + iz iz, 'vx € FPM(X =5 X).

If 1x € FBeh(X 9% X)), then any constructible function belongs to FE¢" (X 9%, X)), thus we get
FBeh(X x, x ) = F(X). In passing, at the moment we do not know an example of a pure dimensional
singular variety X which satisfies FBh (X 4%, X)) = F(X).

In order to show that FBe" (X ER Y') is a bivariant theory in the sense of Fulton and MacPherson [13],
first we quickly recall some basics about Fulton—-MacPherson’s bivariant theory.

Definition 6.3. A bivariant theory B on a category C assigns to each morphism X LV in the category

C a (graded) abelian group B(X ER Y).
This bivariant theory is equipped with the following three basic operations:
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(i) for morphisms X i) YandY % Z, the product operation
o BX LY)oBY % 2) - BX 4L 2)

is defined;
(i1) for morphisms X L yandy % Z with f proper, the pushforward operation

foBX L 2y S5 BY S 2)

is defined;
X2 X
(iii) for a fiber square f’l lf the pullback operation
v—=h
7 BX L y) s B Ly
is defined.

These three operations are required to satisfy the seven axioms which are natural properties to make
them compatible each other:

(B1) product is associative;

(B2) pushforward is functorial;

(B3) pullback is functorial;

(B4) product and pushforward commute;
(BS) product and pullback commute;
(B6) pushforward and pullback commute;
(B7) projection formula.

Definition 6.4. Let B and B’ be two bivariant theories on a category C. Then a Grothendieck transfor-
mation from B to B’

v:B— B
is a collection of morphisms
BX Lv)oB (X Ly
for each morphism X i> Y in the category C, which preserves the above three basic operations.

As to the constructible functions we recall the following fact from [40]:

Theorem 6.5. If we define F(X ER Y) := F(X) (ignoring the morphism f), then it become a bivariant
theory, called the “simple” bivariant theory of constructible functions with the following three bivariant
operations:

e (bivariant product)

o FX Ly)oFY % 2) 5 F(X L 2),

aef:=«a- f*B.
o (bivariant pushforward) For morphisms f : X — Y and g :' Y — Z with f proper

£ F(X L 2) S FRY S 2)
fra = fea.
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X 2 X
o (bivariant pullback) For a fiber square f’l lf
Y —— Y,
g
* . f , /
g :FX>Y)>FX —Y)

*

o= (g) .

Theorem 6.6. Here we consider the category of complex algebraic varieties. Then the above group
FBeh(X i> Y') becomes a bivariant theory as a subtheory of the above simple bivariant theory F(X i> Y),
provided that we consider smooth morphisms g for the bivariant pullback.

Proof. All we have to do is to show that those three bivariant operations are well-defined on the sub-

group FBeh (X ER Y’). Below, as to bivariant product and bivariant pushforward, we do not need the
requirement that dy is the signed Behrend function vy, but we need it for bivariant pullback.

(1) (bivariant product) It suffices to show that

(fls)"dy o (glw) 62 = (f1s) 0y - " (glw)*67 € FP2(X 2 7).

Since (f|g)*dy is a constructible function on S, (f|s)*dy = >, ay 1y where V’s are subva-
rieties of S, hence subvarieties of X. Thus we get

(fl9)*0y - £ (glw)*0z = _avly - (gf|j-1(w)) "0z
1%

= av(gfly-1 )6z
1%

Since f~1(W) NV is a finite union of subvarieties, it follows that

(fls)*dy - f*(glw)*0z € F=(X 2L 7).

(2) (bivariant pushforward) It suffices to show that

£ ((gfls)62) e FP2(Y 2 2).

More precisely, f.((9f]s)°07) = fu(is)-(f1s)*9°02) = (fls)+(fls)"g"0s. Now it follows
from Verdier’s result [37, (5.1) Corollaire] that the morphism f|s : S — Y is a stratified
submersion, more precisely there is a filtration of closed subvarieties V; C Vo C --- C V,,, C Y
such that the restriction of f|s to each strata V11 \ Vi, i.e., (f|s) 1 (Viz1 \ Vi) — Vig1 \ Viisa
fiber bundle. Hence the operation ( f|s).(f|s)* is the same as the multiplication (3", a;1y;)-
with some integers a;’s, i.e.,

(F1s)e(F1s)°6"02 = (3 aillv.) - 9707 = D ailg

%

v.) 0z €2y L 7).

Here we remark that the above integer a; is expressed as follows. Let x; denote the Euler-
Poincaré characteristic of the fiber of the above fiber bundle (f|s)|v,\v;_,. Then

m
U =xXm and a;=x;— »_ x;forl<i<m.
Jj=it+l
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(3) (bivariant pullback) Here we show that the following is well-defined

7 Frx Ly)y v xn Loy,

Consider the following fiber squares:

g 9, g

Indeed,
g" ((fls) oy) )V ((f|ls)* 0y (by definition)
) ((is)«(f]s)*dy (more precisely)
is1)«(9")" (is)" oy
— (is)a(is ) (f) g0y € B9 (x' Ly vy,
Hence, if dy is the signed Behrend function 7y, then for a smooth morphism g : Y/ — Y we

have Jy+ = g* Dy, thus the pullback ¢* : FBh(X L5 V) — FBeh (X’ L5 ¥7) is well-defined.
Here we note that for any constructible functions dy which are preserved by smooth morphisms

(
(
(

g:Y' =Y, ie. 8y = g*dy, the subgroups F% (X ER Y') give rise to a bivariant theory.
O
Problem 6.7. Define a “bivariant homology theory” ﬁl(X — YY) such that
(1) Iﬁl(X ER Y) € HEM(X) for any morphism f : X =Y,
(2) H(X = Y) = HEM(X) for a smooth Y,
(3) the homomorphism
e FEh(x Lyy S mx Loy
defined by c,(is,i5f*Uy) = is.ce(ilf*Vy) € HPM(X) and extended linearly, becomes a
Grothendieck transformation.
4) if Y is a point pt, then c, : F(X) = FBeh(X ER pt) — H(X ER pt) = HBM (X)) is equal to
the original MacPherson’s Chern class homomorphism.
Remark 6.8. One simple-minded construction of such a “bivariant homology theory” ]ﬁl(X —Y) could
be simply the image of FBe" (X ER Y) under MacPherson’s Chern class ¢, : F(X) — HEM(X). 1t

remains to see whether the image H(X — Y) := ¢, (FBeh(X ER Y')) gives rise to a bivariant theory.

Before closing this section, we mention a bivariant-theoretic analogue of the covariant functor £ of
conical Lagrangian cycles. For the covariant functor of conical Lagrangian cycles, see [33, 21, 22].

In [21] Kennedy proved that Ch : F'(X) =N L(X) is an isomorphism. In general, suppose we have a
correspondence H such that

e 7 assigns an abelian group #H(X) to a variety X

e there is an isomorphism O x : F(X) — H(X).
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Then, by “transfer of structure” using the above isomorphism ©, we can get the corresponding bivariant
theory. Here we go into a bit more details. If we define the pushforward f,. : H(X) — H(Y') for a map
f: X —=>Yby

=0y o fF o0y HIX) - H(Y),
then the correspondence H becomes a covariant functor via the covariant functor F. Here
FEFX) = F(Y),
emphasizing the covariant functor F'. Similary, if we define the pullback f* : H(Y) — H(X) by
i = Ox 0 ffo Oy i H(Y) = H(X),

then the correspondence #H becomes a contravariant functor via the contravariant functor F. Here
fi: F(Y) — F(X). Furthermore, if we define

BH(X L Y) = H(X)
then we get the simple bivariant-theoretic version of the correspondence # as follows:

o (Bivariant product) ezy : BH(X L V) @ BH(Y % Z) — BH(X 2L Z) is defined by
aepy = Ox (@;1(a) o @;(1(5)).

e (Bivariant pushforward) f5% : BH(X X Z) — BH(Y % Z) is defined by
i=0yoflooxH .
e (Bivariant pullback) g*py : BH (X EN Y) - BH(X' EiN Y’) is defined by
Giy = Oxr 0 faoOY.
Clearly we get the canonical Grothendieck transformation
vo=0:FX Lv)5BHX LY.
If we apply this argument to the conical Lagrangian cycle £(X) we get the simple bivariant theory of
conical Lagrangian cycles L(X ER Y') and also we get the canonical Grothendieck transformation
ven=Ch:FX L vy Lx Ly,

This simple bivariant theory L(X ER Y’) can be defined or constructed directly, which would be however
harder. Indeed, it is done in [7] and one has to go through many geometric and/or topological ingredients.

Fulton-MacPherson’s bivariant theory F¥™ (X 5 V) is a subgroup (or a subtheory) of the simple

bivariant theory F(X ER Y) = F(X). Then if we define

LM (X 4 vy = yen M (x L 1))

then we can get a finer bivariant theory of conical Lagrangian cycles, putting aside the problem of how
we define or describe such a finer bivariant-theoretic conical Lagrangian cycle; it would be much harder

than the case of the simple one L(X ERN Y') done in [7].
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7. SOME MORE QUESTIONS AND PROBLEMS

7.1. A categorification of Donaldson-Thomas type invariant of a morphism. The cardinality c(F")
of a finite set F', i.e., the number of elements of F', satisfies that

(1) X = X' (set-isomorphism) = ¢(X) = ¢(X’),

2) (X)) =¢c(Y)+ (X \Y) forasubset Y C X (a scissor relation),

3) (X xY)=c(X) xc(Y),

) c(pt) = 1.
Now, let us suppose that there is a similar “cardinality” on a category 7 OP of certain reasonable topo-
logical spaces, satisfying the above four properties, except for the condition (1) and (2),

(1y X = X' (TOP-isomorphism) = ¢(X) = ¢(X’),

2) e(X)=c(Y)+c(X\Y) for aclosed subset Y C X.

3) (X xXY)=c(X) xc(Y),

) cpt) =1.
If such a “topological cardinality” exists, then we can show that ¢(R') = —1, hence ¢(R") = (—1)"
(e.g. see [41]). Thus, for a finite CTW-complex X, ¢(X) is exactly the Euler—Poincaré characteristic
x(X). The existence of such a topological cardinality is guaranteed by the ordinary homology theory,
more precisely

o(X) = xe(X) := ) _(=1)' dimg H(X;R) = ) _(~1)" dimg H (X;R).
7

Here HPM (X) is the Borel-Moore homology group of X.

Similarly let us suppose that there is a similar cardinality on the category V¢ of complex algebraic
varieties:

()" X =2 X' (V¢-isomorphism) = ¢(X) = ¢(X'),

2)” e¢(X) = ¢e(Y) 4+ (X \Y) for a closed subvariety Y C X (i.e., a closed subset in Zariski

topology),

B) (X xXY)=c(X) xc(Y),

) clpt) =1.
The complex affine line C! is corresponding to the real line R!. But we cannot do the same trick for
C' as we do for R'. The existence of such an algebraic cardinality is guaranteed by Deligne’s theory of
mixed Hodge structures. Let u, v be two variables, then the Deligne-Hodge polynomial x,, ., is defined
by

Xuw(X) =Y (=1)"dime Gri.Gr)l,  (HL(X; C))ulr?.

In particular, X, ,(C') = uv. The particular case when u = —y,v = 1 is the important one for the
motivic Hirzebruch class:x, (X) = x_1(X) = Y (—1)"dimc Gri(H{(X; C))(—y)P. This is called
Xy-genus of X.

Similarly let us consider the Donaldson—Thomas type invariant of morphisms:

O X Ly = x4y @somorphism) = yPT(X L v) = PT(x' L v),

@ XPT(X L v)=xPT(z Sz, Y)+xPT(X\Z Tz, Y') for a closed subvariety Z C X.

3y xPT(X) % Xo 292 v x Vo) = xPT(X) 25 v1) x APT (X2 22 1a),

@ xPT(pt)=1.

So, just like the above two cardinalities or counting x.(X) and x.,(X), we pose the following
problem, which is related to the above Problem 6.7:
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Problem 7.1. Is there some kind of bivariant theory ©° (X ER Y') such that

M APT(X L y) =3, (-1)idime? (X L v)?

(2) When Y is smooth, ©(X ER Y) is isomorphic to Borel-Moore homology theory HEM (X)

(which is isomorphic to the Fulton-MacPherson bivariant homology theory H(X ER Y) (eg.,
see [39, 4]) ).

Remark 7.2. (1) When Y is smooth, we have Y27 (X L5 V) = (=1)dmY y(X), that is

NPT L y) = (—1) 8 S (1) dim HEM (X)
:Z(fl)ierimYdimH,i(ng).

In the above formulation yP7(X % V) = > (=1)idim O (X L5 V) the sign part (~1)i
should involve something of the morphism f such as reldim f := dim X — dim Y, dim X, or
dimY etc., as well.

(2) Even for the identity X “%5 X, since vP7(X) # xPT(Z) + xPT(X \ Z), the cohomological
idx

part ©(X —= X)) of such a theory (if it existed) does not satisfy the usual long exact sequence
for a pair Z C X, and it should satisfy a modified one so that

inclusion inclusion
XPT(X) = xPT(Z 75 X) +xPT(X\ 2 75575 X)
is correct.

7.2. A higher class analogue of MNOP conjecture and a generalized MacMahon function. In [27]
M. Levine and R. Pandharipande proved the MNOP conjecture [30], that is, we have the homomorphism

M(q) : 73 (pt) — Q[[q]], defined by M (q)([X]) := M (q)/x s(Tx@Hx),
where Q*(X) is Levine—Morel’s algebraic cobordism [26] (also see [25] and [27]) and
1 )
M@ =] —— =1 24 6¢° +13¢* + -
(q) ];-[1(1—q")” +q+3¢° 4+ 6¢° + 13¢* +
is the MacMahon function. A naive question on the above homomorphism M (q) : Q=3(pt) — Q[[q]] is:

Question 7.3. To what extent could one extend the homomorphism M (q) : Q=3(pt) — Q|[q]] to a higher
dimensional variety Y instead of Y = pt? Namely, is
M(q) : 2*(Y) — HM(Y) © Ql[q]]
defined by
M(q)([X L Y)) := M(g)F(Cam x—aimy (T @K )NIX])
a homomorphism?

Here by the construction of algebraic cobordism X andY are both smooth, Ty := Tx — f*Ty and
Ky :=Kx — f"Ky.
Note that for Y = pt the above
M(q) : " (Y) = HZM(Y) ® Qlld]]
is nothing but M(q) : Q73(pt) — Q[[¢]] in the case when dim X = 3. The MacMahon function has a
combinatorial origin as the generating function for the number of 3-dimensional partitions of size n (as

explained in [25]). One could conjecture that the MacMahon function is involved only in the case when
dim X —dimY = 3. If it were the case, the following more specific problem should be posed:
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Problem 7.4. Is it true that the following is a homomorphism?
_ f c
M(q): (V) = HPM(Y) © Qllq]] defined by M(q)([X = Y]) := M(q)"(s(Tr@KNXD
Remark 7.5. Note that the dimension d of an element
X L yvyeady)

is equal to codim f = dimY — dim X, hence if Y = pt, then dim X = 3 implies that d = —3.
Moreover, for a general dimension d, say d < —3, one should come up with some other functions,

i.e. “d-dimensional generalized MacMahon function M (q),” such that when d = —3 it is the same as

the original MacMahon function M (q), i.e. M(q)_5 = M(q). Such a formulation would be useful in
Donaldson-Thomas theory for d-Calabi—Yau manifolds with d > 3. However, we have to point out that

the above function M (g),, for the generating function of dimension d partitions is now known to be not
correct, although it does appear to be asymptotically correct in dimension four [3, 31]. Following ideas
from algebraic cobordism as in [27], we hope to investigate this question further in a future work.

8. ACKNOWLEDGEMENTS

Some parts of the paper are based on what we observed or thought about during the AIM Workshop
“Motivic Donaldson—Thomas Theory and Singularity Theory” held at the Renyi Institute, Budapest, Hun-
gary, May 7 — May 11, 2012. We would like to express our sincere thanks to the organizers, Jim Bryan,
Andrés Némethi, Davesh Maulik, Jorg Schiirmann, Baldzs Szendr6i, and Agnes Szilard for a wonderful
organization and to the AIM for financial support for our participation at the workshop. We also would
like to thank Paolo Aluffi, Dominic Joyce, Laurentiu Maxim, Jorg Schiirmann, Vivek Shende and Balazs
Szendrdi for valuable comments and suggestions. Finally we would like to thank the referee for his/her
thorough reading and many valuable comments and suggestions.

REFERENCES

[1] P. Aluffi, Weighted Chern-Mather classes and Milnor classes of hypersurfaces, In Singularities - Sapporo 1998, Adv. Stud.
Pure Math., Kinokuniya, Tokyo, 2000, 1-20.
[2] K. Behrend, Donaldson—Thomas type invariants via microlocal geometry, Ann. of Math. (2) 170 (2009), no. 3, 1307-1338,
[3] K. Behrend, J. Bryan and B. Szendr6i, Motivic degree zero Donaldson—Thomas invariant, Inventiones Math., 192 (2013),
111-160. DOI: 10.1007/s00222-012-0408-1
[4] J.-P. Brasselet, J. Schiirmann and S. Yokura, On the uniqueness of bivariant Chern class and bivariant Riemann-Roch trans-
formations, Advances in Math. 210 (2007) 797-812. DOI: 10.1016/j.aim.2006.07.014
[5] J.-P. Brasselet, J. Schiirmann and S. Yokura, Hirzebruch classes and motivic Chern classes for singular spaces, Journal of
Topology and Analysis, Vol. 2, No.1 (2010), 1-55.
[6] C. Brav, V. Bussi, D. Dupont, D. Joyce and B.Szendrdi, Symmetries and stabilization for sheaves of vanishing cycles, Nov.
2012. arXiv:1211.3259v1
[7] V. Bussi, Donaldson—Thomas theory and its extensions, September, 2011, preprint.
[8] V. Bussi, D. Joyce, S. Meinhardt, Categorification in Donaldson—-Thomas theory using motivic vanishing cycles, in prepara-
tion, January 2013.
[9] S. Cappell, L. Maxim, J. Schiirmann and J.Shaneson, Characteristic classes of complex hypersurfaces, Advances in Math.
225 (2010), no. 5, 2616-2647.
[10] B. Davison, Orientation data in Motivic Donaldson—Thomas theory, A thesis submitted for the degree of Ph.D, University of
Oxford, 25 Oct 2011. arXiv:1006.5475v3
[11] W. Fulton, Intersection theory, Springer Verlag (1984) DOI: 10.1007/978-3-662-02421-8
[12] W. Fulton and K. Johnson, Canonical classes on singular varieties, Manuscripta Math. 32 (1980), 381-389.
DOI: 10.1007/BF01299611
[13] W. Fulton and R. MacPherson, Categorical frameworks for the study of singular spaces, Memoirs of Amer. Math. Soc. 243,
1981.


http://dx.doi.org/10.1007/s00222-012-0408-1
http://dx.doi.org/10.1016/j.aim.2006.07.014
http://arxiv.org/abs/1211.3259v1
http://arxiv.org/abs/1006.5475v3
http://dx.doi.org/10.1007/978-3-662-02421-8
http://dx.doi.org/10.1007/BF01299611

NAIVE MOTIVIC DONALDSON-THOMAS TYPE HIRZEBRUCH CLASSES 53

[14] L. Gottsche and V. Shende, Refined curve counting on complex surfaces, to appear in Geometry & Topology. arXiv:1208.1973

[15] F. Hirzebruch, Topological Methods in Algebraic Geometry, 3rd ed. (1st German ed. 1956), Springer-Verlag, 1966.

[16] FE. Hirzebruch, T. Berger and R. Jung, Manifolds and Modular Forms, Vieweg, 1992. DOI: 10.1007/978-3-663-14045-0

[17] D. lJoyce, Constructible functions on Artin stacks, J. London Math. Soc. (2) 74 (2006), 583-606.
DOI: 10.1112/S0024610706023180

[18] D. Joyce, Motivic invariants of Artin stacks and ’stack functions’, Quarterly Journal of Mathematics 58 (2007), 345-392.
DOI: 10.1093/qmath/ham019

[19] D. Joyce, Generalized Donaldson—Thomas invariants, in Geometry of special holonomy and related topics, Surveys in Dif-
ferential Geometry X VI (Ed. by N.C. Leung and S.-T. Yau), International Press, Cambridge, MA,(2011), 125-160.

[20] D. Joyce and Y. Song, A theory of generalized Donaldson—-Thomas invariants, Memoirs of the AMS , 217 (2012), pages
1-216. DOIL: 10.1090/S0065-9266-2011-00630-1

[21] G. Kennedy, MacPherson’s Chern classes of singular algebraic varieties, Comm. Algebra 18, No. 9 (1990), 2821-2839.
DOI: 10.1080/00927879008824054

[22] G. Kennedy, Specialization of MacPherson’s Chern classes, Math. Scand. 66 (1990), 12-16.

[23] M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson—Thomas invariants and cluster transformations,
Nov. 2008. arXiv:0811.2435v1

[24] M. Kontsevich and Y. Soibelman, Motivic Donaldson-Thomas invariants: summary of results, in Mirror Symmetry and
Tropical Geometry, Contemporary Mathematics 527 (Ed. R. Castano-Bernard, Y. Soibelma and I. Zharkov), Amer. Math.
Soc., Providence, RI, (2010), 55-90. DOI: 10.1090/conm/527/10400

[25] M. Levine, A survey of algebraic cobordism, UCLA Colloquium, January 22, 2009.

[26] M. Levine and E. Morel, Aigebraic Cobordism, Springer Monographs in Math., Springer-Verlag, 2007.

[27] M. Levine and R.Pandharipande, Algebraic Cobordism Revisited, Inventiones Math., 176 (2009), 63-130.
DOI: 10.1007/s00222-008-0160-8

[28] E. Looijenga, Motivic measures, Séminaire Bourbaki 874, Astérisque 276 (2002), 267-297.

[29] R. MacPherson, Chern classes for singular algebraic varietes, Ann. of Math. 100 (1974), 423-432. DOI: 10.2307/1971080

[30] D. Maulik, N. Nekrasov, A. Okounkov and R. Pandharipande, Gromov—Witten theory and Donaldson—-Thomas theory. I.,
Compositio Math. 142 (2006), 1263—1285.

[31] V. Mustonen and R. Rajesh, Numerical estimation of the asymptotic behavior of solid partitions of an integer, J. Physics. A,
36(24) (2003), 6651-6659.

[32] A. Parusinski and P. Pragacz, Characteristic classes of hypersurfaces and characteristic cycles, J. Algebraic Geomery 10(1)
(2001), 63-79,

[33] C. Sabbah, Quelques remarques sur la géométrie des expaces conormaux, Astérisque 130 (1985), 161-192,

[34] J. Schiirmann, A generalized Verdier-type Riemann-Roch theorem for Chern-Schwartz-MacPherson classes, Feb. 2002. arXiv:
math/0202175

[35] J. Schiirmann and S. Yokura, Motivic bivariant characteristic classes, Advances in Math., 250 (2014), 611-649

[36] R.P. Thomas, Gauge theories on Calabi-Yau manifolds, D. Phil. Thesis, University of Oxford, 1997.

[37] J.-L. Verdier, Stratifications de Whitney et thoréeme de Bertini-Sard, Inventiones Math., 36 (1976), 295-312.
DOI: 10.1007/BF01390015

[38] S. Yokura, On a Verdier-type Riemann-Roch for Chern-Schwartz-MacPherson class, Topology and its Appl. 94 (1999), 315—
327.

[39] S. Yokura, On the Uniqueness Problem of Bivariant Chern Classes, Documenta Math.7 (2002) 133-142.

[40] S. Yokura, Bivariant Theories of Constructible Functions and Grothendieck Transformations, Topology and Its Applications,
Vol. 123 (2002), 283-296.

[41] S. Yokura, Motivic characteristic classes, in “Topology of Stratified Spaces”, MSRI Publications 58, Cambridge Univ. Press
(2010), 375-418.

[42] S.Yokura, Genera and characteristic classes of singular varieties, Oberwolfach Reports OWR No. 56/2011 (Workshop “Strat-
ified Spaces: Joining Analysis, Topology and Geometry”, Mathematisches Forschungsinstitut Oberwolfach, December 12-16,
2011), 59 - 62.

VITTORIA BUSSI: THE MATHEMATICAL INSTITUTE, 24-29 ST. GILES, OXFORD, OX1 3LB, U.K.
E-mail address: bussi@maths.ox.ac.uk

SHOJI YOKURA: DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, FACULTY OF SCIENCE, KAGOSHIMA UNI-
VERSITY, 21-35 KORIMOTO 1-CHOME, KAGOSHIMA 890-0065, JAPAN
E-mail address: yokura@sci.kagoshima-u.ac. jp


http://arxiv.org/abs/1208.1973
http://dx.doi.org/10.1007/978-3-663-14045-0
http://dx.doi.org/10.1112/S0024610706023180
http://dx.doi.org/10.1093/qmath/ham019
http://dx.doi.org/10.1090/S0065-9266-2011-00630-1
http://dx.doi.org/10.1080/00927879008824054
http://arxiv.org/abs/0811.2435v1
http://dx.doi.org/10.1090/conm/527/10400
http://dx.doi.org/10.1007/s00222-008-0160-8
http://dx.doi.org/10.2307/1971080
http://arxiv.org/abs/math/0202175
http://arxiv.org/abs/math/0202175
http://dx.doi.org/10.1007/BF01390015

Journal of Singularities Proc. of 12th International Workshop

on Singularities, Sao Carlos, 2012
Volume 10 (2014), 54-66 DOI:;10.5427/jsing.2014.10c

ON REGULARITY CONDITIONS AT INFINITY

L.R.G. DIAS

ABsTRACT. Let f: X — KP be a restriction of a polynomial mapping on X, where X C K™
is a smooth affine variety. We prove the equivalence of regularity conditions at infinity, which
are useful to control the bifurcation set of f.

1. INTRODUCTION

Let f: X — KP? be a differentiable mapping, where K =R or C, X is a smooth affine variety
and dim X > p. The bifurcation set of f, denoted by B(f), is the smallest subset of K? such
that f is a locally trivial topological fibration on K? \ B(f).

The elements of B(f) may come from critical values but also from regular values of f, i.e.,
B(f)\ (B(f) N f(Singf)) can be not empty. In the example f: K2 — K, f(z,y) = = + 22y, the
value 0 € K is not critical but there is no trivial fibration on any neighborhood of 0.

The study of bifurcation set B(f) has connections with many other topics such as problems of
optimization of polynomial functions f: R™ — R (see e.g. [HP]), generalizations of Ehresmann’s
Theorem (see e.g. [Ga, Je3, Ral), Jacobian Conjecture (see e.g. [LW, ST]), global Lojasiewicz
exponents (see e.g. [PZ, DG]), equisingularity and Milnor numbers (see e.g. [Ga, Pal, ST, Ti2,
Ti3]), stratification theory (see e.g. [KOS, Til]), etc...

A complete characterization of B(f) \ (B(f) N f(Singf)) is yet an open problem. In fact, a
characterization of B(f)\(B(f)Nf(Singf)) is available only for polynomial functions f: K? — K,
see [Su, HL] for K = C and [TZ] for K =R.

Through the use of regularity conditions at infinity, one has obtained some ways to approxi-
mate B(f). For polynomial functions f: K™ — K| see for instance [Br, CT, NZ, Pal, Pa2, PZ,
ST, Ti2, Ti3, Tid].

For mappings, i.e., p > 1, Rabier [Ra] considered a regularity condition, which we call here
Rabier condition. From this condition, Rabier defined the set of asymptotic critical values Koo (f)
and proved that B(f) C (f(Singf) U Ko (f)). In fact, Rabier’s results apply to C? maps
f: M — N, where M, N are Finsler manifolds.

For polynomial mappings f: C* — CP, Gaffney |Ga| defined the generalized Malgrange condi-
tion, which we call here Gaffney condition. This condition yields the set Ag__ (f) of non-regular
values at infinity and, under additional hypothesis on f, Gaffney obtained

B(f) C (f(Singf) U Ag..(f))-

Kurdyka, Orro and Simon [KOS] also considered Rabier condition. They obtained an equiv-
alence between Rabier condition and another condition which depends on Kuo function([Kuo])
(we call this last of Kuo-KOS condition). They showed that, for C? semi-algebraic mappings
f: R™ — RP (respectively, polynomial mappings f: C* — CP), the set K (f) is a closed semi-
algebraic set (respectively, a closed algebraic set) of dimension at most p — 1.

2010 Mathematics Subject Classification. 14D06, 51N10, 32520.
Key words and phrases. polynomial mapping, bifurcation values, Rabier condition, t-regularity, non-
properness set, fibration, regularity at infinity.
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Jelonek [Je3] used another condition, which turns out to be equivalent to Rabier condition
and to Gaffney condition. We call that condition Jelonek condition. Then, Jelonek [Je3] gave a
more direct proof of the inclusion B(f) C (f(Singf) U K (f))-

The above four conditions are asymptotic conditions, which depend on the behaviours of the
fibres of f and Jacobian matrix of f.

Another regularity condition at infinity is the t-regularity, a geometric grounded condition at
infinity. The t-regularity has been introduced in [ST] for polynomial functions f: C* — C and
in [Ti3| for polynomial functions f: R™ — R.

In [DRT], we considered the t-regularity for C! semi-algebraic mappings f: R” — R? and we
proved that t-regularity is equivalent to the conditions of [Ra, KOS| (consequently, equivalent
to the conditions of [Ga, Je3]).

In this paper, we extend the use of t-regularity to algebraic mappings f: X — K? and we
replace K™ in the above results by a smooth affine variety X.

In section 4, we prove that ¢-regularity is equivalent to Rabier condition for f: X — KP (The-
orem 4.1). This extends for mappings defined on X the equivalence proved in [DRT, Theorem
3.2] and the equivalence proved for p = 1 in [Pa2, ST].

It follows from Jelonek [Je4] that Rabier, Gaffney, Kuo-KOS and Jelonek conditions are also
equivalent for mappings defined on X. Therefore, our Theorem 4.1 completes for these mappings
the equivalences above mentioned in the case of mappings f: K™ — KP?.

Another important set in the study of polynomial mappings is the set Jy of points at which
f is not proper (see e.g. [Jel, Je2]). It was proved in [KOS, Proposition 3.1] that in the case of
semi-algebraic maps f: R™ — R", the set Jy coincides with Ko (f). This equality is crucial in
the proof of the injectivity criterion of [CDTT, CDT].

In section 5, we consider f: X — RP, where dim X = p. We prove (Proposition 5.3) that
K (f) = Jf, which extends for mappings defined on X the equality proved in [KOS, Proposition
3.1].

2. BASIC DEFINITIONS

The goal of this section is to present Lemma 2.1, which will be useful to compute the Rabier
function. We also introduce here some notations.

Let V, W be normed finite dimensional vector spaces over K, where K = R, C. We denote
by L(V,W) the set of linear mappings from V to W. For simplicity, we denote L(V,K) by V*.
Given A € L(V, W), we denote by A* € L(W*,V*) the adjoint operator induced by A. For any
linear subspace V of K", we set

VEii={weK" | (w,v)=0,YveV}
We consider the following norm on L(V, W):
(1) |A|| := max {||A(z)||; x € V and ||| = 1}, where A € L(V,W).

We denote by e; the vector of K® with 1 in the i-th coordinate and zeros elsewhere. Let
A € L(K™,K), we denote by ||(A(e1),. .., A(en))| the Euclidean norm of the vector

(A(er),...,A(e,)) € K™
Another norm on £(K",K) can be defined as follows:
(2) [A[l = [I(A(er)s - - Alen)) -

It is well known that norms (1) and (2) of £(K",K) are equivalents (see e.g. [Yo, Theorem
6.8]). The next lemma will be useful in the sequel:
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Lemma 2.1. Let V C K" be a linear subspace of K. Given A € L(K",K), we denote by A}y
the restriction of A to V and we set:

3) [ A lls := min {}(A(er) ., Alea)) +wll;w € V).
Then, the norms (1) and (3) of Ay are equivalent (indeed, one has ||Ajy |3 = [|Av|l)-

Proof. Let A € L(K" K). For any vector w € V+ and v = (vy,...,v,) € V, we may write
Aw) = Y viA(e;) = (v, (Aler),..., Alen))) = (v, (A(er),. .., Ale,)) + w), where the last
equality follows from the fact that w € V+. These equalities and Cauchy-Schwarz inequality
imply:

(4) [A@)[ = l[{v, (A1), ..., Alen)) + w) | < [|v[l[[(Ale), .. ., Alen)) + wl],

If ||v]| = 1, the inequality (4) gives ||A(v)|| < ||(A(e1), ..., A(en))+w]||. Since v, w are arbitrary
elements, this last inequality implies:
(5) lAw ] < 1Ay -

To show [|Ajv[|s < [|Ajv ], we write (A(e1), ..., A(en)) = vi+ w1, with vi € V and wy € V+

(this is possible since K® = V' @ V). Then, for any v € V, one obtains
A(v) = (v, (A(er), ..., Alen))) = (v,v1 + w1) = (v, v1),
where the last equality follows from the fact that wi; € V*.

If vi = 0 then Ay = 0 and (A(e1),...,A(en)) = wi, which implies [[Ay| = 0 and
[ Ajv|l1 = 0. Therefore, the inequality || A}y [|3 < [|Av|| holds if v; = 0.

If vi # 0, we set z := 2. Thus, z € V, Izl =1 and A(z) = (z,v1) = ||v1]|, where the last
equality follows from definition of z. Since ||z|| = 1, one has [|A(2)|| = [|v1|| < [[Av ]

To finish, we observe that (A(ey),...,A(e,)) — w1 = vy, with w; € V+. By definition of
| Ajv |3, this last equality implies |[Ajy[[3 < [[v1]|. Thus, we conclude [[Ajy[[3 < [[vi]| < |4y ],
which follows || A}y [[3 < [[Ajv[|. Therefore, from this last inequality and inequality (5), we obtain
lAjv |l = || Ajv |3, which finishes the proof. O

3. REGULARITY CONDITIONS FOR MAPPINGS

We introduce the main definitions leading to the notion of ¢-regularity and we define Rabier
condition in §3.3.

3.1. t-regularity. Let X C K™ be a K-analytic variety, K = R or C. We denote the set of
regular points of X by X, and the set of singular points of X by Aiins. We assume that X
contains at least a regular point.

Definition 3.1. Let g : X — K be an analytic function defined in some neighbourhood of X" in
K™. Let &y denote the subset of &, Where g is a submersion. The relative conormal space of
g is defined as follows:

Cy(X) := closure{(z, H) € Xo x P™ ' | T,(¢7 (9(2))) Cc H} C X x P~ 1,
We denote by 7 : Cy(X) — X the projection 7(z, H) = z.
For any y € X such that g(y) = 0, we define Cy ,(X) := 7~ (y). The following result shows

that Cy , (X) depends on the germ of g at y only up to multiplication by some invertible analytic
function germ ~.

Lemma 3.2 ([Ti4, Lemma 1.2.7]). Let v : (K™, y) — K be an analytic function such that
V(y) # 0. Then Cygy(X) = Cyy(X). O
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We use coordinates (z1,...,z,) for K” and coordinates [zg : 1 : ... : z,] for the projective
space P"*. We denote by H* = {[zg : z1 : ... : z,] € P" | 2y = 0} the hyperplane at infinity.

Let f : X — KP be the restriction of a polynomial mapping to a smooth affine variety X C K",
where dim X > p. We set X := graphf as the closure of the graph of f in P" x K? and we set
X :=XnN (H* x KP).

We consider the affine charts U; x KP of P* xKP, where U; = {z; # 0} and j =0,1,...,n. We
identify the chart Uy with the affine space K™. Thus, we have XN (Uy x KP) = X\ X*® = graphf
and X*° is covered by the charts U; x KP,... U, x KP.

If g denotes the projection to the variable zg in some affine chart U; x KP, then the relative
conormal Cy(X\X> NU; x KP) C X x P*"*P~1 and the projection 7 : Cy (X\X* NU; x KP) — X,
7(y, H) =y, are well-defined.

Let us then consider the space 7~ !(X>), which is well-defined for every chart U; x K as a
subset of Cy(X\X* NU; x K?). By Lemma 3.2, the definitions coincide at the intersections of
the charts and one has:

Definition 3.3. The space of characteristic covectors at infinity is the well-defined set
C>® = H(X™).
For any zp € X*°, we denote CJ7 := 7 1(20).
We denote by 7 : P* x KP — KP the second projection. The relative conormal space

C-(P™ x KP) is defined as in Definition 3.1, where the function ¢ is replaced by the applica-
tion 7.

Definition 3.4 (t-regularity). We say that f is t-regular at zo € X* if C-(P" x KP) N CZ2 = 0.

3.2. t-regularity interpretation. Let X C K™ be a smooth affine variety over K. We suppose
that X is a global complete intersection. In other words,

X ={z K" | hi(z) = ho(z) = ... = h.(z) =0}
and rank Dh(x) = r, where h = (hqy,...,h,) : K® — K" and Dh(z) denotes the Jacobian matrix
of h at x.

Let f = (f1,...,fp): X — KP? be the restriction of a polynomial mapping to X, where
dimX > p. Given zy € X, up to some linear change of coordinate, we may assume that
zo € X N (U, x KP). In the intersection of charts (Uy N U, ) x KP, we consider the change of
coordinates &1 = y1/Yoy .- s Tn—1 = Yn—1/Y0, Tn = 1/yo, where (21,...,2,) are the coordinates
in Uy and (Yo, - - -,Yn—1) are those in U,. Then for i =1,...,pand j =1,...,r, we define:

(6) Fz(yat) = Fi(y07yla e 7il/n—17t17 e 7tp) = f’L (yl/y07 e aynfl/y(h 1/3/0) - ti?
(7) Hj(y,t) = Hj (Y0, Y1, Yn—1,t1, - - -5 tp) = hi(y1/Y0s - s Yn—1/Y0, 1/v0)-

Define H(y,t) := (H1(y,t),...,Hr(y,t)) and F(y,t) :== (Fi(y,t),...,Fp(y,t)). Then

(X xKP) N ((Ug NU,) x KP) = H(0)
and XN ((Up N Uy) x KP) = F~1(0) N H~1(0).
We denote the normal vector to the hypersurface {yo = constant} by
i = (1,0,...,0) € K" x KP.
Let us define p + 7 normal vectors to F~1(0) at (y,t) € XN ((Uy N U,) x KP), as follows:
Fori=1,...,p, define:

(8) ﬁ;(y, t) = VF’i(Z/? t) = (Van(ya t)v VpFi(y7 t)),
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where
an ;t =\ atv R 7t y F’L at = 7t7"'37 7t .
VB0 = (Gt o8] V)= (G G )
For j =1,...,r, define:
0H; 0H;
9 7i(y,t) = VHi(y,t) = | —2L(y,1),... I_(y,1),0,... .
0 5(000) = VH0:0) = (G0 o :0),0....0)

By Definition 3.4, f is not t-regular at zy € X* if and only if there exists a sequence
{(yk, tr) }ken € XN ((Up NU,) x KP) such that (yg,tx) — 2o and the tangent hyperplanes
to the fibres of g;x at (yx,x) tend to a hyperplane W such that its normal line has a direc-
tion of the form [0 : -+ : 0 : by : -+ : by] in PP~ More explicitly, there exists a sequence

{(kav wllm sy 'wpka(plk, ey Sork)}kGN - Kp+r+1 such that

p T
Jim. (ZO Vit (s ) + Zlgojmj (y- 1))
1= 1=

of the linear combination of normal vectors 7;, n7; has the direction
Aw =[0:0:---:0:by 10y e prie—t,
3.3. Rabier function and Rabier condition.

Definition 3.5 ([Ra, p. 651]). Given A € L(V,W). The Rabier function at A is defined as
follows:

(10) v(A) = inf{[[A"(p)[; o € W" and [|p]| = 1}.
For any vector w = (w1, ..., wy,) € K™, we denote the line matrix associated to w by [w], i.e.,
[wl=[ w1 ... wp |. Given A € L(K",KP), we denote by [A] the matrix of A with respect

to the canonical basis of K™ and K?. Thus, one has:

Lemma 3.6. Let V be a linear subspace of K. For any A € L(K",KP), if we set

(11) vi(Ayy) = imf{ || [u][A] + [w] [|;w € V-, u € KP and [Ju] =1},

then there are positive constants Cy and Co such that Civi1(Ay) < v(Ay) < Covi(Apy).
Proof. The proof follows from Lemma 2.1 and Definition 3.5. O

Now, let X C K™ be a smooth affine variety over K and let f : X — KP? be the restriction of
a polynomial mapping to X, where dim X > p. We have:

Definition 3.7 (|[Ra|). The set of asymptotic critical values of f is defined as follows:

(12) Kxo(f) = {t€KP|3{a;}jen C X, lim flay] = oo,
lim f(z;) =t and lim [lz;{|lv(Df(z;)r, x) = 0},
J—00 J—00 J

where v(—) is defined as in Definition 3.5.

We reformulate the above condition in a localized version, at some point at infinity zg € X*°,
as follows:

Definition 3.8 (Rabier condition). We say that zp € X* is an asymptotic critical point of
f if and only if there exists {z;}jeny C X ~ graphf such that lim; ,(z;, f(z;)) = 2o and
7(20) € Koo(f), where 7: P™ x KP — KP denotes the second projection.

We say that zg € X*° satisfies Rabier condition if zy is not an asymptotic critical point of f.
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REMARK 3.9. From Lemma 3.6, we obtain the same set of Definition 3.7 if we replace v by the
function vy defined in (11).

4. EQUIVALENCE OF REGULARITY CONDITIONS

The goal of this section is to prove an equivalence between t-regularity and Rabier condition.

Let X C K" be a smooth affine variety over K. We suppose that X is a global complete inter-
section. In other words, X = {z € K" | hy(x) = ha(z) = ... = hy(x) = 0} and rank Dh(z) =r
for any = € X, where h = (h1,...,h,) : K — K" and Dh(x) denotes the Jacobian matrix of h
at  (see Remark 4.2). With above definitions and statements, we have:

Theorem 4.1. Let f : X — KP be a non-constant polynomial mapping, with dim X > p. Let
zg € X°. Then f is t-regular at zo if and only if zo is not an asymptotic critical point of f.

Proof. We may assume (eventually after some linear change of coordinates) that
z0 € XN (U, x RP)
and that |z,| > |z;|, ¢ =1,...,n — 1, for & in some neighbourhood of z.
“=" Let zgp be an asymptotic critical point of f. By Definition 3.8 and Remark 3.9, this
means that there exist sequences {(¢x, pr) = ((V1ks- - Upk)s (P1ks - - - Pr)) foen C KPTT and

{zr == (@1ky. - Tnk) ey C X, where ||¢x| = 1 and limg— oo (¥, k) = (¥, ¢), such that
limy oo e =% = (Y1,...,%p) # (0,...,0), limg_yo0 (zk, f(zx)) = 20 and:

(13)
[zl Zi/hk (K +Z%k szk (m +Zz/}]k — 0.

Since for large enough k we have |z,x| > |zik|, ¢ = 1,...,n — 1, we may replace in (13) ||z]|
by |Znk| and then multiply the sums of (13) by 2.

In the notations of §3.2, by changing coordinates within UyNU,,, one has yo = 1/xy,, y; = ;/xn
and the relations:

3F(y7t>—zn§?<x>, 1<i<n-1,1<j<p,
(14) 3tz Sy t) = =015, 1<j,0<p,

S (yot) = —wn(@r1g8 (@) + ..+ an g (), 1<j<p

i (y,t) = 2o 52 (), 1<i<n—1,1<j<n
(15) %’};’;’(yﬁ)zo, 1<j<r 1<i<p,

S (y,t) = (2152 (2) + -+ Ta gt (x), 1<j<r

The condition (13) yields:

(16)
p T
OF; OH,
> Wina— Y ikt | (ks tr), Z%k +Z<ng (Yrstw) ||| — 0.
e W R Yn—1
We set Ay, = (0,wk, —Y1k, .., —Ypk), where wy, is the vector of equation (16). Let Wy be

the hyperplane defined by 7y, . Let 7; and 1, be the vectors defined in §3.2. Then, the vectors
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{flw, } are linear combinations of #; and ni; with coefficients {¢;x, ¢ 1}, and the hyperplanes
W), are tangent to the levels of the function g|x. Since we have supposed

kh*{[;o(wlk’ cee 7wpk) = (1/)1, cee 7wp) 7é (07 cee 70)7
it follows from definition of @iy, and equation (16) that:

lim Ay, =[0:0:...:0:%1 :... 9]

k—o0

Denote by W the hyperplane defined by [0:0:...:0: %1 ... :9¢p]. Then W = limy_, o0 Wy,
which implies that W belongs to C2° and consequently f is not t-regular at zo (see §3.2).
“<". Let zp € X*° be not t-regular. By Definition 3.4, this means that there exist a sequence of
points {(yx,tx)}xen € XN ((Up NU,) x KP) tending to zp, and a sequence of hyperplanes Wy,
tangent to the levels of g at (yy,tx), such that Wi — W € C2°.

Let 7i; and 71; be the vectors defined in §3.2. From §3.2, if f is not t-regular at zo then
there exist sequences {5 = (Y1k,. .., Ypk)then C ]E@’, {&r = (P1ky--- s Pri) hen € K" and
{/\k}keN C K such that T_iWk = )\kﬁo(yk,tk) -+ Zz wikﬁi(}"katk) -+ Zj géjkﬁij(yk,tk) and that

limy_y o0 T, = [O 0.0y 1/~Jp], where (1/31,...,1/;,)) # (0,...,0). By assumption,
the vector fiyy, has the following expression:

(a) In the first coordinate of 7y, one has: Ay + (Z Py, 2 g + Z ik 8y0> (Vi tr)-

P v
(b) In the I-th coordinate, with 2 <1 < n, one has: <Z:1 Vik ?)5: + '21 (,Zajk%glj> (Vies b)-
= j=

(¢) In the g-th coordinate, with n + 1 < ¢ < n + p, one has: —1/~1qk.

We rn:aiy take /\~k =7 zﬁik%(yk,tﬁ) — Z;Zl ¢jk%(yk,t;f). After, we divide out by
i = ||(¥1k, - -, ¥pi)|l- Then, we replace 1, and @ji by i == ti: and @ji = %, respec-
tively. This implies that ||[(¥1k, ..., ¥pi)|| = 1 and limg_ oo, = [0:...: 091 ... 4hy],

where (¢1,...,%,) # (0,...,0). Therefore,
(17) hm Z¢k “(Vk, tk) +Z<,0kaH (Vi tx) =0, forany 1 <1 <n—1.
k—o0 ! ’ J 8y ’

By using (14) and (15), this is equivalent to:

(18) hm Tk Zibm (7x) +Z<pjk =0,

for 1 <1< mn-—1,and one has |z,x| > ﬁ”xkﬂ for large enough k. Therefore, in order to get the

limit (13) it remains to prove that (18) is true for [ = n. The rest of our argument is devoted to
this proof.

From relations (14) and (15), we obtain z, gf’ () = — Z?;OI Yj ‘35%' (y,t) and
n—1
8H
33n Z y] y7

Therefore:
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n—1

. $ OF;
;Zygk%k (ko tr) = Y Vikbor 5 — o “ (Y tr)-

=1 =1

P
(19) Tk Z ?/Jm 5fz (k)

T n—1 r
Oh;
(20) InkE %‘kiaxz( E E yjk%k Yk,tk E sﬁzkyOk Yk7tk)
i=1 n j=1i=1

We will show that the following two terms tend to zero:

n—1 p n—1 r
(21) Zzyﬂcwzk Yk7tk +Zzygk<ﬂm katk) and
j=11i=1 j=1 =1
OH;
22 (2 7t 7 7t
(22) Zwkymc Yk k +;sﬂ Kok “ (k> t)-
First, we have:
n—1 p n—1 r
(23) ZZ ngk Ythk +Zzygk%k Yk,tk) <
=1 =1 Jj=1 =1
Tk P r
. (( Z%k ) (Vs te), Z%k Z%k ), te)) ||
" i=1

since by hypothesis |y;z| = |I]’“ | <1 for large enough k. Then we obtain from (17) that the
right hand side of (23) tends to zero as k — oo, which shows that (21) tends to zero.
To show that (22) tends to zero, let us assume that the following inequality holds for large

enough k > 1, the proof of which will be given below:

(24) Z wzkyc)k + Z %lcyok <

b T T p

OF; OH,;
szk Z‘P]k szk Z‘P]k szk 6'15 szk 8t
Then, by using (17), (24) and the equality > 5_, %k% = —y, for any 1 <[ < p (implied
by (14)), we have:
p T
OF; 0H;
ook — ok — =1.
;w Kok 5, +;<ng90k A < |9l

This implies limy_ o0 ||(3°0, dh‘ky%% + 3541 @jkyok%)(yk7 tx)|| = 0, which shows that (22)
tends to zero as k — oo.

We have shown that (21) and (22) tend to zero as k — co. From the equations (19) and (20),
we have that the sum (21) + (22) is equal to equation of (18) with [ = n. These imply that (18)
is also true for I = n. This completes our proof of relation (13) showing that zy is an asymptotic
critical point of f.
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Let us now give the proof of (24). Suppose not; this means that there exists 6 > 0 such that
for k> 1 we have:
(25)

oF, OH,
HZf—l Dirlor Gyt + D51 PikYok 2
H(Zp 1wzkayl +Z 1‘ij 61/1 DY 1¢zkayn 1 "’E 1903#;5% T wlka---7—¢pk)H

where, by relations (14), we have —iy, = >, P, 25 g for 1 <1 < p. The set:

> 9,

W ={((y,1),%,¢) € (UnNTp) x KP x KP x K") N (X x S7 ™" x K") | (25) holds for ((y,t),, )}

is a semi-algebraic set and we have ((yg,tx),¥r, ox) € W for k > 1. We observe that if
((y,t),v,0) € W then ((y,t),7¥,v¢) € W, for any v € K*. This last observation implies that
((y]wtk),’lb]ﬁ(ﬁk) € W, where wk = H(W:Z}W and (,ONIC = M#)H

Since limg_, o ¥ — ¥ # 0, one may suppose that limy_, (ﬁk, Or) — (1[), @), with (z/;, @) #£0.
Then limg o0 ((v&, tk), ¢~ka Pr) = (20,1;, ¢) and by the curve selection lemma [Mi] there exists

an analytic curve A = (¢,%,¢) : [0,e[— W such that A(]0,e[) € W and A(0) = (z0,%, ). We
denote

¢(s) = (Yo(s), y1(5), -+ Yn-1(5),1a(s), -, 1p(5)),  ¥(5) = (Yu(s),...,¥p(s)), and

Since (F, H)(¢(s)) =0, we have:

0= S 60) = 156 5T 60 + 3ot D 006 + 3 i) 2 E T (o1,

ayO i—1 atz
O(FH) _ (0F; 9F, OH, 5H,
where oo = (Byi""’ e By By ).

Multiplying by (1(s), ¢(s)) we obtain:

" 0H,
(26)  —wo(s ((Z% +;¢j8y0) (¢(3)))=
=, L OF;, <~ 0OH,
;yl(s)(<§¢i(s)ayl+;Jay)w(s)) ; sz % (s))-

Since ¢ is analytic, thus bounded at s = 0, by applying the Cauchy-Schwarz inequality one finds
a constant C' > 0 such that:

1) i) (Z uils)5

j=1

Y ayo) ()| <

C

— oy = on on Jay— ’

We have | := ordgy,(s) > O and ordgyo(s) = L+ 1 > 1 since y(0) = 0. Thus
’yo(S)(Zlewi(S)giﬁ ZJ 1¢J 30 )(¢(5)) < y6<5)( i:ﬂbi( )?)55 +ZJ 1% 3150 )(¢( ))‘
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This and (27) give:

()3 vils) 5, +Z%‘Z§ (6| <

= OF, OH, . 0H;
(;wia—yl+;%ay sz ; iy @ | ()

Yn—1

which contradicts our assumption that (H(s),9¥(s),o(s)) € W, for s €]0,e[. Therefore, we
conclude that (24) holds, which completes the proof of Theorem 4.1. [l

The above theorem extends for mappings defined on X the equivalence proved in [DRT,
Theorem 3.2]. It also extends an equivalence proved for p = 1 in [Pa2, ST).

REMARK 4.2. In Theorem 4.1 we suppose that X C K™ is a complete intersection. It is well
known that any manifold is a locally complete intersection (see e.g [GP, p. 18]). So, in the
general case of a smooth affine variety X, one may take a locally finite cover {U;} of K" such
that the manifold X; := X NU; is a complete intersection. Then we consider the normal vector
fields on each X; as in §3.2 and we use a partition of unity subordinate to the cover {U;} to
obtain normal vector fields defined on X. Then the proof of Theorem 4.1 in the general case is
the same as above.

5. t-REGULARITY AND JELONEK SET

In this section, we consider f: X — RP, where dim X = p. We prove that, in this case,
t-regularity is related with the Jelonek set Jy (|Jel]). We begin with:

Definition 5.1 ([Jel, Definition 3.3]). Let f: M — N be a continuous mapping, where M, N
are manifolds. We say that f is proper at a point ty € N if there exists an open neighbourhood
U of ty such that the restriction f;-1yy: f~Y(U) — U is a proper mapping. We denote by J;
the set of points at which f is not proper.

See for instance [Jel, Je2| for applications and related problems with Jy.

Definition 5.2. Let f : X — KP be the restriction of a polynomial mapping to a smooth variety
X, where dim X > p. We set

(28) NToo(f) :={to=71(20) € KP | 20 € X and 2z is not t-regular}.
When dim X = p, we have:

Proposition 5.3. Let X C R™ be a smooth affine variety over R. We suppose that X is a
global complete intersection. In other words X = {x € R™ | hy(x) = hao(z) = ... = hy(x) = 0}
and rank Dh(z) = r, for any v € X, where h = (hy,...,hy) : R — R" and Dh(x) denotes the
Jacobian matriz of h at x.

Let f = (f1,---,fp) : X — RP be the restriction of a polynomial mapping to X, where
dimX =n—r=p. Then NT(f) = Koo (f) = Js.

Proof. The equality NT oo(f) = Koo(f) follows directly from Theorem 4.1. Thus, we need only
show the equality K (f) = J;.

The inclusion K (f) C Jy follows directly from Definitions 3.7 and 5.1. On the other hand,
let ¢y € Jy. By the curve selection lemma [Mi|, there exists an analytic path

¢d=(0d1,...,¢n) :]0,¢[+ X CR"
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such that limg_o [|¢(s)|| = oo and lims_q f(H(s)) = to.

Consider
ofi afi Afi .
(29) 8];(@ = (aajjl(x),...,aai(x)), fori=1,...,p,
Oh; Oh; Oh;
(30) agc(): (8;101() ..,am](a:)>,f0rj—1,...,r.

Since n = h + r, there exist analytic curves A(s), @1 (s), . . ,gpp( $),01(5), ..., p(s), from ]0, €]
to R, such that (A(s), p1(8), ..., §p(8),01(5), ..., %r(s)) # (0,...,0), for any s €]0,¢[, and the
following equality holds:

1 k ~ afz
(31) A(8)(@1(8), -+, Pu(5)) = D @ils) +Z%
i=1

Let ¢(s) :== (@1(s), ..., Pp(s)). Let us assume that there exists 0 < €; < € such that @(s) # 0,
for any s €]0, 1], the proof of which will be given below.
We consider the curves A(s), ¢(s) := (¢1(s), ..., ¢p(s)) and ¥ (s)

= (¥ ( )y, ¥r(8)), where
) Bl = (5) = %)
)\(5) Te®) QD'L( ) Tes) t1=1,...,p, and d)j(s) = H@J(S)H7 7 1,.

Then [|¢(s)|| = 1 and we can rewrite equation (31) as follows:
3 fi - oh
(32) AENG1(): -5 00(6) = 3 ee) 3, 016)) + Do) 52 616)
j=1

By chain rule and from (32), we obtain the following equalities:

P

(33) Zw@%mam+2%@%mwm:
¢ 6fz d
(3 )+ 3t Shet ko)

1

30 (o).

Since lim,_,q f(¢(s)) = to and h( (s)) = 0, we have that ords (< f;(¢(s))) >0, fori=1,...,p,
and “£h;(¢(s)) =0, for j =1,...,r. These and (33) imply:

(34) o<md(<>(w<mﬂ)<oMJM@w@n%~

On the other hand, the equality (32) yields:

|

i=1

(35)  ordy (JA(s)[6(t)]*) = ords (Ifb( )l

From (34), we conclude that (35) is positive, which implies:

Therefore, since lims—o f(4(s)) = to, [lp(s)l| = 1, 227, w](s)a—;(qb(s)) € (Ty)X)*, we
conclude from (36), Definition 3.7 and Lemma 3.6 that tg € Koo (f).

(36) i (o)l |3

i=1
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Let us now show that there exists 0 < €; < e such that @(s) # 0, for any s €]0,€1[. Suppose
not; this means that there exists a sequence {sx}ren C]0, €[ such that limg o sy = 0 and
&(sk) = (0,...,0). This and (31) yield the following equality:

(37) A(sE)(D1(Sk)s -+ s Dn(sk)) = Zzﬁ](sk)%(qb(sk)), for any k € N.

We remember that (A(s), 31(s), ..., Pp(5),91(s), ..., Ur(s)) # (0,...,0), for any s €]0,¢.

Consequently, the condition on ¢ implies (A(sg), ¥1(sk),- - -, ¥r(sg)) # (0,...,0), for any k € N.

Moreover, since limg_,o s = 0, we have limg o [|@(sk)]| = oo and limg_,o f(d(sk)) = to.
From these conditions, equality (37) and curve selection lemma, we can obtain new analytic
curves A(s),1¥1(s),...,%-(s) and an analytic curve a = (aq,...,ay,) :]0,[— X C R™ such that

limg_,q [|Ja(s)]| = oo, lims—o f(a(s)) = to, (A(S),¥1(8),...,¥r(s)) # (0,...,0), for any s, and the
following equality holds:

(38) A(8) (a1 (8),...,an(s)) = Z%(s)%(qﬁ(s))

Since a(s) € X, we have hj(a(s)) = 0, which implies £h;(a(s)) =0, for j = 1,...,r. These
and chain rule give:

(39) 0= w5()hya(s)) = <Z 45() 2 (a(s)), jsa<s>> =326 (S 1e1R).
j=1 j=1

Since A and « are analytic curves, equality (39) gives A(s) = 0 or L |a(s)||> = 0. If A(s) =0
then, from (38) and statements on \,1,...,%,, we obtain that Z;Zl %(s)%@(s)) = 0,
with (¢1(s),...,¥r(s)) # (0,...,0). But this contradicts the hypothesis that X is a global
intersection. If “|la(s)[|> = 0 then [|a(s)||? is constant, which contradicts the assumption
lims_,q ||a(s)|| = oo. Therefore, we have shown by contradiction that the assertion “there exists
0 < €1 < e such that @(s) # 0, for any s €]0,€1[,” is true, which completes the proof of
Proposition 5.3. U

The above proposition extends for mappings defined on X the equality proved in [KOS,
Proposition 3.1].
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SINGULARITIES OF AFFINE EQUIDISTANTS:
PROJECTIONS AND CONTACTS

W. DOMITRZ, P. DE M. RIOS, AND M. A. S. RUAS

ABSTRACT. Using standard methods for studying singularities of projections and of contacts,
we classify the stable singularities of affine A-equidistants of n-dimensional closed submanifolds
of RY, for ¢ < 2n, whenever (2n, q) is a pair of nice dimensions [12].

1. INTRODUCTION

When M is a smooth closed curve on the affine plane R2, the set of all midpoints of chords
connecting pairs of points on M with parallel tangent vectors is called the Wigner caustic of M,
or the area evolute of M, or still, the affine 1/2-equidistant of M, denoted E, j5(M).

The 1/2-equidistant is generalized to any A-equidistant, denoted Ex(M), A € R, by consid-
ering all chords connecting pairs of points of M with parallel tangent vectors and the set of
all points of these chords which stand in the A-proportion to their corresponding pair of points
on M. In this case, when M is a curve on R?, the local classification of stable singularities of
Ey(M) is well known [2, 5].

The definition of the affine A-equidistant of M is generalized to the cases when M is an n-
dimensional closed submanifold of R?, with ¢ < 2n, by considering the set of all A-points of
chords connecting pairs of points on M whose direct sum of tangent spaces do not coincide with
RY, the so-called weakly parallel pairs on M.

In addition to curves in R?, the possible stable singularities of E(M) have been previously
studied in the general setting when M is a hypersurface [5, 6], or when M is a surface in R* [7].
The cases of curves in R? and surfaces in R* have also been studied in the particular setting of
Lagrangian submanifolds of affine symplectic spaces [3].

In this paper, we classify the possible stable singularities of (M) in a quite more general
circumstance, namely, when the double dimension of M, 2n, and the dimension of the ambient
affine space, ¢, form a pair of nice dimensions [12], see Theorem 5.3 below.

In order to obtain such a classification, we start in Section 2 by defining an affine A-equidistant
of M™ C R? as the set of critical values of the A-point map (projection)

7y i RIX RT 5 R (27, 27) = At + (1 — N~
restricted to M x M, thus locally a map
xR 5 RY
see Definition 2.8, Remark 2.9 and equation (5.2), below. Then, we also present the characteri-

zation of affine equidistants by a contact map, extending previous construction for the Wigner
caustic ([14, 7]).

W. Domitrz was partially supported by NCN grant no. DEC-2013/11/B/ST1/03080. P. de M. Rios was
partially supported by FAPESP grants nos. 2010/15179-8, 2013/04630-9. M. A. S. Ruas was partially supported
by CNPq grant no. 305651/2011-0 and FAPESP grants nos. 2008/54222-6, 2014/00304-2.
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In Section 3 we review the standard K-equivalence and the classification of K-simple singu-
larities [10, 12], Theorem 3.9 below. Then, in Section 4 we combine the study of singularities of
projections and of contacts, in view of Theorem 4.6 below ([12, 11]), with emphasis on contact
reduction to rank 0 map-germs, Proposition 4.14.

Our main result is obtained in Section 5. First, in Theorem 5.2 we apply the Multijet Transver-
sality Theorem [8] to a K-invariant stratification of the jet space. When (2n, q) is a pair of nice
dimensions, the relevant strata of this stratification are the C-simple orbits in jet space. Then,
we use the results of Section 4 in the context of affine equidistants: Proposition 5.4 and Corollary
5.5, as well as equations (5.8)-(5.12). The following table summarizes our main result, Theorem
5.6, which is presented more extensively as subsection 5.1. The normal forms for the A-stable
singularities of the map 7 follow the notation of [10] (see Theorem 3.9 below) for the K-simple
rank-0 contact map-germ

Oy : (R¥,0) — (RF=Cr=a) ) |

where k is the degree of parallelism of the pair of points on M joined by the chord (cf. Definition
2.1 and Tables I, II, IIT in Theorem 3.9).

(n,q) | Stable Ex(M), M™ C R? Restrictions

(172) Ay p<2

(274) Auvczig nw<4

(3a4) AuvD4i n<4

(375) AuvDéli,D5i7S5 MSS

(3,6 A.,Chr, Co p<6,2<p<7,p+7<6
(475) ‘4H7D4i7D5:t ,LL§5

(4,7) | Ay, DE Bo,Br, 85,17, Tr | p<T,A<v<T7,5<B<T
(4,8) | A, Cr, Cs,Cs, I, Fs [ n<82<p<7,p+7<8
(5, 6) A,,DE Eg u<6,4<v<6

We note that the case M* C RS is absent from the table of results. This is due to the fact that
(2n = 8,q = 6) is not a pair of nice dimensions (see Theorem 5.3 below). Similarly, (2n,q > 6)
is not a pair of nice dimensions, for all n > 5. Classification of stable singularities of Ey (M), in
these cases, lies outside the scope of this paper.

As mentioned before, the cases in the table of results when

(n,q) €{(1,2),(2,3),(3,4),(4,5), (5,6)}

correspond to hypersurfaces and have been previously studied in [5, 6], and the case (n,q) = (2,4)
was partially studied in [7]. On the other hand, the results for the cases when

(n, Q) € {(3a 5), (3, 6)5 (47 7)’ (4a 8)}

are entirely new.

We emphasize that, in all of the above, we are excluding the cases of vanishing chords, that
is, when the A-point of the chord connecting two points on M touches M because the pair of
points on M lies in the diagonal of M x M. Such “diagonal singularities” or singularities on
shell for E\(M) possess additional symmetries when A = 1/2 and these have been studied for
the cases of curves on the plane and surfaces in R?, both in the general setting [7] and in the
more particular setting of Lagrangian submanifolds of affine symplectic space [4]. In this paper,
we don’t study such singularities on shell for Ey(M).
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2. AFFINE EQUIDISTANTS

2.1. Definition of affine equidistants. Let M be a smooth closed n-dimensional submanifold
of the affine space R?, with ¢ < 2n. Let a,b be points of M and denote by

Ta—b RISz z+ (a—b) e R?
the translation by the vector (a — b).
Definition 2.1. A pair of points a,b € M (a # b) is called a weakly parallel pair if
ToM + 7 (T M) # R

codim(T,M + 74—p(TyM)) in T,R? is called the codimension of a weakly parallel pair a,b.
We denote it by codim(a, b).
A weakly parallel pair a,b € M is called k-parallel if

(2.1) dim(T, M N 1y_o(TyM)) = k.

If kK = n the pair a,b € M is called strongly parallel, or just parallel. We also refer to k as the
degree of parallelism of the pair (a,b) and denote it by deg(a,b). The degree of parallelism
and the codimension of parallelism are related in the following way:

(2.2) 2n — deg(a, b) = ¢ — codim(a, b).
Definition 2.2. A chord passing through a pair a, b, is the line
l(a,b) = {x e Rz =Xa+ (1 — \)b, A € R}

Definition 2.3. For a given A, an affine A-equidistant of M, E)(M), is the set of all z € R?
such that x = Aa+ (1 —\)b, for all weakly parallel pairs a,b € M. Ex(M) is also called a (affine)
momentary equidistant of M. Whenever M is understood, we write Ey for E(M).

Note that, for any A, Ex(M) = E1_x(M) and in particular Eq(M) = E1(M) = M. Thus,
the case A = 1/2 is special:

Definition 2.4. E; /(M) is called the Wigner caustic of M [2, 14].

2.2. Characterization of affine equidistants by projection. Consider the product affine
space: R? x R? with coordinates (x4, z_) and the tangent bundle to R%: TR? = R? x R? with
coordinate system (x,#) and standard projection 7 : TR? 3 (z,&) — = € R%

Definition 2.5. For A € R, a A-chord transformation
[y:RIxR?— TR, (2F,27) — (z,%)

is a linear diffeomorphism defined by the A-point equation:

(2.3) =T+ (1- Nz,

for the A\-point x, and a chord equation:

(2.4) t=at -7,

Remark 2.6. For our purposes, the choice (2.4) for a chord equation is not unique, but is the
simplest one. Among other possibilities, the choice # = Ax™ — (1 — X)x™ is particularly well
suited for the study of affine equidistants of Lagrangian submanifolds in symplectic space [3].
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Now, let M be a smooth closed n-dimensional submanifold of the affine space R? (2n > q)
and consider the product M x M C R? x R?. Let M, denote the image of M x M by a A-chord
transformation,

My =T\(M x M),

which is a 2n-dimensional smooth submanifold of TRY.
Then we have the following general characterization:

Theorem 2.7 ([3]). The set of critical values of the standard projection m : TR? — R? restricted
to My is Ex(M).

Definition 2.8. For A € R, the A-point map is the projection
T RIXRI =R, (2h, o)==t +(1—- Nz~ .

Remark 2.9. Because m) = mwo ') we can rephrase Theorem 2.7: the set of critical values of
the projection my restricted to M x M is Ex(M).

2.3. Characterization of affine equidistants by contact. In the literature, if M C R? is
a smooth curve, the Wigner caustic E /(M ) has been described in various ways. A particular
description says that, if R, : R* — R? denotes reflection through a € R?, then a € E;/5(M)
when M and R, (M) are not transversal [2, 14]. This description has also been used in [14] for
the case of Lagrangian surfaces in symplectic R* and, more recently [7], for the case of general
surfaces in R*.

We now generalize this description for every A-equidistant of submanifolds of more arbitrary
dimensions.

Definition 2.10. For A € R\ {0,1}, a A-reflection through a € RY is the map
1 1—A

(2.5) Rﬁ:Rq%Rq,xHRg(aﬁ):Xa— By

Remark 2.11. A A-reflection through a is not a reflection in the strict sense because

RYoR) #id : RT — RY,

T

instead,
R oR) =id : RT — RY |
so that, if a = ay = Aa™ + (1 — A)a™ is the A-point of (a*,a™) € R?9,
Rék (a”)=at, R(ll;’\(a+) =a .
Of course, for A =1/2, Ré/z =R, is a reflection in the strict sense.
Now, let M be a smooth n-dimensional submanifold of R?, with 2n > ¢, and let
a=ayx=Xa"+(1-Na~

be the A-point of (a*,a7) € M x M C R? x R4. Also, let MT be a germ of submanifold M
around at and M~ be a germ of submanifold M around a~. We have:

Proposition 2.12. The following statements are equivalent:
(i) The A-point a belongs to Ex(M).

(is) M+ and R)(M™) are not transversal at a™.

(ii5) M~ and RL=*(M™) are not transversal at a™.
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Remark 2.13. Furthermore, from Remark 2.9 we see that the study of the singularities of
affine equidistants is the study of the singularities of 7). But this is the same as the study of
the singularities at a = 0 of

(xt,27) = ot + T =T —Ry(z7) .

In other words, the study of the singularities of Ex(M) > 0 can be proceeded via the study of the
contact between M+ and R)(M~) or, equivalently, the contact between M~ and Ry (M™).

3. K-EQUIVALENCE

We recall some basic definitions and results (for details, see [1]).
Henceforth, £ denotes the local ring of smooth function-germs on R*, and m, its maximal
ideal.

Definition 3.1. Map-germs f, f : (R®,y9) — (R%,0) are K-equivalent if there exists a diffeo-
morphism-germ ¢ : (R%,99) — (R®,y0) and a map-germ A : (R%,yo) — GL(R!) such that
f=A4A-(fo9).

Theorem 3.2 ([1]). For the K-equivalence of two map-germs it is necessary and sufficient that

two ideals generated by the components of these map-germs may be mapped one to the other by
an isomorphism of & induced by a diffeomorphism-germ of the source space (R®, yo).

Definition 3.3. A map-germ F : (R® x R?, (y9,20)) — R! is a deformation of a map-germ
f:(RS yg) =R F Rsx{z} = [, where p is the number of parameters of deformation F'.

Definition 3.4. A diffeomorphism-germ & : (R® x RP, (yg, 20)) — (R® x RP, (yo, 20)) is called
fiber-preserving if ®(y,z) = (Y (y, 2), Z(z)) for a smooth map-germ

Y : (Ré X Rp, (yo7 Zo)) — (Rs7y0)
and a diffeomorphism-germ Z : (R?, zg) — (RP?, zp). It means that ® preserves the fibers of the
projection pr: (R® x RP, (yg,20)) — (RP, zp).

Definition 3.5. Deformations F, F : (R® x R”, (yo,20)) — (R*,0) of respective map-germs
f f: (R%,y0) — (R?,0) are fiber K-equivalent if there is a fiber-preserving diffeomorphism-
germ @ : (R* x R?, (yo, 20)) = (R® X R?, (yo, 20)), i.e. ®(y,2) = (Y(y,2), Z(2)), and a map-germ
A (R® x R, (yo, 20)) = GL(R?) such that F = A - (Fo®).

Corollary 3.6. For the fiber K-equivalence of two deformations it is necessary and sufficient
that the two ideals of Es4p generated by the components of these deformations may be mapped
one to the other by an isomorphism of Es, induced by a fiber-preserving diffeomorphism-germ

of the source space (R® x RP, (yo, 20)).

Definition 3.7. The germ f : (R% 0) — (R, 0) is said to be K-simple if its k-jet, for any k, has
a neighborhood in the jet space J(’J“_VO(RS, RY) that intersects only a finite number of K-equivalence
classes (bounded by a constant independent of k).

Definition 3.8. The p-parameter suspension of the map-germ f : (R%,0) — (R, 0) is the map
germ
F:(R*xR”,0) > (y,2) = (f(y), 2) € (R* x RP,0).

Theorem 3.9 ([10]). K-simple map-germs (R*,0) — (R*,0) with s > t belong, up to K-
equivalence and suspension, to one of the following three lists in Tables 1-3:
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Notation Normal form Restrictions
Ay Y+ Qe p>1
Dy |ylyrtyh " +Qsa| p>4
Es Yl +ys + Qs o -
2 Yi + Y15 + Qs -
Eg Yl u5 + Qs -

TABLE 1. K-simple germs R® — R. Qs—; = +97,; +--- +¢2.

Notation | Normal form | Restrictions
Cor | i £9h) | 12k>2
Cox (Wi +v5,95) k>3

Fomsr | (Y7 +93,v5") m>3
Fomya | (Y7 493, 4195") m>2
1o (yf, y%) -
Hois | Witydyiys) | m>4

TABLE 2. K-simple germs R? — RZ.

Notation Normal form Restrictions
Sy (Fyi £ u3 + 95 " y2us) [n>5
T (v + 95 + v3, y2ys) -
Ty (7 +v5,95 +y3) -
Ts (v + 95 £ 3, y2ys) -
Ty (y7 + 95 + 13, y2ys) -
Uz (i + yays, y1y2 + u3) -
Us (yi + y2ys + U3, y1y2) -
Us (yi + y2ys, y1y2 + y3) -
Ws (i +v5,93 + y1ys) -
Wy (T + y2v3, 95 + y1ys) -
Zy (yi+y5,v3 +v3) -
Zo (7 +y2u3, 95 +v3) -

TABLE 3. K-simple germs R® — R2.

Definition 3.10. A deformation
F: (R* x R? (0,0)) — (R",0)

of a map-germ f : (R*,0) — (R?,0) is K-versal if any other deformation
F: (R® x R, (0,0)) — (R, 0)

of f is of the form

where A : R xR? — GL(R?), g : (R®xR%,(0,0)) = (R*,0), h: (R?,0) — (RP,0) are map-germs
such that A(0,0) is nondegerate matrix and g(y,0) = y.

Theorem 3.11 ([1]). K-versal deformations of K-equivalent germs with the same number of
parameters are fiber K-equivalent.
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4. SINGULARITIES OF PROJECTION AND OF CONTACT

4.1. Singularities of projection. In view of Theorem 2.7, let M and M be smooth closed
n-dimensional submanifolds of R?, g < 2n, and

My =Tx(M x M), My =Tx(M x M),

where IT"y is the A-chord transformation.
For local classification of singularities, we introduce the definition:

Definition 4.1. E)\(M) and E)(M) are A\-chord equivalent if there exists a fiber-preserving

diffeomorphism-germ of TR? that maps the germ of M to the germ of M i.e. if the following
diagram commutes (vertical arrows indicate diffeomorphism-germs):

Calarxar T
M x M — TR? — RY

1 1 3

Ul 37xar ™

MxM —s TR? — RY

The A-chord equivalence of F)y is a special case of equivalence of projections studied by V.
Goryunov ([9], [10]), as outlined below.

Definition 4.2. A projection of a (smooth) submanifold S from a total space E to the base
B of the bundle p: E — B is a triple

L P
S -« F — B

where ¢ is an embedding. A projection is called a projection “onto” if the dimension of S is
not less than the dimension of the base B.

Definition 4.3. Two projections S; < FE; — B; for i = 1,2 are equivalent if the following
diagram commutes

L1 Y41
Sl — E1 — Bl

Lo Lope |

52‘—>E2—)BQ

where vertical arrows indicate diffeomorphisms.

A projection of S onto B defines a family of subvarieties in the fibers of the bundle p : E — B
parameterized by B: S, = SN p~1(b) for any b € B. A germ of the projection

(Sa qO) — (Ean) — (BabO)

can be considered in a natural way as a deformation of the subvariety Sp,.
The germ of a bundle E — B can be identified with the germ of the trivial bundle

R®* x RP — RP.

A germ of an embedded smooth submanifold S can be described by the germ of the variety of
zeros of some mapping-germ F : (R® x R, (yo,20)) — R’. Then S,, can be identified with the
germ of the variety of zeros of F'

Rs X{ZQ}'
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If deformations F, F : (R* x R?, (yg,20)) — (R?,0) of map-germs f,f: (R®,y0) — (R, 0)
(respectively) are fiber K-equivalent then the following diagram commutes (P, Z indicate diffeo-
morphism-germs and pr indicate the projection):

pr
F710) < R*xRF — RP

1 1o 4
pr
F710) — R*xR — R?
If the ideal of function-germs vanishing on F~1(0) is generated by the components of F, then
by Corollary 3.6 the inverse result is also true.

We remind that the group A = Diff(R™, 0) x Diff(R?, 0) acts on map-germs (R™,0) — (RP,0)
by composition on source and target, with corresponding definitions for A-equivalent and A-
simple (refer to Definitions 3.1 and 3.7 for the group K). Then, from the above we have the
following results:

Proposition 4.4 ([9, 10)). F and F are fiber K-equivalent if and only if the projections of
F=1(0) and F~1(0) onto RP are A-equivalent.

Theorem 4.5 ([9]). If the germ of a projection (F~1(0), (0,0)) — (R* x R?,(0,0)) — (RP,0) is
A-simple then f = Flgs {0y is K-simple.

Theorem 4.6 ([11, 12]). The map-germ F : R®* xRP — R? is a K-versal deformation of a rank-0
map-germ f : RS — R? of finite K-codimension if and only if the projection-germ of F~1(0) onto
RP s A-stable (infinitesimally stable).

By Theorems 4.5 and 4.6, in order to classify stable singularities of projections one considers
deformations of three classes of singularities: simple singularities of hypersurfaces (Table 1),
simple singularities of curves in a 3-dimensional space (Table 3), simple singularities of a mul-
tiple point on a plane (Table 2). We are interested in projections "onto” when the projected
submanifold S = F~1(0) is smooth and the dimension of the base B of the bundle is greater
than 1.

In order to see in a more clear way how these three tables are applied to the classification of
singularities of affine equidistants, we now turn to the contact viewpoint.

4.2. Singularities of contact. Let N1, No be germs at x of smooth n-dimensional submanifolds
of the space RY, with 2n > q. We describe N7, N in the following way:
e Ny = f71(0), where f: (R?,z) — (R97",0) is a submersion-germ,
e Ny = g(R™), where g : (R",0) — (R%,z) is an embedding-germ.
Let Ny, N, be another pair of germs at # of smooth n-dimensional submanifolds of the space
RY, described in the same way.

Deﬁrlition 4.7. The contact of N7 and Ny at x is of the same contact-type as the contact of ]\:71
and N> at T if there exists a diffeomorphism-germ @ : (R, z) — (R?,Z) such that ®(N1) = N;
and ®(N3) = No. We denote the contact-type of N7 and Na at « by (N1, Na, ).

Definition 4.8. A contact map between submanifold-germs Ny, N is the following map-germ
fog:(R",0)— (RI™",0).

Theorem 4.9 ([13]). K(N1, N2 z) = K(N1, Ny, &) if and only if the contact maps f o g and
f o g are K-equivalent.
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Remark 4.10. If N; and N, are transversal at x then it is obvious that the contact map
fog:(R"0)— (R?~™,0) is a submersion-germ or a diffecomorphism-germ (when g = 2n).

The interesting cases are when N7 and N» are not transversal at xg
Tyo N1+ Ty Ny # T RY.
Definition 4.11. We say that N; and N, are k-tangent at x if
dim(T N1 N Ty No) =k

If £ is maximal, that is
k = n = dim(Ty, N1) = dim(Ty, Na)
we say that N; and Ny are tangent at zg.
Remark 4.12. In order to bring this definition into the context of affine equidistants, Ey(M),

note that Ny = M+ and Ny = R} (M ™) are k-tangent at 0 if and only if T, M+ and T, M~ are
k-parallel, where Aa + (1 — A\)b =0 € E\(M).

If Ny and N, are k-tangent then we can describe germs of N7 and Ny at 0 in the following
way:

(41) Nl :{<y727u7v) € R? :u:¢(yaz)7 U:w(yaz)}a
(42) Ny = {(y,z,u,v) ERI: 2= n(yvv)’ U= C(yvv)}v
where Yy = (yla'" 7yk)7 z = (217"' 7Zn7k)a u = (U],"' 7uq+k72n)a v = (’Ula"' ;Unfk) and

(y, z,u,v) is a coordinate system on the affine space RY,
(b:(d)h"' 7¢q+1€72n)) ¢:(¢1» 7wn7k)7

n:(nlv"' 7”777,7]6)7 CZ(Clv 7€q+k72n); and (Zslv,lpjvnjv(lg/\/lg?
fori=1,---,q+k—2nand j=1,--- ,n—k.
Then, the contact map Ky, n, : (R",0) — (R?7",0) is given by:

(4.3) Ny N2 (Y, 2) = (2 = 1(y, ¥ (Y, 2)), ¢y, 2) — C(y, ¥(y, 2)))

From the form of Ky, v, we easily obtain the following fact

Proposition 4.13. If Ny and Ny are k-tangent at O then the corank of the contact map K, N,
is k.

We can interpret the contact between two k-tangent n-dimensional submanifolds N1, Ny of
RY as the contact between tangent k-dimensional submanifolds Py, and Py, of N; and Na,
respectively, in a smooth ¢ — 2n 4 2k-dimensional submanifold S of RY. These submanifolds are
constructed in the following way:

Let H be a smooth ¢ + k — n-dimensional submanifold-germ on R? which contains N7 and is
transversal to Ny at 0. Then Py, = H N N3 is a smooth k-dimensional submanifold on Ns.

Let G be a smooth ¢ 4+ k — n-dimensional submanifold-germ on R? which contains N5 and is
transversal to N1 at 0. Then Py, = G N N; is a smooth k-dimensional submanifold on Nj.

Py, and Py, are tangent at 0 and they are contained in the smooth ¢ — 2n + 2k-dimensional
submanifold-germ S = H N G.

The contact between N7 and N at 0 can now be described as the contact between Py, and
Py, at 0, which defines a rank-0 map

(4.4) Kpy, Py,  (RF,0) = (RF=(Gn=a) )
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Although in general Py, and Py, depend on the choices of H and G, the contact type of Py,
and Py, does not depend on these choices. This means that if N;, Ny is another pair of germs
at 0 of smooth n-dimensional submanifold of R? then we have the following result.

Proposition 4.14. K(Ny, N3,0) = K(Ny, No,0) if and only if
K(Py,, Pn,,0) = K(Pg,, Pg,,0).

Proof. 1t is easy to see that in general H can be described in the following way:

(4.5) v=1vY(y,2) + Ay, z,u,v)(u — ¢(y, 2)),
and G can be described in the following way:
(4.6) z=n(y,v) + By, 2, u,v)(u — ((y,v)),

=1, n—k =1, n—k :
where A = (ai;)iZ) i ons B = (bij)i=1 )0k _on and ajj, bij are smooth function-germs on
RY

Thus S = H NG is given by (4.5) and (4.6).

Py, is given by (4.5), (4.6), and v = ¢(y, z) and P, is given by (4.5), (4.6) and u = ((y, v).

On the other hand we can also describe Ny by (4.5) and u = ¢(y, 2) and N3 by (4.6) and
u = ((y,v). Then it is easy to see that contact maps are the same after a suitable suspension. [J

In view of Proposition 4.14, it is enough to classify the rank-0 map-germs of the form (4.4)
with respect to the group K.

5. STABLE SINGULARITIES OF AFFINE EQUIDISTANTS

Since our goal is to classify singularities of affine equidistants of n-dimensional submanifold
M of RY, we substitute submanifold-germs N; and Ny of the previous section by N; = M+ and
Ny = R)(M™), or equivalently by Ny = M~ and Ny = R, (M™), where M+ and M~ are
germs of M C R? at points a™ # a~ € M C R?, such that Aa™ + (1 — A)a™ = 0.

First, we state the following definition and theorem:

Definition 5.1. A mapping ¢ : N — R? is locally stable at p € N™ if there exists a neighbour-
hood W, of ¢ in the space C>°(N™,R?) of C°-mappings from N™ into R? with the Whitney
C*-topology, and neighbourhoods U, around p and V,, around ¢(p) such that for all ¢ € W,
it follows that ¢ : U, — V,, is A- equivalent to ¢ : U, — V,,, where A = Diff(U,) x Diff(V})) (see
[8])-
Theorem 5.2. For a residual set of embeddings v : M™ — R? the map
mao(bxe): Mx M\ A—R?
is locally stable whenever the pair (2n,q) is a pair of nice dimensions, where A is the diagonal
i M x M.
Proof. From the diagram of maps
LX L T
MxM — RIxR? — R7,

we obtain the diagram of r-jet maps

3" (e xe) (72)

M x M — J' (M x M,R?xR?) —  J(M x M,R?) .

A typical fiber of J"(M x M,R?) is Jj(M x M,R?), the space of (degree < r)-polynomial
map-germs R™ x R™ — R?, vanishing at 0.
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Let {W1,..., W} be the finite set of all XC simple orbits in J"(M x M,R?); let {Wyy1,..., Wi}
be a finite stratification of the complement of the union of simple orbits W7 U ... U W. This
stratification exists because these are semialgebraic sets. We denote by S = {W,}1<;<¢ the
resulting stratification of J"(M x M,R?). Because (). is a submersion, (), 'W; = W7 is a
submanifold of J"(M x M, R?xR?), forall j = 1,...,, so that S* = {W} }1<;j<; is a stratification
of this space.

Furthermore,

(5.1) Jiexe) M8 <« j7(mo(txe)) M S,

where transversality to S (respectively to 8*) means transversality of j7(¢ x ¢) (respectively
J"(mx 0 (¢ x ¢))) to each stratum of the corresponding stratification.
On the other hand, under the natural identification

J e x )lmxana = 25"t C 2 J"(M,RY)
where o J7 (M, R?) is the space of double r-jets, we can apply the Multijet Transversality Theorem
8] to get that, for each W} in oJ"(M,R?), the set of immersions

Rw, ={t: M — R 55" W}
is residual. Then, the set
R = ﬁ;—leWj
is also residual.
Now, it follows from equation (5.1) that j7(mxo (¢ x¢)) M W;, foralle € R, forall j =1,...,¢t.

When (2n,q) is a pair of nice dimensions, this implies that j7(my o (¢ X ¢)) is transversal to all
K orbits in J"(M x M,R?), which says that this mapping is locally stable (see [8, 12]). O

Theorem 5.3 ([12]). The nice dimensions for pairs (2n,q) are:
(i)n<qg=2n, n<4

(ii))n<qg=2n—1, n<4

(iii) n<g=2n-—2, n <3

(iv)n<qg<2n-3,4<6

Thinking locally, denote two distinct germs of embedding ¢ : M™ — RY by
(T (R™,0) = (R, a™) and ¢ : (R™,0) — (R%,a"),

and by
(5.2) 7y =myo (LT x 7)) (R*™,0) — (RY,0) ,
the restriction of my to M x M~. Then, recalling the notation of (4.1)-(4.2), 7, is given by
(5:3) T (Y, 2,9,0) = (739, 9), 73(2,5,0), 7R, 2,5, 0), 73 (Y, 2,0))
where y,7 € R*, z,v € R"* and
(5.4) T (y:9) =Xy + (1= N7,
(5:5) A2 3,v) = Az + (1= Nn(7,v),
(5.6) TR (Y: 2,9,0) = Ad(y, 2) + (1 = N)¢(F,v),
(5.7) 3y, 2,0) = Mb(y, 2) + (1 — M.
Let

kx @ (R™,0) — (RT7™,0)
denote the the contact-map between M T and R} (M ). We have:
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& &
Proposition 5.4. Local rings — 2 ond " i
w3 (myg) K3 (Mg—n)

Proof. From (5.3), we have that

are isomorphic.

Ean ~ Ely,z,5.0)
ﬁ;(mq) <7~T}\(y7 g)a ﬁi('% g7 U)v ,ﬁ-i(yv Za Zja U)v ,ﬁ-i(ya Za U))

so that, using (5.4)-(5.7), this is isomorphic to

E(y.2)
X —x
<Z + (1)\ )77(_ (1i,\)y7 - (12,\)7#(9’ Z))v (b(yv Z) + (1>\ )C(_ (1é>\)ya - (13)\)1?(2/7 Z))>
and, using (4.3) for Ny = M+ and Ny = R)(M ™), we see that the above local ring is isomorphic

En
tO *7- D
K3 (Mg—n)

On the other hand, we remind from Remark 4.12 that k is the degree of tangency of M T and
RY(M~) and therefore k is the degree of parallelism of T,+ M+ and T,,- M~ , where

Aat + (1= XNa~ =0¢€ E\(M),
so that, denoting by
Oy : (R*,0) — (RF=Cn=9) )
the reduced (rank-0) contact map 0\ = kpy, py,, for N1 = MT and Ny = RY(M™), from
Proposition 4.14 we have the following

En and &k
K3 (Mg—n) 03 (Mk—(2n—q))

Thus, by Theorems 4.6 and 5.2, Proposition 5.4 and Corollary 5.5, for the local classification of
stable singularities of affine equidistants, we need to determine every rank-0 /C-simple map-germ

Corollary 5.5. The local rings are isomorphic.

(5.8) 0 : (R*,0) — (R),0),
that admits a K-versal deformation Fy : R x R? — R, so that
(5.9) 7x: (F\)7H0) = (R*™,0) — (R%,0)

is an A-stable map. Here, 0\ = kpy py,, for Ny = M+ and Ny = R)(M ™), and 7, is the
restriction of ) to M+ x M ™, so that

for any pair (2n, ¢) in the nice dimensions (Theorem 5.3).
In other words, we unfold the map-germ 6, with m parameters,

(5.11) 7 (R™ x Rk,O) — (R™ x Rl,O) , (w,y) = (w,u(w,y)) ,

where m = 2n — k, so that 7 is A-stable. Thus, in each case, we look for the rank-0 /C-simple
map-germs 6 that can be unfolded with m = 2n — k parameters so that its .-codimension u
is such that

(5.12) u<l+m=gq.

The list of KC-simple map-germs 6) is presented in Tables 1, 2 and 3, in section 2 above. Thus,
for classifying the stable singularities of affine equidistants of smooth submanifolds M"™ C RY, all
we have to do is read those Tables with respect to the numbers k, [ and p, subject to conditions
(5.10) and (5.12) for each pair (2n,q) in the nice dimensions.

In this way, we arrive at our main result, as follows.
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5.1. All possible stable singularities in the nice dimensions. First, remind the definition
of k-parallelism, cf. (2.1). Then, we have:

Theorem 5.6. Let M™ C R? be a smooth closed submanifold of the affine space, such that
2n > q and (2n,q) is a pair of nice dimensions, as listed in Theorem 5.3. Then, the possible
stable singularities of the A-affine equidistant Ex(M) C R are listed case by case, as below.

Curves:

In this case, we have curves in R? and the rank-0 contact map is #y : R — R, u < 2. From Table
1, the stable singularities of affine equidistants can be of type A; and As.

Surfaces:

(1) M? C R3.
2-parallelism. 0y : R? = R, u < 3.
E, (M) with stable singularities of types A;, A2 and As.

(2) M? C R*.
(i) 1-parallelism. 6y : R - R, p < 4.

E, (M) with stable singularities of types A, As, As and Ay.
(i) 2-parallelism. 6 : R? — R? < 4.

E, (M) with stable singularities of types Czi,z

3-manifolds:

(1) M3 C R*.
3-parallelism. 0 : R? = R, p < 4.
E,(M) with stable singularities of types Ay, ..., A4 and fo.

(2) M3 C RS
(i) 2-parallelism. 0y : R? - R, pu < 5.

E\(M) with stable singularities of types A, ..., A5, DI, DE.
(i) 3-parallelism. 6 : R3 — R? < 5.

E, (M) with stable singularites of types Ss.

(3) M3 C RS.
(i) 1-parallelism. 0y : R — R, u < 6.
E\ (M) with stable singularities of types Aq, ..., Ag.
(i) 2-parallelism. 6, : R? — R? 1 < 6.
E, (M) with stable singularities of types C;Q, Cig, C§4, C:,fg, Cs.
(iii) 3-parallelism. No stable singularities for Ey(M).

4-manifolds:
(1) M* C R5.

4-parallelism. 0y : R* = R, u < 5.
E\(M) with stable singularities of types Ay, ..., A5, Df, DE.
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(2) M* C RS: The map 7 : R® — RS is not in nice dimensions.

(3) M* C R”.
(i) 2-parallelism. 0, : R*> - R, 4 < 7.
E, (M) with stable singularities 4y, ..., Az, fo, ey D;E, Eg, Er.
(ii) 3-parallelism. @) : R3 — R?, u < 7.
E, (M) with stable singularities of types S5, Se, S7, T7, Ts.
(iil) 4-parallelism. No stable singularities for Ey(M).

(4) M* C RS.
(i) 1-parallelism. 65 : R — R, u < 8.
E,(M) with stable singularities of types Ay, ..., As.
(i) 2-parallelism. 6 : R? — R? ;< 8.
E, (M) with stable singularities of types
C5y. Cis, CFy, CF5, Ciy, Ciy, Cy, Css, Ciy, Cs, Cs, Fr, F.
(iil) 3-parallelism, 4-parallelism. No stable singularities for Ey(M).

5-manifolds:

(1) M5 C RS.
5-parallelism. 0y : R® = R, u < 6.
E\(M) with stable singularities A1, ..., Ag, DT, DE, DE, F.

(2) For all other embeddings M® C R?, no map 7 in nice dimensions.

n-manifolds, n > 6: No map 7 in nice dimensions.
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SOME NOTES ON THE EULER OBSTRUCTION OF A FUNCTION

NICOLAS DUTERTRE AND NIVALDO G. GRULHA JR.

ABSTRACT. In this paper, we present an alternative proof of the Brasselet, Massey, Parameswaran
and Seade formula for the Euler obstruction of a function [5] using Ebeling and Gusein-Zade’s
results on the radial index and the Euler obstruction of 1-forms [11].

1. INTRODUCTION

Let (X,0) C (CV,0) be an equidimensional reduced complex analytic germ. The Euler
obstruction Euyx(0) was defined by MacPherson [20] as a tool to prove the conjecture about
existence and unicity of Chern classes in the singular case. Since that the Euler obstruction has
been deeply investigated by many authors as Brasselet, Schwartz, Seade, Sebastiani, Gonzalez-
Sprinberg, Lé, Teissier, Sabbah, Dubson, Kato and others. For an overview about the Euler
obstruction see [2, 3].

In [4] a Lefschetz type formula for the Euler obstruction was given by Brasselet, Lé and Seade.
This formula relates the Euler obstruction Eux (0) to the topology of the Milnor fibre of a generic
linear form ! : (X,0) — (C,0). It shows that the Euler obstruction, as a constructible function,
satisfies the Euler condition relatively to generic linear forms (Theorem 2.3).

In [5], the authors studied how far the equality given in the above theorem is from being true
if we replace the generic linear form [ with some other analytic function on X with at most an
isolated stratified critical point at 0. For this, they defined the Euler obstruction Euy x (0) of a
function f on a complex analytic variety X, which can be seen as a generalization of the Milnor
number, and they established a Lefschetz type formula for this new invariant (Theorem 2.5).

The definition of the Euler obstruction of a function was extended by Ebeling and Gusein-
Zade in [11] to the case of complex 1-forms. When the 1-form is the differential of a holomorphic
function f, they recovered the Euler obstruction of the function (up to sign). They also define the
radial index of a 1-form, which is a generalization to the singular case of the classical Poincaré-
Hopf index. Then they established relations between the local Euler obstruction of a 1-form, the
radial index and Euler characteristics of complex links.

In this paper, we use the results of Ebeling and Gusein-Zade to give an alternative proof of
the Brasselet, Massey, Parameswaran and Seade formula for the Euler obstruction of a function
(Theorem 2.5).

The main idea of the original proof of Theorem 2.5 was to construct a vector field that
combines all the properties needed to prove the result, essentially using Poincaré-Hopf type
theorems. Let us say some words about our proof, which uses combinatorial techniques and is a
less extensive and less constructive proof than the original one in [5]. We first give an expression
of the Euler obstruction of a 1-form in terms of the radial indices of this form on the closures
of the strata of X and Euler characteristics of complex links (this relation appears first in [11],
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Corollary 1, with a different proof). As a corollary, we obtain a formula for Euy (0) — Euy, x (0)
in terms of Euler characteristics of complex links and the Euler characteristics of the Milnor
fibre of f on the closures of the stata of X. Then we use the addivity of the Euler characteristic
to get a relation between Euy x(0) and the Euler characteristics of the Milnor fibres of f on the
strata of X.

The first author is partially supported by the program

“Catédras Lévi-Strauss—USP /French Embassy, no. 2012.1.62.55.7”.

The authors are grateful to the referee for his/her careful reading and for suggesting improve-
ments in this paper.

2. THE EULER OBSTRUCTION
Let us now introduce some objects in order to define the Euler obstruction.

Let (X,0) C (CV,0) be an equidimensional reduced complex analytic germ of dimension d in
an open set U C CV. We consider a complex analytic Whitney stratification {V;} of U adapted
to X and we assume that {0} is a stratum. We choose a small representative of (X,0) such that
0 belongs to the closure of all the strata. We denote it by X and we write X = U_;V; where
Vo = {0} and V; = X,¢g, the set of smooth points of X. We assume that the strata Vo, ..., Vo1
are connected and that the analytic sets Vp,...,V,_1 are reduced. We set d; = dimV; for
i €{l,...,q} (note that d, = d).

Let G(d, N) denote the Grassmanian of complex d-planes in CV. On the regular part Xieg Of
X the Gauss map ¢ : Xyee = U X G(d, N) is well defined by ¢(z) = (2, Ty (Xieg))-

Definition 2.1. The Nash transformation (or Nash blow-up) X of X is the closure of the image
Im(¢) in U x G(d, N). It is a (usually singular) complex analytic space endowed with an analytic

projection map v : X — X which is a biholomorphism away from v~1(Sing(X)) .

The fiber of the tautological bundle 7 over G(d, N), at the point P € G(d, N), is the set of
vectors v in the d-plane P. We still denote by 7 the corresponding trivial extension bundle over
U x G(d,N). Let T be the restriction of T to X, with projection map 7. The bundle Ton X
is called the Nash bundle of X.

Let us recall the original definition of the Euler obstruction, due to MacPherson [20]. Let
z = (21,...,2n) be local coordinates in CV around {0}, such that z;(0) = 0. We denote by B.
and S the ball and the sphere centered at {0} and of radius e in CV. Let us consider the norm
|z]l = V2121 + - + zxyzZn. Then the differential form w = d||z||? defines a section of the real
vector bundle T(CV)*, cotangent bundle on C¥. Its pull-back restricted to X becomes a section

of the dual bundle 7* which we denote by w. For ¢ small enough, the section w is nonzero
over v~1(z) for 0 < ||z|| < e. The obstruction to extend & as a nonzero section of T* from
v=1(5.) to v~ (B.), denoted by Obs(T*,&) lies in H2¥(v~1(B.),v~1(5.); Z). Let us denote by
O,-1(B.)v-1(s.) the orientation class in Haq(v™(Be), v 1(S.); Z).

Definition 2.2. The local Euler obstruction of X at 0 is the evaluation of Obs(f*,[&) on
OV—I(BE),Vfl(gs), .e.:
Eux (0) = (0bs(T™,w), Op-1(B.),v-1(5.))-

An equivalent definition of the Euler obstruction was given by Brasselet and Schwartz in the
context of vector fields [6].

The idea of studying the FEuler obstruction using hyperplane sections appears in the works of
Dubson [8] and Kato [13], but the approach we follow here comes from [4, 5].
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Theorem 2.3 ([4]). Let (X,0) and {V;} be given as before, then for each generic linear form I,
there is €g such that for any € with 0 < € < gg and § # 0 sufficiently small, the Euler obstruction
of (X,0) is equal to:

Eux (0 ZX i N BNI7H(0)) - Bux (Vi),

where x denotes the Fuler-Poincaré chamcterzstic, Eux (V;) is the value of the Euler obstruction
of X at any point of Vi, i=1,...,q, and 0 < |0] < e < 1.

We define now an invariant introduced by Brasselet, Massey, Parameswaran and Seade in
[5], which measures in a way how far the equality given in Theorem 2.3 is from being true if
we replace the generic linear form [ with some other function on X with at most an isolated
stratified critical point at 0. Let f : X — C be a holomorphic function which is the restriction of
a holomorphic function F': U — C. A point x in X is a critical point of f if it is a critical point
of Fjy(g), where V() is the stratum containing . We assume that f has an isolated singularity
(or an isolated critical point) at 0, i.e. that f has no critical point in a punctured neighborhood
of 0 in X. In order to define this new invariant, the authors constructed in [5] a stratified vector
field on X, denoted by Vx f. This vector field is homotopic to VF|x and one has Vx f(z) # 0
unless z = 0. B _

Let f be the lifting of Vx f as a section of the Nash bundle 7' over X without singularity
over (X NS.). Let O() € H* (v~ (X N B.),r (X N S:)) be the obstruction cocycle to

the extension of 6 as a nowhere zero section of T inside v~ 1 X N B.).

Definition 2.4. The local Euler obstruction Euy x(0) is the evaluation of O(C) on the funda-
mental class of the pair (v~(X N B),v~1(X N S.)).

The following result is the Brasselet, Massey, Parameswaran and Seade formula [5] that
compares the Euler obstruction of the space X with that of a function on X.

Theorem 2.5. Let (X,0) and {V;} be given as before and let f : (X,0) — (C,0) be a function
with an isolated singularity at 0. For 0 < || < ¢ < 1 we have:

q
Eux (0) - Buy x(0) = (Z X(Vin BN f71(9)) - Eux<w>> :

In this paper, we present an alternative proof for this result using Ebeling and Gusein-Zade’s
work [11] . In order to do this, let us consider the Nash bundle T on X. The corresponding dual

bundles of complex and real 1-forms are denoted, respectively, by T* — X and T]R - X.

Definition 2.6. Let (X,0) and {V,} be given as before. Let w be a (real or complex) 1-form on
X, i.e. a continuous section of either TiCN|x or T*CN|x. A singularity of w in the stratified
sense means a point x where the kernel of w contains the tangent space of the corresponding
stratum.

This means that the pull-back of the form to V,, vanishes at x. Given a section 7 of Tﬂif(CN |a,
A C V, there is a canonical way of constructing a section 77 of fﬁu, A =v71A, such that if n
has an isolated singularity at the point 0 € X (in the stratified sense), then we have a never-zero
section 7 of the dual Nash bundle Ty over v~ 1(S. N X) C X. Let

o(n) € H** (v Y(B.NnX), v (5. N X); Z)

be the cohomology class of the obstruction cycle to extend this to a section of T]{g over v~ H(B. N X).
Then we can define (c.f. [7]):
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Definition 2.7. The local Fuler obstruction of the real differential form n at an isolated singu-
larity is the integer Eux o n obtained by evaluating the obstruction cohomology class o(n) on the
orientation fundamental cycle [v=1(B. N X),v=1(S. N X)].

In the complex case, one can perform the same construction, using the corresponding complex
bundles. If w is a complex differential form, section of 7*C¥|4 with an isolated singularity, one
can define the local Euler obstruction Euy g w. Notice that, as explained in [7] p.151, it is equal
to the local Euler obstruction of its real part up to sign:

Euxow = (—l)dEuX,oRe w.

This is an immediate consequence of the relation between the Chern classes of a complex vector
bundle and those of its dual. Remark also that when we consider the differential of a function
f, we have the following equality (see [11]):

d
EuX70 df = (—1) EUf’X(O).
3. THE COMPLEX LINK, RADIAL INDEX AND EULER OBSTRUCTION

In this section, we recall the definition of the complex link and of the radial index. We also
present a formula of Ebeling and Gusein-Zade which expresses the radial index of a 1-form in
terms of Euler characteristics of complex links and Euler obstructions.

The complex link is an important object in the study of the topology of complex analytic
sets. It is analogous to the Milnor fibre and was studied first in [15]. It plays a crucial role
in complex stratified Morse theory (see [12]) and appears in general bouquet theorems for the
Milnor fibre of a function with isolated singularity (see [16, 17, 22, 23]). It is related to the
multiplicity of polar varieties and also the local Euler obstruction (see [8, 9, 18, 19]). Let us
recall briefly its definition. Let M be a complex analytic manifold equipped with a Riemannian
metric and let Y C M be a complex analytic variety equipped with a Whitney stratification.
Let V be a stratum of Y and let p be a point in V. Let N be a complex analytic submanifold
of M which meets V transversally at the single point p. By choosing local coordinates on IV, in
some neighborhood of p we can assume that N is an Euclidian space C*.

Definition 3.1. The complex link of V in Y is the set denoted by lk(C(V7 Y) and defined as
follows:

KV, Y) =Y NNNB.NI"Y(6),
where | : N — C is a generic linear form and 0 < |0] < ¢ < 1.

The fact that the complex link of a stratum is well-defined, i.e. independent of all the choices
made to define it, is explained in [19, 9, 12]. Tt is also independent of the embedding of the
analytic variety Y (see [19]).

In [11], Ebeling and Gusein-Zade established relations between the local Euler obstruction
of a 1-form, its radial index and Euler characteristics of complex links. The radial index is a
generalization to the singular case of the Poincaré-Hopf index.

This index for 1-forms is a natural extension of the equivalent notion for vector fields, a notion
first introduced by King and Trotman in a 1995 preprint only recently published [14] and then
studied by Ebeling and Gusein-Zade in [10] and by Aguilar, Seade and Verjovsky in [1].

In order to define this index, let us consider first the real case. Let Z C R™ be a closed
subanalytic set equipped with a Whitney stratification {S, }oca. Let w be a continuous 1-form
defined on R™. We say that a point P in Z is a zero (or a singular point) of w on Z if it is a
zero of w|g, where S is the stratum that contains P. In the sequel, we define the radial index of
w at P, when P is an isolated zero of w on Z. We can assume that P = 0 and we denote by Sy
the stratum that contains 0.
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Definition 3.2. A 1-form w is radial on Z at 0 if, for an arbitrary non-trivial subanalytic arc
¢ [0,v[= Z of class C', the value of the form w on the tangent vector ¢(t) is positive for t
small enough.

Let € > 0 be small enough so that in the closed ball B, the 1-form has no singular points
on Z \ {0}. Let Sp,...,S, be the strata that contain 0 in their closure. Following Ebeling and
Gusein-Zade, there exists a 1-form @ on R™ such that:

(1) The 1-form @ coincides with the 1-form w on a neighborhood of S..

(2) The 1-form @ is radial on Z at the origin.

(3) In a neighborhood of each zero @ € ZN B\ {0}, Q € S;, dim S; = k, the 1-form & looks
as follows. There exists a local subanalytic diffeomorphism h : (R™,R¥,0) — (R™, S;, Q)
such that h*@w = mjw, + m5We where m; and 7 are the natural projections m; : R" — Rk
and my : R® — R"*_ @ is a 1-form on a neighborhood of 0 in R* with an isolated zero
at the origin and @y is a radial 1-form on R™~* at 0.

Definition 3.3. The radial index indﬂé0 w of the 1-form w on Z at 0 is the sum:

T
1+Z Z indPH(a}vQ7Si)7
1=0 Ql@|s, (Q)=0
where indpy (@, Q, S;) is the Poincaré-Hopf index of the form &g, at Q and where the sum is
taken over all zeros of the 1-form & on (Z \ {0}) N B.. If 0 is not a zero of w on Z, we put
indﬂé’0 w = 0.

A straightforward corollary of this definition is that the radial index satisfies the law of
conservation of number (see Remark 9.4.6 in [7] or the remark before Proposition 1 in [11]).

Let us go back to the complex case. As in Section 2, (X,0) C (CV,0) is an equidimensional
reduced complex analytic germ of dimension d in an open set U C CV. Let w be a complex
1-form on U with an isolated singular point on X at the origin.

Definition 3.4. The complex radial index ind%0 w of the complex 1-form w on X at the origin
is (—1)? times the index of the real 1-form given by the real part of w.

Let us write n; = (—1)4-%~! (X(lkC(Vi,X)) - 1), where {V;} is the Whitney stratification

of (X,0) considered before. In particular for an open stratum V; of X, lkC(Vi, X) is empty and
so n; = 1. Let us define the Euler obstruction Euyy w to be equal to 1 for a zero-dimensional
connected variety Y. Under this conditions Ebeling and Gusein-Zade proved in [11] the following
result which relates the radial index of a 1-form to Euler obstructions.

Theorem 3.5. Let (X,0) C (CV,0) be the germ of a reduced complexr analytic space at the
origin, with a Whitney stratification {Vi}, ¢ = 0,...,q, where Vo = {0} and V; is the regular
part of X. Then:

q
ind(f,:g0 w= an -Eug o w.
1=0
4. COROLLARIES OF THEOREM 3.5 AND ALTERNATIVE PROOF OF THEOREM 2.5

In this section, we give some corollaries of Theorem 3.5, among them an alternative proof of
Theorem 2.5.

As in the previous sections, (X,0) C (CV,0) is an equidimensional reduced complex analytic
germ of dimension d in an open set U, equipped with a Whitney stratification {V;} such that 0
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belongs to the closure of all the strata. We write X = UL V; where Vp = {0} and V, = X,¢,.
We assume that the strata Vp,...,V,_1 are connected and that the analytic sets Vo, ... ,K
are reduced. We set d; = dimV; for ¢ € {1,...,¢}. Let f : X — C be a holomorphic function
which is the restriction of a holomorphic function F' : U — C. We assume that f has an isolated
singularity at 0.

Let us see what happens when we apply Theorem 3.5 to the form ) Zidz;. Let us consider

21,2%2,...,2N) as complex coordinates o , where z, = u + v —1vg. is implies tha
1 dinates of CV, wh V-1 This implies that
u1,v1,...,UN,VN) are real coordinates o . Let w be a 1-form define w= Zrdzy, 1
( ) 1 dinates of R2N. Let w be a 1-f defined by Yok Zkdzy, it
means that:
= Z(uk — v —1vg)(duy, + vV —1dvy),
k

and so that:

w = Z(ukduk + vgdvg) + VvV — Z updvg — vidug).

k
In this case, the real 1-form Re w = > (ugduy +vidvy) is a radial 1-form, and indﬂ;o Rew =1.
Since indg,0 w= (fl)dind]i,o Re w, we find that:
ind()C(’0 w= (—1)dindﬂ§;70 Re w = (—1)%
As it was remarked before,
Euxow= (—1)dEuX70 Re w.

Using this information and the definition of n; given in Section 3, we have the next equality:
niBuy o w = (—1)?% ! (X(lkc(m,X)) - 1) (=1)%Euy-(0).

Therefore, by Theorem 3.5 we conclude that:

(~1)! = (-1)? [i (1 X(KE(Vi, X)) ) Bug-(0) + EUX(O)] ,

=0

and so we arrive to the following lemma:

Lemma 4.1. We have:
(1) Euy (0 —1+Z( (< m,x)—1) Euy-(0).

When we apply Theorem 3.5 to the form df , we obtain a similar result for the Euler obstruction
of the function f.

Lemma 4.2. We have:
q

L-x(f ' @) NXNnB) =Y (1 — x(KE(V;, X))) Eu, 1-(0).

i=0
Proof. On the one hand, applying Theorem 3.5 to the form df, we have:
q
ind% o df = > niBup, df = (~1)% 4! (X(lkC(Vi,X)) — 1) (~1)“Eu, -(0).
i=0
On the other hand, by Theorem 3 of [11] we have:

ind% o df = (1)’ (1= x(f7' )N X N B.)).
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It follows that:

L-X(f'O)NXNB) =3 (1 - X(lkc(w,x))) Eu, -(0).

i=0
[l
Before stating the next result, let us set By x(0) = Eux(0) — Euy x(0).
Corollary 4.3. We have:
q
XN XN B =3 (1= x(KE(Vi, X)) ) By :(0).
i=0
Proof. By the previous lemma, we have the following equation:
q—1
(2) Buyx(0) = 1= X(/ {0 N X N B.) + Y (x(K(V, X)) = 1) Buy 7(0).
i=0
By the difference (1) — (2) we arrive at:
qg—1
(8)  Brx(0)=x(/ 1O N XN B+ Y (WK (Vi X)) ~ 1) B, 5:(0).
i=0
Hence we find:
q
XSO NX 0B =3 (1= x(KE(Vi, X)) ) By :(0).
i=0
O

In [11, Corollary 1], Ebeling and Gusein-Zade give an “inverse” of the formula of Theorem
3.5. They use combinatorial theory (Mobius inverse). In the sequel, we give an inductive proof
of that result. Let us recall the notations of [11]. The strata V; of X are partially ordered:
Vi < V; (we shall write ¢ < j) if V; C W and V; # Vj. For two strata V; and V; with V; X V;
(we shall write i < j), let N;; be the normal slice of the variety V; to the stratum V; at a point
of it and let M y,; be the complex link of V; in Vj. We denote x(Z) — 1 by X(Z). For i < j, let
m;; be defined as follows:

mij = (—1)dm X-dim Ve Z X(My Ny, ) X(Miy,
ko< < k=]

and let us set m;; = 1.

Corollary 4.4. Let w be a complex 1-form with an isolated zero on X at the origin. We have:

q
Euxow= Zmiq ~ind%0 w.
i=0
Proof. This is clearly true if dim X = 0. Let us assume that dim X = d > 1 and prove the result
by induction on the depth of the stratification. The first step is to consider the case when X has
an isolated singularity at the origin. In this case, the stratification will be {Vi = {0}, Vi = X,eg}
and
no = (=) (x (kS (Vo, X) — 1) = (=)' x(Mi o, )
Euxow=1,n; =1 and Euﬁ,o w = BEux o w. Applying Theorem 3.5, we get:

ind([):(,O w = (*1)d71Y(Ml\N01) + Eux o w,
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and so:
Eux’o w = ind%o w + (—l)dY(Ml‘Nm).
This is exactly the expected formula because ind(‘c,mo w=1and mo1 = (—1)"x(M|n, )-

Let us prove the general case. By the induction hypothesis, for each k& € {0,...,d — 1}, we
have:

j | ViCVi
But we know by Theorem 3.5 that:
d—1
Euxow= ind%o w— Z ng - Euﬁ,o w.
k=0

Replacing Euy:- ) w by its above value, we obtain:

d—1
.. aC . .C .. 4C
Euxow=indyxw— g N dek,o w+ E M .1nd7]70 w
k=0 J | ViCovie

We see that each indvj’O(C w appears in each term

. 1C . .C
N 1nd7k70 w+ E M -mdvj,0 wl,
i Vicovi

for which V; C Vi. Therefore we can write:

d—1
E =ind$, w—) inds 4 K
ux,0 W = X,0 w V5,0 w | 1y mik - Nk
7=0 k| V;CoVi

Let us examine A; =n; + ), | v, covy Mk * M- We have:

Aj = (-1 Ix(My )+

Z ((_1)dk—dj—1 Z X(M”ngkl) .. 'Y(Ml\Nk,,,lkr) % (_1)d—dk—1y(Ml|qu)).

k| V;CoVi j=ko=<--<kr.=k
Therefore, we see that:

Aj = (=) %5 (My,, )+

Z (—l)d_dj_l Z Y(Ml‘Nkokl) o 'X(M”Nkrk

k| Vjcavk j=ko<-<krp1=¢q

)|

41

ie. Aj = —mj,. We get the desired result. O

When we apply this to the form w = > Zrdzi, we get:

Bux(0)=Y Y XMy, ) XMy, ) (%)

i=0 i=ko~<---<kr=q



90 N. Dutertre and N. G. Grulha Jr.

This formula is still valid if V # {0}. In this case, we can introduce the stratum V_; = {0}.
The above formula becomes:

q
EuX(O) = Z Z Y(MHN’%M)”.Y(Ml‘Nkr—lkr)'
i=—11i=ko<-<kr=q

But since generically the linear form [ has no singularity at 0 on Vy, the Milnor fibre M, Vi of

1:V, — C is contractible for k > 0, which implies that X(MllN,lk) =0 for k> 0.
Applied to the form df, Corollary 4.4 gives:

Busx(0) ==Y X(Mpy) > X(Myn,,,,) - X(Miw, ), (%)
1=0

where My g denotes the Milnor fibre of f : Vi = C, because Euy x(0) = (—1)?Eux, df and
indg- o df = (=1 Ix(My ;).
We are now in position to give the alternative proof of Theorem 2.5.

Proof. Using the two equalities () and () above, we find:

q

Eux(0) —BEusx(0) =Y x(Mye) Y. X(Myn,,,) - X(Myn, _,,.)-

i=0 i=ko=-<kr=q
By the additivity of the Euler characteristic, for each i € {0,...,q} we have:
XMp) = Y x(Mypp,).
Jv;cvs

Therefore, we have:

q
Eux (O) o Euf’X(O) = Z Z X(Mflvj) Z X(M”ngkl) o 'Y(MllNkrilkr)'
=0 \j |V;CV; i=ko<-<kr=q

As in the proof of the previous corollary, we see that each x (M flvj) appears in an expression

> X (Mg > x(Myy,,,) XMy, ),

j |VJCW i=ko<--<kr=q
when V; C V;. We can factorize X(Mfwj) in the above equality and get:

q

Eux (0) = Eugx(0) =Y x(Msp) | > > X(Myy,,,) XMy, )

7=0 i |‘/jcvi7;:k0'<“"<kr:q

But by the equality (%) and the remark that follows it, we see that:

Z Z Y(M”Nkoh)”'Y(M”N’wflkr)’

i |V;CV; i=ko<-<kr=q

is exactly Eux (V}). O
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EVOLUTES OF FRONTS IN THE EUCLIDEAN PLANE

T. FUKUNAGA AND M. TAKAHASHI

Dedicated to Professor Shyuichi Izumiya on the occasion of his 60th birthday

ABSTRACT. The evolute of a regular curve in the Euclidean plane is given by not only the
caustics of the regular curve, envelope of normal lines of the regular curve, but also the locus
of singular points of parallel curves. In general, the evolute of a regular curve has singularities,
since such points correspond to vertices of the regular curve and there are at least four vertices
for simple closed curves. If we repeat an evolute, we cannot define the evolute at a singular
point. In this paper, we define an evolute of a front and give properties of such an evolute
by using a moving frame along a front and the curvature of the Legendre immersion. As
applications, repeated evolutes are useful to recognize the shape of curves.

1. INTRODUCTION

The evolute of a regular plane curve is a classical object (cf. [5, 8, 9]). It is useful for
recognizing the vertex of a regular plane curve as a singularity (generically, a 3/2 cusp singularity)
of the evolute. The caustics (evolutes) are related to general relativity theory, see for instance
[6, 10]. The properties of evolutes are discussed by using distance squared functions and the
theories of Lagrangian and Legendrian singularities (cf. [1, 2, 3, 13, 14, 17, 20]). Moreover,
the singular points of parallel curves of a regular curve sweep out the evolute. By using this
property, we define an evolute of a front in §2. In order to consider properties of an evolute of a
front, we introduce a moving frame along a front (a Legendre immersion) (cf. [7]). In [7], we give
existence and uniqueness for a Legendre curve in the unit tangent bundle like for regular plane
curves. It is quite useful to analyze a Legendre curve (or, a frontal) in the unit tangent bundle.
In §3, we give another representation for the evolute of a front by using the moving frame and the
curvature of the Legendre immersion (Theorem 3.3). By the representation, we give properties
of the evolutes of fronts, for example, the evolute of a front is also a front. It follows that we
can consider the repeated evolutes, namely, the evolute of an evolute of a front, see Theorem 4.1
in §4. Moreover, we extend the notion of the vertex for a front (or, a Legendre immersion) and
give a kind of four vertex theorem for a front, see Proposition 3.11. Furthermore, the evolute of
a front is also given by the envelope of normal lines of the front. A singular point of the evolute
of the evolute of a regular curve measure to the contact of an involute of a circle. We give the
n-th evolute of a front in §5. In §6, we give examples of the evolutes of fronts. In the appendix,
we give the condition of contact between regular curves.

All maps and manifolds considered here are differentiable of class C*°.
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2. DEFINITIONS AND BASIC CONCEPTS

Let I be an interval or R. Suppose that v : I — R? is a regular plane curve, that is, §(t) # 0
for any t € I. If s is the arc-length parameter of v, we denote £(s) by the unit tangent vector
t(s) = v'(s) = (dvy/ds)(s) and n(s) by the unit normal vector n(s) = J(t(s)) of v(s), where J
is the anticlockwise rotation by 7/2. Then we have the Frenet formula as follows:

( Z’% > N ( —£<s> KEJS) > ( i((?) >

where k(s) = t/(s) - n(s) is the curvature of v and - is the inner product on R2.
Even if ¢ is not the arc-length parameter, we have the unit tangent vector t(¢) = 4(t)/|v(t)|,
the unit normal vector n(t) = J(¢(t)) and the Frenet formula

( t(t) ) _ ( 0 [(8)1%(t) ) ( t(t) )
n(t) =7 (®)]x(t) 0 n(t) )’
where §(t) = (dy/dt)(t), [7(t)] = /(1) - 4(t) and w(t) = det(3(1),5(1))/ |5 ()]* = £(t)n(t)/[7(2)]-
Note that x(t) is independent of the choice of a parametrization.
In this paper, we consider evolutes of plane curves. The evolute Ev(vy) : I — R? of a reqular

plane curve ~y is given by
1
E t) =~(t) + —=n(t
v (E) =18) + i)

away from the points where x(t) = 0 (cf. [5, 8, 9]).

If v is not a regular curve, then we cannot define the evolute as above, since the curvature
may diverge at a singular point. However, we define an evolute of a front in the Euclidean plane,
see Definition 2.10 and Theorem 3.3. It is a generalization of the evolute of regular plane curves.

We say that v : I — R? is a front (or, a wave front) in the Euclidean plane, if there exists
a smooth map v : I — S! such that the pair (y,v) : I — R? x S! is a Legendre immersion,
namely, (¥(t),2(t)) # (0,0) and (v(¢),v(¢))*0 = 0 for each ¢t € I. Here 6 is the canonical contact
structure on T1R? = R? x S', and S is the unit circle. We remark that the second condition is
equivalent to ¥(t) - v(t) =0 for each t € I (cf. [1, 2, 3]).

Throughout the paper, we assume that the pair (v, v) is co-orientable, the singular points of
~ are finite and - has no inflection points. The first and second conditions can be removed, see
Remarks 3.4 and 3.5. However, we add these conditions for the sake of simplicity.

We give examples of fronts. See [1, 4, 11] for other examples.

Example 2.1. One of the typical examples of a front is a regular plane curve. Let v : I — R?
be a regular plane curve. In this case, we may take v : I — S* by v(t) = n(t). Then it is easy
to check that (v,v) is a Legendre immersion.

Example 2.2. Let v : R — R? be a 3/2 cusp (Az-singularity) given by ~(t) = (¢2,#3). In this
case, 0 is a singular point of 7. If we take v : R — St by v(t) = (1/V9t2 + 4)(—3t,2), then we
can show that (v, v) is a Legendre immersion. Hence the 3/2 cusp is an example of a front. The
3/2 cusp is the generic singularity of fronts and also evolutes in the Euclidean plane.

Example 2.3. Let v : R — R? be a 4/3 cusp (Eg-singularity) given by ~(t) = (¢3,¢*). In this
case, 0 is also a singular point of . If we take v : R — St by v(t) = (1/v/16¢2 + 9)(—4t, 3), then
we can show that (,v) is a Legendre immersion. Hence the 4/3 cusp is also an example of a
front, see Example 6.3.

Example 2.4. Let v : R — R? be a 5/2 cusp (Ag-singularity) given by ~(t) = (¢2,¢5). In this
case, 0 is also a singular point of . However, the 5/2 cusp is not a front. By the condition
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F(t) - v(t) = 0, we take v : R — S! by v(t) = £(1/v/25t5 + 4)(=5¢t3,2). Then (v,v) is not an
immersion at ¢t = 0 and hence v is not a front (but +y is a frontal, see [7]).

Remark 2.5. By the definition of the Legendre immersion, if (v, v) is a Legendre immersion,
then (v, —v) is also.

We have the following Lemma (cf. [4, 11, 12]).
Lemma 2.6. Lety: 1 — R? be a front and tg € 1. If v (tg) = 0 for each 1 <i <k —1 and

Y F)(to) # 0, then v at to is diffeomorphic to the curve (t*,tFT1 4 o(t*+1)) at t = 0. Moreover,
if k =2 (respectively, k = 3), the curve at ty is diffeomorphic to a 3/2 (respectively, 4/3) cusp.

Let (v,v) : I — R? x S* be a Legendre immersion. We define a parallel curve vy : I — R? of
v by va(t) = v(t) + Av(t) for each A € R. Then we have following results.

Proposition 2.7. For a Legendre immersion (v,v) : I — R2x S, the parallel curve vy : I — R?
is a front for each A € R.
Proof. We take vy : I — S! by vy(t) = v(t). Since v\ (t) = ~(t) + Av(t), it holds that
An(t) = A(t) + Av(t). If 4a(to) = 0 at a point tg € I, then we have ¥(tg) + Av(tg) = 0. If
Ua(tg) = v(tg) = 0, then #(tg) = 0. It contradicts the fact that (y,v) is an immersion. Hence
(77a, vx) is an immersion. By v(t) - v(t) = 1, we have v(t) - v(t) = 0. Then

() - wa(t) = (3(8) + A(t)) - w(t) = 3(t) - w(t) + Ao (t) - v(t) = 0

holds. Tt follows that (yx,vy) is a Legendre immersion and hence «, is a front. O

We denote the curvature of the parallel curve «y(t) by kx(t), when ~, is a regular curve.

Proposition 2.8. Let (v,v) be a Legendre immersion. If v is a reqular curve and \ # 1/k(t),
then a parallel curve vy is also reqular and Ev(vyy)(t) is consistent with Ev(vy)(t).

Proof. Since v (t) = v(t) + An(t), it holds that 4, (t) = |¥(¢)|(1 — Ax(t))t(t). By the assumption
A # 1/k(t), v is a regular curve. By a direct calculation, we have

B li(t) _ 1-— )\H(t)
DO = sl ™ T w0
Hence we have
) - 11— Xe(t)] 1 — As(t)
Foon®) = a0+ gy =00+ A0+ T e ™)
1
= )+ Fﬁ)n(t) = Ev(y)(t)

O

Remark 2.9. Let (v,v) be a Legendre immersion. If ¢ is a singular point of the front +, then
lim; ¢, |k(t)| = co. By the equality k) (t) = k(t)/|1 — Ak(t)|, we have lim;_;, £ (t) # 0, see also
Remark 3.2.

We now define an evolute of a front in the Euclidean plane.

Definition 2.10. Let (y,v) : I — R? x S! be a Legendre immersion. We define an evolute
Ev(7y) : T — R? of the front v as follows:

~y(t) + %t)n(t) if ¢ is a regular point,
a(t) + ﬁ(t)n,\(t) if te(to—9,to+9), tois a singular point of ~,

Ev(7)(t) = {
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where 0 is a sufficiently small positive real number, A € R is satisfied the condition A # 1/k(t)
and x(t) # 0.

Remark 2.11. By the assumption of the finiteness of singularities of a front, there exists A € R
with the condition A # 1/k(t). Moreover, by Proposition 2.8, we can glue on the regular interval
of v and ~yy. Then the evolute of a front is well-defined. Furthermore, by definition, the evolute
of a front Ev(7y) is a C* map.

In order to consider properties of the evolute of a front, we need a moving frame along a front
(or, a Legendre immersion) (cf. [7]). Let (y,v) : I — R? x S! be a Legendre immersion. If v is a
regular curve around a point ¢y, then we have the Frenet formula of v in §2. On the other hand,
if v is singular at a point ¢y, then we don’t define such a frame. However, v is always defined
even if ¢ is a singular point of 7. Therefore, we have the Frenet formula of a front as follows.
We put u(t) = J(v(t)). We call the pair {v(t), u(t)} is a moving frame along a front v(t) in R?
and we have the Frenet formula of a front which is given by

@ (i )= (o 0 ) (),

where £(t) = v(t) - u(t). Moreover, if 4(t) = a(t)v(t) + B(t)u(t) for some smooth functions
a(t), B(t), then a(t) = 0 follows from the condition #(¢) - v(t) = 0. Hence, there exists a smooth
function B(t) such that

(2) Y(t) = B(t)p(t).

Since (vy,v) is an immersion, we have (¢(t),5(t)) # (0,0) for each t € I. The pair (¢,0) is
an important invariant of Legendre curves (or, frontals) in the unit tangent bundle like as the
curvature of a regular plane curve, for more detail, see [7]. We call the pair (£, 8) the curvature
of the Legendre curve. Since we assume that (v,v) is a Legendre immersion, so that we call
(¢, B) the curvature of the Legendre immersion. For the related properties, see [15, 16].

3. PROPERTIES OF THE EVOLUTES OF FRONTS

In this section, we consider properties of the evolutes of fronts. Let (y,v) : I — R? x St be a
Legendre immersion with the curvature of the Legendre immersion (¢, 3).

First we give a relationship between the curvature of the Legendre immersion ((t), 5(t)) and
the curvature x(t) if v is a regular curve.

Lemma 3.1. (1) If v is a regular curve, then £(t) = |5(t)|k(t).
(2) If va is a regular curve, then £(t) = |B(t) + M(t)|kA(t).

Proof. (1) By a direct calculation, 4(t) = B(t)u(t), 5(t) = B(t)u(t) — B()E(t)v(t) and

@ det (4(t), 5(t)) _ det (B(t)u(t)ﬁ(t)u(t) —ﬁ(t)f(t)V(t)) B )
e RO 1B CBOE 1B
Therefore we have £(t) = |5(t)|x(t).

(2) We can also prove by the same calculations of (1). O

Remark 3.2. Since (£(t), 5(t)) # (0,0), if ¢¢ is a singular point of ~, then ~, is a regular curve.
By Lemma 3.1 (2), £(to) = |M(to)|ka(to). It follows from M(tg) # O that xx(to) # 0.

We give another representation of the evolute of a front by using the moving frame of a front
{v(t), u(t)} and the curvature of the Legendre immersion (£(t), 5(t)).
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Theorem 3.3. Under the above notations, the evolute of a front Ev(y)(t) is represented by

(3) Ev(V)(t) = () — 7= v (D),

and Ev(vy) is a front. More precisely, (Ev(y)(t),J(v(t))) is a Legendre immersion with the

curvature
(0 & (7))

Proof. First suppose that « is a regular curve. Since §(t) = B(¢t)u(t), we have |3(t)| # 0 and

O Y
"= gt MO = i
By Lemma 3.1 (1), x(¢) = £(¢)/|8(t)| and £(t) # 0. Then
e Lo 0L BOY B0
E)t) =2(0) + it =)+ I (= ZE ) wle) =) = Gt

Second suppose that ty is a singular point of v and ~, is a regular curve with A # 1/(¢). Since
Sat) = (B(t) + M(E)(t), we have [3(t) + M(1)] # 0 and
_B(t) + Al() _ B+ M) ,
OGO VO
By Lemma 3.1 (2), kx(t) = £(¢)/|8(t) + A(t)| and £(¢) # 0. Then
1 BO) + ] (B + ()
(o 7)o

t

Ev(m)(t) = )+ —=nalt) = y(t) + Av(t) +

If we take v(t) = J(v(t)) = p(t), then (Ev(v)(?),v(t)) is a Legendre immersion. In fact,
v(t) = £(t)J(pn(t)) # 0 and by the form of

@ o) = - 2O ZIOW, 0 — £ (58 stuto,

we have Ev(y)(t) - U(t) = 0. Tt follows that (Ev()(t), J(v(t))) is a Legendre immersion with the
curvature (¢(t), (d/dt)(B(¢)/£(t))) and hence Ev(7y) is a front. This completes the proof of the
Theorem. O

Remark 3.4. By the representation (3), we may define the evolute of a front even if v have
non-isolated singularities, under the condition £(¢) # 0.

By Lemma 3.1 and Remark 3.4, for a Legendre immersion (v, r) with the curvature of the
Legendre immersion (¢, 8), we say that ty is an inflection point of the front v (or, the Legendre
immersion (v,v)) if £(tg) = 0. Since B(ty) # 0 and Proposition 3.1, £(ty) = 0 is equivalent to
the condition k(tg) = 0.

Remark 3.5. Let (v, v) be a Legendre immersion, then (v, —v) is also (Remark 2.5). However,
Eu(t) does not change. It follows that we can define an evolute of a non co-orientable front, by
taking double covering of ~.



EVOLUTES OF FRONTS IN THE EUCLIDEAN PLANE 97

Remark 3.6. By Definition 2.10, the evolute of a front is independent on the parametrization
of (v,v). The curvature of the Legendre immersion (¢, 3) is depended on the parametrization
of (7,v), see [7]. If s = s(t) is a parameter changing on I to I, then £(t) = £(s(t))3(t) and
B(t) = B(s(t))s(t). It also follows from the representation (3) that the evolute of a front is
independent on the parametrization of (v, v).

If ¢y is a singular point of 7, then S(ty) = 0. As a corollary of Theorem 3.3, we have the
following.

Corollary 3.7. If tg is a singular point of -y, then Ev(y)(to) = Y(to)-

Proposition 3.8. Let (v,v) : I — R? x St be a Legendre immersion without inflection points.
Suppose that to is a singular point of . Then ty is a regular point of Ev(v)(t) if and only if
¥(to) # 0.

Proof. By the assumption, B(tg) = 0. Let ¢y be a regular point of Ev(y)(t). Since (4) and
L(tg) # 0, we have B(tg) # 0. By the differentiate of §(t) = B(¢)u(t), we have

§(t) = B(t)u(t) — B(E)E(E)v(t)

It follows that ¥(tg) = 0 and #4(tg) = B(to)u(to) # 0. The converse is also holded by reversing
the arguments. O

Note that by Lemma 2.6 and Proposition 3.8, the conditions follows that ~ is diffeomorphic
to the 3/2 cusp at tg. Hence, we can recognize the 3/2 cusp of original curve by the regularity
of the evolute of a front, see Examples 6.2 and 6.3.

The most degenerate case of the evolute of a front, we have classified as follows:

Proposition 3.9. If S.v(fy)(t) =0, then ~ is a part of a circle or a point.

Proof. By the condition Ev(v)(t) = 0, there exists a constant ¢ € R such that 3(t)/4(t) = ¢, if
and only if 5(t) = cf(t). If ¢ = 0, then 4(¢) = B(¢)u(t) = 0. It follows that ~ is a point. Suppose
that ¢ # 0. By the existence and the uniqueness of a front in [7], we take

0o f108) o 0. (-0 ). )

By 4(t) = B(t)u(t), we have

y(t) = (—c/@(t) sin (/ f(t)dt) dt + a, C/E(t) oS (/ é(t)dt) dt + b)
= (ccos (/E(t)dt) +a, csin (/f(t)dt) + b)
for some constants a,b € R. Therefore, 7 is a part of a circle. a

As a well-known result, a singular point of Ev(v) of a regular plane curve « is corresponding
to a vertex of «, namely, £(t) = 0 (cf. [5, 8, 18, 19]).

We extend the notion of vertex. For a Legendre immersion (v,r) with the curvature of
the Legendre immersion (¢, 3), to is a vertex of the front v (or a Legendre immersion (v,v))
if (d/dt)(8/0)(to) = 0, namely, (d/dt)Ev(tg) = 0. Note that if ¢y is a regular point of v, the
definition of the vertex coincides with usual vertex for regular curves. Therefore, this is a
generalization of the notion of the vertex of regular plane curves.
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Remark 3.10. Let (v, v) be a Legendre immersion. If ¢y is a singular point of v which degenerate
more than 3/2 cusp, then ¢ is a vertex of a front . In fact,

d (B (tg) = B(to)l(to) — B(to)e(to) _ 0
dt\¢)"" 0(tg)? ’
since (tg) = B(tg) = 0 by Proposition 3.8.

In this paper, a Legendre immersion (7, v) : [a,b] — R? x S is a closed Legendre immersion
if (v (a),r™(a)) = (v (b),v™ (b)) for all n € NU {0} where v (a), (™ (a), v(™(b) and
v(™)(b) means one-sided differential. If (v,v) : [a,b] — R? x S' is a closed Legendre immersion,

then both a and b are regular points or both a and b are singular points of v. When a and b are
singular points of -, we treat these singular points as one singular point.

Proposition 3.11. Let (7v,v) : [a,b] — R?xS! be a closed Legendre immersion without inflection
points.

(1) If v has at least two singular points which degenerate more than 3/2 cusp, then v has at
least four vertices.

(2) If v has at least four singular points, then v has at least four vertices.

Proof. (1) Suppose that v has at least two singular points which degenerate more than 3/2 cusp.
By Remark 3.10, these singularities are vertices of «, therefore it is sufficient to show that there
is at least one vertex between two adjacent singular points. Since v has no inflection points, the
sign of the curvature of v on regular points is constant. Therefore, either lim;_,4, x(t) = oo for
all tg € () or limy_y¢, k() = —oo for all tg € X(y), where X(7) is the set of singular points of
~. This concludes there exist t € (t1,t2) such that &£(t) = 0 for singular points ¢; and ¢5 of ~.

Suppose that a and b are singular points which degenerate more than 3/2 cusp. Since we
treat a and b as the one singular point, there exists at least one singular point ¢; € (a,b) which
degenerate more than 3/2 cusp by the assumption. In this case, there exist at least two vertices
vy € (a,t1) and vg € (t1,b). Moreover, a and t; are also vertices. Therefore, there exist at least
four vertices.

Next, suppose that a and b are regular points or 3/2 cusps. Then there exist at least two
singular points ¢; and t2 (we assume t; < t2) in (a,b) which degenerate more than 3/2 cusp.
In this case, there exists at least one vertex v € (t1,2). Moreover, since (7, v) is closed, there
exists a point ve € [a,t1) U (t2,b] such that &£(vy) = 0. Therefore, v has at least four vertices.

(2) Suppose that v has at least four singular points. Since v has no inflection points, the sign
of the curvature of v on regular points is constant. Therefore, either lim; ,+, (t) = oo for all
to € X(7) or limy_,4, k(t) = —oo for all tg € X(y). This concludes there exist ¢ € (t1,t2) such
that £(t) = 0, that is, there is at least one vertex between two adjacent singular points.

Suppose that a and b are singular points of 7. Since we treat a and b as the one singular
point, there exist at least three singular points 1, t2 and ¢3 of v in (a,b), which we assume
to be ordered so that a < t; < to < t3 < b. Since there is at least one vertex between two
adjacent singular points, there exist at least four vertices vy € (a,t1), v € (t1,t2), v3 € (to,t3)
and vy € (t3,0).

Next, suppose that a and b are regular points of . Let t1, to, t3 and ¢4 be singular points
of v (we assume a < t; < ta < t3 < t4 < b). Since there is at least one vertex between two
adjacent singular points, there exist at least three vertices vy € (¢1,t2), va € (ta,t3), v3 € (t3,t4).
Moreover, since (v, ) is closed, there exists a point vy € [a,t1) U (f4,b] such that &(vs) = 0.
Therefore, v has at least four vertices. a

Finally, in this section, we consider the evolute of a front as a (wave) front of a Legendre
immersion by using a family of functions.
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We define a family of functions
F:IxR* >R
Proposition 3.12. Let (v,v) : I — R? x S* be a Legendre immersion with the curvature of the

Legendre immersion (£, 3).
(1) F(t,x,y) = 0 if and only if there exists a real number A such that (x,y) = v(t) — Av(t).

(2) F(t,z,y) = (OF/0t)(t,x,y) = 0 if and only if {(t) # 0 and (z,y) = y(t) — (B(t)/£(t))v(1)-

Proof. (1) (v(t)—(x,y))-p(t) = 0if and only if there exists A € R such that y(¢) — (z,y) = Av(t).
t

t
(2) (OF0t) (1., y) = 4(0)- (1) + (7 ( )= (@,9))-fu(t) = B(t) = M(t). If £(t) = 0, then 5(t) =
This is a contradiction for (4(t), 8(t)) # (0,0). It follows that A = B(¢)/¢(¢). The converse is
also holded. O

One can show that F' is a Morse family, in the sense of Legendrian singularity theory (cf.
[1, 14, 20]), namely, (F,0F/0t) : I x R? — R x R is a submersion at (¢,z,y) € D(F), where

D(F) = {(tvx’y) | F(t,a:,y) = (8F/6t)(t,z,y) = 0}

It follows that the evolute of a front v(y) is a (wave) front of a Legendre immersion and is
given by the envelope of normal lines of the front.

4. EVOLUTES OF THE EVOLUTES OF FRONTS

By Theorem 3.3, the evolute of a front is also a front without inflection points. We consider
a repeated evolute of an evolute of a front and give properties of a singular point of it. Let
(v,v) be a Legendre immersion with the curvature of the Legendre immersion (¢, 8) and without
inflection points.

Theorem 4.1. The evolute of an evolute of a front is given by

®) Eu(Eut)(n) = euir)(o) - LU TN .

Proof. At this proof, we denote ¥(t) = Ev(y)(t). By the proof of Theorem 3.3,
(7(1),w(1)) = (Ev()(1), (1))
)

= J(¥(t)) = —v(t) and the derivative of the evolute of the

is a Legendre immersion. Since (¢
front (4), we have

where 5(t) = B(t)f(t). Moreover £(t) = £(t) by the Frenet formula of a front (1). It follows that

Eu(En(r))(8) = Ev(T)E) = 716) — 221 = oty - 2O IO .

O

We can also prove Theorem 4.1 by a direct calculation of the definition of the evolute of a
front (Definition 2.10). We need to divide into four cases, that is, vy is a regular or a singular,
and Ev(7y) is a regular or a singular. All cases coincide with (5). We also call Ev(Ev(y)) the
second evolute of a front.

Now we consider a geometric meaning of a singular point of Ev(Ev(y))(t).
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Lemma 4.2. Suppose that v and Ev(v) are both regular curves. If Ev(Ev(v))(t) = 0, then v is
an involute of a circle.

Proof.  We may assume that ¢ is the arc-length parameter of 7. It follows that [3(¢)] = 1
and hence ¢(t) = x(t) by Lemma 3.1. Moreover, we have 8(t)> = 1 and 3(t) = 0. Since
t(t) = B(t)p(t) and n(t) = —F(t)v(t), we have p(t) = B(¢)t(t) and v(t) = —B(t)n(t). Then

Ev(y)(t) =~(t) - i((tt))l/(t) =(t) - fgg(—ﬂ(t)n(t)) =(t) + ﬁn(t)
and
B(t)k(t) i(t)

Ev(Ev(y))(t) = Ev()(t) +
hold. It follows that

By the assumptions, x(t) # 0, 4(t) # 0 and &(t)k(t) — 34(¢)2 = 0, it follows that

d (RO _, (KO
dt \st)) “\&@®))
Solving this differential equation, there exist constants C7,Cy € R with Cs # 0 such that

(1) = Cr
K(t) = Cy———=.

e
A curve having the curvature 1/v/2ct for a constant ¢ € R\ {0} is an involute of a circle with
radius c¢. By the existence and the uniqueness theorems of regular plane curves, see for example
[8, 9], ~v is an involute of a circle (cf. [9, P.138]). O

Let v : I — R? be a regular curve and tq € I. The involute of a reqular curve is defined by
Inv(y,to) : I — R?%

ot t0)) =20~ ([ Bl du) e
Note that Ev(Inv(vy,to))(t) = v(t), for more detail see [5, 8, 9].

Theorem 4.3. Suppose that v and Ev(y) are regular curves. If ty is a singular point of
Ev(Ev(7)), then v is at least 4-th order contact to an involute of a circle at the point t = tg
up to congruent.

Proof. We may assume that ¢ is the arc-length parameter of v. By the same arguments in the
proof of Lemma 4.2, we have k(tg) # 0, k(tg) # 0 and &(to)r(to) — 3 (to)? = 0. We set k(tg) = a
and k(tp) = b. Then we define a curve J(¢) whose curvature is given by

K(t) = a\/g1 <respectively k() =a _al)

b\/—2t+2tg+ ¢ ’ Vb2t 26— 2
if ab > 0 (respectively, ab < 0). Then r(tg) = R(tg) = a and F(tg) = k(t) = b. Since
i(to)k(to) — 3 (to)? = 0 and K(t)&(t) — 3%(t)2 = 0, we have i(tg) = k(to). By the Theorem A.1
in the appendix, 7 and 7 are at least 4-th order contact at the point ¢ = tg up to congruent. It
follows that v and an involute of a circle are at least 4-th order contact at the point ¢ = tg up
to congruent. This completes the proof of Theorem. O
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Remark 4.4. Suppose that v is a regular curve. If tg is a singular point of Ev(y)(t) and
Ev(€Ev(7))(t), then &(ty) = K(to) = 0 by the same calculations of the proof of Lemma 4.2. It
follows that v and the osculating circle are at least 4-th order contact at the point ¢t = tg.

Proposition 4.5. Let (v,v) : I — R? x St be a Legendre immersion without inflection points.
Suppose that to is a singular point of both v and Ev(y). Then tg is a regular point of Ev(Ev(y))
if and only if ¥ (to) # 0.

Proof. Let ty be a regular point of Ev(Ev(y)). By Proposition 3.8, B(ty) = A(ty) = 0 and
£(tg) # 0. Since

.
4 o (sutay) = - B0 =0T <>€(t:)a§<> QUORE OO

it holds that (d/dt)Ev(Ev(7)
differentiate of 4(t) = B(t)u(

F(t) = (B(t) = BOUE))(t) — (2B(8)e(t) + BE)E(E)v (D)

It follows that 7 (to) = B(to)m(to) # 0. The converse is also shown by reversing the arguments.
0O

(M)(to) = —B(to)e(to) 2p(to) # 0 if and only if B(fo) # 0. By the
p(t), we have
(

)

Note that by Lemma 2.6 and Proposition 4.5, the conditions follows that v is diffeomorphic
to the 4/3 cusp at t.

5. THE n-TH EVOLUTES OF FRONTS

Let (v,v) : I — R? x S be a Legendre immersion with the curvature (¢,3) and without
inflection points. We give the form of the n-th evolute of a front, where n is a natural number.
We denote £v°(7)(t) = ~(t) and Evt(vy)(t) = Ev(y)(t) for convenience. We define

£ (1) = Eo(E T (D), Bolt) = B1), and u(t) = 5 (ﬂ"eé)(t))

inductively.

Theorem 5.1. (£v"(v),J"(v)) : I — R? x S' is a Legendre immersion with the curvature
(4, Br), where the n-th evolute of the front is given by

ﬁn—l (t)
ot

EV"()(t) = EV" (M) — T (w(1),

where J™ is n-times operations of J.

Proof. Let n =1 and n =2, then

00 = £°0)(0) ~ I w(0) =20 - Gt
and
PO = ) - 00 =80 - § () @)
eut)ie) - XS ),

These are nothing but the evolute of a front (3) and the second evolute of a front (5).
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Next suppose that 1 < j < k is holded, namely,

0l ()(e) = £ ()(e) — 2 )
for 1 < j < k. We consider Ev(Ev*(v))(t). Suppose that (EvF(y)(t), J*(v(t))) is a Legendre
immersion with the curvature (¢(t), Bk (t)). By Theorem 3.3, we have (k + 1)-th evolute of the
front
_ Br(t)
eI 0)(0) = E()(E) — T ).
Since
Zerimo = germo- 5 (F0) rew - Erew)
= B ) + Brar () T2 () — Br(8) ¥ (v(2))
= BT (@),
%J’“H(V(f)) = JHo) = T ) = () T I (0(2))

= Ut T2 (1),
it holds that (Ev**1(v), J¥+1(v)) is a Legendre immersion with the curvature (£(t), Br41(t)). By
the induction, this completes the proof of Theorem. o

As a generalization of Propositions 3.8 and 4.5, we have the following result:

Proposition 5.2. Let (vy,v) : I — R? x S be a Legendre immersion with the curvature of the
Legendre immersion (£, 3) and without inflection points. Suppose that ty is a singular point of
. Then the following are equivalent:

(1) to is a singular point of Evi(y)(t) fori=1,...,n

(2) (d'B/dt*)(to) =0 fori=1,...,n.

(3) (div/dt")(to) =0 fori=2,...,n+1.

Proof. First, we show that £;(t) is given by the form £()(t) and lower terms of 3()(t), namely,

(#) ,
©) B1(0) = T + L0, 5 00)

for some smooth function L which contain ¢(¢) and derivatives of £(t).

Since Bu(t) = ;lt (/;((t;) - f(f)) +5(t>% (ﬁ(1t>> ’

the case of ¢ = 1 is holded. Suppose that i = k is holded, namely, there exists a smooth function
L such that

(k)
Bi(t) = ift)(t) + L(B(),..., 8% D).
Then ﬁk( ) ﬁ(k“‘l)(t) -
Ben(t) = 5 ( 0t) ) T () + L(B(), ..., B0 (1)),

for some smooth function L. By the induction, we conclude the assertion.

Second, assume that tq is a singular point of Evi(y)(t) for i = 1,...,n. By Theorem 5.1,
(d/dt)Evi(7)(to) = 0 if and only if B;(tg) = 0. Since (6) and B(ty) = 0, it holds that B;(ty) = 0
for i = 1,...,n if and only if 89 (tg) = 0 for i = 1,...,n. It follows that (1) implies (2). By the
reversing arguments, the converse (1) follows from (2).
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Finally, since 4(¢) = B(t)u(t), we can also show that (2) is equivalent to (3) by the induction.
O

6. EXAMPLES

We give examples to understand the phenomena for evolutes of fronts.

Example 6.1. Let v(t) = (acost,bsint) be an ellipse with a,b > 0 and a # b. Since

1 1
v(t) = (=bcost,asint), u(t) = (—asint, —bcost),
\/a2 sin®t + b2 cos? t \/(12 sin®t + b2 cos?t
we have
ab —
£t) = B(t) = —VaZsin®t + b2 cos? .

a2sin’®t + b2 cos2t’

The evolute, the second evolute and the third evolute of the ellipse v are given by

2 _ b2 2 _ b2
Ev(y)(t) = (a cos® t, i sin® t) ,
a b
a? —b?
Ev(Ev(7))(t) = (T cost (b2 cos* t + 3a? sin* t + b* sin® 2t),
a
a2 _ b2

T sint (a2 sin? t + 3b% cos* t + a® sin® 2t)> ,
a

2 _ b2
(a —— cos” t (45a* — 10a*b” — 3b* + 12(—5a” + 4a®b® + b*) cos 2t + 15(a® — b*)* cos4t) ,
a

2 _ b2 i
G&zw sin®t (3a* + 10a®6* — 450" + 12(a” + 4a®b® — 5b*) cos 2t — 15(a”® — b*)* cos 4t)>.

The ellipse v and its evolute (red curve) are showed in Figures 1 left and 2 center. Moreover,
the second evolute (yellow curve), see Figure 1 center, and the third evolute (green curve), see
Figures 1 right and 2 right.

The evolute is useful to recognize the difference of the sharp of curves. In Figure 2, the left
is a circle and the center is an ellipse and its evolute. We can observe the evolute of the ellipse,
however, it is very small (red curve). If we consider the repeated evolute, we can easy to observe
it. The right in Figure 2 is the second and the third evolute of the ellipse.
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Figure 1. The ellipse and evolutes.
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Example 6.2. Let y(t) = (3cost — cos3t,3sint — sin3t) = (6cost — 4cos®t,4sin®t) be the
nephroid, see Figure 3 left. Since v(t) = (—sin2t, cos2t) and p(t) = (— cos2t,sin 2t), we have
£(t) =2,6(t) = —6sint. The evolute and the second evolute of the nephroid are as follows, see
Figure 3 center and right:

Figure 2.

Ev(y)(t) = (2 cos®t,3sint — 2sin? t) ,

Ev(Ev())(t) = (; cost — cos® t, sin® t> .

We can observe that y(t)/4 = Ev(Ev(7))(t).
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Figure 3. The nephroid and evolutes.

Example 6.3. Let v(t) = (t3,t*) be the 4/3 cusp, Figure 4 left. Since v(t) = (1/v/16t2 + 9)(—4t, 3)
and p(t) = (1/V16t2 + 9)(—3, —4t), we have £(t) = 12/(16t> + 9), B(t) = —t>\/16t2 +9. The

evolute and the second evolute of the 4/3 cusp are as follows, see Figure 4 center and right:

Ev(y)(t) = (—2t3 — ?tf’, %tQ + 5t4> 7
Ev(Ev(y))(t) = (28775 — 233 — 3215, fgﬂ —23t* — 330156) .

. . . , . . . , . . . )
-2 -1 1 2 2 -1 1 2 —/ \\Z

Figure 4. The 4/3 cusp and evolutes.

APPENDIX A. CONTACT BETWEEN REGULAR CURVES

In this appendix, we discuss contact between regular curves. Let v : I — R%;t — ~(¢) and
5 : I — R?;u — J(u) be regular plane curves, respectively. We say that v and ¥ have k-th order
contact at t = tg,u = ug if

_ dy dy dk’y dka dk+1,y dk+1§
V(to) = 7(uo), E(to) = %(Uo)a e W(to) = W(Uo), W(to) # W(UO)'
Moreover, we say that v and 7 have at least k-th order contact at t = tg,u = ug if
~ dry dy dry d"y
t — —(t - L P —(t = — .
v(to) = y(uo), dt( 0) du (uo), e (to) duk (uo)

Let 1,72 : I — R? be regular plane curves. We say that «; and 4 are congruent if there exists
a congruence C such that vo(t) = C'(y1(¢)) = A(71(¢)) + b for all ¢ € I, where the congruence is
given by a rotation A and a translation b on R2.

Let v : I — R%t + y(t) and 7 : I — R%u +— 5(u) be regular plane curves. We take the
arc-length parameter for v(t) and 7(u), respectively. In general, we may assume that ~(¢) and
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(u) have at least first order contact at any point ¢ = tg,u = uo up to congruent. We denote
the curvatures x(t) of v(¢t) and K(u) of 7(u), respectively.

Theorem A.1. Let v:1 — R? and 7 : T — R2 be reqular plane curves. If y(t) and 7(u) have
at least (k + 2)-th order contact at t = to,u = ug then

- dk dr d*r d"r
7 to) = —(ty) = — e = () = = (ug).
(7) K(to) = K(uo), —(to) = -~ (o), -+, —(to) = =5 (o)
Conwversely, if t and u are the arc-length parameter of v and 7 respectively, and the condition
(7) holds, then v and 5 have at least (k + 2)-th order contact at t = tg,u = ug up to congruent.

Proof. We may assume that ¢ and u are the arc-length parameter of v and 7 respectively.

Suppose that v and 4 have at least third order contact. Since the Frenet formula, we have

(dy/dt) (t) = H(2), (27 /de2)(t) = K()m(t) and (d7/du)(u) = Hu), (@7 /du?)(u) = F(u)p(w). T

follows that t(to) = t(ug), n(to) = 7(ug) and k(tg) = %(ug). Hence, the case of k = 1 holds.
Suppose that v and 4 have at least (k + 2)-th order contact and

- dr dr d* 1k d* 1%
K(to) = K(uo), — (to) = (o), —g=y (to) = 7= (uo)
hold. Since (d®v/dt?)(t) = (dr/dt)(t)n(t) — k(t)*t(t), the form of (d*+1v/dtF+1)(t) is given by

dk_l,k; dk—2 dk_2li

S On(0) 1 (). G ©) 60+ (@) Gk @) mle)
for some smooth functions f and g. Then

k+2 k:‘{ k_lK, k—lK
e 0 = G om0+ F (0 Gk 0) 60+ G (w0 Gt 0] mlt)

for some smooth functions ' and G. By the same calculations, we have

k+2% k’,% _ _ kflg _ _ kfl’g B
%(u) = %(u)n(u) +F </£(u), e Zuk_l(u)) tu) + G </£(u), e Zuk_l(u)> ai(u).

It follows that (d*r/dt®)(tg) = (d*/du*)(ug). By the induction, we have the first assertion.
By the reversing arguments, we can prove the converse assertion up to congruent. U
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THE GENERICITY OF THE INFINITESIMAL LIPSCHITZ CONDITION
FOR HYPERSURFACES

TERENCE GAFFNEY

ABSTRACT. We continue the development of the theory of infinitesimal Lipschitz equivalence,
showing the genericity of the condition for families of hypersurfaces with isolated singularities.

1. INTRODUCTION

In an earlier paper [7], we introduced a candidate for a theory of infinitesimal Lipschitz
equisingularity for families of complex analytic hypersurfaces with isolated singularities. The
definition given there has an equivalent formulation, using the theory of integral closure of
modules. This alternate form is easier to work with in many situations. In this paper we show
that a slightly evolved version of this condition is generic. More precisely, we show, in the case of
two strata, considered here, that the condition holds on a Zariski open subset of the parameter
stratum Y. Proving that a stratification property is generic is essential for an equisingularity
condition to have any value.

In preparation for using the integral closure formulation of our condition, we review some
elements of the theory of integral closure of modules in section 2.

In section 3, we review the definition of the Lipschitz saturation of an ideal, give its alternate
formulation using the theory of integral closure and define two infinitesimal Lipschitz conditions,
one which we denote by ¢L,,, which is the analogue of the Whitney conditions and one which
is the analogue of the Whitney A or the a; condition which we denote by iL4. We also give a
geometric interpretation of these conditions on the family X.

We also introduce an invariant coming from the integral formulation of the Lipschitz condition.
We use this invariant to show when two different ideals have the same Lipschitz saturation. We
also use it to characterize generic hyperplanes in section 4.

In section 4, we come to the heart of this paper. As mentioned earlier, proving a genericity
theorem is an important step in developing the theory attached to an equisingularity condition.
Not only is this result necessary to ensure the condition is widely applicable, but the fact of
genericity implies a strong connection with the geometry of the family. For example, Teissier
proved that condition C held on a Zariski open and dense subset of the parameter space Y*, of
a k parameter family of isolated hypersurface singularities in C"** in [16]. Condition C later
was seen to be equivalent to Verdier’s condition W for the pair of strata {C"tF — Y* Yk}
where f defined the family. Condition C was the keystone of Teissier’s work on the Whitney
equisingularity of families of hypersurfaces with isolated singularities. We use Teissier’s proof in
[16] as a model in developing a similar theorem for the iL 4 condition. Currently a proof for the
genericity of the ¢L,,, remains unknown.

In section 4, we state and prove the genericity theorem for the iL 4 condition for the case
of families of isolated hypersurface singularities. For the proof, we work in the module setting.
Analogous results exist in the general case for families of isolated singularities, but requires
further work in developing the definition of the infinitesimal Lipschitz condition; since you start
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with modules in the general case instead of ideals, a further layer of complexity is added in
passing to the module theoretic version of the definition.

Also in section 4, we give an application of the genericity theorem. Given an equisingularity
condition it is natural to ask if it passes to the family of generic plane sections of the singularity.
We use the genericity theorem to show that it does for the ¢L4 condition. We then use the
invariant introduced in section 3, and the multiplicity polar theorem, discussed in section 2, to
give a condition for a hyperplane to be generic.

Ultimately, we hope to use the stratification condition defined here to prove that for a family
of isolated hypersurface singularities, the iL 4 condition gives a necessary and sufficient condition
for the family to have a bi-Lipschitz stratification which includes Y as a stratum. This would
give an infinitesimal criterion for the existence of a bi-Lipschitz stratification of such a family.
It is known by work of Mostowski, [13] that bi-Lipschitz stratifications exist in the complex
analytic setting, but not much is known about them besides their existence.

Using the conditions of this paper to characterize the “thick” and “thin” zones of Birbrair,
Neumann and Pichon [1], developed by them for normal surface singularities, would open an av-
enue to generalizing these notions to higher dimensions, as well as linking them with Mostowski’s
work on showing the existence of these stratifications.

I am happy to acknowledge the impetus to this work given by the beautiful paper of Birbrair,
Neumann and Pichon [1] and the stimulation afforded from conversation with them.

2. THE THEORY OF THE INTEGRAL CLOSURE OF MODULES

Let (X,z) be a germ of a complex analytic space and X a small representative of the germ
and let Ox denote the structure sheaf on a complex analytic space X. One of the formulations
of the definition of the infinitesimal Lipschitz condition uses the theory of integral closure of
modules, which we now review. This theory will also provide the tools for working with the
condition.

Definition 2.1. Suppose (X, ) is the germ of a complex analytic space, M a submodule of Og(’m.
Then h € (91;(@ is in the integral closure of M, denoted M, if for all analytic ¢ : (C,0) — (X, z),
hog¢ e (¢*M)O;. If M is a submodule of N and M = N we say that M is a reduction of N.

To check the definition it suffices to check along a finite number of curves whose generic point
is in the Zariski open subset of X along which M has maximal rank. (Cf. [3].)

If a module M has finite colength in Opxyz, it is possible to attach a number to the module, its
Buchsbaum-Rim multiplicity, e(M, (’)f;(x) We can also define the multiplicity e(M, N) of a pair
of modules M C N, M of finite colength in N, as well, even if N does not have finite colength
in O%.

We recall how to construct the multiplicity of a pair of modules using the approach of Kleiman
and Thorup [9]. Given a submodule M of a free Oy« module F of rank p, we can associate a
subalgebra R(M) of the symmetric Oxa algebra on p generators. This is known as the Rees
algebra of M. If (mq,---,m,) is an element of M then > m;T; is the corresponding element
of R(M). Then Projan(R(M)), the projective analytic spectrum of R(M) is the closure of
the projectivised row spaces of M at points where the rank of a matrix of generators of M is
maximal. Denote the projection to X? by ¢. If M is a submodule of N or h is a section of
N, then h and M generate ideals on ProjanR(N); denote them by p(h) and p(M). If we can
express h in terms of a set of generators {n;} of N as > g;n;, then in the chart in which T3 # 0,
we can express a generator of p(h) by > ¢;T;/T1. Having defined the ideal sheaf p(M), we blow
it up.
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On the blow up B,(rq)(ProjanR(NN)) we have two tautological bundles. One is the pullback
of the bundle on ProjanR(N). The other comes from ProjanR(M). Denote the corresponding
Chern classes by cjs and cy, and denote the exceptional divisor by Dy, n. Suppose the generic
rank of N (and hence of M) is g.

Then the multiplicity of a pair of modules M, N is:

d+g—2
— d+g—2—j  _j
e(M,N) = Z /DM’N-CM Ch-
i=0

Kleiman and Thorup show that this multiplicity is well defined at z € X as long as M = N
on a deleted neighborhood of z. This condition implies that Dys ny lies in the fiber over z,
hence is compact. Notice that when N = F and M has finite colength in F' then e(M, N) is
the Buchsbaum-Rim multiplicity e(M, Og’(,m). There is a fundamental result due to Kleiman
and Thorup, the principle of additivity [9], which states that given a sequence of Ox ,-modules
M C N C P such that the multiplicity of the pairs is well defined, then

e(M,P)=¢e(M,N)+ e(N,P).

Also if M = N then e(M, N) = 0 and the converse also holds if X is equidimensional. Combining
these two results we get thet if M = N then e(M, N) = e(N, P). These results will be used in
Section 5.

In studying the geometry of singular spaces, it is natural to study pairs of modules. In dealing
with non-isolated singularities, the modules that describe the geometry have non-finite colength,
so their multiplicity is not defined. Instead, it is possible to define a decreasing sequence of mod-
ules, each with finite colength inside its predecessor, when restricted to a suitable complementary
plane. Each pair controls the geometry in a particular codimension.

We also need the notion of the polar varieties of M. The polar variety of codimension k of
M in X, denoted I'y(M), is constructed by intersecting ProjanR (M) with X x Hyyp_1 where
Hgi 1 is a general plane of codimension g + k — 1, then projecting to X.

Setup: We suppose we have families of modules M C N, M and N submodules of a free
module F of rank p on an equidimensional family of spaces with equidimensional fibers X%,
X a family over a smooth base Y*. We assume that the generic rank of M, N is g < p. Let
P(M) denote ProjanR(M), mps the projection to X.

We will be interested in computing, as we move from the special point 0 to a generic point,
the change in the multiplicity of the pair (M, N), denoted A(e(M, N)). We will assume that the
integral closures of M and N agree off a set C of dimension k which is finite over Y, and assume
we are working on a sufficiently small neighborhood of the origin, so that every component of
C' contains the origin in its closure. Then e(M, N, y) is the sum of the multiplicities of the pair
at all points in the fiber of C over y, and A(e(M, N)) is the change in this number from 0 to a
generic value of y. If we have a set S which is finite over Y, then we can project S to Y, and the
degree of the branched cover at 0 is mult,S. (Of course, this is just the number of points in the
fiber of S over our generic y.)

Let C(M) denote the locus of points where M is not free, i.e., the points where the rank of
M is less than g, C'(ProjanR(M)) its inverse image under myy.

We can now state the Multiplicity Polar Theorem. The proof in the ideal case appears in [5];
the general proof appears in [6].

Theorem 2.2. (Multiplicity Polar Theorem) Suppose in the above setup we have that M = N
off a set C of dimension k which is finite over Y. Suppose further that

C(ProjanR(M))(0) = C(ProjanR(M(0))),
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except possibly at the points which project to 0 € X(0).
Then, for y a generic point of Y,

A(e(M,N)) = mult,I'¢(M) — mult,I'4(N),

where C(ProjanR(M))(0) is the fiber of C(ProjanR(M)) over 0, X(0) is the fiber over O of the
family X4k and M(0) is the restriction of the module M to X(0).

3. THE LIPSCHITZ SATURATION OF AN IDEAL AND THE DEFINITION OF THE ¢, CONDITIONS

The construction of the integral closure of an ideal is an example of a general approach to
constructing closure operations on sheaves of ideals and modules given a closure operation on a
sheaf of rings. Here is the idea. Denote the closure operation on the ring R by C(R). Given
a ring, R, blow-up R by an ideal I. (If we have a module M which is a submodule of a free
module F, form the blow-up B,rq)(ProjanR(F)), as in the last section.) Use the projection
map of the blow-up to the base to pullback I to the blow-up. Now apply the closure operation
to the structure sheaf of the blow-up, and look at the sheaf of ideals generated by the pull back
of I. The elements of the structure sheaf on the base which pull back to elements of the ideal
sheaf are the elements of C(I).

Two examples of this are given by the normalization of a ring and the semi-normalization of
a ring. (In the normalization, all of the bounded meromorphic functions become regular, while
in the semi-normalization only those which are continuous become regular. Cf [8] for details on
this construction.) Consider B;(X), the blow-up of X by I. If we pass to the normalization of
the blow-up, then A is in I iff and only if the pull back of h to the normalization is in the ideal
generated by the pullback of I [11]. If we pass to the semi-normalization of the blow-up, then h
is in the weak sub-integral closure of I denoted *I, iff the pullback of & to the semi-normalization
is in the ideal generated by the pullback of I. (For a proof of this and more details on the weak
subintegral closure cf. [8]).

There is another way to look at the closure operation defined above; in the case of the
integral closure of an ideal, we are looking at an open cover of the co-support of an ideal sheaf,
and choosing locally bounded meromorphic functions on each open set, and seeing if we can
write a regular function locally in terms of generators of the ideal using our locally bounded
meromorphic functions as coefficients. This suggests, that in the Lipschitz case, we use locally
bounded meromorphic functions which satisfy a Lipschitz condition. The closure operation on
rings that this indicates is the Lipschitz saturation of a space, as developed by Pham-Teissier
([15]).

In the approach of Pham-Teissier, let A be a commutative local ring over C, and A its
normalization. (We can assume A is the local ring of an analytic space X at the origin in C".)
Let I be the kernel of the inclusion A @c A — A @4 A.

In this construction, the tensor product is the analytic tensor product which has the right
universal property for the category of analytic algebras, and which gives the analytic algebra for
the analytic fiber product.

Pham and Teissier then defined the Lipschitz saturation of A, denoted A, to consist of all
elements h € A such that h® 1 —1® h € A®c A is in the integral closure of I. (For related
results see [12].)

The connection between this notion and that of Lipschitz functions is as follows. If we pick
generators (z1,...,2,) of the maximal ideal of the local ring A, then z; ® 1 —1® z; € A®c A
give a set of generators of I. Choosing z; so that they are the restriction of coordinates on the
ambient space, the integral closure condition is equivalent to

(h(z1,. s 20) = h(2), ..o 2)| < Csup |z — 2
2
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holding on some neighborhood U, of (0,0) on X x X. This last inequality is what is meant by
the meromorphic function h being Lipschitz at the origin on X. (Note that the integral closure
condition is equivalent to the inequality holding on a neighborhood U for some C for any set of
generators of the maximal ideal of the local ring A. The constant C' and the neighborhood U
will depend on the choice.)

If X,z is normal, then passing to the Lipschitz saturation doesn’t add any functions. Denote
the saturation of the blow-up by SB;(X), and the map to X by mg. Then we make the definition:

Definition 3.1. let I be an ideal in Ox ,, then the Lipschitz saturation of the ideal I, denoted
Is, is the ideal Is = {h € Ox ,|n%&(h) € T5(1)}.

Since the normalization of a local ring A contains the seminormalization of A, and the semino-
malization contains the Lipschitz saturation of A, it follows that I D *I O Ig D I. In particular,
if I is integrally closed, all three sets are the same.

Here is a viewpoint on the Lipschitz saturation of an ideal I, which will be useful later.
Given an ideal, I, and an element h that we want to check for inclusion in Ig, we can consider
(Br(X),m), m*(I) and h ow. Since n*(I) is locally principal, working at a point z on the
exceptional divisor E, we have a local generator f om of 7*(I). Consider the quotient (h/f)om.
Then h € Ig if and only if at the generic point of any component of E, (h/f) o is Lipshitz with
respect to a system of local coordinates. If this holds we say hom € (7*(I))s.

We can also work on the normalized blow-up, (NB;(X),7n). Then we say hory € (n(I))s if
(h/ f)omn satisfies a Lipschitz condition at the generic point of each component of the exceptional
divisor of (NBy(X),mxn) with respect to the pullback to (NBr(X),my) of a system of local
coordinates on Byr(X) at the corresponding points of Br(X). As usual, the inequalities at the
level of NB;(X) can be pushed down and are equivalent to inequalities on a suitable collection
of open sets on X.

This definition can be given an equivalent statement using the theory of integral closure of
modules. Since Lipschitz conditions depend on controlling functions at two different points as
the points come together, we should look for a sheaf defined on X x X. We describe a way of
moving from a sheaf of ideals on X to a sheaf on X x X. Let h € Ox ,; define hp in 0%, x ;..
as (hom,homg), m; the projection to the i-th factor of the product. Let I be an ideal in Ox 4;
then Ip is the submodule of Oixx,x‘z generated by the hp where h is an element of I.

If I is an ideal sheaf on a space X then intuitively, h € I if h tends to zero as fast as the
elements of I do as you approach a zero of I. If hp is in Ip then the element defined by
(1,=1) - (hom,homy) = hom — homg should be in the integral closure of the ideal generated
by applying (1, —1) to the generators of Ip, namely the ideal generated by gom — goms, g any
element of I. This implies the difference of h at two points goes to zero as fast as the difference
of elements of I at the two points go to zero as the points approach each other. It is reasonable
that elements in Ig should have this property. In fact we have:

Theorem 3.2. Suppose (X, z) is a complex analytic set germ, I C Ox 5. Then h € Ig if and
only if hp € Ip.

Proof. This is theorem 2.3 of [7], and is proved there under the additional assumption that h € I.
However, as we have noted if h € I5, then h € I. If hp € Ip, it follows that (1,0) - hp is in the
integral closure of 7} (I) on X x X, which clearly implies h € I. O

Here is an example showing the difference between the integral closure of the Jacobian ideal
and its saturation. Consider f(x,y) = 22 + 3P, p > 3 odd. Denote the plane curve defined by f
by X. Then X has a normalization given by ¢ = (7, t?). The elements in the integral closure
of the Jacobian ideal are just those ring elements h such that ho ¢ € ¢*(J(f)) = (t?). Now
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ylo¢ =21 so y? € J(f) for ¢ > p/2. Denote a matrix of generators for J(f)p by [J(f)p]-
Consider the curve mapping into X x X given by ®(t) = (7,12, 1P, ct?), where c is a p-th root
of unity different from 1. Now consider the ideal generated by the entries of the vector

<1,-1> [J(f)p] o B(2).

This ideal is generated by (y?=* — yP~1 (z, 2’ y?~ 1, yP" )y — /) 0o ®(t) =
the order in t of < 1,—1 > (y9,y'?) o ®(t) =2¢. f p<2g<p+2ie. g= (p+
cannot be in J(f)p, hence y? ¢ J(f)s but y? is in J(f).

Because we have re-cast the Lipschitz saturation of an ideal in integral closure terms, the
invariants associated with integral closure become available to describe/control the Lipschitz
saturation of an ideal. Notice first that the multiplicity of an ideal doesn’t help, because the
multiplicity of Ig is same as the multiplicity of I since they have the same integral closure.

Even if X is an isolated hypersurface singularity, J(f)p will not have finite colength, even
in the plane curve case. The co-support will be X x 0U0 x X UAX in X x X. However the
multiplicity of the pair offers a way around this. The module J(f)p has a simple description,
as we will see, off the origin in each of these three sets, and any integral closure condition we
wish to use is easily checked because of this structure. This suggests looking for the largest
module whose integral closure agrees with J(f)p off the origin, and using the multiplicity of the
pair as our invariant. In the notation of [4], this module is denoted Ha,—5(J(f)p). This is the
integral hull of J(f)p of codimension 2n — 3, which means the integral closure of J(f)p and
Ho, 3(J(f)p) agree off a set of codimension 2n — 2, ie. off (0,0) in X"~ x X"~ | The next
lemma identifies Hap—5(J(f)p).

(tP+2). Meanwhile
1)/2, then (y4,y"9)

Lemma 3.3. Suppose X" ! is an isolated hypersurface singularity, defined by f. Then
Hon—3(J(f)p) = J(f)p-

Proof. We'll show that the integral closure of J(f)p and J(f) agree off the origin in X x X.

Suppose p = (z,2") ¢ X x0UOXx XUAX. Then for some i, j, k, f;(x)(z;—=2,) and fi(2")(z;—=2])
are not zero at p. This implies that both modules have rank 2 at p, hence are equal.

Suppose p € Ax, p # (0,0); then for some i, f;(x) # 0. This implies In & Ia is in both
modules. Further by adding elements of the form (0, f;(z) — fi(2')) which are in Ia @ Ia to
(fi(2), fi(z")), we see both modules contain (1,1). Since both modules are contained in the
module generated by (1,1) and In @ Ia, and this module is integrally closed, the result is
checked on Ax — (0,0).

Suppose p = (x,0), # 0. Since x # 0, J(f)p contains (1,0) and (0, J(f)).Thus

J(Np=0x.®J(f)=JI()p-

O

The lemma suggests that it is interesting to consider the multiplicity of the pair J(f) D,m D
and we will use this invariant in the last section in the study of hyperplane sections of X. For
now we remark as a corollary of the proof of the lemma, we have for any I an ideal of finite
colength in any 0%, that Hag_1(I) = (I)p. As a corollary we have:

Corollary 3.4. Suppose I C J C I are ideals in Ox o, with X,z equidimensional, then
e(Ip,Ip)=e(Jp,Ip) if and only if Ip = Jp.

Proof. From the additivity of multiplicity of pairs [9] it follows that e(Ip, Jp) = 0 which is
equivalent to their integral closures being the same. (I

Corollary 3.5. Suppose I C J C I are ideals in Ox, ., with X,z equidimensional, then
B(ID,TD) = e(JD,TD) ’Lf and only Zf IS = Js.
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Proof. This follows from the connection between the Lipschitz saturation of an ideal and integral
closure. (]

Now we add the necessary structure to deal with families of spaces.

Just as Pham-Teissier extended their original definition to a family of spaces, we can do the
same. Suppose X 9% 0 is an analytic space containing a smooth subset Y*,0, and (X%, p) is
a family of spaces over Y, X, Y embedded in C"**.0, so that p is the projection on the last k
factors of C"**. 0, where Y* = 0 x C.

Then, in the definition of the Lipschitz saturation rel Y of the local ring of X4+* 0, we use a
set of local coordinates on the ambient space which restrict to generators of the maximal ideals
of the fibers of X over Y. This amounts to looking at the fiber product of the normalization
of X with itself over Y, and asking that locally h o p; — h o ps is in the integral closure of the
double of the ideal generated by these coordinates.

Given an ideal sheaf I on X% 0, using the relative saturation, we can define the Lipschitz
saturation of I relative to Y. When we are working in the context of a family of spaces we will
also use Ig to denote this saturation. In a similar way, we can develop an equivalent integral
closure condition using modules as before, just working on X xy X instead of X x X.

In practice we will be working with ideal sheaves on a family of spaces, where the ideals
vanish on Y, and our local coordinates at points of B;(X"**) consist of the pullbacks of a set
of generators of my and local coordinates on the projective space(s) in the blow-up.

It is not difficult to check that Theorem 2.3 of [7] continues to hold in this new context.

Having constructed the necessary infinitesimal objects we now develop our condition.

Setup Let X™t* 0 c C"T'+* 0 be a hypersurface, containing a smooth subset ¥ embedded in
Cnt1+k a5 0x CF | with py the projection to Y. Assume Y = S(X), the singular set of X. Suppose
F is the defining equation of X, (z,y) coordinates on C"*1**_ Denote by f,(z) = F(z,y) the
family of functions of defined by F', and by X, f,° 1(0). Assume f, has an isolated singularity at
the origin. Let my denote the ideal defining Y, and J(F)y, the ideal generated by the partial
derivatives with respect to the y coordinates, J,(F'), those with respect to the z coordinates.

Definition 3.6. The pair (X,Y) satisfy the iL,,, condition at the origin if either of the two
equivalent conditions hold:

1) J(F)y C (myJ.(F))s

2) (J(F)y)p C (my J.(F))p.

An analogous condition for i L,,,. is J(F)y C myJ,(F). This is the equivalent to the Verdier’s
condition W or the Whitney conditions.
Next we give the definition of iL 4.

Definition 3.7. The pair (X,Y") satisfy the L4, at the origin if either of the two equivalent
conditions hold:

1) J(F)y C (J.(F))s

2) (J(F)y)p C J=(F))p.

The analogous condition is J(F)y C J,(F). If one works on the ambient space, then this
is equivalent to the Ap condition. Working on X, it is equivalent to asking that the X has
no vertical tangent plane at the origin, so this is weaker than Whitney A. However, suppose
[ is a linear form on the ambient space. Let J(F'); denote the ideal generated by applying
tangent vectors in the kernel of [ to F. So J.(F) = J(F), in the case dim Y = 1. Working
in the one dimensional parameter case, if there exist a pencil of forms [, including y such that
J(F) C J(F);, then not only does Whitney A hold but the total space has no relative polar
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curve. This follows because if the dimension of the fiber of the limiting tangent hyperplanes over
the origin is not maximal then the fiber over the origin must be in the closure of the fiber over
the parameter space with y # 0, and all of these hyperplanes contain Y. Because the dimension
of the fiber over the origin is less than maximal this also implies the polar curve is empty. The
condition with the pencil of forms ensures that no hyperplane defined by an element of the pencil
can be a limiting tangent hyperplane, hence the pencil of hyperplanes has no intersection with
the fiber over zero, which must therefore have less than maximal dimension.

Since there are different ways in which the total space X"** can be made into a family of
spaces, it is natural to ask if the conditions we have defined depend on the projection to Y which
defines the family. We now show that the condition ¢L,,, does not depend on the projection to
Y.

Proposition 3.8. In the above set-up the following conditions are equivalent:

1) (J(F)y)p C (myJ-(F))p,

2) (J(F)y)p C (myJ(F))p.

The analogous result for W is quite easy. The Lipschitz case is more technical. We first show:
Lemma 3.9. In the above setup if (J(F)y)p C (myJ(F))p, then J(F)y C myJ(F), hence
condition W holds for the pair (X —Y,Y) at the origin (and hence on some Z-open subset of Y’
containing the origin.)

Proof. We use the curve criterion. We can choose a curve ® = (¢1, ¢2), where ¢1 maps C,0 to 0,
and ¢ is arbitrary. Then the curve criterion for this curve becomes ¢5(J(F)y) C ¢5(my J(F)).
Here an easy argument using Nakayama’s lemma implies that ¢3(J(F)y) C ¢5(my J,(F')), which

implies the W condition.
O

Now we prove our proposition.

Proof. We use the curve criterion again. Let ® = (¢1,¢2). It is enough to prove it in the case
where Y is one dimensional, since the notation is the only part of the proof which is harder in
general. It is also clear that 1) implies 2), so we assume 2). By the given we have:

oF OF oF
<<9y>D od = Zgi,j(t) (Zi()z])D od+ Zgi,j,k(t)(«zk 0 @1 — 2k © ¢2) (0, ZZ@zg) ° ¢2

OF
+ hi(t (Zl) o .
o (25)
We now work mod m; ®*(my J(F')p) and we call the left side of the above equation *. Subtract

> hi(t)z; o ¢1* from both sides of the above equation. This sum is in m®*(my J(F)p), so we
get:

oF oF oF
<8y)D 0d = Zgi,j(t) (Ziazj)D od+ Zgi,j,k(t)(zk ©¢1 — 2 © P2) <0’ 218:5]) o ¢

+th(t)(22 © 2 —2;0¢1) (07 % ° ¢2> .

Now we use the lemma to write %—5 o ¢ as an element of ¢5(my J,(F)). Making the substi-
tution into the line above shows that the terms there are 0 mod m;®*(my J(F)p), hence we
have % o® is an element of (my J,(F'))p mod m1®*(my J(F)p). Hence by Nakayama’s lemma,
®*my J.(F))p = ®*my J(F))p and the proposition follows. O
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While a similar result for iL 4 doesn’t make sense, if we ask that (J(F)y)p is strictly depen-
dent on J,(F))p then an analogous result holds. (Recall that an element h € O%  is strictly

116
dependent on M C (’)1))(’ , if for each curve ¢ ho ¢ € my¢p*(M). The set of elements strictly

Denote the coordinates on P™ by T;, for

dependent on M are denoted M)
We give a geometric interpretation of these conditions at the level of the family X"t*. We

make some preliminary constructions to do this.
1 <i<mn+1,let V; be the subset of P™ defined by T; # 0, and let U; denote
By (p)(X"F) N (X x V).

kD
- o is Lipschitz rel Y with respect to the local coordinates, which are zyom, 1 <k <n+1,
Ay,
OF
Iz,

At each point of U, g—F o is a local generator of the principal ideal sheaf 7*(J,(F)). The
condition that 3—5 be in the Lipschitz saturation of J,(F')) means that at each point of Uj,
47
OF
is Lipschitz with

IF

om = ;", this implies that

OF
oy
F
CEn
and 7;/T;, 1 < j <n+1, j #1i. Since
or ,
1< j<n+1,j#ion7w(U;).
This implies the existence of k vectorfields tangent to X defined on each w(U;) of the form

0z;
oF
oy; 0

OF
L 1< j<n+1,

F

respect to 2z, 1 <k <n+1, and
1o}

~ OF )
o 07

azj

2]
9z

Tis = ——
J,
y;

OF
Oyj

OF

each vectorfield Lipschitz relative to Y ,with respect to zx, 1 < k <n+1, and

Jj # i. Since every element of J,(X) is in the Lipschitz saturation of J,(X) it is not true apriori

that these vectorfields are extensions of the constant fields on Y. However, if we assume the Ap
o will vanish on the exceptional divisor,

02,

distance between two linear subspaces A, B at the origin in C", then
|(u, v)|
[l [|v]]

and the ¥;; will be extensions of the constant fields on Y.
sup

condition holds for (X —Y,Y), then the quotients
There is another useful interpretation which we can make. Recall the following definition of

dist (A, B) =
u € B+ — {0}
veA—{0}

If p, p’ are smooth points in the same fiber y over Y in w(U;), we claim that the distance
between the tangent spaces to X at p and p’ is commensurate with the maximum of the distance
between the tangent spaces to X, at p and p’ and the distance between the points.

We first relate the distance defined above to a notion of distance closer to our Lipschitz
,bn) define hyperplanes A and B in C"*!. We will use
sup ||a;/ao —bi/bol|-

condition.
Suppose a = (ag, ..., a,), b = (b, ...
the supnorm on C"*1; suppose ||a|| = a;, and ||b|| = b;, same index for both, for simplicity take
We can then also measure the distance between A and B by using the
i,i<i<n

The a;/ag are just the coordinates of the hyperplane A regarded as a point of Pr. We compare

1=0.

this notion of distance with the usual one.
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Lemma 3.10. Suppose a = (ag, ...,a,), b= (bo,...,b,) define hyperplanes A and B in C"*1,
llal| = ao, and ||b|| = bg. Then
dist (A,B) = sup |[|a;/ag — b;/bo]|-

i,1<i<n

Proof. A basis for the vectors in A are given by age; — a;eq where e is the k-th standard basis

vector in C"*!. Since we are using the supnorm, the terms Mﬁ’ﬁ}gh become

|(a06i - a¢60,5)|
llaoll [[boll

= |lai/ao — bi/bo]|-
O

Now we return to our geometric interpretation. Since the &= are in the integral closure of
J.(F), we may work in a system of neighborhoods U; on X Where we may assume for each p € U;
the values of the elements of J(F') are bounded in norm by |§—Z(p)| Then, applying the above
lemma, we see that the distance between tangent planes to X at points p;, p2 in the same U; is

the sup over
{Hgf;(m) S (p2) ~ ‘}

oF oF oF
o (p1) 55 (p2) 5= (1) 5 (p2)
Then condition ¢L 4 implies that this is the same as the sup over

OF oF
8zJ (pl) T%(pﬂ I I
~ OF y |IP1 — P2 )

821: (pl) Tzi(pz)
which is the same as the maximum of the distance between the tangent spaces to X, at p; and
p2 and the distance between the points, p; and po.

We can say something similar for the Ly, condition. First, since iLy, implies ¢L 4, the same
interpretation applies to the iLy, condition. But more is true, and we develop some material
related to the Lipschitz saturation of the product of two ideals to explain it.

%(Pl) %(m)

Lemma 3.11. (Product lemma) Given h,g in Ox 5, p1,p2 € X, then
[(hg)(p1) — (hg)(p2) Il < IA(p)llllg(P1) — 9(p2)lI+
lg(2) A (p1) — h(p2)]-
Proof. We have

[(hg)(p1) = (hg)(p2) |l = [[(hg)(p1) — h(p1)g(p2) + h(p1)g(p2) — (hg)(p2)ll

(
= [[P(p1)(9(p1) = 9(p2)) + 9(p2)(h(p1) — h(p2))|

< [Ia(po)llllg(p1) = g(p2)Il + llg(2) 12 (p1) = h(p2)]-
O

Note that we can always choose one of the terms, say ||g(p;)||, to be the minimum of the
llg(pi)|l. (You cannot, in general, minimize both h and g terms.)

We apply this lemma to the condition for h € Ox , to be in the Lipschitz saturation of I.J,
1,J two ideals of Ox ;.

Suppose I = (f1,...,fp), J = (91,...,9¢4). Work on the Zariski open subset U,,, of
(Brj(X), ) in which (fngn) o 7w is a local generator of 7*(1J). Local coordinates are given
by the pullback of coordinates at x, and by T; ; where (4, j) # (m,n), 1 <i<p,1 < j <gq, and
(figj)om

where T; j = 5000
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Note that

T . — (fmgj) om  gjom while Tb. — (fzgn) om fiom
= = ; in — = .
"l fmGnom gnOT " fignom fmom

The next lemma shows that among all the T; ;, on Uy, ,, we need only consider the T, ; and
T; », to define the Lipschitz saturation of I.J. As usual, mn denotes the normalization map, while
p1 and ps are projection maps from the product of the normalization of Byy(X) with itself.

Lemma 3.12. Let Uy, ,, be as above, then the ideal generated by
{Tjnomnopr —Tjpnomnops, Ty iomnops — T i0mn 0pat,
for1<j<p,j#m,1<i<q,i+#mn, is a reduction of the ideal generated by
{Tjiomnyopr —Tj;0mnops}
at points of T (Um.n) X 7" (Umin)-

Proof. By the product lemma we have

fig; fig;
||fligj07fo7fzvop1(21,2§)*flgj omomy opa(z,25)|
mdJn mJdJn
fiom giom giom
< Hf;ovr OTN Opl(zi’zé)”Hgiow o N o p1(21,23) — giow o TN © pa(21, 23) |
gom fiom fiom
+Hgi on 0N 0P1(Z/172§)H||f; o 0N o p1 (21, 23) — f:L on 0N o p2(21, 23)]I-
Now we can bound the terms || 7% o my o p1(2], 25)| and H;]:Z: omn o p1(2),25)| locally by

constants because the ideal I.J is principal on Uy, ;. The result follows from this.
O

We apply the above results to say something about the local vectorfields ; ; defined above.
Since ng € (myJ.(F)s), we can usefully re-write vj ; as
J

OF
Tiip = 9 oy 2 0
gk = o oF -
Ay 2 o 0z;

Denote the coefficient of % in ¥ jr by vijk-
Then for pairs of points (¢, p1), (¢, p2) in m(U; ) we have:

OF
dy;
Vi (t,p1) — vijk(t,p2)|| < 2 .ng (t,p0)|| [lze(P1) — 21(p2)||

k 9z

OF OF

0y 9y,

+||Zk(p2)|| ‘ BJF (tvpl) - 78]17(157]92) :
ka2 “k 8z

Hence,
[vi .k (t p1) — vi gk (t, )|l < Cllzi(pr) — 2x(p2) ||

OF OF
+ 21 (p1) SUP{ Ti;(tapl) - %(t,pg) =2 (1) — 2= (p2) ‘} :

Here we may assume that ||z (p2)|| is the smaller of ||zx(p1)||, ||zk(p2)]|. So, if the local fields are
not Lipschitz on U, j, with respect to the distance between points, then they are Lipschitz with
respect the distance between planes or secant lines to the origin and in this case the Lipschitz
constant goes to zero as one of the points goes to the origin.
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4. GENERICITY THEOREM

Although at present we can’t give a complete proof that the iL,,, condition is generic, we can
do both conditions at once in some of the cases. We first determine the different cases in which
it is necessary to check the conditions. These cases are the different ways in which J,(F)p can
fail to have maximal rank.

Proposition 4.1. The co-supports of (my J.(F))p or J.(F)p on X xy X consist of
1)Y % (0,0),
2) A(X xy X), and
3) (O Xy X) U (X Xy 0)

Proof. Suppose (z,z’) does not lie in one of the sets. Then, since some z; o p; and some z; © po
are not zero at (z,z’'), (my J.(F))p = J.(F)p locally. Then J,(F)p contains terms of the form
(0, 85 opa), (g—f; op1,0), which implies that the rank of (my J,(F))p is 2 and (x,2) are not in
the cossupport.

O

The reader may have noted that Y x (0,0) is a subset of both A(X xy X) and
(0 Xy X) U (X Xy 0)

We will next show that generically both conditions hold at points of A(X xy X) —Y x (0,0),
and of (0 xy X)U (X xy 0) —Y x (0,0). Since we are working on a Z-open set of Y, and we are
working with families of isolated singularities, we may assume that the only singular point of
X, is at (y,0), that (X —Y,Y) satisfies W at (y,0). We will show that checking the conditions
at points of the form (y,0,z), 2 # 0 amounts to checking W at (y,0) for (X —Y,Y) , while
checking the conditions at points of A(X xy X),  # 0 is trivial. Thus it will suffice to look at
components of the appropriate exceptional divisor that surject onto Y x (0,0).

Proposition 4.2. In the set-up of this section, iLa and iL,,, hold at all points of
A(X xy X) =Y x(0,0),

and both conditions hold at all points of (0 xy X)U (X xy 0) =Y x (0,0) such that (X —=Y,Y)
satisfies W at (y,0).

Proof. Work at (y,z,z),  # 0. Then since z # 0, (my J.(F))p = J.(F)p locally. Since f, is

a submersion at x, and J,(F)p contains elements of the form (0, (z; o p1 — 7 © pg)(ﬁ o p2)),

((ziop1—2; Opg)(ngOpl) 0), it follows that J,(F')p contains IAOXXYX (e.2)- BY addlng elements

of the form (O, a—opl - a—yopg) to (aT,opl’ a—yopg) and elements of the form (0, 2 op; — W ops)

’ Oz
to (g op1, ﬁ o pa), this part of the proof is finished since ‘?)—I; is in the ideal J,(F) at x since

fyisa submersion.

Now work at (,0), z # 0. Since f, is a submersion at &, and = # 0 it follows that (my J.(F'))p
contains elements of the form (1,0), so it suffices to show that ‘z—F is in the integral closure of
my J,(F')) and this is equivalent to W. This ends the second part of the proof.

([

Theorem 4.3. In the set-up of this section, there exists a Zariski open subset of U of Y such
that 1L 4 holds for the pair (X —Y,UNY) along Y.

Proof. We will follow the lines of the proof of the Idealistic Bertini Theorem given in [16] p591-
598. We prove that the il4 condition is generic using the module criterion. We will work
on the normalized blow-up of X xy X x P! by the ideal sheaf induced from the submodule
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J.(F)p, denoting NB(;_ (r)), (X Xy X x P') by N. We need to check that on each component
of the exceptional divisor that the pullback of the element induced from (‘?9—5) p to the normalized
blowup is in the pullback of (J,(F'))p. Denote the projection to Y by p. By the previous lemmas
we need only consider those components of the exceptional divisor which project to Y under the
map to X Xy X. Since we are working over a Zariski open subset of Y we may assume that every
such component maps surjectively onto Y. Since we are working on the normalization, we can
work at a point ¢ of the exceptional divisor such that F is smooth at ¢, IV is smooth at ¢ and
the projection to Y is a submersion at ¢. Thus, we can choose coordinates at ¢, (y',u’, z"), such

that ¢y = y o p, and u’ defines F locally with reduced structure. The key point is that ‘gZ: = 0.

Let 7; denote the composition of 7, the projection from N to X xy X x P! with the projection
p; to the i-th factor of X xy X x P!, i=1,2.

We have that F o p; + sF o ps is identically zero on X xy X x P'. Pull this back to N by 7
and take the partial derivative with respect to ¢’ at g. We get by the chain rule:

n
Oza—Fom—i—sa—Fom—i-ZaF M—i— oF M
dy Ay

Notice that there is no term involving the derivative of s. This is because the coefficient of
this partial by the product rule would be zero, since F' o m; = 0.

Now we work to re-shape the above term to prove the theorem. Notice that since z; all vanish
along Y, z; o m; all vanish along E at q. We can assume the order of vanishing of z; o 7; is
minimal among {z; o 7;}, and that the strict transforms of z; o w; do not pass through g.

We have:

OF OF “~ (OF dz;om
oy T ey 0T T Z(a) (55)
oF 0z; om oF Oz;om 0z omg
’ (((M”Q> ( dy’ ) - (8%0”2) { oy oy D)

We want to show that the terms on the right hand side in the above expression are in the ideal
generated by the pullback of the ideal sheaf on X xy X x P! induced by J,(F))p. For this we use
the curve criterion. We use a test curve to show that the order of vanishing of ‘Z,—Z o + s%—g 0Ty
along a component is same as the order of vanishing of the ideal (J,(F'))p. This will imply that
%—5 om + s%—g o 7o is in the ideal along the component. We can choose a curve ® such that &
is the lift of a curve ® = (1), ¢1, d2), ® : C :— P! x X xy X. Further ®(0) is a smooth point of
the component and the ambient space, ® transverse to the component so that u’ o ® = t, where
t is a coordinate in the local ring of C at the origin. This implies that if an ideal is generated
by u'?, that the pullback is generated by tP. Since the pullback of the ideal (J,(F'))p is locally
principal, we can choose ®(0) so that (J,(F))p is generated by a power of u’.

Then we have
& oF o+ oF .
—om s— omgy | =
oy ! dy 2

(S (Gomes) (55 oivevm (Fom) o (557) o0

=1
oF ~ [Ozj0om ~ Ozj 0Ty ~
(G oo [T en - T ))
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The right hand side will clearly be in the ideal ®*(J,(F))p), provided the pullback of

OF Ozjom  0Oz;omg
(0] 7'['2 —
0z; oy’ oy’

is. However, by construction, since 3’ and v’ are independent coordinates, the order of

Oz;om  Oz; 0ma

oy’ oy’

in u/ will be the same as the order of z;0m; —z;0my. Hence the pullback of ( 0772)( ‘9%’\;”1 82572,”2)

does vanish to the desired order in ¢, which finishes the proof. (I

We describe an application of this result. Given X an isolated hypersurface singularity we
can consider the sections of X by hyperplanes. It is natural to ask if there is a generic set of
hyperplanes for which the associated family of hyperplane sections satisfies the iL 4 condition.
We will show this is true after recalling the ideas necessary to make precise statements. (For
more details on this material see [2].) We first need the notion of the Grassman modification of
X, which we describe in the hyperplane case. Let E,_; denote the canonical bundle over P*~1,
which we view as hyperplanes though the origin in C™. Denote the projection of F,_; to C"
by Bn_1. If X? ! is a subset of C", we call X = ﬁn,fl(X), the G,,_1 modification of X. In
this paper we will simply refer to the G,,_; modification as the Grassman modification of X"~1.
Note that P*~! is embedded in E,,_; as the zero section of F,_;. This means that we can think
of 0 x P"! as a stratum of X; note that the projection to 0 x P~ makes X a family of analytic
sets with 0 x P"~1 as the parameter space which we denote by Y. The members of this family
are just {P N X} as P varies through the points of P~ 1.

The set of hyperplanes which are limiting tangent planes to X at the origin form a Zariski
closed set. It is known that on the complement of this set, ()~( —Y,Y) are a pair of strata which
satisfy the Whitney conditions. We can now apply Theorem 4.3 to this situation.

Theorem 4.4. Suppose X", 0 is the germ of an analytic hypersurface in C", then there exists
a Zariski open subset U of P"~1, such that condition iL o holds for the pair X — U,U along U.

Proof. We can view X locally as a family of hypersurfaces parameterized by P*~!. The fiber
of the family over the plane P is just the intersection P N X. The existence of U follows from
4.3. d

We can use the ideas of [2] to describe these generic hyperplanes. We work in the chart U,
given by planes P with equation z, = > a;z;. Then we have local coordinates on F,,_; given

by (z1,...2n, a1, ..., an—1). In these coordinates we have
B(21,y e Zn, Q1y ey Q1) = (21, ...zn,Zaizi).
If ¢ : C,0 — X, P x {0}, then o ¢ is tangent to P at the origin. If ¢ : C,0 — X, 0 is tangent

to P at 0, then ¢ lifts to X,P~>< {0}, and we say ¢ is liftable. It follows from [2], that since F
defines X, G := F o 8 defines X. From the chain rule we note that

oG oF
%—Zi£0ﬁ7 Jz(G) <8ZJ B""Zaloﬁ)

forl1<j<n-1.
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Corollary 4.5. Suppose X™. 0 is the germ of an analytic hypersurface in C", then, for P € U,
P is a point in the Z-open set of the last theorem, if and only if 21007F of € (J:(G))s for
1<i<n—1atPO0.

Proof. In the framework of the corollary, the condition of the corollary is exactly the L4 con-
dition. 0

The corollary says that to check a plane is generic, it suffices to check that for all curves ¢;
i =1,2 on X, tangent to P at the origin, with lifts ¢; for ¢;, and ® := (¢1, ¢2), ® := (P1, P2),

that
oF oF oF ~
<ziazn>Do<I>€<<azj>Do<D+<% aiaznoﬂ>Do®>.

We will give a description using analytic invariants of these generic hyperplanes. For the rest
of this section we will assume that the planes we consider are not limiting tangent hyperplanes
to X, 0. This condition is equivalent to J(F)g = J(F) in Ox .

The invariant we will use appeared earlier in section 3. It is the multiplicity of the pair
J(XNH)p,J(XNH)p, which we denote e(J(X N H)p, J(XNH)p).

Similar invariants have been used in this setting before. In the case of ICIS singularities, to test
for whether or not a hyperplane is in the generic set of planes for which the hyperplane sections
form a Whitney equisingular family, you use the multiplicity of the pair (JM (X N H), O%),
which is e(JM (X N H)). The plane is generic if this multiplicity is minimal, and the minimal
number is the sum of the Milnor numbers of X N H, and X N H NG, where H and G are generic
hyperplanes.

The proof that the minimal value of e(J(XNH)p, J(X N H) ) again identifies generic hyper-
planes will be done in the context of the multiplicity polar theorem, so we identify the modules
we will use. _ B o

We will work in X xpn—1 X C XxP""!xX. The module N will be (3*J(F)) ,, and the module
M will be J,(G)p. Notice that M restricted to the fiber of the family over the plane H is just
J(X NH)p, while N restricted to H is (J(X)|z)p; because we are assuming H is not a limiting
tangent hyperplane, we have that J(X)|g = J(X N H), hence N restricted to H is J(X N H) ,
so the multiplicity of the pair M (H), N(H) is the same as e(J(X N H)p, J(X N H) ). At this
time we do not have a geometric interpretation of this number.

Theorem 4.6. Suppose X" 1,0 is an isolated singularity hypersurface and U the set of hyper-
planes which are limiting tangent hyperplanes to X at 0. Then

1) e(J(XNH)p, J(XNH)p) is upper semicontinuous on U.

2) The iL s condition holds along U at a hyperplane H for which the value of

e(J(XNH)p,J(XNH)p)
s minimal.

Proof. The condition on U implies that J(X N H) ) is the restriction of N to the fiber. Essen-
tially since N is independent of H, N has no polar variety of the same codimension as U. The
multiplicity polar theorem then implies e(J(X N H)p, J(X N H)p) is upper semicontinuous on
U.

Suppose we are at H which gives the minimal value of the multiplicity. Since the value of the
multiplicity cannot go down, it must be constant, which implies that the polar variety of M of
the same dimension as U must be empty. The emptiness of the polar variety puts restrictions on
the size of the fiber of Proj R(M). Now we know that generically the gTi are in M; coupling this
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with the bound on the dimension of the fiber of ProjR(M), by Theorem Al of [10], it follows

oG

that the 5 are in the integral closure of M at H as well, which finishes the proof. O

(1]
2]
(3]
(4]

(5]

da;
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AXIUMBILIC SINGULAR POINTS ON SURFACES IMMERSED IN R* AND
THEIR GENERIC BIFURCATIONS

R. GARCIA, J. SOTOMAYOR, AND F. SPINDOLA

ABSTRACT. Here are described the aziumbilic points that appear in generic one parameter
families of surfaces immersed in R%. At these points the ellipse of curvature of the immersion,
Little [7], Garcia - Sotomayor [11], has equal axes.

A review is made on the basic preliminaries on axial curvature lines and the associated
axiumbilic points which are the singularities of the fields of principal, mean axial lines, axial
crossings and the quartic differential equation defining them.

The Lie-Cartan vector field suspension of the quartic differential equation, giving a line field
tangent to the Lie-Cartan surface (in the projective bundle of the source immersed surface
which quadruply covers a punctured neighborhood of the axiumbilic point) whose integral
curves project regularly on the lines of axial curvature.

In an appropriate Monge chart the configurations of the generic axiumbilic points, denoted
by E3, E4 and Es in [11] [12], are obtained by studying the integral curves of the Lie-Cartan
vector field.

Elementary bifurcation theory is applied to the study of the transition and elimination
between the axiumbilic generic points. The two generic patterns E§4 and Ei5 are analysed
and their axial configurations are explained in terms of their qualitative changes (bifurcations)
with one parameter in the space of immersions, focusing on their close analogy with the saddle-
node bifurcation for vector fields in the plane [1], [10].

This work can be regarded as a partial extension to R* of the umbilic bifurcations in
Garcia - Gutierrez - Sotomayor [5], for surfaces in R3. With less restrictive differentiability
hypotheses and distinct methodology it has points of contact with the results of Gutierrez -
Guifiez - Castafieda [3].

INTRODUCTION

In this work are described the axiumbilic singularities, at which the ellipse of curvature, as
defined in Little [7] and Garcia - Sotomayor [11], has equal axes. The focus here are the axiumbilic
points that appear generically in one parameter families of surfaces immersed in R*. It can be
regarded as an extension from R? to R?, as target spaces for immersed surfaces, and from umbilic
to axiumbilic points as singularities, of results obtained by Gutierrez - Garcia - Sotomayor in [5].
It is also a continuation, in the direction of bifurcations of axiumbilic singularities, of the study
of the structural stability of global axial configurations started in Garcia - Sotomayor [11].

An outline of the organization of this paper follows:

Section 1 deals with geometric preliminaries and a review of axial lines and axiumblic points
in order to define the principal and mean curvature configurations and their quartic differential
equations.

The third author was partially supported by a doctoral fellowship of CAPES. The second author participated
in the FAPESP Thematic Project 2008/02841-4 and has a fellowship CAPES PVNS at UNIFEL The first and
second authors are partially supported by Pronex/FAPEG/CNPq Proc. 2012 10 26 7000 803. The first and
second authors are fellows of CNPq.
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In Section 2, locally presenting a surface M immersed into R* with a Monge chart, are studied
the axiumbilic points and the transversality conditions in terms of which are defined the generic
axiumbilic points are made explicit.

Section 3 establishes the axial principal and mean configurations in a neighborhood of generic
axiumbilic points, denoted F3, F, and Fs5. This description uses the suspension of Lie-Cartan,
giving rise to a line field tangent to a surface, which quadruply covers a punctured neighborhood
of the axiumbilic point, and whose integral lines project regularly on the lines of axial curvature.
This follows the approach of Garcia and Sotomayor in [11] and [12], chap. 8. After this review
follow two subsections devoted to describe the behaviors of the axial lines near the axiumbilic
points denoted E, and E};, which are the transversal transitions between the generic axiumbilic
points.

In fact, the axiumbilic point E1, (Figure 7) characterizes the transition between an axiumbilic
point of type F3 and one of type E,, which is explained by the variation of one parameter family
in the space of immersions C", r > 5 of a surface M into R* (Proposition 11), in a first analogy
with the saddle-node bifurcation of vector fields [1], [10].

The axiumbilic point Ej5 (Figure 11) is characterized by the collision and subsequent elimina-
tion between one point of type E4 and other of type E5. Here also, this bifurcation phenomenon
is explained by means of a parameter variation in the space of immersions (Proposition 17), in
a second analogy with the saddle-node bifurcations in the plane [1] [10].

Section 4 establishes the genericity of the axiumbilic bifurcations studied in this paper.

This work is related to the papers by Guifiez-Gutiérrez [2] and Guiniez-Gutiérrez-Castaneda
[3] where a description, in class C* and in the context of quartic differential forms, of the points
E}, and E}; (using the notation Hzs and Hys), can be found.

Here was adopted a different approach, using the Lie-Cartan suspension as established in
Garcia-Sotomayor [11], for immersions of class C",5 < r < co. This leads to an interpretation of
these points with less restrictive differentiability hypotheses and allows proofs with techniques
closer to those of elementary bifurcation theory as in [1] and [10].

Section 5 closes the paper with related comments on its results and their connection with
others found in the literature.

Acknowledgment. The authors are grateful to the referee for his/her careful reading and
helpful style suggestions.

1. DIFFERENTIAL EQUATION OF AXIAL LINES

Let o : M — R* be an immersion of class C", r > 5, of an oriented smooth surface in R*, with
the canonical orientation. Assume that (z,y) is a positive chart of M and that {a,, oy, N1, No}
is a smooth positive frame in R*, where for p € M, {a, = 0a/0x, o, = Oa/Dy}, is the the
standard basis of T, M in the chart (z,y) and {Ny, N2}, is an orthonormal basis of the normal
plane N, M.

In the chart (z,y), the first fundamental form is expressed by

I, = (Do, Da) = Eda? + 2Fdxdy + Gdy?

where, E = (ay, 0z), F = (0, ay) and G = (ay, o) and the second fundamental form is given
by 11, = IILNy + II2Ny where II,i = 1,2, is

II! .= (D%, N;) = e;dz® + 2fidzdy + g;dy?,

with e; = (0, Ni), fi = (Qay, Ni) and g; = (ayy, N;).
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The mean curvature vector is defined by H = hy Ny + ho Ny with
Egi — 2Ffi + Gei

2(EG — F?)

For v € T, M, the normal curvature vector in the direction v is defined by:

II,(v) IIl(v) I712%(v)

1 ko = kn(p,v) = ALY o
. P =T T L T L

The image of k,, restricted to the unitary circle S; of T,M describes in N, M an ellipse
centered in H(p), which is called ellipse of curvature of a at p, and it will be denoted by e, (p).
When (e1 — ¢1) fo — (e2 — g2) f1 # 0, it is an actual non-degenerate ellipse, which can be a circle.
Otherwise it can be a segment or a point. As k| s is quadratic, the pre-image of each point of
the ellipse is formed of two antipodal points on S}, and therefore each point of €, (p) is associated
to a direction in T, M. Moreover, for each pair of points in €,(p) antipodally symmetric with
respect to H(p), it is associated two orthogonal directions in T, M, defining a pair of lines in
T,M [7], (8], [9].

Consider the function:

hi =

No.

. erdz? + 2fidxdy + gi1dy? _ Eg — 2F f1 4+ Gey 2
T Edx? 4+ 2Fdxdy + Gdy? 2(EG — F?)

|:€2d1'2 + 2fodxdy + gody?  Egy — 2F fo + Geg] 2

Ik — HIJ?

Edz? + 2Fdzxdy + Gdy? 2(EG — F?)

For each p € M in which e,(p) is not a circle, the points maximum and minimum of this
function determine four points over the ellipse of curvature £, (p), which are their vertices, located
at the large and small axes.

FIGURE 1. Ellipse of curvature £, (p) and lines of axial curvature

As illustrated in Figure 1, to the small axis AB is associated the crossing A’A”B’B” and
to the large axis CD is associated the crossing C'C”D’D"”. Thus, for each p € M at which
the non-degenerate ellipse is not a circle or a point, two crossings are defined in T, M, one
associated to the large axis and the other to the small axis of the ellipse of curvature. These
fields of 2-crossings in M are called fields of axial curvature.

Outside the set U, of points at which the ellipse of curvature is a circle (i.e. has equal
axes), called aziumbilic points, the lines and crossings are said to be lines and crossings of azial
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curvature. Those related to the large (respectively small) axis of the ellipse of curvature are
called lines and crossings of principal (respectively mean) azxial curvature.
From the considerations above, the axial directions are defined by the equationm

Jac(||kn — H||?, 1) =0
which has four solutions for p ¢ U, and is singular at p € U,. According to [11] and [12], the
differential equation of axial lines is given by:

(2) asdy* + asdy®dz + asdy?da? + a1dyda® + apdz* = 0,
where
ay = —AF(EG—2F?)(gi + ¢3) +4G(EG — 4F?)(fig1 + f292),
+ 8FG*(ff + f3) + AFG?(e1g1 + eag2) — 4G®(e1f1 + e2f2)

a3 = —4E(EG —4F?)(g} +g3) — 32EFG(f191 + f292),
+ 16EG?(ff + f3) — AG®(ef + €3) + BEG?(e1g1 + e292)

ay = —12FG*(e? + €2) + 12E?F(EG — 4F?)(¢? + ¢2),
+ 24EG*(e1fi + eaf2) — 24E%G(f1g1 + f292)

ar = 4E’(¢7 + g3) + AG(EG — 4F?)(ef + €3)
+ 32EFG(e1f1 + eaf2) — 16E°G(ff + f3) — 8E*G(e1g1 + e292),

ay = AF(EG —2F?)(e3 +e3) —4AE(EG — 4F?)(e1f1 + eafa)
+ —8E’F(ff+ f3) — AE*F(e1g1 + e292) + 4E*(fig1 + f292)-

Proposition 1 ([11], [12]). Let o : M — R* be an immersion of class C", 7 > 5, of an oriented
and smooth surface. Denote the first fundamental form of a by

I, = Edaz? + 2Fdzdy + Gdy?
and the second fundamental form by:
II, = (eydz® 4 2f1dxdy + gi1dy? )Ny + (eadz? + 2 fodzdy + gody?) N,
where { Ny, Ny} is an orthonormal frame.
i) The differential equation of axial lines is given by:
G = [aG(EG —4F?%) +a,F(2F? — EG)|dy*
+ [-8aoEFG + a1 E(4F? — EG)|dy*dx
+ [—6a0GE2 + 3a1FE2}dy2dx2 + a1 E3dyda® + agE3dx* = 0,
where
ar = A4G(EG —4F?)(e} + €3) + 32EFG(e1f1 + exfa)
+ 4E%(g} + g3) — 8E?G(e1g1 + e292) — 16E°G(f} + f3)
and
ay = AF(EG —2F?)(e3 +e3) —4AE(EG — 4F?)(e1f1 + eafa)
+ AE*(figr + f2g2) — AE°F(e1g1 + e2g2) — 8E°F(f7 + f3).
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i1) The axiumbilic points of « are characterized by ag = a; = 0.

The axiumbilic points are defined by the intersection of the curves ag(z,y) = 0 and a4 (z,y) = 0.
Assume, with no lost of generality, that they intersect at (z,y) = (0,0). In this work it will be
considered the case where the intersection is transversal or quadratic at (0, 0).

Figure 2 illustrates the generic contact of the curves ag(z,y) = 0 and a1 (z,y) =0, whose
intersection characterizes the axiumbilic points.

a,=0

a,=0

FIGURE 2. Transversal and quadratic contact between the curves ap = 0 and
a; = 0 at an axiumbilic point p.

An axiumbilic point given by (z,y) = (0,0) is called transversal if
d(ao, a1) Za%(om %(0, 0)
3. y) ba1(0,0) 921.(0,0)
The axiumbilic point given by (x,y) = (0,0) is said to be of quadratic type if the matrix

Oag,a)| | 52(0,0) F(0,0)
(=.y) oo | F4(0,0) F(0,0)

has rank 1 and, assuming %‘Z’(O, 0) # 0, it follows from the implicit function theorem that y(x)
is a local solution of ag(x,y(x)) = 0. Writing s(x) = a;1(z,y(z)) it follows that s'(0) = 0 and
s"(0) # 0.

A similar analysis can be carried out if other element of the matrix DY)

(0,0)

(3) £0.

(4)

is non zero.

(0,0)
Remark 2 ([11]). In isothermic coordinates, where E = G and F = 0, it follows that
ar = —az = E°[ef + e + gi + g5 — 4(fT + f3) — 2(e191 + e292)]

a
ap = a4 = *32 = 4E3[f191 + fag2 — (e1f1 + eaf2)]

and the differential equation of axial lines is simplified to

(5) ao(x,y)(dzt — 6dzdy® + dy*) + a1 (z, y)(dz* — dy*)dzdy = 0.

1.1. Axial configurations of immersed surfaces in R*. Let Z" = Z"(M,R*) the set of
immersions of class C". For a € Z", the differential equation of axial lines is well defined
(equation (2)):

(6) G(x,y,dz, dy) = asdy® + azdy’dx + axdy®dx® + aydyda® + agdz® = 0

in the projective bundle PM of M.
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For each v € I, define the Lie-Cartan surface of the immersion a by L, := G *(0), which
is of class C"~2, regular in M — U,, and may present singularities at U,,.

Moreover, as the set defined by the quartic equation (6) contains the projective lines at U,
it follows that L., is a ramified covering of degree 4 in M — U,, and contains the projective line
7~ 1(p) for each p € U,,.

In the chart (z,y,p) of PM, with p = %, equation (6) is given by

(7) G(2,y,p) = asp® + asp® + azp® + a1p + ag = 0.
Consider the Lie-Cartan vector field X, of class C"~3, tangent to the surface G = 0

0 0 0

The azial curvature lines are the projections by m : PM — M restricted to L, of the
integral curves of X,.

See illustration in Figure 3. For each p € M — U, there are 4 well defined axial directions,
given the four roots of equation (7).

Two azial configurations are given: the principal azial configuration Py, = {Uy, Xs} defined by
the axiumbilic points U, and by the net X, (related to the crossing of principal axial curvature),
in M — U, and the mean azial configuration Qn = {Uy,Va}, defined by the axiumbilic points
U, and the net ), (related to the crossing of mean axial curvature), in M — U,

~2_

e
-
N

4

1Y

FIGURE 3. Projection on M of the integral curves of the Lie-Cartan vector field
tangent to L, in a neighborhood of p € M —U,,. For each point in M pass four
lines, associated, in pairs, to the axis of the ellipse.

2. DIFFERENTIAL EQUATION OF AXIAL LINES IN A MONGE CHART

The surface M will be locally parametrized by a Monge chart near an axiumbilic point p as

follows
z = R(z,y), and  w=5(z,y),

where
790 r r ’
R(x,y) 7-73 +T11.’L‘y+ﬂ 2.2 30 3+£ Qy_;'_i 2+£ 3
(9) 7"2 , QT 6 . 2 2 6
404, 7313 22,22 113, 5 Tod 4
o4 i e — h.o.t.,
+ 24 + 6 oy + 1 roy° + 6 Ty’ + — 24 + h.o.
s s s s s
S(a,y) =22002 4 gyyay + o2y? 4 T8 Py SN2 S5,
(10) 2 2 6 2 D) 6

540 4 531 25 522 2202 3 4
- - = h.o.t.
+24 + 6 Yy + — 1 y+ 6 y+24y+ 0.
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At the point (z,y, R(x,y), S(x,y)), the tangent plane to the surface is generated by {t1,t2},
where t; = (1,0, R;, S;) and t; = (0,1, R,,Sy). The normal plane is generated by {Ni, Na},

where N; = I%l\ and Ny = I%\ are defined by N1 = (—R;, —Ry,1,0) and Z/va =t1 Aty A Ny.
1 2

Here A is the exterior or wedge product vy A vs Awvs of three vectors v1, va, vg in R* is defined
by equation det(vy,ve,v3,v) = (v1 Avg Awvg,v) for all v € R%.
Therefore it follows that:

det(t1, t2, N1, 0) = (Na, o).
From the expressions of R and S given by equations (9) and (10), it follows that:

E=1+0(2), F=0(2), G=1+0(2),
and
e1 =10 + 7307 + 721y + O(2), €2 = 820 + 8307 + s21y + O(2),
fi=ritrar+ri2y+0(2), fa=s11+suz+ s12y + O0(2),
g1 =102 + 1127 + 103y + O(2), g2 = s02 + 5122 + 503y + O(2).
The axiumbilic points are defined by ag(z,y) = 0 and a1 (z,y) = 0. So, in a neighborhood of
(0,0), it follows that

(11) ap(z,y) = agy + alyz + agy + O(2)
and
(12) ay(z,y) = agy + ajpr + agy + O(2),
where
ago = ri1(roz — ra0) + s11(so2 — $20),
@(1)0 = r91(ro2 — r20) + r11(r12 — 730) + S11(812 — S30) + S21(S02 — S20),
CL81 = 712(r02 — 120) + 711(r03 — r21) + S11(S03 — 521) + 512(S02 — 520)
and
abo = (ro2 —720)° + (S02 — 520)° — 4(ri1 + s11),
aijo = 2(ri2— 730)(To2 — r20) + 2(s12 — $30)(S02 — S20) — 8(r21711 + S21811),
ag, = 2(roz — 721)(ro2 — T20) + 2(S03 — 521)(S02 — S20) — 8(r12711 + S12511).

Therefore a point p, expressed in a Monge chart by (0,0), is an axiumbilic point when the
following relations hold.

(13) ady = r11(ro2 — r20) + s11(S02 — S20) = 0,
agy = (roz — 720) + (S02 — $20)> — 4(rfy + s11) = 0.

Algebraic manipulations of the equations above, see [2], show that (0, 0) is an axiumbilic point
when the following equations hold

2711 = (S02 — $20), 2r11 = —(s02 — $20),
14 or
(14) { 2811 = —(r02 — 720, ) 2811 = (T02 — T20)-

Remark 3. Let ro2 = rog + r and sga = s20 + 8, p> = %, + s2;. Then condition for (0,0) to be
an axiumbilic point, see equation (13), is given by

7"11'7“+811'S=0,
(15) { T2+52 :4102.
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These condition for being an axiumbilic point can be interpreted as the intersection of a circle
and a straight line in the plane (r,s). The intersections are given by

— s —_3
(16) { = 2’7« or { 11 B 2
S11 = B S11 = 2
and therefore equation (16) is another form of equation (14).

Let
a1 =812 — 830 + 2ra1, Qo = r3g — r12 + 2521,

Q3 =803 — S21 + 2r12, Q4 = T21 — To3 + 2512.
The discussion above is synthesized in the following lemma.
Lemma 4. Let p be an axiumbilic point with coordinates (0, 0) in a Monge chart. The differential
equation of axial lines in a neighborhood of (0,0) is given by
(17)  ao(w,y)(da* — 6da?dy® + dy*) + @y (x, y)(do? — dy*)dady + H(z,y, dz, dy) = 0,

where

N 1 1
as) ao(z,y) 25(7“041 + sag)z + 5(7"043 + saq)y + afoz” + af Y + agey’,

ay(x,y) =2(saq — rag)z + 2(saz — rag)y + asgx’® + airy + afey?
and H contains terms of order greater than or equal to 3 in (x,y).

With the notation in equation (17), the condition of transversality between the curves ag = 0
and a; = 0 is given by
ajy  ag £0.
Q19 Ao
The determinant above has the following expression:

[asas — agay] - (r2 + 52)7

where r = rga—790 and s = sg2 —8g0. If (T2+82) is zero, it follows that a?o = a81 = a}o = a(l)l =0,
and therefore the matrix
0 0
a0 @01

is identically zero. Thus the axiumbilic points with r = s = 0 form a set of codimension at least
four.
Therefore, the condition of transversality, supposing r2 + s? # 0, is given by:

(19) T := Qg — 10y 75 0.

Long, but straightforward calculations show that condition (19) is invariant by positive rota-
tions in the tangent and in the normal planes.

Lemma 5. Consider the quartic differential equation
(aroz + a01y)(da:4 — 6dz>dy® + dy4) + (byox + bory)dxdy(dz?® — dy?*) = 0.

Consider a rotation & = cosQu+sinfv, y = — sin Qu+ cos fv, where 6 is a real root of the system
of equations

—aoﬂf5 + (a0 — 501)754 + (6ao1 + blo)t3 + (bo1 — 6a10)t2 — (ap1 + b1o)t + a10 =0, t = tanb.
Then it follows that

aprv(du* — 6du’dv? + dv*) + (biou + borv)dudv(du® — dv?) = 0, where
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ap1 =(t* + V[aoy (t* — 6t + 1) + by t(t* — 1)1]
bIQ = — 16t(t2 — 1)((110 — a01t) —|— (t4 — 6t2 —|— 1)(b10 — b01t)
bor = — 16(t2 — 1)(taio + ao1) + (t* — 6t + 1)(byot + bo1)

Proof. The result follows from straightforward calculations. Observe that when ag; = 0 a
rotation of angle /2 is sufficient to obtain the result stated. ]

Proposition 6. Let p be an axiumbilic point. Then there exists a Monge chart and a homothety
in R* such that the differential equation of axial lines is given by

(20) y(dy* — 6dz?dy® + dz*) + (az + by)dxdy(da? — dy?) + H(x,y, dz,dy) =0

where H contains terms of order greater than or equal to 2 in (z,y). Moreover, the axiumbilic
point p is transversal if and only if a #£ 0.

Proof. Consider a parametrization X (z,y) = (z,y, R(x,y), S(x,y)) given by equations (9) and
(10) such that 0 is an axiumbilic point. By equation (18) it follows that:

1 1
ap(z,y) 25(7"041 + sas)T + 5(1"043 + say)y + O(2),

a1 (z,y) =2(saq — ras)r + 2(saz — rag)y + O(2).

By an appropriate choice of the rotation in the plane {z, y} given by Lemma 5 and a homothety
in R4, it is possible to make 2a;g = ra; + sas = 0 and, when (ayay — asas)(r? + s2) # 0, also

a1 = %(7‘&3 + say) = 1. So the result is established, a = %

b= Asaa—ras) Ifr#Oitfollowsthata:—m and a = 24 when s #0 and r =0. [

rasz-+sag r(rag+say) ay

when raq 4+ sas = 0 and

Remark 7. Let p = %. Then the differential equation (20) is given by:

(21) y(p* — 6p*> + 1) + (ax + by)p(1 — p*) + H(z, y,p) =0,

where H contains terms of order greater than or or equal to 2 in (z,y).

3. AXIAL CONFIGURATION IN THE NEIGHBORHOOD OF AXIUMBILIC POINTS

Let p be an axiumbilic point whose neighborhood is parametrized by a Monge chart and
assume the notation established at the beginning of Section 2.

When it is a transversal axiumbilic point, which is determined by transversal intersection of
the curves ag = 0 and a; = 0 (see equation (3)), it results from Proposition 6 and Remark 7
that the differential equation of axial lines is given by

(22) G(z,y,p) =y(p* — 6p*> + 1) + (ax + by)p(1 — p*) + H(z, y,p) =0,

where H(z,y,p) contains higher order terms greater or equal to 2 in (z,y).
The Lie-Cartan surface L, in PM is defined implicitly by

(23) G(z,y,p) =0.

In the case that p is a transversal axiumbilic point the surface defined above is regular and of
class C"~2 in the neighborhood of the projective axis p.
In the coordinates (z,y, p), the Lie-Cartan vector field X, is of class C" 3, (equation (8)):

0 0 0
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and the projections of the integral curves of X are the axial lines in a neighborhood of p
G=0
(Figure 3).

Restricted to the projective axis p, defined by z = 0, y = 0, the Lie-Cartan vector field is
given by

0

X =—pl(p* —6p* +1) + (1 —p*)(a+ )l

Therefore, the singular points of the Lie-Cartan vector field in the projective line are given
by the equation:

(25) P(p) = pR(p) = pl(p* — 6p* +1) + (1 = p*)(a + bp)] = 0.
The discriminant of R(p) = (p* — 6p® + 1) + (1 — p*)(a + bp) is

A(a,b) =16a° 4 4(b* 4 68)a* + 16(b* 4 144)a®
—8(b% — 80)(16 + b*)a® + 96(16 + b*)%a + 4(16 + b*)3.

Furthermore, R(+1) = —4, R(0) =1+ and lim,_, 4+ R(p) = +o0, thus R has at least two
simple real roots, one is less than —1 and the other is greater than 1.
The derivative of X at (0,0, p) is given by:

(26)

a(l—3p%)  4p® +b(1 —3p?) —12p 0
DX (0,0,p) = | a(l—3p*)p pldp® +b(1 — 3p?) — 12p) 0
0 0 —P'(p)

whose eigenvalues are 0 and
Ai(p) = a(l - 3p?) + p[dp® + b(1 — 3p®) — 12p],
A2(p) = —P'(p).
Recall that P(p) = pR(p), and so P'(p) = R(p) + pR'(p). Therefore at the roots of R, it
follows that —P’(p) = —pR/(p). Also, as £1 are not roots of R, it follows that

) =
) =

(=p* +6p* — 1) + bp(1 - p?)
1—p? '
Substituting the equation above into the expression of A1 (p), p being a root of R(p) (a singular
point of X), it follows that

2 1 3
)\1<p) - ((1;2-";1)) 9
A2(p) = —pR/(p).
Therefore, the eigenvalues of DX, at the singular points (0,0,p9) = (0,0,0) and (0,0, p;),
p; # 0, on the tangent space to G = 0, are as follows:

_0n- A1 =a,
27) m—o'{&——m+m
(28) M=
28 pi #0: p;—1) 7’
Ay = —pi R (p;).

The eigenspace associated to the eigenvalue \; is transversal to the axis p and the eigenvalue
Ao has the projective axis as the associated eigenspace.
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In [11] the axial configuration near an axiumbilic point was established in the following situ-
ation:

Ala,b) <0,
Aa,b) >0, a<0, a# -1,
A(a,b) >0, a>0.

When A(a,b) < 0, R has two simple real roots, and the Lie-Cartan vector field has three
hyperbolic saddles in the projective axis. This axiumbilic point is called of type E3.

When A(a,b) > 0,a < 0, a # —1, R has four simple real roots, and the Lie-Cartan vector field
has 5 singular points in the projective line. Four are hyperbolic saddles and one is a hyperbolic
node. This axiumbilic point is called of type Fjy.

When A(a,b) > 0, a > 0, the Lie-Cartan vector field has 5 hyperbolic saddles in the projective
line. This axiumbilic point is called of type FEs.

In Figure 4 the Lie-Cartan surfaces and the integral curves of the Lie-Cartan vector field
are sketched in the three cases F3, E4 and E5. The projections of the integral curves by
7w : PM — M are the axial lines near the axiumbilic points (see Figure 5) E3, E; and Fs.

FIGURE 4. Lie-Cartan vector field and its integral curves in the cases E3, Fy
and FEs.

FIGURE 5. Axial configurations near axiumbilic points E3 (left), Es (center)
and Ej5 (right).
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For an immersion a of a surface M into R*, the axiumbilic singularities I/, and the lines
of axial curvature are assembled into two axial configurations: the principal axial configuration
Po = {Un, Xs} and the mean azial configuration Qo = {Uy, Val}-

An immersion o € Z" is said to be principal azial stable if it has a C" neighborhood V(«)
such that, for any 8 € V(«) there exists a homeomorphism h : M — M mapping U, onto Ua
and mapping the integral net of X, onto that of X3. Analogous definition is given for mean azial
stability.

In Proposition 8 are described the axiumbilic points which are principal axial stable. In Figure
6 are sketched the curves A(a,b) =0, a = —1 and a = 0 in the plane a, b, which bound the open
regions corresponding to the three types of axiumbilic points of principal axial stable type.

Proposition 8 ([11], [12] p. 209). Let p be an axiumbilic point of & € Z", r > 5. Then, « is
locally principal axial stable and locally mean axial stable at p if and only if p is of type E3, F4
or E5. The curve A(a,b) = 0 has three connected components, is contained in the region a < —1

and it is regular outside the points (—27, i%) which are of cuspidal type.
b
E4
& B4 s
E;
1
E, °o e
E, E, Es

FIGURE 6. Diagram of stable axiumbilic points, E3, F4 and Ej.

Proof. The function A(a,b) defined by equation (26) is symmetric in b. The polynomials A(a, b)

and % in the variable b have resultant equal to a positive multiple of

(1 + a)(a® + 8a + 32)%a*®(2a + 27)°.

The critical points py = (-2, i#) of A are contained in A(a,b) = 0.
Near the point p; it follows that:

2 o2 e ) 55

Further analysis shows p. are Whitney cuspidal points.

Also the curve A(a,b) = 0 is contained in the region ¢ < —1 and near (—1,0) it is given by
a=—5b%+0(3). In fact, for a > —1 all the roots of A(a,b) are complex.

By the classification of axiumbilic points E3, E, and Ej5 by the sign of A(a,b) and of a, the
diagram of stable axiumbilic points, see [11], [12] p. 209, is as shown in Fig. 6. O

A(a,b) = — 54675

+h.o.t.
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3.1. The axiumbilic point EJ,.

Definition 9. Let oo : M — R* be an immersion of class C",r > 5, of a smooth and oriented
surface. An axiumbilic point p is said to be of type Fi, if a defined in Proposition 6 does not
vanish and:

i) Aa,b) =0, (a,b) # (—1,0) and (a,b) # (=%, £3V/5), or

it) b£0ifa=—1.

Proposition 10. Let o : M — R* be an immersion of class C", r > 5 of a smooth and
oriented surface having an axiumbilic point p of type F3,. Then the axial configuration, defined
in subsection 1.1, of « in a neighborhood of p is as shown in Figure 7.

FIGURE 7. Axial configurations in a neighborhood of an axiumbilic point of type E},.

Proof. Since the condition of transversality (a # 0) is preserved at an axiumbilic point of type
E}, the implicit surface defined by equation (23) is regular in a neighborhood of the projective
line. From the hypotheses A(a,b) = 0, (a,b) # (—1,0) and (a,b) # (=2, +3/5) or b # 0, if
a = —1, the polynomial P(p) = p[(p* — 6p? + 1) + (1 — p?)(a + bp)] = pR(p), which defines the
singularities of the Lie-Cartan vector field, has one double root and three real simple roots.
With no loss of generality, we can consider the case a = —1 and b # 0, where p = 0 is a double
root of the polynomial P(p). In this case, we have P(p) = p?(p® — bp? — 5p + b).

The eigenvalues of DX at (0,0, p) are given by:

A =4p* —3bp® —9p2 +bp—1 and Ny = p(—5p° + 4bp? + 15p — 2b).
Therefore, at the singular points (0,0, p), p # 0, of X it follows that:

(p22+ D’ nd oy = P07 45)
p*—1 p*—1

Then, AA2 < 0 when p # 0 and these three singular points of X are hyperbolic saddles. At
p = 0, double root of P, it follows that Ay = —1, Ay = 0. Recall that the eigenspace associated
to A; is transversal to the axis p and that one associated to Aq is the projective axis itself.
Since G,(0,0,0) = 1, it follows from the implicit function theorem that y(z,p) = zp + O(3) is
defined in a neighborhood of (0,0, 0) such that G(x, y(x, p),p) = 0. In this case, the Lie-Cartan
vector field in the chart (z,p) is given by:

A=

(29) { & =—z+bxp+ O(3)

p=—bp?+ O(3)

with b # 0. Therefore, (0,0,0) is a quadratic saddle-node with the center manifold tangent to
the projective line. The phase portrait is sketched in Figure 8, and the projections of the integral
curves are the axial lines shown in Figure 7.
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FIGURE 8. Integral curves of X|g—o in the neighborhood of the projective line
in the case of an axiumbilic point of type Ei,

When (a,b) # (-1,0), (a,b) # (=2, £2v/5) and A(a,b) = 0 the polynomial

P(p) = p[(p* = 6p* + 1) + (1 — p*)(a + bp)]
has a double root py # 0 and three real simple roots. This case is reduced to the case when
p = 0 is a double root, making an appropriate rotation of coordinates in the plane {x,y} so that,
in the new coordinates, the double root pg is located at p = 0. (I

Proposition 11. Let a € Z", r > 5, be an immersion such that p is axiumbilic point of type
E3,. Then, there is a neighborhood V of p, a neighborhood V of a and a function F :V — R
of class C"~3 such that for each u € V there is an unique axiumbilic point p, € V such that:

i) dFq #0,

it) F(p) < 0if and only if p, is of type Es,
i) F(w) > 0 if and only if p,, of type Ey,

iv) F(p) =0 if, and only if, p,, is of type Ei,.

Proof. Since p is a transversal axiumbilic point of «, the existence of the neighborhoods V and
V follows from the Implicit Function Theorem. For p € V with an axiumbilic point p, € V,
after a rigid motion I';, in R%, locally the immersion 4 € V can be parametrized in terms of a
Monge chart (z,y, R, (z,y), S,(x,y)), with the origin being the axiumbilic point p, and

Ry(w,y) ng( Mo 4 (e + mg( My rgoﬁ(u) e
+T132(/~L) 2y + T036(/”L) v + h.o.t.,

Su(a“"? y) 28202(H) 2 + s11(p)ey + 502200 3/2 + SOBG(M) 7+ 521200 ny
+312(/~L) oy’ + s03(1) y3 + h.o.t.

2 6
For p, performing rotations and homoteties as described in Section 2, the coefficients a,, and

b, can be expressed in function of the coefficients of the surface presented in a Monge chart, as
was done in Proposition 6, considering the coefficients in function of the parameter p € V.
Define F(p) = A(a(p), b(p)) whose zeros define locally the manifold of immersions with an
E}, axiumbilic point. Here, A(a, b), given by equation (26), is the discriminant of the polynomial
R(p) = (p* = 6p” + 1) + (1 — p*)(a + bp).
Notice that due to the particular representation of the 3-jets taken here, the condition
a(p) = —1 in Definition 9, the jet extension of the immersion is not transversal, but tangent, to
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the manifold of jets with E3, axiumbilic points. It is always possible, by an appropriate rotation
in the plane {z,y} to suppose that a(a) ¢ {—2%', —1}. See Section 2.

Assertions (i7), (474) and (iv) follow from the definition of F and the previous analysis on the
sign of the discriminant A(a,,b,).

Moreover, the derivative of F(u) in the direction of the coordinate a does not vanish, leading
to conclude that dF, # 0.

In fact, assuming s11 () = 2r # 0, it follows that ag(u) =y + 0(2),

A(r()? + s(u)Pos()  Als(mas () — r(p)as(w)
70 (r(aa) +smea () et +s(aatn) * TP

ar(p)(z,y) = —

= a(u)z + b(p)y + 0(2),

Q1 = 812 — 830 + 2721, Qip = T30 — r12 + 2821, @3 = 503 — S21 + 2112, and ay = r21 — 103 + 2512.

Consider the deformation
1 1
1= (z,y, Ra(z,y), Salz,y)) + (0,07t(6w3 - QIyQ),tx2y> ~

B 4('r2+52)(a2 +t)
r(ras+sag)

d OA da OA 4(r? + s?)
Z (A = = _ = (2 e )
dt (Alalu), biw)) o Oa dt  Oa ( r(ros + sa4)> 70

In the case where s11(a) = 0 it follows that r11 () = f%s #0, ayay # 0 and as(p) = 0. Now
consider the deformation

1 1
n= (xvya Ra(xvy)a Sa(xay)) + <Oa O,tlzyat(ff‘rs + .’ﬂy2)) .

’J:‘hen7 as ag =139 — 12 + 2521, it follows that a(u) = and

6 2

Then, a(p) = 222 ang

(e %8

O0A da OA 4
t_o—aa'dt—aa(%)#o‘

i
A &

FIGURE 9. Axial configuration near axiumbilic points. Es (left), E3, (center)
and Ey (right).
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Ficure 10. Bifurcation diagram of the axial configuration near an axiumbilic
point E}, and the structure of separatrices.

3.2. The axiumbilic point Ei,s- Consider the Monge chart described by equations (9) and

(10). Suppose that the origin is an axiumbilic point, which is expressed by

720 T r T 03 -
R(z,y) =—2002 4 ppyay + “2q2 4 D308 T2, 1122 ) 03,8
(30) 7"2 . 27’ 6 . 2 . 2 6
40 4 31 3 22 9 92 13 3 04 4
ey — — — — h.o.t.
+24 +6xy+4:ry+69:y+24y+0,
52 S Sn-
S(z,y) =2 +511$y+i2 2y dO(ES—i— y—}-i 2+Ey3
(31) 2 2 6 2 2 6
540 et 831 3 522 9 9o 513 3 S04 4
ey — — — h.o.t.,
+24 +6xy+4 y+6xy+24 + h.o.
where, 7og = 720 + 7, 711 = —35, S02 = S20 + 5, $11 = 57

139

Let op = 512 — 830 + 2721, g = 730 — T12 + 2821, 3 = Sg3 — S21 + 2712, Qg = T2 — To3 + 2812,
B1 = S22 — 840 + 2131, P2 = Ta0 — T2z + 2831, B3 = 813 — S31 + 2792, B4 = 7r31 — T13 + 2502,

Bs = So4 — S22 + 2113, and B = 722 — To4 + 2513.

The functions ap and a1 (see Proposition 1) are given by

1 1
(32) ao(x, y) = aipx + apry + 5&203)2 +anzy + §a02y2 + h.o.t. and
1 2 1 2
a1{x,Y) = b10& 01Y T 50207 112Y + 5002y -0.1.,

(33) (z,y) =0 +b +2b +b +2b + h.o.t
where

1 1

a1p = 5(7’041 + sam), apl = i(rozg + say),

a0 = —QaT91 —|— 1521 —+ |:il —+ T(’I"QO —|- 820):| +

vl

[52 — 20 (rg + 320)] s+ (13 — 550)s7 — $(r? + s?)(s20r — r208) + r20820(s* — 12),

2 2 2 2
11 = —T1209 + S12001 — 2104 + S (3 — %3 + 7“20(7“20 =+ 820) r—+ % — 820(7“20 + 820) S

—2s90r207s — 5 (3530 + 130)s? — £(3r3 + s30)r% — 2(r? + 5%)% = 2(r? + 5%)(ra0r + $208),
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agy = —Ti204 + S1203 + {625 — %8 (r3 + 5%0)} T+ {526 + 782 (rdy + 53 ]S+

)
(=230 + 2r3y)sr + 2s20r20(s* — 2r%) + =3 (r? + s2)(rs20 — s720),

b10 = 2(8&1 — ’1“042), b01 = 2(80(3 — 7“0[4)7
bao = ai + a3 — 4(sz1q2 + raoa) + { — B2+ 2ra0(r3y + 3%0)] T+

[51 + 2890(13y + s%o)} s — %(7«2 + 52) (5208 + roo7) + 4(r208 — S207)2,

bi1 = 2(aza1 + apas) — 4(arri2 + es12 + asrar + aasar)+

2| — By + 2s20(r2 + 550)] r+2 {53 — 2ra0(13y + s%o)} s+ 4(s39 — r3y)rs + 4ragsan (r? — s?),

boz = a3 + aF + 4(riy + s35) + 4s12(r21 — 1o3) + 4r12(S03 — 521)+

[—Bs — 2r20(r3y + 530)]r + [B5 — 2s20(r30 + 530)]s + 2(r3y — 3s30)s + 2(s39 — r3)r>.

Definition 12. An axiumbilic point is said to be of type Ei,s) if the variety L, has exactly 4
singular points which are of Morse type located along the projective line over the point.

Proposition 13. Consider a Monge chart and a homothety such that the differential equation
of axial lines is written as

ao(, y)(da* — 6da’dy® + dy*) + a1 (2, y)dwdy(da® — dy*) +0(3) = 0,
where

1 1
ao(z,y) =y + 56120562 + anzy + anzyQ + h.o.t.,
1 1
ai(z,y) =bory + 5520362 + by + §b02y2 + h.o.t.

Then the following conditions are equivalent:

i) the curves ap = 0 and a7 = 0 are regular and have quadratic contact at 0,
i) the axiumbilic point 0 is of type Ejj,
1i1) the Lie-Cartan vector field defined in L, has a quadratic saddle-node in the projective axis
with the center manifold transversal to the projective line.

Proof. The differential equation of axial lines can be written as
ao(z, y)(dz* — 6da*dy® + dy*) + a1 (z, y)dady(dz® — dy*) +0(3) = 0,
where

1 2 1 2
ap(z,y) =a10x + aory + 5&201’ +anzy + §a02y + h.o.t.

1 1
ai(z,y) =biox + bory + 51?20$2 +buizy + gbozy2 + h.o.t.

where the coefficients of ag and ay are given by equations (32) and (33). Here O(3) means terms
of order greater than or equal to 3 in the variables = and y.

In what follows it will be considered a Monge chart such that a;g = 0. This is possible as
shown in Lemma 5 and Proposition 6. Since the contact between ay = 0 and a; = 0 is supposed
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to be quadratic it results that b9 = 0 and agy - bp1 # 0. Also by a homothety it is possible to
obtain apgy = 1.
So, it results that:

(34) ao(r,y) = y+ 2602001j +anxy + 2

(35) ai(z,y) = boy+ §b20$2 +biizy + 550292 + h.o.t.

aogy + h.o.t.

Therefore, the condition of quadratic contact between the two regular curves is expressed by

X = bao — azobo1 # 0.
Notice that this amounts to establish the implication i) — 41).

Claim 14. In the neighborhood of (0,0,0), the Lie-Cartan vector field restricted to the surface
G =0, can be expressed in the chart (z,p) by

S 3 2 _ —b 2

P = —p+ 5a110202° — (a11 + Xx)p — bo1p” + 0(3)
and (0,0,0) is a saddle-node when y # 0.

(36)

Since G,(0,0,0) = 1 # 0, it follows from implicit function theorem that locally y = y(z, p)

and G(z,y(z,p),p) = 0.
The Taylor expansion of y(z,p) in the neighborhood of (z,p) = (0,0) is given by:

1
(37) y(x,p) = —56120302 + O(3).
The Lie-Cartan vector field restricted to the surface G = 0 is given by

& = Gy(x,y(z,p),p) = 3xa* + O(3)
)= —(Ge +pGy)(w,y(x,p),p) = —p + Fanazox® — (x +a11)p — bo1p” + 0(3)

The eigenvalues of the vector field (36) at 0 are \; = 0 and Ay = —1 with respective associated
eigenspaces {1 = (1, —agg) and ¢ = (0,1). By Invariant Manifold Theory the center manifold is
tangent to ¢; and is given by W€ = {(z, —azoz + 3azo(x + a11)z* + O(3))}.

The restriction of the vector field (36) to the center manifold is given by [1ya? + 0(3)]%.

This establishes that i) — i44).

Claim 15. The function G has exactly 4 critical points in the projective line, and they are of
Morse-type of index 1 or 2 if and only if x # 0.

The critical points of G along the projective line are determined by

(38) S(p) = G.(0,0,p) = (p* = 6p* +1) + boup(1 — p*) = 0,
which has for 4 simple real roots located in the intervals (—oo, —1), (-1, ) (0,1) and (1 oo).
This follows from S(+1) = —4, S(0) =1 and from the dlscrlmlnant A(S) = 4(16 + b3,)% >

Along the projective line, the determinant of the Hessian of G is given by
(39)  HessG(0,0,p) = —(azo(1 = 6p° + p*) + baop(1 — p*)) (bor — 12p — 3borp? + 4p*)°.

The resultant of S(p) and HessG(0,0,p) is given by 256x*(16 + b3,)® and therefore
Hess G(0,0,p) # 0 at the critical points of G. This implies that the critical points are of Morse
type. As G(0,0,p) = 0 it follows that the index of a critical point is 1 or 2 and so locally the
level set G = 0 is a cone.

The eigenvalues of the derivative of the Lie-Cartan vector field at a point (0,0, p) are given
by:

A = —p(—4p® + 3bp1p? + 12p — bo1), Aa = —1 + 18p? — 5p* — 2bg1p + 4bo1p°.
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At the critical points p; (satisfying S(p;) = 0) it follows that A\; = =Xy = Iﬂgﬁiﬁ’pm, then
NN, <0, for i = 1..4.

Therefore, these 4 points are saddles of the Lie-Cartan vector field. As the projective line is
invariant it is follows that the other invariant manifold (stable or stable) of a singular point is
transversal to the projective line.

This amounts to prove that i) — 7). O

Proposition 16. Let « € Z", r > 5 and p be an axiumbilic point. Suppose, in the Monge chart
expressed by equations (30) and (31), that oy = a3 = 0 and x # 0. Then p is an axiumbilic
point of type Ej75 and the axial configurations of « in a neighborhood of p is as shown in Figure
11.

FIGURE 11. Axial configurations in a neighborhood of an axiumbilic point of
type Ej ;.

Parallel

Saddle Node

FIGURE 12. Lie-Cartan vector field near an axiumbilic point E}; and the axial
configuration (principal and mean).
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Proof. Condition oy = a3 = 0 implies the non-transversal contact of the curves ag = 0 and
a1 = 0 at the axiumbilic point p expressed in the Monge chart by (0,0). By Lemma 5 and
Proposition 6, it is possible to express these curves as in equation (34). Assuming x # 0, we
have the quadratic contact of the curves at the axiumbilic point.

Proposition 13 implies that over the axiumbilic point we have five equilibria of the Lie-Cartan
vector field. One of them is a regular point of the Lie-Cartan surface, and this is an equilibrium
of saddle-node type with center manifold transversal to the axis p (see Claim 14).

The remaining equilibria are critical points of Morse type of the Lie-Cartan surface. In the
neighborhood of these points, the level set G = 0 are locally cones, and the 4 points are saddles
of the Lie-Cartan vector field (see Claim 15).

Therefore, we conclude that the configuration is as described in Figure 12, whose projection of
the saddle-node and parallel sectors describe the principal axial and mean axial configurations
close to the axiumbilic point p of type Ej; (Figure 11). O

Proposition 17. Let a € Z", r > 5, be an immersion having an axiumbilic point p of type Ei’g,.
Then, there exist a neighborhood V of p, a neighborhood V of @ and a function F : ¥V — R of
class C"~3 such that:

i) dFy #0,

1) F(u) =0 if, and only if, u € V has just one axiumbilic point in V', which is of type Ei75,
191) F(p) < 0 if, and only if, u has exactly two axiumbilic points in V', one of type E4 and the

other of type Es,
iv) F(u) > 0 if, and only if, u has no axiumbilic points in V.

Proof. By Proposition 13, a being an immersion having an axiumbilic point p of type E}, the

curves aj = 0 and af = 0 have quadratic contact at p.

Since 8;5 (0,0) = ag1 # 0, if follows from Implicit Function Theorem that locally, for u in a

neighborhood V of a, y = y,(z) and af(z,y,(z)) = 0.
2 o I
Moreover, %(0,0) = by # 0, and so = x,, is a local solution of %(wu, yu(z,)) =0.
Define F(u) = af (24, yu(z,)). Consider the variation
ht(xv y) = (IE, Y, R(l’, y) + tl’y7 S(l’, y) + tl’y)

dF (1)

It follows that o

# 0, and so dF, # 0. Therefore, the result follows from the Implicit
t=0
Function Theorem.

The axiumbilic point of type Ejs is therefore the transition between zero and two axiumbilic
points, one of type F4 and the other of type Es.

In Figures 13 and 15 are illustrated this transition, with the axial configurations sketched
in two different styles. See also Figure 15 for an illustration of transition in the Lie - Cartan
surface. O

Proposition 18. In the space of smooth mappings of M x R — R* which are immersions
relative to the first variable, those which have all their axiumbilic points either generic (of types
E3, E; and Ej3) or of types E3, and E};, crossed transversally, is open and dense. Furthermore,
for such families the axiumbilic points describe a regular curve in M x R whose projection into
R has only non-degenerate critical points at E}; and the regular points of the projection is a
collection of arcs bounded by E3, points, which a the common boundary points of the arcs
consisting of points of types F3 and Ej.

Proposition 18 follows from the analysis in Propositions 11 and 17 and an application of
Thom Transversality Theorem to the submanifold of four jets of immersions at axiumbilic points,
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e e
ok s

FIGURE 13. Axiumbilic point E};. The axiumbilic points E4 and Es collapse
in an axiumbilic point Ejs, and after they are eliminated and there are no
axiumbilic points.

FIGURE 14. Bifurcation diagram of the axial configuration near an axiumbilic
point of type E}; and the structure of separatrices

¢ L

F1cURE 15. The Lie-Cartan surface. In the left, with two axiumbilic point, in
the center with four singular points, and in the right the four regular levels.

stratified by the generic axiumbilic points of types E3, E; and Es, by those of types Ei, and
Ej}s, and by their complement which has codimension larger than 3. See Section 4.



AXIUMBILIC SINGULAR POINTS ON SURFACES IMMERSED IN R* 145

4. TRANSVERSALITY AND STRATIFICATION

Consider the space J*(M,R*) of k-jets of immersions a of a compact oriented surface M
into R*, endowed with the structure of Principal Fiber Bundle. The base is M; the fiber is the
space R* x J¥(2,4), where J%(2,4) is the space of k-jets of immersions of R? to R*, preserving
the respective origins. The structure group, Aﬁ, is the product of the group £ﬁ(2, 2) of k-jets
of origin and orientation preserving diffeomorphisms of R2, acting on the right by coordinate
changes, and by the group of positive isometries of R*, acting on the left. This group is generated
by the groups of translations and that of positive rotations, Oy (4), of R*.

Denote by Iy ;, k < I the projection of J!(2,4) to J*(2,4). It is well known that the group
action commutes with projections.

Definition 19. We define below the canonic aziumbilic stratification of J4(2,4). The term
canonic means that the strata are invariant under the action of the group A% = O, (4) x £% (2,2).

1) Aziumbilic Jets: U*, those in the orbit of j4(xz,y, R(z,y), S(z,y)), where R and S are as
in equations (9) and (10) satisfying the axiumbilic conditions defined in terms of j2R(0)
and j25(0). It is a closed variety of codimension 2.

2) Non-aziumbilic Jets: (NU)* is the complement of U*. Tt is an open submanifold of
codimension 0.

3) Non-stable azumbilic Jets: (N'E)?*, in the orbit of the axiumbilic jets for which:

o T = (ajaq—azaz)(r?+s?)=0or
e T =0 and conditions that characterize F5 or E4 axiumbilic points in Proposition 8
fail.

&5 is a closed variety of codimension 3, which can be expressed as the union of the following
invariant strata:

3.1) Non-Transversal jets: £} for which T'= 0 and x # 0. It has codimension 3.
3.2) Transversal-double jets: (€1,)*, The Lie-Cartan field has a quadratic saddle-node in the
projective line which is characterized by Proposition 11. It has codimension 3.

4) The stable azumbilic jets: UE, the complement in U* of NEL.

Proposition 20. In the space of 1-parameter families of immersions, those whose 4-jet extension
are transversal to the canonical axiumbilic stratification is open and dense.

Proof. Follows from Thom Transversality Theorem [6]. d

5. CONCLUDING COMMENTS

In this work was established the principal axial and the mean axial configurations in a neigh-
borhood of the axiumbilc points of types E3, and Ej;. The approach concerning methods and
class of differentiability requirements is distinct from that presented in the work of Gutiérrez-
Guinez-Castafieda in [3]. The use of the Lie-Cartan suspension method made possible the study
of these points by means the classic theory of differential equations, in clear analogy with the
saddle-node bifurcation of vector fields in the plane, following [1], [10] and [5].

The type E3, satisfies the transversality condition of the curves ag and a;, Proposition 6,
which amounts to the fact the Lie-Cartan surface remains regular in a neighborhood of the
projective axis over the axiumbilic point. In this case there is a saddle-node equilibrium point
of the Lie-Cartan vector field whose central separatrix is along the projective axis itself. The
axial configurations are established in Proposition 10 and the qualitative change (bifurcation)
between the types E3 and E4, with the variation of a parameter in the space of immersions, is
explained in Proposition 7. See Figure 10.
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In the case Ej; the transversality condition fails, since curves ag and a1, Proposition 13, have
quadratic contact at the axiumbilic point. Here the Lie-Cartan surface is not regular along the
projective axis. It is established in Proposition 13 that there are four conic critical points of
Morse type on the p—axis. At these points there are partially hyperbolic equilibria of the Lie-
Cartan vector field. There is also a saddle-node equilibrium in the regular part of the surface
whose central separatrix is transversal to the projective axis. The integral curves of the Lie
- Cartan vector field on the regular components of the Lie - Cartan surface (which are four
bi-punctured disks) are illustrated in Figure 12. Their projections on the plane give the axial
configurations in a neighborhood of the axiumbilic point.

In Proposition 18 is established the one parameter variation (bifurcation) in the space of im-
mersions. This leads to the fact that for small perturbations of an immersion with an axiumbilic
point of this type it holds that two axiumbilic points, one of type E; and the other of type
Ej5, bifurcate form Ejy or disappear leaving a neighborhood free from axiumbilic points, in full
analogy with the saddle-node bifurcation [1] and [10]. See Figure 14.

In Proposition 20 the genericity of the points E3i, and E}; is established in terms of stratifi-
cation and transversality.
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ON THE EULER CHARACTERISTIC OF REAL MILNOR FIBRES

HELMUT A. HAMM

ABSTRACT. We study the Milnor fibres of a real analytic mapping defined on a real analytic
space which has an isolated critical point. In particular we look at the Euler characteristic.
We discuss the global case, too.

0. INTRODUCTION

Mappings f : R — R with an isolated singularity have been already studied by J. Milnor
[M]. Tt is not important whether one works in the real algebraic or real analytic category, here we
prefer the real analytic one. We replace R™ by a germ of a real analytic space with an isolated
singularity, introduce a kind of Milnor fibration and study the Euler characteristic of its fibres.
Finally we pass shortly to the global case.

Part of the results has been announced in [H].

1. THE REAL MILNOR FIBRATION

Let f: (X,0) — (R* 0) be a real analytic mapping between real analytic space germs with
an isolated singularity, which means that f : X \ {0} — R” is a submersion between manifolds.
Let X be purely n-dimensional. We may suppose that (X,0) is embedded in (R™,0). Let
D.:={z e RV |||z|| <€}, Sc :=0D,. Let L:= XNS. and K := f~1({0}) NS, 0 < e < 1, be
the links of (X,0) and (f~*({0}),0). Note that X \ {0}, L and K are manifolds which are not
necessarily orientable!

Similarly, let B, := {t € R¥|||t|| < a}.

Theorem 1.1:

a) Let 0 < a < e < 1. Then f: XN DN fYBy\ {0}) = B, \ {0} is a locally trivial
fibration (“Milnor fibration”).

b) The mapping f : X NS, N f~1(B,) — B, is a locally trivial, hence a trivial fibration, so
OF; is diffeomorphic to K for every “Milnor fibre” F; = f~1({t}) N D..

Proof. Note that we have supposed that 0 is an isolated singularity of f. In particular f~1(0) has
an isolated singularity at 0, and S is transversal to f~1(0), 0 < € < 1. Hence S, is transversal
to f7L(t) for [|t]| €, 0 < a < ek 1. O

The base space in a) is connected if k& > 2 but not if kK = 1, so we treat these cases separately.
Note that we have a lemma which goes back to Milnor ([M] Lemma 11.3) in the case X = R™:

1991 Mathematics Subject Classification. 26E05, 32S55.
Key words and phrases. Real Milnor fibre, atypical value.
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Lemma 1.2: For 0 < a < € < 1 we have a homeomorphism
XN (DN f7HOBa)) U(Sen f7H(Ba \ {0}))) ~ L\ K,
hence a homotopy equivalence X N D, N f~1(0B,) ~ L\ K.

So we use the symbol = in the case of a homeomorphism and ~ in the case of a homotopy
equivalence.

Proof. We have assumed X C RY. Put ¢,% : X — R : ¢(z) := | f(2)]%¢(z) == |z]>
By the Curve Selection Lemma we know that there are no z € D, N X \ f~1(0) such that
there is a A < 0 with dy, = Ad¢, if 0 < € < 1. Therefore we can find on X \ f71(0)
a vector field v such that dy,(v(z)) > 0, dp,(v(z)) = 1 for ||z]| < e. Using the flow we can
construct the desired homeomorphism. Furthermore X ND.N f~1(dB,) is a deformation retract
of X N ((De N f7H(0Ba)) U (Se N f~H(Ba \ {0}))). O

According to Milnor [M], p. 99, the homotopy equivalence can in general not be chosen as to
be fibre preserving with respect to x — %

2. THE MILNOR FIBRE OF A REAL ANALYTIC MAPPING (k > 2)

First we suppose k > 2. Then we can speak of the typical Milnor fibre F' because all Milnor
fibres are diffeomorphic.

Standard example: k = 2,n = 2m, f : (C™,0) — (C,0) with isolated singularity. For the
more general case see e.g. [M] p. 103, and [CL].

In this paper we look at cohomology with integral coefficients.

Theorem 2.1: We have long exact sequences:
oo = H(L\K) — H™(F) - H™™?7*(F) - H™ (L \ K) — ... (Wang sequence),
.= H™"YK)— H™(F,0F) - H™(F) - H™(K) — ...,
... = H™L) - H™(F) - H™" *2(F,0F) - H™ (L) — ...
Note that the second and third long exact sequences are the ones for the pair (F,9F) and the

pair (L, F'): we can embed F in L.
For k = 2 the first and third sequences read:

.= H™L\ K) — H™(F) "S5 H™(F) » H™(L\ K) — ... and
Var*

.= H™(L) —» H™(F)"Y H™(F,0F) - H™(L) — ...
Here h : FF — F' is “the” monodromy.

Proof. (i) For the Wang sequence, see Spanier [S] p. 456.

Note that L\ K may be replaced by X N DN f~1(0B,), see Lemma 1.2, and
f:XND.NfH0B,) — 9B,

is a locally trivial fibration.

(i) In the second exact sequence we may replace K by 0F; see Theorem 1.1b).
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(iii) As for the third exact sequence, note that we may replace L by
XN ((Den f7HOBa)) U (SN f7H(Ba)))
Let D be an open “ball” in 0B, t € D. Then:

H™YL,F) =~ H™ (X N ((De N f7HOB)) U (Sen f1(Ba))), X N DN f~1(D))
~ H™ (X N ((DeN f7H0Ba)) U (Se N f7H(Ba))): X N ((DeN fTHD)) U (Se N f7H(Ba))))
~ H" ™ (XNDNfH(0Ba\ D), X N ((DeN f71(8D)) U (Se N f7H (0B, \ D))))
~ H™Y((F,0F) x (0B, \ D,0D)) ~ H™?7*(F,0F).

In fact, for the first isomorphism note that L ~ X N((D.Nf~1(0By))U (SN f~1(By))), similarly
as in Lemma 1.2. Furthermore, F is a deformation retract of X N D, N f~1(D).

For the second one, note that f|S. N f~1(B,) is trivial, see Theorem 1.1b), so S, N f~1(D) is a
strong deformation retract of S, N f~1(B,).

The third isomorphism is established by excision, the fourth one is due to the fact that

f:D.Nf 0By \ D) — 0B, \ D

is a trivial fibration. The last one follows from the Kiinneth formula. O

Since one cannot expect good connectivity properties in the real case, let us look at the Euler
characteristic.

Corollary 2.2:
a) x(L) =0 if n is even, x(L) = 2x(F) if n is odd,
b) x(K)=0if n — k is even, x(K) = 2x(F) if n — k is odd.

Proof. First let us observe the following: Suppose that M is a compact manifold with boundary
of dimension m. Then x(M,0M) = (—1)"x(M). In particular, x(M) = 0 if M is closed and m
is odd.

This is obvious by Poincaré duality, in the non-orientable case with coefficients in Z/2Z.

a) Suppose that n is even. Then L is a closed manifold of odd dimension, hence x(L) = 0.
Therefore we assume now that n is odd. By the third exact sequence and Poincaré duality we
have

X(L) = X(F) = (=1)*X(F,0F) = x(F) = (=1)"x(F) = 2x(F)
b) Similarly, x(K) = 0 if n — k is even. So suppose that n — k is odd. Then
X(K) = x(F) = X(F,0F) = x(F) = (=1)""*"x(F) = 2x(F).

O

So x(F') can be expressed by the Euler characteristic of a link except if k and n are both even.
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3. THE MILNOR FIBRES OF A REAL ANALYTIC FUNCTION (k = 1)

Now let us switch to the case k = 1. Then we have two typical Milnor fibres: F (resp. F_),
corresponding to Fy with ¢t > 0 (resp. ¢ < 0).

Theorem 3.1:
a) H"(L\ K) ~ H™(Fy) ® H™(F-).
b) We have long exact sequences:

.= H"YK) - H™(F,,0F,) - H™(F,) = H"(K) — ...,
... H™(L)—->H"™(Fy)® H"(F_-) - H"(K) — ... and
oo H™(L) — H™(Fy) - H™Y(F_,0F_) — ...
The middle exact sequence is a Mayer-Vietoris sequence, of course. As a consequence,
X(L) + x(K) = x(Fy) + x(F-).
Proof. H™(L,F}) ~ H™(F_,0F_) by excision. The rest is clear. O

Corollary 3.2: If n is even, we have
X(Fy) = x(F-),x(L) = 0,x(K) = 2x(F}).

If n is odd,

X(L) = x(Fy) 4+ x(F-), x(K) =
Proof. If n is even, x(L) = 0, hence x(Fy) = —x(F_,0F_) = x(F_). If n is odd, x(K) =0
The rest is clear. (]

It is difficult to calculate individual cohomology groups but:

Corollary 3.3: a) Suppose that n = 2m + 1,m > 1 and that F; and F_ have the homotopy
type of a bouquet of m-spheres. Then H°(L) = Z, H'(L) = 0 for [ # 0,m, 2m, and H™ (L) is free
abelian. Furthermore H?™(L) ~ Z/27 if m = 1 and L is non-orientable, otherwise H*™ (L) ~ Z.
b) Suppose that n = 2m 4+ 2,m > 1 and that F} or F_ has the homotopy type of a bouquet
of m-spheres. Then H°(K) = Z, H(K) = 0 for | # 0,m,2m, and H™(K) is free abelian.
Furthermore H?™(K) ~ 7Z/27 if m = 1 and K is non-orientable, otherwise H>™(K) ~ Z.

Proof. We know that K # (), otherwise Fy and F_ are compact which gives the wrong homology.
a) The exact sequence
0— H°(L) — H°(Fy)® H(F_) - H°(K)
shows that L is connected. This implies the statement for m = 1.
In the case m > 2 we know that F'; and F_ are simply connected, hence orientable. So we have
for 0 < I < 2m an exact sequence
H'"YFy) = Hop_(F_) = H(L) — HY(Fy) = Hop_1_1(F_)
because Hop, (F_) ~ H{(F_,0F_).
For | # m we deduce H'(L) = 0. For [ = m we obtain
0— Hpn(F-)— H™(L) - H™(Fy) — 0,

so H™(L) is free abelian. Of course, H*™(L) ~ Z.
b) Assume that the hypothesis is true for Fy. Again, F is orientable if m > 2. Note that
Hop(Fy) ~ H(Fy, OF, ).
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Suppose first that F is orientable. Then we have an exact sequence
HY(F,) = H°(K) — Ho,,(F}).
Since Hapm (F1) = 0 we obtain that K is connected.

If F, is non-orientable we have that m = 1, and the universal covering of F; is contractible.
Therefore the orientation covering of Fy has the homotopy type of a bouquet of 1-spheres, too.
We conclude as before that its boundary is connected. So K is connected, too.

So we must only look at the case m > 2. For 0 < [ < 2m, we have an exact sequence

Homy1-1(Fy) = H'(Fy) = H'(K) — Hap(Fy) — HH(FL)
For [ # m we have
H'(Fy) = Hypm1(Fy) =0

hence H'(K) = 0.

For [ = m we have an exact sequence

0—H™Fy)— H™(K)— Hpn(Fy) =0
which implies that H™(K) is free abelian. O
Example 3.4: a) g : (C™*! 0) — (C,0) holomorphic with isolated singularity,
X :=C™""'n{Img=0}, f:=Reg, and n=2m+ 1.
We obtain that L := S. N {Im g = 0} is a compact manifold of dimension 2m,
H°(L) = H*™(L) = Z,

H™(L) free abelian of rank 2y, p = Milnor number of g.
b) X = C™H f = Img, which leads with K instead of L to the same result as before,
because the Milnor fibres of f and g have the same homotopy type. See Lemma 5.1 below.

4. EULER CHARACTERISTIC OF THE REAL MILNOR FIBRE

Using resolution of singularities we can calculate the Euler characteristic of the Milnor fibre(s).

In the situation of section 2, we can put Y := X N {f; = ... = fx—_1 = 0}. Then the Milnor
fibres of fi, : (Y,0) — (R,0) coincide with the one of f : (X,0) — (R¥,0), so we can reduce to
the case k =1 with Fly = F_. So it is sufficient to look at the case k =1 (cf. Example 3.4a).

Let us assume k = 1. Choose an embedded resolution 7 : X’ — X of f~1({0}) C X. Then
(f om)~1({0}) is a divisor with normal crossing, it has a natural stratification. Let Sj;, [ being
the codimension of the stratum, be the strata contained in 7=*({0}). Locally at a point of this

stratum, fom =ex{" -... 2" with respect to suitable local coordinates, ¢ = +1.
Put:

ay; := 271 if there is a j such that v; is odd,

oy =2 if vy, ... v are even, € = 1,

ap; :=01if vy, ..., are even, € = —1.

Theorem 4.1: x(F4) =3, i (=1 (Sy).
Proof. (cf. [CF] in the case X = R™) Let U, be a suitable closed neighbourhood of the union of
strata of codimension > [. More precisely, put
U = {z € X"|{(z) < e},
where ¢, : X’ — [0,00[ is a real analytic function whose zero set is the union of strata of

codimension > [, and where 0 < ¢; € €5 < ... < ¢, < 1, and suppose 0 < t < €;. Put
U' .= UyU...UU,. Then each connected component of U; \ U*! is the total space of a
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topological fibre bundle over Sj; \ U1, the fibre being the normal slice with respect to Sj; for
some i. Note that Sj; \ U'*! has the same homotopy type as S;;. The normal slice N of Sy; at p
is homeomorphic to R!. Near p we can write f o 7 as above. Then

Nn{for=t}={zeR e -....2)' =1}, 0<t< 1

If there is a j such that v; is odd, we may assume j = [, then we can write the right hand side
as the graph of a function defined on (R*)!~!. This set is the disjoint union of 2!~! contractible
components.

If all v; are even, € = —1, the set is empty.

If all v; are even, € = 1, we get the disjoint union of two graphs of functions defined on the
same set as above, so we obtain 2! contractible components.

Therefore the Euler characteristic of NN {fomr =t}, ¢t >0, is ay;.

Now
Fy ~D.NXN{f>0)~a (D.nXN{f>0})
If we vary € (resp. €1,...,€,) we see that

7 D NXN{f>0})~U'n{for >0} ~U'N{for =t}
Furthermore, U* =U (U; — U1, hence
X(Fy) =x({for=t}nU") =) x({for =t} n(U\U"T)
1

=Y ixe(Si) =D aui(—1)" " x(Sh)
L li
Here x. is the Euler characteristic with compact support. O

It is easier to calculate x(Fly) + x(F-):

Corollary 4.2: x(Fy)+x(F-) =3, 2L(=1)"'(Sy;), and so, if x(F}) = x(F_) (in particular
if n is even), then

V() = 32 (<) ().

L
The first statement of the corollary can also be proved directly, without using the local
description of f o 7: note that (R*)! has 2! contractible components.

By the way, we can calculate x(K) and x(L) using the same resolution:

Let us denote by S;; those strata S;; which are contained in the strict transform of f~1(0),
i.e., in the closure of 7= *(f~1({0}) \ {0}), S}/ the remaining ones. Then:

X(E) =) 27 (=1)"x(Sh),
X(L) =Y 27 (=1)"T(ST) + ) 21 (1) (ST
which agrees with the formula x(L) + x(K) = x(F4+) + x(F-) proved before (Theorem 3.1).

In the case of L, note that in the normal slice we have to look at N \ 7=!(0) which differs
from N \ (f o 7)~1(0) if we are at a point of the strict transform of f = 0: then we have 2!~!
instead of 2! contractible components.
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Using the formula for x(K) we obtain an easier formula for x(F4) if n is even: Then

X(Fy) = x(F2) = Y272 (=1)"x(S),),
because x(K) = 2x(FL).

5. COMPARISON OF MILNOR FIBRES OF MAPPINGS (RESP. FUNCTIONS)
There is another connection between the cases k > 2 and k = 1 in section 2 (resp. 3):
Let us take up the assumptions of section 2 (in particular, k > 2) and write x(f) instead of

X(F). Similarly in 3: x(f)4+ instead of x(F}).

Lemma 5.1: For 0 < a < € < 1, the inclusion of XN D. N{f1 =...= fr_1 =0, fr = a} in
XND.N f,;l(a) is a homotopy equivalence.

Proof. Let ¢, be defined as in the proof of Lemma 1.2. Compare
X0 Dn{Ifll < e, fr > 0}

with X N B, N{fr > 0}. Choose a vector field v such that, on X N D.N{||f]| > a}:
dpa(v(z)) = 1, dipe (v()) > 0,

and near fr, = 0: (dfx)z(v(z)) = 0. This is possible: assume that we have a point p such that
dp, = Ad¢p, with A < 0, we get a contradiction because of the Curve Selection Lemma. Similarly,
suppose that near f;, = 0 there is a p, || f(p)|| > «, such that dip, = Ado, + u(dfy), with A <0
we would get also such a point with fi(p) = 0, which contradicts the Curve Selection Lemma.
So we obtain that

XN D {[Ifl € e, fx > 0} ~ XN De N {fr >0}
Moreover, f: X N D N{||f|l < a, f >0} — {t € By |tx > 0} is a trivial fibration, so

XODn{lfll €, fe >0} ~XND.N{f=(0,...,0,a)}
Now we can find a vector field w on {f > 0} such that, on X N D, N {fy > 0}:

(dfi)e(w(z)) =1, dipy (w(z)) > 0,

because of the Curve Selection Lemma. Therefore
XNDN{fr >0} ~XND.N{0< fr <a}.

Finally, X has an isolated singularity at 0, so fi : X N D. N {0 < fr < a} —]0,a] is a trivial
fibration, hence
XND.N{0< fy <a}~XND.N{fx=al
U

In the case of X = R" this is a consequence of a conjecture by J.Milnor [M], p. 100, see also
[ADD].

Corollary 5.2: x(f) = x(f1)+ = x(f1)- = ... = x(fe)+ = x(fx)--

Now let us turn to the special case X = R". Then we have the following formula:
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Theorem 5.3: (G.Khimshiashvili [K]) If £ = 1, x(f)+ =1 — (=1)"degoV f, where Vf is the
gradient of f and deggV f is the topological degree of % :Se — 5.

Replacing f by —f we obtain that x(f)—- =1 —degoV f
Note that L is a sphere in our case. This implies altogether:

Corollary 5.4: ([ADD])

a) x(f) =1—degVfi=...=1—degoV f.
b) If n is odd, degoVf1 = ... =degoV fr. =0, so x(f) = 1.

Proof. b) By the Corollary before, x(f;)+ = x(fi)—, so according to Khimshiashvili: degoV f; = 0,
so x(f) =x(fi)+ =1. O

6. GLOBAL ANALOGUE

a) Now let us pass to the global case. Let X be a compactifiable real analytic (e.g. a real
algebraic) subspace of RY which is purely n-dimensional, f : X — RF a compactifiable real
analytic mapping. Let C' be the set of critical points of f; recall that singular points of X are
automatically critical points of f. Assume that

(i) the set of critical points of f which are contained in f~1({0}) is compact,

(ii) for 0 < a < 1 the set C'N f~1(B, \ {0}) is closed in X, i.e. there is no convergent sequence
(pn) — p* of critical points of f such that f(p,) # 0 for all n, p* € X, f(p*) =0.

Then we get that for 0 < a < % < 1 the mapping
f:XNDrNf7H B\ {0}) = Ba \ {0}

is a locally trivial fibration:

Assume R > 0. Then X is smooth along X NSg, Sk intersects X transversally, and f|X NSk
has no critical point which is mapped to 0. Therefore f|X NSk has no critical points above B,,.
Finally, f has no critical points in X N Dg N f~1(B, \ {0}).

As at the beginning of section 4 we may reduce to the case k = 1. So assume k = 1; then we
get fibres F; and F_.

Let us fix a compactification f : X — R and let 7 : X’ — X be an embedded resolution of
FL0)UCU X, C X where X, := X \ X. We can achieve that

o ({0 C) = FHop\ C

is an isomorphism. Put X’ := 7~!(X). We have a natural stratification of (f o 7)~%(0) such
that 7! (f~*({0})) is a union of strata. Locally at a point of such a stratum of codimension [

in X', for=ex*-...- 2, A <, with respect to suitable local coordinates, ¢ = +1.
Put:

ay; = 271 if there is a j such that v; is odd,

ap =2V if vy, ... vy are even, € = 1,

ap; ;= 01if vq,..., vy are even, ¢ = —1.

Then we have, similarly as in section 4:

Theorem 6.1: x(F}) =Y, aui(—1)""1x(Si;), where the sum extends over all strata contained

in 771 (f7H({0})).
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Proof. Let U; be a suitable closed neighbourhood of the union of (X’ \ X’)N (fom)~1({0}) and
all strata of 7=1(f~1({0})) of codimension > I, U! := U;U...U, 1. Then
X(Fy) = x((fom) T ({t) \ Ung1) = (=1)" " "xe((f o 1) T ({t1) \ Uns1),
and
Xe((fom) T ({t}) \ Unsa) = Zxc (fom)t({thnU \ U™
We continue similarly as in the proof of Theorem 4.1. O

We have a similar formula for K := f~(0) N Sk, R > 0:
X)) =22, 2!=1(—1)"~1x(S};), where the sum extends to all strata contained in

(X'\X)NX'N(fom)=1(0).
If n is even, this implies a simpler formula for x(F4) = x(F-) because
X(K) = 2x(Fy) = 2x(F-) :

X(K) = x(0F}) = x(Fy) = x(Fy, 0F;) = 2x(Fy)
because of Poincaré duality. Similarly for F_.

b) The fibration studied in a) is not so natural because it ignores vanishing cycles at infinity.

So let us suppose instead that X is a compactifiable real analytic space, f : X — R* compact-
ifiable real analytic, and that f is a submersive mapping between smooth spaces above B, \ {0}
for 0 < a < 1. Let f: X — R* be a compactification of f. Put X, := X \ X. We can stratify
X and R” subanalytically so that X is a union of strata and f is a btratlﬁed mapping.

Let T be a stratum of R¥ such that 7' # {0}, 0 € T. Because of Thom’s first isotopy lemma
we know that f: f~1(T) — T defines a locally trivial fibration.

We want to calculate the Euler characteristic of the typical fibre F' of this fibration. Since T'
is subanalytic we can find by the Curve Selection Lemma a real analytic curve p :] — ¢, c[— R¥
such that p(0) =0, p(t) € T for t > 0. We apply base change to f with respect to p. In this way
we reduce to the case k = 1. We need only to look at F.

So let us look at the case k = 1. Then we obtain that f is a locally trivial fibration above
By, \ {0}, we have two typical fibres 'y, F__. Let 7 and «y; be defined as in subsection a).

Theorem 6.2: x(F}) = >, ai(— 1)*1x(S1;), where the sum extends over all strata of
(f om)~1({0}) which are not contained in the closure of 7~!(Xo \ (f o )71 ({0})).

Proof. Analogous to the one of Theorem 6.1. O

Again we can find a simpler formula if n is even. First fix ¢, 0 < ¢t < a. For R > é we
have that f~1({t}) N Dg is a deformation retract of f~1({t}). Now we have a formula for the
boundary:

( {t} ﬂ SR Zal, Slz)

where the sum extends over all strata of (f o 77)’ ({0}) which are contained in the closure of

X \ (fom)~H({0}).

If n is even we have that x(f~1({t}) N Sg) = 2x(f~t({t}) N Dr) = 2x(F}).
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¢) Assume that hypothesis (i) of part a) as well as the hypothesis of b) are given. Then we
have hypothesis (ii) of part a), too. The fibrations in a) and b) may be different due to the
presence of vanishing cycles at infinity, as shown by the real version of the Broughton example.
Here is a different example where the fibres F'y and F_ in b) have a different Euler characteristic:

Put X :=R? f: X = R: f(x,y) = —x(zy® — 1).
Then f~1({0}) is the disjoint union of {z = 0}, {y < 0,z = y%}, {y>0z= ?12}7
for t > 0,

R N

for t < 0, f~1({t}) is the disjoint union of {x >0,y = ”;_t}, {x >0,y =— ”;_t} and
{tgm <O,y:j:—”§;t}.
So x(f71({0})) =3, x(f~*({t})) = 1 for t > 0 and x(f~1({t})) = 3 for t < 0. Note that f has

no critical points, so the fibre in a) has the same Euler characteristic as f~!({0}). Altogether,
0 is not a critical value but an atypical one.
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LIGHTLIKE HYPERSURFACES ALONG SPACELIKE SUBMANIFOLDS IN
DE SITTER SPACE

SHYUICHI IZUMIYA AND TAKAMI SATO

ABSTRACT. We consider the singularities of lightlike hypersurfaces along spacelike submani-
folds with general codimension in de Sitter space. As an application of the theory of Legendrian
singularities, we investigate the geometric meanings of the singularities of lightlike hypersur-
faces from the viewpoint of the contact of spacelike submanifolds with de Sitter lightcones.

1. INTRODUCTION

One of the important objects in theoretical physics is the notion of lightlike hypersurfaces
because they provide good models for different types of horizons [3, 5, 20, 23]. The lightlike
hypersurfaces are constructed as ruled hypersurfaces along spacelike submanifolds whose rulings
are the lightlike geodesics. A lightlike hypersurface is also called a light sheet in theoretical
physics (cf., [2]), which plays a principal role in the quantum theory of gravity. In this paper,
we consider the singularities of lightlike hypersurfaces along spacelike submanifolds in de Sitter
space which is one of the Lorentz space forms. There are three kinds of Lorentz space forms:
Lorentz-Minkowski space is a flat Lorentz space form, de Sitter space is a positively curved one,
and anti-de Sitter space is a negatively curved one.

On the other hand, tools in the theory of singularities have proven to be useful in the de-
scription of geometrical properties of submanifolds immersed in different ambient spaces, from
both the local and global viewpoint [6, 7, 9, 10, 11, 13, 16, 18]. The natural connection between
geometry and singularities relies on the basic fact that the contacts of a submanifold with the
models of the ambient space can be described by means of the analysis of the singularities of
appropriate families of contact functions, or equivalently, of their associated Legendrian maps
([1, 21, 24]). When working in a Lorentz space form, the properties associated to the contacts of
a given submanifold with lightcones have a special relevance. In [4, 8, 11, 17], a framework for the
study of spacelike submanifolds with codimension two in Lorentz space forms was constructed,
and a Lorentz invariant concerning their contacts with models related to lightlike hyperplanes
was discovered. The geometry described in this framework is called the lightlike geometry of
spacelike submanifolds with codimension two. By using the invariants of lightlike geometry,
the singularities of lightlike hypersurfaces along spacelike submanifolds with codimension two
in Lorentz-Minkowski space or de Sitter space were investigated in [10, 12, 16]. However, the
situation is rather complicated for the general codimensional case. The main difference from the
Euclidean space (or, Hyperbolic space) case is the fiber of the canal hypersurface of a spacelike
submanifold is neither connected nor compact. In order to avoid the above difficulty, we arbi-
trarily choose a timelike future directed unit normal vector field along the spacelike submanifold,
which always exists for an orientable submanifold (cf., [13, 14, 15]). Then we construct the unit
spherical normal bundle relative to the above timeline unit normal vector field, which can be
considered as a codimension two spacelike canal submanifold of the ambient Lorentz space form.
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Therefore, we can apply the idea of the lightlike geometry of spacelike submanifolds with codi-
mension two in Lorentz space-forms. Recently, we have applied this framework and investigated
the geometric meanings of the singularities of lightlike hypersurfaces along spacelike subman-
ifolds in Lorentz-Minkowski space or anti-de Sitter space from the viewpoint of the theory of
Legendrian singularities [14, 15]. In this paper, we consider spacelike submanifolds with general
codimensions in de Sitter space applying an idea similar to [14, 15].

In §2 the basic notions of Lorentz-Minkowski space are described. We explain the differential
geometry of spacelike submanifolds with general codimension in de Sitter space in §3. The
notion of lightlike hypersurfaces is introduced in §4 and investigated the basic properties. In §5
we investigate the geometric meanings of the singularities of lightlike hypersurfaces in de Sitter
space from the viewpoint of the theory of contact with de Sitter lightcones and the theory of
Legendrian singularities. We review the classification result of Kasedou [17] on singularities of
lightlike hypersurfaces along spacelike surfaces in de Sitter 4-space in §5.

2. BASIC NOTIONS

In this section we prepare basic notions on Lorentz-Minkowski space. Let R"*! be an (n+1)-
dimensional cartesian space. For any vectors & = (20, @1, .-, Zn), Y = (Yo, Y1, -+, Yn) € RVFL,
the pseudo scalar product of = and y is defined by (z,y) = —zoyo + Y., xiyi- The space
(R™+1(,)) is called Lorentz-Minkowski (n + 1)-space and denoted by R7T!. We say that a
vector  in R} \ {0} is spacelike, lightlike or timelike if (x,x) > 0,= 0 or < 0 respectively.
The norm of the vector & € R} is defined by |z|| = \/|(z, x)]. We define a hyperplane with
pseudo normal v by HP(v,¢) = {x € RT™ | (z,v) = ¢ }, where v € R7™ \ {0} and ¢ is
a real number. We call HP(v,c) a spacelike hyperplane, a timelike hyperplane or a lightlike
hyperplane if v is timelike, spacelike or lightlike respectively. We have the following three kinds
of pseudo-spheres in ]R;LH: The hyperbolic n-space is defined by

H"(-1) = {z e RI"| (x,x) = -1},
the de Sitter n-space by
St ={xc RV (x,x) =1}
and the (open) lightcone by
LC* = {x € RT™\ {0}|(x,x) =0 }.
We also define LOy, = {x € R} |(x — Ao, — Xg) = 0 } which is called a lightcone with the
vertex \g.

For any !, z2,...,2" € R?H, we define a vector ' A2 A--- Ax" by
—ep e e [
x(]j xi ... x'}]/
2 2 2

$1A$2A'.'/\wn: ‘TO $1 xn ,

rg 2t T

. . ; n+1 P (i i i

where eg, €1, ..., e, is the canonical basis of RT™" and &’ = (af,2,...,2%).

3. DIFFERENTIAL GEOMETRY ON SPACELIKE SUBMANIFOLDS IN DE SITTER SPACE

In [16] Kasedou has investigated differential geometry of spacelike submanifolds in de Sitter
space from the viewpoint of contact with de Sitter hyperhorospheres. Here we construct another
framework on differential geometry of spacelike submanifolds in de Sitter space. Let R?H be
an oriented and time-oriented space. We choose eg = (1,0,...,0) as a future timelike vector
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field. We consider de Sitter n-space S7* C R?"™. Let X : U — S} be a spacelike embedding
of codimension k, where U C R® (s + k = n) is an open subset. We also write M = X (U)
and identify M and U through the embedding X as usual. Since M is a spacelike submanifold
with codimension k+ 1 in Ry, N, (M) is a (k + 1)-dimensional Lorentzian subspace of TR}
(cf.,[22]). On the pseudo-normal space N,(M), we have two kinds of k-dimensional pseudo
spheres:

Np(M;—=1) = {veNy(M) | (v,v)=—1}
N;D(M;l) = {UENP(M) I <v>'U> =1 }’
so that we have two unit pseudo-spherical normal bundles over M:
= |J Mp(M;-1) and N(M;1) = | ] Np(M;1).
pEM peM

Since M = X (U) is spacelike, eq ¢ T, M. For any v € T,R}™!|M, we have v = v; + vy, where
vy € T,M and vy € Np(M). If v is timelike, then vo is timelike. Let
Tyt TRYTHM — N(M)

be the canonical projection. Then 7y (ar)(€o) is a future directed timelike normal vector field
along M. If we project my(ar)(€0) onto the normal space of T, M in T},ST, then we have a future
directed unit timelike normal vector field in T'S along M (even globally). We now arbitrarily
choose a future directed unit timelike normal vector field n” (u) € N,(M;—1) N T,S7, where
p = X (u). Therefore we have the pseudo-orthonormal compliment ({(n” (u))g)* in N,(M)NT,S}
which is a (k — 1)-dimensional subspace of N,(M). We define a (k — 2)-dimensional spacelike
unit sphere in N,(M) by N{S(M),nT] = {¢€ € N,(M;1) | (¢&,nT(p)) = (¢, X (u)) =0 }. Then
we have a spacelike unit (k — 2)-spherical bundle over M with respect to n” defined by

NS (M) = [ N (M),[nT].

peEM
Since we have T{,, ¢) N (M)[nT] = T,M x T¢N{S(M),[n™], we have the canonical Riemannian
metric on N&(M)[n”] which is denoted by (Gy;(p, €))1<i,j<n—2-
(

)
On the other hand, we define a map LG(n”) : N{(M)[nT] — LC* by
LG(n")(u, &) = n” (u) + &,
which we call the de Sitter lightcone Gauss image of N{¥(M)[n”]. This map leads us to the

notions of curvatures. Let T, ¢y N{**(M)[n’] be the tangent space of N{¥¥(M)[n'] at (p,&).
Under the canonical identification

LG TR ™) e) = Tnrm+o R = HRIT,

we have

Tipey N{E (M) "] = T,M & TeS* % € T,M & N,(M) = TR},
where T¢S*~2 C TgN (M) = N,(M) and p = X (u). Let

LLGT)* TR = TNy (M)[nT] @ RFFY — TN (M) [n”]
be the canonical projection. Then we have a linear transformation
Se(n") pe) = ~Micmr)pe) © Ao LG(RT) : T ey NI (M)[n"] — Tip, 0 N{* (M) [n"],

which is called the de Sitter lightcone shape operator of N{#%(M)nT] at (p,€). Consider the

n
cigenvalues of S¢(n”),¢), (i = 1,...,n —2). Then we write ry(n?);(p,€), (i = 1,...,s) for
the eigenvalues whose eigenvectors belong to T, M and r¢(n’);(p,€), (i = s+ 1,...n —2) for
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the eigenvalues whose eigenvectors belong to the tangent space of the fiber of N{(M)[n']. By
exactly the same arguments as those in [13, 15], we have x¢(nT);(p,€) = —1, (i = s+1,...n—2).
We call ke(n?);(p, &), (i = 1,...,s) the de Sitter lightcone principal curvatures of M with respect
o (nT,¢) atpe M.

We deduce now the lightcone Weingarten formula. Since X is a spacelike embedding, we have
a Riemannian metric (the first fundamental form ) on M = X (U) defined by

d82 = Zgijduiduj,
i=1
where g;;(u) = (X4, (u), Xy, (u)) for any u € U. Let n¥ be a local section of N{¥(M)[nT].
Clearly, the vectors n”'(u) + n°(u) are lightlike. Here we choose n’ 4+ n® as a lightlike normal
vector field along M. We define a mapping LG(n”,n®): U — LC* by

LG(nT,n%)(u) = nT (u) + n’(u).
We call it the lightcone Gauss image of M = X (U) with respect to (n”,n?). Under the identi-

fication of M and U through X, we have the linear mapping provided by the derivative of the
lightcone Gauss image LG(nT,n?) at each point p € M,

dpLG(n",n%) : T,M — TR} = T,M & N,(M).
Consider the orthogonal projection 7t : T,M & N,(M) — T,(M). We define
d,LG(nT,n%)" = 1t o d,(n” + n®).

We call the linear transformation S,(n?,n®%) = —d,LG(n”,n%) the (nT,n")-shape operator

of M = X(U) at p= X (u). Let {m(nT ns)(p) 2_, be the eigenvalues of Sp(n ,n?), which are

called the lightcone principal curvatures with respect to (n”,n°) at p = X (u). Then we have a

lightcone second fundamental invariant with respect to (n”,n) defined by
hij(n®,n®)(w) = (=(n" +n%)y, (u), Xy, (u))

for any u € U. By the similar arguments to those in the proof of [11, Proposition 3.2], we have
the following proposition.

Proposition 3.1. Let {X,nT,n? ... .,ny ,} be a pseudo-orthonormal frame of N(M) with

nf_z = n®. Then we have the following lightcone Weingarten formula :

k— s j
(@) LE(n )., = (nf,,n*)(n + n) 4 SEH0T + 0, nf)nf = 55, k0T n)X,,
(b) 7t o LG(n",n%),, = — Zj’:l h (nT’nS)XW.

Here (hg(nT,n )) (hik(nTvnS)) (gkj) and (gkj) = (gkj)_l-

Since (—(n” +n%)(u), X, (u)) = 0, we have hy;(n”,n%)(u) = (n” (u) + n®(uw), Xu,u, (v)).
Therefore the lightcone second fundamental invariant at a point pg = X (ug) depends only on the
values n” (ug) +m° (ug) and X,u, (uo), respectively. Thus, the lightcone curvatures also depend
only on n”'(ug) + n®(ug), Xy, (ug) and X,y (uo), independent of the derivation of the vector
fields n” and n®. We write x;(n,n§)(po) (i = 1,...,s) as the lightcone principal curvatures

at po = X (up) with respect to (nOT,ng) = (nT(uo) n°(ug)). So we write that

hij(n”,€)(uo) = hij(n”,n®)(uo)

and r¢(nT);(&,po) = ki(nd,n§)(po), where E = n’(ug) for some local extension n’(u) of €.
Let r¢(n™);(p, €) be the eigenvalues of S¢(n”),¢), (i =1,...,n —1). Here, we write

/fé(n )i(paé)a (izla---as)
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for the eigenvalues belonging to the eigenvectors on 1, M and

kemT)i(p,€), i=s+1,...n—1)

for the eigenvalues belonging to the eigenvectors on the tangent space of the fiber of Ny (M)[nT].
Then we have the following proposition.

Proposition 3.2. We choose a (local) pseudo-orthonormal frame {X,nT,n?,...,ny ,} of
N(M) with ny_, =n5. For po = X (u) and &, = n®(ug), we have

re(nT)i(po, &) = ri(nT,n%)(w), (i=1,...,5)
and ke(nT)i(po,&y) = —1, i=s+1,...n—1).

Proof. Since {X,n" ,ny, ..., nf_Q} is a pseudo-orthonormal frame of N (M), we have

(X (u0), &) = (n" (u0), &) = (nf (uo), &) = 0.
Therefore, we have
TeS ™2 = (nf (ug), . .., iy (ug)).
Using this orthonormal basis of Tg, S*~2, the canonical Riemannian metric G;;(po, £) is repre-

sented by

I 2

(Gt €) = (P00 ).

where g;;(po) = (X, (uo), Xu, (wo))-
On the other hand, by Proposition 3.1, we have

— S W (0T, 1) (o) X, = LE(nT, 0),, () = dpo LG(nT, nS) <ai> ’
j=1 Z

so that we have

0 °L
S (g ) = 3 "m0 X

Jj=1

Therefore, the representation matrix of Sg(n®) (0.&,) with respect to the basis
'So

{Xm (UO)’ s X, (UO), nf(u0)7 s ’nff2<u0)}
of T(po_’é-o)(N{iS(M)[nT}) is of the form
R (n" n%)(u)
0 —Iy_o )’

It follows that the eigenvalues of this matrix are \; = r;(n”, n%)(ug), (i = 1,...,s) and \; = —1,
(i=s+1,...,n—1). This completes the proof.

;Ne call ke(nT)i(p, &), (i = 1,...,s) the lightcone principal curvatures of M with respect to
(n*,€) at pe M.
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4. LIGHTLIKE HYPERSURFACES IN DE SITTER SPACE

We define a hypersurface LHy; (n”) : NS (M)[n?] x R — ST by
LHy ((p, &), 1) = X (u) + p(n” + €)(u) = X (u) + pLG(n")(u, §),

where p = X (u), which is called the de Sitter lightlike hypersurface along M relative to nT. We
introduce the notion of height functions on spacelike submanifold, which is useful for the study of
singularities of de Sitter lightlike hypersurfaces. We define a family of functions H : M xS} — R
on a spacelike submanifold M = X (U) by

H(p7 A) = H(U,A) = <X(U),A> - ]-7

where p = X (u). We call H the de Sitter height function (briefly, dS-height function) on the
spacelike submanifold M. For any fixed A € S}, we write hx,(p) = H(p, Ao) and have the
following proposition.

Proposition 4.1. Suppose that pg = X (ug) # Xo. Then we have the following:
(1) hag(po) = Ohx,/Oui(po) =0, (i =1,...,s) if and only if there exist & € NI (M), [n”]
and po € R\ {0} such that
Ao = X (ug) + poLG(n")(uo, &) = LHu (n")((po, &), 10)-
(2) hx,(po) = Ohx,/0ui(po) = detH(hx,)(po) = 0 (¢ = 1,...,8) if and only if there exist
&y € NS (M), [nT] and po € R\ {0} such that

Xo = LHns (n")((po. &), Ho)

and 1/ is one of the non-zero lightcone principal curvatures k¢(n®);(po, &y), (i =1,...,s).
(3) With condition (2), rank H(hx,)(po) = 0 if and only if po = X (uo) is a non-flat (n” (uo), &;)-
umbilical point.
Proof. (1) We write that p = X (u). The condition hx,(p) = (X (u), Ag) — 1 = 0 means that
(X (u) = Ao, X (u) = Ao) = (X (u), X (u)) — 2(X (u), Ao) + (Ao, Ao)
= —2(—14+(X(u),Ao)) =0,
so that X (u) — Ao € LC*. Since Ohx,/0u;(p) = (X, (u),Ao) and (X,,,X) = 0, we have
(X, (w), Ao) = — (X, (u), X (u) — Ag). Therefore, dhx,/Ou;(p) = 0 if and only if
X(u) — Ao € N, M.
On the other hand, the condition hyx,(p) = (X (u), Ag) — 1 = 0 implies that
(X (u), X (u) — Ag) = 0.
This means that X (u) — Ao € T,57. Hence hx,(po) = Ohx,/0ui((po) =0 (i =1,...,s) if and
only if X (ug) — Ao € Npy M N LC* N T, ST Let
v = X(Uo) —Xo € Np, M N LC* N Tpos?
If (n"(up),v) = 0, then n’(ug) belongs to a lightlike hyperplane in the Lorentz space T}, S7,

so that nT (ug) is lightlike or spacelike. This contradicts the fact that n” (ug) is a timelike unit
vector. Thus, (n? (up),v) # 0. We set

-1

— v —nT(up).
T ae) oy~ "™ (40)

& =
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Then we have

—1 T L
<£O7€0> = _2m<’n (’LL()),’U> 1=1
~1
<€Oa nT(u0)> W<TLT(U0), ’U> +1= 0,

and (£,, X (up)) = 0. This means that &, € N{°(M),,(M)[nT].
Since —v = (nT(ug),v)(n? (ug) + &), we have Ag = X (ug) + poLG(nT)(po,&,), where
po = X (ug) and pg = (n%'(up),v). For the converse assertion, suppose that
Ao = X (uo) + toLlG(n") (po, &)
Then Ao — X (ug) € Npo (M) N LC* and

(Mo — X (uo), X (uo)) = (oLG(n")(po, &), X (ug)) = 0.

Thus we have Ag — X (ug) € Np, (M)NLC*NT,,S7. By the previous arguments, these conditions
are equivalent to the condition that hy,(po) = 0hx,/0ui((po) =0 (i=1,...,s).
(2) By a straightforward calculation, we have

?hx
> = (X y,u, .
Fudu; W) = K 20)
Under the condition that Ag = X (ug) + po(n® (uo) + &), we have
0%h
B (10) = (X, (40), X (un)) + p0( X, (u0), (07 (u0) + &)
uﬁuj

Since (X, , X) = 0, we have (X, X) = —(Xy,;, X4;). Thus, we have

O, it - J(nT J
(o)) (a7 ) = (sl (07 ) ) ~ 7).
It follows that det?(g)(po) = 0 if and only if 1/po is an eigenvalue of (h}(n”, &y)(po)), which is
equal to one of the lightcone principal curvatures x¢(nT);(po, &), (i = 1,...,s).

(3) By the above calculation, rank #(hx,)(po) = 0 if and only if (h(n")(po,&,)) = 1%0(65),
where 1/ = r¢(nT);(po, &), (i = 1,...,s). This means that py = X (up) is an (n” (ug), &,)-
umbilical point. m|

In order to understand the geometric meanings of the assertions of Proposition 4.1, we
briefly review the theory of Legendrian singularities For detailed expressions, see [1, 24]. Let
7 PT*(R""1) — R"*! be the projective cotangent bundle with its canonical contact struc-
ture. We next review the geometric properties of this bundle. Consider the tangent bundle
7 : TPT*(R"") — PT*(R"*!) and the differential map dr : TPT*(R"*1) — TR"*! of 7. For
any X € TPT*(R™*'), there exists an element o € T*(R}™! such that 7(X) = [a]. For an
element V' € T, (R"*1), the property (V) = 0 does not depend on the choice of representative
of the class [a]. Thus we can define the canonical contact structure on PT*(R"*+1) by

K ={X e TPT*(R"™") | 7(X)(dr(X)) = 0}.
We have the trivialization PT*(R"*1) = R"*! x P*(R)*, and call
((UO7U17 s 7Un)7 [50 : 51 e fn])
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homogeneous coordinates of PT*(R™1), where [§ : & : -+ - : &,] are the homogeneous coordinates
of the dual projective space P™(R)*. It is easy to show that X € K, |¢) if and only if

> wigi =0,
i=0

where d7(X) = Y 0/0v;. An immersion i : L — PT*(R™*!) is said to be a Legendrian
immersion if dim L = n and diy(T4L) C K;(4) for any ¢ € L. The map 7 o4 is also called the
Legendrian map of i and the set W (i) = image 7 o ¢, the wave front set of i. Moreover, i (or, the
image of ¢) is called the Legendrian lift of W (i).

Let F : (RF x R"*1 0) — (R, 0) be a function germ. We say that F is a Morse family of
hypersurfaces if the map germ

oF oF
AF=(F—, . .., —):[RxR", 0) — (RxR" 0
(P g ) ) ( )
is submersive, where (¢,7) = (q1,...,qx, Z0,.--,2n) € (R¥ x R**1 0). In this case we have a
smooth n-dimensional submanifold
oF OF
5.(F) = {(a,2) € R xR™1,0) | Flg,0) = 5 —(g.2) =+ =7 (q.2) =0 }
Oq Oqx,

and the map germ Zr : (3.(F),0) — PT*R"*! defined by

Lr(q,x) = (w [gi;(q, T) e gi(q,x)D

is a Legendrian immersion. We call F' a generating family of £ (X4 (F)), and the wave front set
is given by W (%)= m,(2«(F)), where m,, : R¥ x R — R™ is the canonical projection. In the
theory of unfoldings of function germs, the wave front set W (%r) is called a discriminant set of
F, which is also denoted by Dp.

By the assertion (2) of Proposition 4.1, a singular point of the de Sitter lightlike hypersurface is
a point Ao = X (ug) + po(n” +&g)(uo) for po = X (ug) and po = 1/ke(n”)i(po, &y), i =1,.. . .5).
Then we have the following corollary.

Corollary 4.2. The critical value of LHy;(nT) is the point

A= X(u)+ LG(n")(u, &),

1
re(nT)i(p, §)
where p = X (u) and re(nT);(p, &) # 0.

For a non-zero lightcone principal curvature r¢(nT);(po,&;) # 0, we have an open subset

O; € N{S(M)[n"] such that rg(nT);(p, &) # 0. Therefore, we have a non-zero lightcone principal
curvature function k¢(n?); : O; — R. We define a mapping LF.,(nry, : Oi — AdS™t! by

1

T ) ) ().

LEy, (), (p,€) = X (u) +

where p = X (u). We also define

LFy (n") = | J {LF,,(nr), (0. €) | (0,€) € NIS(M)[n"] 5.t rg(n”)i(p, €) # 0} .
i=1
We call LFy;(nT) the de Sitter lightlike focal set of M = X (U) relative to m”, which is the
critical value set of the de Sitter lightlike hypersurface LH (nT)(N{E(M)[nT] x R) along M
relative to nT.
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By Proposition 4.1, the image of the lightlike hypersurface along M relative to n” is the
discriminant set of the AdS-height function H on M. Moreover, the focal set is the critical value

set of the lightlike hypersurface along M relative to n”. Since H is independent of the choice of

n”, we have shown the following corollary.

Corollary 4.3. Let n” and »” be future directed timelike unit normal fields along M. Then
we have

LH (nT) (N (M)[n'] x R) = LHy (77 )(Ny (M)[RT] x R) and LFy (nT) = LFy (7).
We have the following proposition.

Proposition 4.4. For any point (u,A) € X, (F) = A*H~1(0), the germ of the dS-height function
H at (u, X) is a Morse family of hypersurfaces.

Proof. We write
X(u) = (Xo(u), X1(w),..., Xn(uw)) and X = (Ao, A\1,..., \n).

We define an open subset U7 = {X € S} | A\, > 0 }. For any A € U;l", we have

n—1
Moo= [N =D A2 41
i=1
Thus, we have local coordinates on S7' given by (Ag, A1,. .., A\n—1) on U,F. By definition, we have

n—1

M- A241-1

i=1

H(u,A) = —=Xo(u)do + Xi(w)A + -+ + Xpo1 (w)An—1 + Xn(u)

We now prove that the mapping

A*H:<H OH 6H>

5 8711117 ceey airus
is non-singular at (u, A) € ¥, (F). Indeed, the Jacobian matrix of A*H is given by
/\0 Al )\n—l

X, 22— X X, =+ x, - =X, 2l X,
A Xnu] =0 - X0u1 _Xnu] =L + X1u1 e _Xnu1 ol + Xn—1u1
Ao Ao Ao ,
\ : /\. . \ _.
)(nusi0 _XOUS _Xnusil +X1u5 _)(nusni1 "’A)(n—luS
A An An
where
<Xu17)‘> <Xusﬂ)‘>

Xulule Xu1u57A
A:< . >. ( | )

<Xusm7>‘> T <Xususv)‘>
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We now show that the rank of

A A A
XoZ =X SXp T Xy XS X
Ao A1 An1
B— Xnu1 E - X0u1 _Xnu1 E + X1u1 T _Xnu1 T + Xn—1u1
)(nuS ;70 - XOus _Xnus 271 + )(luS o _A)(nu5 % + anlus

is s +1 at (u,A) € 3.(H). Since (u, X) € L. (H), we have
k—1

A=X(u)+p <nT(U) + Zfﬂh’(@)
i=1

with Zfz_ll €2 =1, where {X,nT,n¥,...,ny_,}is a pseudo-orthonormal (local) frame of N (M).
Without loss of generality, we assume that p # 0 and &,_1 # 0. We write

n (u) =!(nf (u),...n7(w)), nf(u) ='(n(w),. . n},(w).

It is enough to show that the rank of the matrix

A Al Ay
Xn)\io*XO *Xn)\i“i’Xl *Xn )\ ! +Xn—1
2o p P
Xnu1 )\70 XOul _Xnu1 )\71 + Xlul e _Xnu1 Tl + anlul
n n n
Ao M ' A
Xnus 70 - -Xv(JuS _)(nuS 71 + Xlus Tt _AXvnuS 71 + )(nfluS
co| A R
I e T = e
o A o
L . Ty
Xo A An
e e o TN s e
isn at (u,A) € X.(H). We write
ai :t(‘ri(u)7 inul (U’)’ st xius (’IL), n?(u), n'}(u)v e ,n§—2(u)).
Then we have \ \ \
C= (an)\o — ayg, —an)\—1 +a,..., —an:\—_l + an_l) .
It follows that
>\0 n—1 )‘1 n—2
detC = /\—(—1) det(al,..wan)—l-/\f(—l) det(ag,as,...,a,)
())\n—l 1)\77.
+o4 (-1 S det(ag,a1,...,an_o,a,)+ (—1) ~ det(ag,ay,...,an_1).
Moreover, we define ¢; = det(ag,a1,...,a;—1,ait1,...,ay) for i =0,1,...,n and

a = (—(—1)n_1(50, (—1)n_2(51, ey <_1)06n—17 (_1)15n)
Then we have
a=(-D"TXAX, A AXy ART ARG A Any_o.



LIGHTLIKE HYPERSURFACES ALONG SPACELIKE SUBMANIFOLDS 167

We remark that a # 0 and @ = £||a||nk—1. By the above calculation, we have

det C = <(iiiii:) ,a> - % <X(u) +u <nT(u) +]:§_;1§-ni(u)> ,a>

1 _1lla
= L st faf = =2lel

Therefore the Jacobi matrix of A*H is non-singular at (u, A) € X, (F).
For other local coordinates of S7", we can apply the same method for the proof as the above
case. This completes the proof. O

Here we consider the open set U, again. Since H is a Morse family of hypersurfaces, we have
a Legendrian immersion

Ly Y (H) — PT*(SP)|UT

by the general theory of Legendrian singularities. By definition, we have

OH B Ao oOH B by .
87)\0(u7>\) - Xn(U)E - XO(u)a 87)\1(111’)\) - 7Xn(u)x +X1(U), (Z - 17 o, n 1)
It follows that
OH oH oH
TM(U,A) : 87>\1<U,A) MR a)\n_l (U,A)
= [Xn(u)Xo — Xo(w) Ay : X1(w)Ap — Xp(u)Ay -t Xpoq(w) Ay — X (w) 1]
Therefore, we have
fH(u,)\) = (A, [Xn(U)A() — Xo(u))\n : Xl(u))\n — Xn(u))\l MERICIC anl(u))\n — Xn(u))\n,l]),
where

So(H) = {(u,A) | A=LHm(n")(p,&,t) ((p,€),1) € Ni(M)[n"] x R}.
We observe that H is a generating family of the Legendrian immersion £y whose wave front is

LH s (nT)(Ny(M)[nT] x R). For other local coordinates of ST, we have the similar results to
the above case.

5. CONTACT WITH DE SITTER LIGHTCONES

In this section, we consider the geometric meaning of the singularities of lightlike hypersurfaces
in de Sitter space from the viewpoint of the theory of contact of submanifolds with model hyper-
surfaces in the view of Montaldi’s theory. We review the theory of contact for submanifolds in
[21]. Let X; and Y;, i = 1,2, be submanifolds of R” with dim X; = dim X5 and dimY; = dim Y5.
We say that the contact of X1 and Y7 at y; is the same type as the contact of X9 and Y5 at ys if
there is a diffeomorphism germ @ : (R™,y;) — (R™,y2) such that ®(X;) = X5 and ®(Y7) = V5.
In this case we write K(X1,Y7;y1) = K(X2,Y2;y2). Since this definition of contact is local, we
can replace R™ by an arbitrary n-manifold. Montaldi gives in [21] the following characteriza-
tion of contact by using KC-equivalence. We say that two function germs h; : (R%,0) — (R, 0)
(i = 1,2) are K-equivalent if there exist a diffeomorphism germ ¢ : (R®,0) — (R?,0) and a
function germ A : (R®,0) — R with A(0) # 0 such that A(z)h; o ¥(z) = ha(x) for z € (R*®,0).

Theorem 5.1. Let X; and Y;, i = 1,2, be submanifolds of R™ for which dim X; = dim Xs
and dimY; = dimYs = n — 1. Let g; : (X, z;) — (R™,y;) be immersion germs and let
fi: (R™,y;) — (R?,0) be submersion germs with (Yi,y;) = (f;(0), i)

Then K(X1,Y1;y1) = K(Xo,Ya;992) if and only if f1 0 g1 and fo 0 go are K-equivalent.
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We remark that the assertion of the above theorem holds for submanifolds Y; with general
codimension (cf., [21]).

Now, we return to the review of the theory of Legendrian singularities. We introduce a natural
equivalence relation among Legendrian submanifold germs. Let

F,G: (RF xR",0) — (R,0)

be Morse families of hypersurfaces. Then we say that Zp(2.(F)) and Z5(2.(G)) are Legen-
drian equivalent if there exists a contact diffeomorphism germ H : (PT*R", z) — (PT*R"™,2’)
such that H preserves fibers of 7w and that H(Zr(Z.(F))) = Ze(Z4(G)), where z = Zr(0),
2 = %5(0). By using Legendrian equivalence, we can define the notion of Legendrian stability
for Legendrian submanifold germs in the ordinary way (see, [1, Part III]). We can interpret Leg-
endrian equivalence by using the notion of generating families. We denote by & the local ring of
function germs (R*,0) — R with the unique maximal ideal My = {h € & | h(0) = 0 }.
Let F,G : (R¥ x R",0) — (R,0) be function germs. We say that F and G are P-K-
equivalent if there exists a diffeomorphism germ ¥ : (R¥ x R? 0) — (R¥ x R™,0) of the
form W(z,u) = (¢1(q,2),¢2(x)) for (g,z) € (R¥ x R™,0) such that U*((F)e,,,) = (G)ep .-
Here U* : &1y —> Ekyn is the pull-back R-algebra isomorphism defined by ¥*(h) = ho . We
say that F is an infinitesimally K-versal deformation of f = F|RF x {0} if
OF OF
£ = TL0O) + IR x 0}, SR x (0} )

R
where T, (K)(f) = <g—(£, ce %, f>£k , (see [19].) The main result in the theory of Legendrian
singularities ([1], §20.8 and [24], THEOREM 2) is the following:

Theorem 5.2. Let F,G : (R¥ x R",0) — (R,0) be Morse families of hypersurfaces. Then we
have the following assertions:

(1) Zp(E.(F)) and Zc(3.(G)) are Legendrian equivalent if and only if F and G are P-K-
equivalent,

(2) Lr(E.(F)) is Legendrian stable if and only if F is an infinitesimally K-versal deformation
of f = F|RF x {0}.

Since F and G are function germs on the common space germ (R¥ x R™,0), we do not need
the notion of stably P-K-equivalence under this situation [24, page 27]. For any map germ
f: (R¥,0) — (R?,0), we define the local ring of f by Q,(f) = Ei/(f*(M,)Ek + M), We
have the following classification result of Legendrian stable germs (cf. [10, Proposition A.4])
which is the key for the purpose in this section.

Proposition 5.3. Let F,G : (R¥ x R" 0) — (R,0) be Morse families of hypersurfaces and
f = FIR* x {0},9 = G|R* x {0}. Suppose that Lr(X.(F)) and Zc(2.(G)) are Legendrian
stable. The the following conditions are equivalent:

(1) (W(ZLF),0) and (W(Zz),0) are diffeomorphic as set germs,

(2) (ZLr(Zi(F)),2) and (Z(Z«(Q)),2") are Legendrian equivalent,

(3) Qn+1(f) and Qn+1(g) are isomorphic as R-algebras.

We have the following basic observations.
Proposition 5.4. Let M = X (U) be a spacelike submanifold with

ke(mT)i(p, &) #0 for i=1,...s.

We consider Ag € ST'. Then M C LCx, N ST if and only if Ao = LFy(nT). In this case we have
LH s (nT) (N1 (M)[nT]) € LOx, N ST and M = X (U) is totally lightcone umbilical.
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Proof. By Proposition 3.1, s,(nT);(p,€) # 0 for i = 1,...s if and only if
{(n" +n%),(n" +n%),,,....(n" +n%),}

is linearly independent for py = X (ug) € M and &, = n°(ug), where n® : U — N{¥(M)[nT]
is a local section. By the proof of assertion (1) of Proposition 4.1, M C LCy, N S} if and only
if hx,(u) = 0 for any u € U, where hy,(u) = H(u,Ag) is the dS-height function on M. It also
follows from Proposition 4.1 that there exists a smooth function 1 : U x N#¥(M)[n”] — R and
section n® : U — N{*¥(M)[nT] such that

X (u) = Ao +n(u,n (u)) (n” (u) £ 1% (u)).
In fact, we have n(u,n(u)) = —1/ke(nT);(p, &) i = 1,...,s, where p = X (u) and & = n°(u).
It follows that r¢(n?);(p, &) = ke(n™);(p, &), so that M = X (U) is totally lightcone umbilical.
Therefore we have
LHar(n®)(u, 7 (u), 1) = Ao + (1 + n(u, n® () (n” (u) £ n®(u)).

Hence we have LH s (n®)(Ny(M)[nT] x R) C LC),. By Corollary 4.2, the critical value set of
LHy (nT)(Ny(M)[nT] x R) is the de Sitter lightlike focal set LIF;(nT). However, it is equal to
Ao by the previous arguments.

For the converse assertion, suppose that Ag = LF;(n®). Then we have

1
re(nT)i(X (u), §)
for any i = 1,...,s and (p,€) € N{¥(M)[nT], where p = X (u). Thus, we have

re(n)i(X (u),€) = re(n");(X (u),€)

for any i,j = 1,...,s, so that M is totally lightcone umbilical. Since LG(nT)(u, &) is null, we
have X (u) € LCy,. This completes the proof. a

Ao = X (u) + LG(n")(u, ),

According to the above proposition, LCy, N ST is regarded as a model lightlike hypersurface

in ST'. We define
T(S?)Ao = {.’13 € R;H_l | T — Ao € TAUS? }7
where T, ST is the tangent space of ST at Ao € ST. We call T'(ST)x, a tangent affine space of
ST at Ao € ST. It is easy to show that
LCx, NST =T(ST)x, N ST

We write LCx, (ST) = LCx, N ST = T(S7)x, N ST, which is called a dS-lightcone with the vertex
Ao € ST. Therefore, the model lightlike hypersurface is a dS-lightcone.

We consider the contact of spacelike submanifolds with dS-lightcones. Let

H:ST xS —R

be a function defined by H(x,A) = (&, A\) — 1. Given Ag € ST, we write by, (z) = H(x, Ag), so
that we have b3 (0) = LCx,(S}). For any po = X (ug) € M, po € R and &, € N{¥(M),[n"],
we consider the point Ag = X (ug) + po(n” (ug) + &,). Then we have

Bro © X (ug)) = H o (X X 145n+1)(uo, Ao) = H(po, Ao) = 0,

where po = 1/k¢(n?);(po, &y), i = 1,...,s. We also have relations
0 oX OH )
%(uo):%(p07A0):O7 t=1...,s.

These imply that the dS-lightcone h;ol(O) = LCy,(S7) is tangent to M = X (U) at po = X (ug).
In this case, we call LC,(ST) a tangent dS-lightcone of M = X (U) at pyg = X (up), which
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is denoted by TLCx,(M),,. Moreover, the tangent dS-lightcone TLCx, (M), is called an os-
culating dS-lightcone if Ao = LF,, (1), (po.¢,)(v0) € LFys, for one lightcone principal curva-
ture ko(n®);(po,&y). In this case, we call Ag the center of the lightcone principal curvature
ke(nT)i(po, &;y). Therefore, we can interpret the lightlike focal set as the locus of the centers
of the lightcone principal curvatures. This fact is analogous to the notion of the focal sets of
submanifolds in Euclidean space.

We now describe the contacts of spacelike submanifolds in ST with dS-lightcones. We denote
by Q(X,u) the local ring of the function germ hy, : (U, ug) — R, where Ag = LCas(uo, &, 10)-
We remark that we can explicitly write the local ring as follows:

()
(X (), A0) — Do @) + My (U) 72

Qni1(X,up) =

where C¢(U) is the local ring of function germs at uy.
Let LHM@ (nzT) : (Nl (Mz)[nzT} X R7 (pzaéwuz)) — ( ?7 Az)a (Z =1, 2) be two hghthke hyper—
surface germs of spacelike submanifold germs X; : (U, u’) — (ST, p;). Let

H;: (U xSy, (u', ) — R
be the dS-height function germ of X ;. Then we have the following theorem:

Theorem 5.5. Let X; : (U,u?) — (ST, p;), i = 1,2, be spacelike submanifold germs such that
the corresponding Legendrian submanifold germs Ly, (X.(H;)) are Legendrian stable. We write
X (U) = M;. Then the following conditions are equivalent:

(1) (LHayz, (N7 (My)[nT] x R), A1) and (LHr, (N1 (Ms)[nd] x R), X2) are diffeomorphic,

(2) (L, (E:(H1)), 1) and (Lu,(X«(Ha)), z2) are Legendrian equivalent,

(3) Hy and Hy are P-K-equivalent,

(4) hia, and ha y, are K-equivalent,

(5) K(M17 TLC)\l (Ml)m 7p1) = K(M27 TLC)\Q (MQ)pz 7p2)'

(6) Qni1(X1,ub) and Qny1(Xo,u?) are isomorphic as R-algebras.

Proof. By Proposition 5.3, conditions (1), (2) and (6) are equivalent. These conditions are
also equivalent to the condition that two generating families H; and Hs are P-K-equivalent by
Theorem 5.2. If we denote h; x, (u) = H;(u, A;), then we have h; x, (u) = ha,0X;(u). By Theorem
5.1, K(X1(U),LCx,,p1) = K(x2(U), LC)2,p2) if and only if El,)\l and EQ’AQ are K-equivalent.
This means that (4) and (5) are equivalent. By definition, (3) implies (4). The uniqueness of
the infinitesimally /C-versal deformation of h; x, (cf., [19]) leads that the condition (4) implies
(3). This completes the proof. O

6. SPACELIKE SUBMANIFOLDS WITH CODIMENSION TWO

In [4], we previously investigated the singularities of lightlike surfaces along spacelike curves
in S§. As a consequence, we discovered a new invariant for spacelike curves which estimates
the order of contact with de Sitter lightcones in Sj. After that, Kaseou [17] investigated the
singularities of de Sitter lightlike hypersurfaces of spacelike submanifolds of codimension two
in S7. We remark that N4%(M)[n”] is a double covering of M for codimension two spacelike
submanifold M in ST. Then the de Sitter lightlike hypersurface is the image of the mapping
LHE, (u, 1) = X (u) + p(nT £n5)(u), which coincides with the lightlike hypersurface along M in
[17]. Therefore, all results in the previous sections for de Sitter space are generalizations of the
results in [17]. We now consider spacelike surfaces in St here. Let X : U — St be a spacelike
embedding from an open subset U C R2. In [17], it was shown that there is the following generic
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classification theorem. We say that two map germs f,g : (R®,0) — (RP,0) are A-equivalent
if there exists diffecomorphism germs ¢ : (R”,0) — (R™,0) and % : (RP,0) — (RP,0) such
that fo ¢ =1)og. Let Embg, (U, St) be a space of spacelike embeddings from U to Si with the
Whitney C*°-topology.

Theorem 6.1 ([17]). There exists an open dense subset O C Embsp (U, St) such that for any
X € O, the germ of the corresponding lightlike hypersurfaces ]LHM at any point (uo, o) € UxR

is A-equivalent to one of the map germs Ay, (1 < k < 4) or D4 . where, Ag, D4 -map germs
f:(R3,0) — (R*,0) are given by

Ay f(uy,ug,us) = (ug,uz,us,0),

AQ, (Ul,UQ, 3) (3“%72'[1%71//2,“3),

As; f(uy,ug,u3) = (4u1 + 2uyug, 3ut + ugu?, ug, u3),
Ag; fug,ug,uz) = (

5uf + 3ugu? + 2uius, 4uf + 2usud + uzu?, ug, us),
(2

D f(ur,ug,uz) = (2(u$ + u3) + urugus, 3u? + ugus, 3u3 + uyusz, us),

_ U
Dy f(ui,ug,us) = (31 — u1u2> + (ud 4 ud)ug, us — ut — 2ujusz, 2(ugus — u2u3),u3> .

As a corollary of the above theorem, we have the following generic local classification of AdS-
lightlike focal sets along spacelike surfaces. We define C(2,3,4) = {(u2,u$,u}) | u; € R}, which
is called a (2, 3,4)-cusp. We also define

C(BF) = {(10u? + 3usu,, 5u% + ugu?, 6u’ + uou’, ug) | (ur,us) € R}

We call C(BF) a C-butterfly (i.e., the critical value set of the butterfly). Finally we define
C(2,3,4,5) = {(u?,u},u},ul) | uy € R}, which is called a (2, 3,4, 5)-cusp.

Corollary 6.2. There exists an open dense subset O C Embg, (U, S}) such that for any X € O,

the germ of the corresponding dS-lightlike focal set LFE at any point (ug, o) € U X R is diffeo-

morphic to one of the following set germs at the origin in R*:

Az; {(0,0)} x B2,

Ag, O( 3, 4) X R,

Ay; ( )
(2

Di, (Ul + U2) “+ uiugus, 3’U,1 + ugus, 3U2 + U1’LL3,U3) | U3 = 3GU1U2}

3

u
—. 1 2 2 2 _ .2 2
Dy, ( 3 —U1u2)+(u1 +u2)“3,uQ—U1—2U1U3,2(U1u2—u2u3)»u3 ‘U3—“1+“2}'

Proof. For As, we can calculate the Jacobi matrix of the normal form f in Theorem 5.9:

120 +2u;  2u; O

12u3 4+ 2ujug  ui 0
0 1 o |’

0 0 1

Jr =

so that rank J; < 3 if and only if 6u? + us = 0. Thus, the critical value set of f is
C(f) = {(—8u?, —3uf, —6u?, uz) | (u1,u3) € R?}.
It is C(2,3,4) x R. By a similar calculation, we can show that the germ of Ay is diffeomorphic
to C(BF). For D}, we can calculate the Jacobi matrix o the normal form f:
6u% + ususg 6u§ + uiug, uiue 0
6uq U3 U2

us 6’LL2 Ul
0 0 1

Jp =
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Therefore, rank Jy < 3 if and only if

6u% + ugus 6u§ + urusz, u1Us

:O7

. Gu% + usus 6u§ + uguz, ugus
us 6U2

o 6’U1 us
us GUQ

6u1 us

which is equivalent to the condition that u3 = 36ujus. For Dy, by a calculation similar to the

above,

By

we have the condition that u? = u? + u3. This completes the proof. O

using the above normal forms, we can investigate the detailed geometric properties of

spacelike surface in S} corresponding to the singularities of dS-lightlike focal sets . However, we
have limited space, so that we omit these discussions here.
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LINKS OF SINGULARITIES UP TO REGULAR HOMOTOPY

A. KATANAGA, A. NEMETHI, AND A. SZUCS

ABSTRACT. We classify links of the singularities 2 + y? 4+ 22 + v??¢ = 0 in (C*,0) up to
regular homotopies precomposed with diffeomorphisms of S3 x S2. Let us denote the link of
this singularity by Lg and denote by 44 the inclusion Lgy C S7. We show that for arbitrary
diffeomorphisms g : S3 x §2 — Ly the compositions i4 0 @y are image regularly homotopic
for two different values of d, d = d1 and d = da, if and only if dj = ds mod 2.

1. INTRODUCTION

It is well-known that the infinite number of Brieskorn equations in C3

29l LS 422 422 422 =0, (intersected with §° = {2z =1})

describe the finite number of homotopy spheres. Why do we have infinitely many equations for
a finite number of homotopy spheres? The answer was given in [E-Sz]: These equations give all
the embeddings of these homotopy spheres in S° up to regular homotopy.

The present paper grew out from an attempt to investigate the analogous question for the
equations
(%) 2y 422+ 0F=0.

It was proved in [K-N] that the links of the singularities () are S® or S® x S? depending on the
parity of k. Again we have infinite number of equations for both diffeomorphism types of links.
So it seems natural to pose the analogous

Question: What are the differences between the links for different values of k£ of the same
parity? Do they represent different immersions up to regular homotopy?

For k odd, when the link is S°, the question about the regular homotopy turns out to be
trivial, since any two immersions of S° to S7 are regularly homotopic. (By Smale’s result, see
[S1], the set of regular homotopy classes of immersions S® — S7 can be identified with 75(S07).
The later group is trivial by Bott’s result [B].)

The situation is quite different for k even. Put k = 2d and let us denote by X, the algebraic
variety defined by the equation (x), by Lg its link, and by i4 the inclusion Lq < S”. In this case
the question on regular homotopy classes of ig turns out to be not well-posed.

It is true that Ly is diffeomorphic to S$% x S? for any d, but the question about the regular
homotopy makes sense only after having given a concrete diffeomorphism g4 : S x S? — Ly,
and only then we can ask about the regular homotopy classes

Z.dOgOdl S3 XS2 —>S7.
(In the case of Brieskorn equations precomposing an immersion f : X7 — S° with an orientation

preserving self-diffeomorphism of the homotopy sphere X7 does not change the regular homotopy
class of the immersion f. This is not so for the manifold S3 x S2.)

Definition (see [P]). Given manifolds M, N, and two immersions fo and f; from M to N, we
say that fo and f; are image-regular homotopic if there is a self-diffeomorphism ¢ of M such
that fi is regularly homotopic to fy o ¢.


http://dx.doi.org/10.5427/jsing.2014.10k

LINKS OF SINGULARITIES UP TO REGULAR HOMOTOPY 175

Notation:

1) I(M, N) will denote the image-regular homotopy classes of immersions of M to N. The
image regular homotopy class of an immersion f will be denoted by im [f].

2) Recall that an immersion is called framed if its normal bundle is trivialized. Fr-Imm (M, N)
will denote the framed regular homotopy classes of framed immersions of M to N.

In the case when the immersion f is framed reg[f] will denote its framed regular homotopy
class.

Remark. Note that for the inclusions iq : Ly C S7 their regular homotopy classes reg [i4] are
not well-defined, but their image regular homotopy classes im [i4] are well-defined.

FORMULATION OF THE RESULTS

Theorem 1. For any simply connected, stably parallelizable, 5-dimensional manifold M® the
framed regular homotopy classes of framed immersions in S” can be identified with H3(M;Z),
i.e.

Fr-Tmm (M®, S7) = H*(M;7Z).

Corollary. In particular,
Fr-Tmm (S® x $2,87) = Z.

Theorem 2. The set 1(S* x S?,87) of image-regular homotopy classes of framed immersions
53 x 82 — 87 can be identified with Zs.

Theorem 3. The inclusions iq : Ly < S7 for d = dy and dy represent the same element in
I1(S% x §%2,87) = Zy (i.e. im[ig,] = im[ig,]) if and only if dy = d2 mod 2.

Remark. The identifications in the above Theorems arise only after we have fixed a paralleliza-
tion of the manifolds (or a stable parallelization). (Different parallelizations provide different
identifications. For the Corollary these identifications differ by an affine shift  — x + a, where
a € 73(S0O) = Z is the difference of the two parallelizations. Similarly, in Theorem 2, a is
replaced by a mod 2 in Zy = w3(S0O)/im j.(m3(S03)), where j is the inclusion j : SO3 C SO.
Now we describe a concrete stable parallelization of $3 x S2 we shall use.

Hence, we want to choose a trivialization of the stable tangent bundle
T(S*x S*) @& — 9% x 52,

where £! is the trivial real line bundle. This 6-dimensional vector bundle is the same as the
restriction T(S3 x R3) = (piTS3 ® p3TR3) , where p; and ps are the projections of
S3x .52 S3x 52
53 x R3 onto the factors. The quaternionic multiplication on S2 gives a trivialization of T'S3,
i.e. an identification with S® x R®. We need a trivialization of T(T'S?). The standard spherical
metric on S? gives a connection on the bundle 7'S® —s 3, that is a “horizontal” R3 C T(T'S?)
at any point. The trivialization of T'S® gives a trivialization of both the horizontal and the
vertical (tangent to the fibers) components in T(7'S3). Restricting this to the sphere bundle
S(TS3) = S x S? we obtain the required trivialization of
T(TS?) =T(S® x R?) =T(S3x S*H @£l
S3x 852 S3x52

Proof of Theorem 1. Having fixed a stable parallelization of M?®, any framed immersion
f: M° — RY? gives a map M® — SO, that — by a slight abuse of notation — we will de-
note by df.
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By the Smale-Hirsch immersion theory [S1, H] the map

Fr-Imm (M,R?) — [M,S0,]
reg [f] — [df]

induces a bijection, where [M, SO,| denotes the homotopy classes of maps M — SO,.
Since M? is simply connected there is a cell-decomposition having a single 0-cell, a single

5-cell, and no 1-dimensional, neither 4-dimensional cells.

Let M be the punctured M5: M = M5\ D?. From the Puppe sequence of the pair (M,dM)
(see [Hu]),

St=0McMcM-— S°,
it follows that the restriction map [M®, SO,] — [M,SO,] is a bijection, since m4(SO) = 0 and
5 (SOq) =0.

Now consider the Puppe sequence of the pair (M, sks M). Note that sko M is a bouquete of
2-spheres, while the quotient M /sko M is homotopically equivalent to a bouquette of 3-spheres.
Hence, a part of the Puppe sequence looks like this:

sko M C M — VS> — S(ska M) = VvS?

where S( ) means the suspension. Mapping the spaces of this Puppe sequence to SO, ¢ > 5,
we obtain the following exact sequence of groups (we omit q):

[sky M, SO] «— [M, SO] «— [V8%, SO] > [S(sky M), SO].

Here [sko M, SO] = 0, because 2(SO) = 0.

Since m3(SO) = Z the group [VS?, SO] can be identified with the group of 3-dimensional
cochains of M with integer coefficients, i.e. [VS3, SO| = C3(M;Z).

Since there are no 4-dimensional cells this is also the group of 3-dimensional cocycles. The
group [S(skg M), SO] can be identified with the group of 2-dimensional cochains C?(M;Z).

Lemma. The map a can be identified with the coboundary map
5:C*(M;Z) — C3(M;Z).
Proof of this Lemma will be given in the Appendix.
Hence the cokernel of ¢, i.e. []\04 , SO] = Fr-Imm (M, R7) can be identified with the cokernel
of 8, i.e. with H3(M;Z). O

Remark 1. In the case when M = S% x §% and N € S? is a fixed point in S?, for example the
North pole, the inclusion S3 < M, z — (z, N) gives an isomorphism

[M, SO] — [S?,80].

Hence, for M = S x S? two framed immersions M® — R7 (or M® — S7) are regularly
homotopic if their restrictions to S% x N are framed regularly homotopic (adding the two normal
vectors of S3 in M? to the framing).

Lemma 1. The inclusion j : SOz — SOq (¢ > 5) induces in w3 the multiplication by 2
(if we choose the generators in w3(SOs) = Z and in w3(SO4) = Z properly), i.e., for any
x € m3(S03) = Z the image j.(v) € m3(SO) = Z is 2x.



LINKS OF SINGULARITIES UP TO REGULAR HOMOTOPY 177

Proof. Tt is well-known that 75(505) =~ 73(S0g) ~ --- = w3(SO) and by Bott’s result [B]
m3(SO) ~ Z. Let us consider Va(R®) = SO5/S0;. It is well-known that m3(V2(R®)) = Z (see
for example [M-S]). It is also well-known that m3(S03) = Z.

Now the exact sequence of the fibration SO5 — V2(R?) gives that the homomorphism
m3(S03) — m3(SO0;5) induced by the inclusion is a multiplication by +2 (or —2, but choosing
the generators properly it can be supposed that it is multiplication by +2). ([

Remark 2. It is well-known that m3(S04) = m3(S®) @ 73(S03) and the map jy. : m3(SO04) —
73(S05) induced by the inclusion
j4 : 504 — SO5
is epimorphic.
It follows that j4. maps 73(S3) = Z to the group Zs = m3(S05) /s« (7T3(503)) epimorphically.

From now on we shall denote by M the manifold S3 x S? (except in the Appendix). We shall
write simply S3 for the subset S x N C S% x S2, where N € S2.

Lemma 2. For any class 2m € 27Z = imjy, C Z = 7w3(SO), there is a diffeomorphism
am 1 M — M such that for any framed immersion f: M — R7 the difference of the regular
homotopy classes of f and f o o, is 2m, i.e.

reg[f o au,] — reg[f] € m3(SO) = Z
15 2m.

Proof. Let p,, : S® — SO3 be a map representing the class m € w3(S03) and define the
diffeomorphism
am: 9% x 8% — 83 x §?
by the formula
(#,y) — (@, pm (2)y)-
We have the following diagram:

reg [f] € Fr-Imm (M,R?) — Fr-Imm (5%, RY) 3 reg {f

)

I~ I~ >
(M, SO,] — 153, 50,]
df — df
A(f © ) — A(f © o)
SS

It shows that the regular homotopy class of the (framed) immersion f is detected by the ho-
motopy class of df ’SS in w3(S0), while the regular homotopy class of f o «,, is detected by the

homotopy class of d(f o am)’ )
So we have to compare the homotopy classes of maps
df| : S* — SO, and d(foay)
S3
By the chain rule one has:

;83— SO,.
S3

d(foay)| =df

S3

-doyy,
am(ss)

S3

1 83 — 53 x 82 is homotopic to a map into S3V S?, representing
SS
in the third homotopy group 73(S% V S?) = Z @ Z the element (1,*), where * is an integer,

The restriction map o,




178 A. KATANAGA, A. NEMETHI, AND A. SzUCS

* € m3(S?) = Z (at this point its value is not important, but later we shall show that it is m,

see Lemma A). Since the map df maps S® x S? into SO and 72 (SO) = 0, the map df can
S3v.S2

be extended to S Vv D3 = S3.

Finally we have that d(f o ayy) is homotopic to the pointwise product of the maps df
S3

SS
and do,,

S3

But it is well-known that this gives the sum of the homotopy classes [df ] € m3(S0) and

[dam SJ € 13(S0). i

It remained to show the following

Sublemma. [dam } =2m € m3(50y) = Z.

S3

Proof. The differential da,, acts on T(S3 x R3) = piTS? & psTR3
S3x.52
identity on p;T'S® and by pi,(x) on (z,) x R? for any = € S3, y € 52

Hence, dam’ is j o pm, where j : SOs — SO, is the inclusion. Recall that the map

as follows: by

S3x.S52

53
fm @ S3 — SO3 was chosen so that its homotopy class [u,,] € m3(S03) is m € Z = 73(503).
Since j, is “the multiplication by 2” map it follows that [dam } =2m. O
S3
This ends the proof of Lemma 2 too. O

Proposition. Any self-diffeomorphism of S x S% changes the regular homotopy class of any
immersion by adding an element of the subgroup in im j, = 2Z C Z = w3(SO). That is for any
framed immersion f: M — R? with (framed) reqular homotopy class

reg [f] € [M, SO] = 75(SO)
and any diffeomorphism ¢ : M — M the difference of reqular homotopy classes

reg [f] —reg[f o ¢]
belongs to the subgroup im j. = 27 in Z = 73(S0).

The proof will rely on the following two lemmas (Lemma A and Lemma B).

Definition. A self-diffeomorphism ¢ : S% x §2 — §2 x §2 will be called positive if it induces
on H3(S3 x S?) = Z the identity.

Lemma A. For any positive self-diffeomorphism ¢ there exists a natural number m € Z such

that for N € S? the restrictions ¢ and oy, represent the same homotopy class in
(S3xN) (S3xN)
7T3(M).

Lemma B. Let ¢ and v be self-diffeomorphisms of M such that the images of S® x N at ¢ and

1 represent the same element in w3(M). Then for any framed-immersion f : M — R7 the
regular homotopy classes of f oy and f o coincide.

Proof of Lemma B. Let us extend the self-diffeomorphisms ¢ and v to those of M x D by taking
the product with the identity map of D, for some large ¢, and denote these self-diffeomorphisms
of M x D7 by ¢ and . Similarly we shall denote by f the product of f with the standard inclusion
D? C RY.
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By the Smale-Hirsch theory [S1, H] (or by the so-called Compression Theorem of Rourke—
Sanderson [R-S]) the restriction induces a bijection

Fr-Tmm (M, R7) <— Fr-Imm (M x D?, R7*9),
Again the regular homotopy class of a framed immersion in
Fr-Imm (M, R™"%) = Fr-Imm (M x D? R7+%)
is uniquely defined by the restriction to S3(= S3 x N).
The maps ¢ and 1) restricted to the sphere S? x N are framed isotopic. By Thom’s isotopy
lemma [T] there is an isotopy ¥, : M x D? — M x D7 such that ¥y = ¢ and ¥; = 9.
It follows that the induced maps dp : M — SO and dip : M — SO are homotopic. Hence,

the framed-regular homotopy classes of f o ¢ and f o 1& coincide. Then the compositions f o ¢
and f o1 are also regularly homotopic. (|

Proof of Lemma A. Let m be the homotopy class of the composition
$% 5 8% x 5% 2y 2,
where i, is the inclusion z — ¢(z, N) and p is the projection S® x $? — S2. We claim that
the maps ¢’ = po and o, = po ay are homotopic maps from S® to S?. To
(S3xN) (S8xN)

show this it is enough to compute the Hopf invariants of these maps.

Let us consider first the case m = 1. We need to show that the Hopf invariant of o} is equal
to 1.

The map u1 : S3 — SOz representing the generator in m3(S03) can be provided by the
standard double covering S® — SO3. Then «; is the self-diffeomorphism of 3 x §2

0[1(1', y) = ({E7 ﬂl(x)y)
and o is the composition of the following three maps: the inclusion
S3 s 8% x 8%,z (z,N);

the map «; and the projection p: S% x §2 — S2.

In order to compute the Hopf invariant of of : S3 — S? first we need to compute the
preimage of a regular value. Let us compute first the preimage of N in S3, i.e., (o)) ~(IV). The
map o can be further decomposed as the composition of j; : S% — SO3 with the evaluation
map e : SO3 — S% g+ g(N), for g € SO3. The set e~ *(N) is the subgroup SOy C SOs,
which consists of the rotations around the line (N, —N) (the stabilizer subgroup of N).

When we identify SOs; with the ball D2 of radius 7 with identified antipodal points on
the boundary S2, then this subgroup SO, corresponds to the diameter N, —N with identified
endpoints N and —N. The preimage of this diameter at u; : S3 — SOs is a great circle. If we
take any other point V in S2, then e=1(V) is a coset of the previous subgroup SO,. Then its
preimage at pp is also a great circle. Therefore the linking number of two such preimages is 1.

The map o/, can be obtained from o} by precomposing it with a degree m map S* — S3.
Hence the Hopf invariant of o, is m. O

PARAMETRIZATIONS OF THE LINKS L4 (OR, EQUIVALENTLY, OF THE SINGULARITIES X)

Let us denote by ¢ the complex C?-bundle TCP! @ ¢}, over CP' = S? where TCP! is
the tangent bundle of CP', and 510 is the trivial complex line bundle. Note that the bundle
¢ considered as a real R*-bundle is isomorphic to the trivial bundle. Hence its total space is
diffeomorphic to S% x R%. Let us denote by Ey(¢) the complement of the zero section in the total
space of the bundle . We shall give below a diffeomorphism of this space Fy(¢) onto Xy \ 0.
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The existence of such a diffeomorphism will give a new proof of the result of [K-N] about the
diffeomorphism type of L.

Proposition. L, is diffeomorphic to S x S2.

Proof. X4\ 0 is diffeomorphic to Ly x R, and the space Ey(() is diffeomorphic to $% x S? x R*.
For simply connected 5-manifolds it is well-known, that two such manifolds are diffeomorphic
if their products with the real line are diffeomorphic (see [Ba], Theorem 2.2). Hence L, and
83 x §2 are diffeomorphic. O

Next we give a concrete parametrization:
va: Eo(() — Xa\0={z,y,2v | 2 +y? 4+ 22+ 02 =0, |z + |y| + [2] + |v] # 0}.
The composition ig 0 ¢4 (or its restriction to ¢;1(57)) will give a framed-immersion
S3 % 8% — 87,
and its regular homotopy class reg [ig © p4] will turn out to be the number
d € Z = Fr-Tmm (8% x §2,57).

This will imply that the image-regular homotopy class of the link Ly in S7 is d mod 2 in
Zo = I(S% x §%,97).
Proof of Theorem 3. For arbitrary manifolds N and @ the natural map

Fr-Imm (N, Q) — Fr-Imm (N, Q x R)

induces a bijection — by the Smale—Hirsch immersion theory (or by the Compression Theorem of

Rourke-Sanderson). Hence Fr-Imm (X4\0 C C*\ 0) = Fr-Imm (5% x §? C S7). By a coordinate
transformation of C* we obtain the following equivalent equation defining Xy

Xg= {m,y,z,v | zy — z(z + o) = 0}.
The parametrization of X4\ 0 is the following.
The inclusion
Ey(¢) it = {(z,y,2,v) | z,y,2,v € C} with image im¥ = X;\ 0
will be described on two charts:
1) ((a:b),z,v), where a,b,z,v € C,b#0, (a: b) € CP', and ||z + [|v]| # 0. Put t = ¢ € C.
The map ¥ on this chart will be given by the formula
U (t,x,v) — (z,2z + tvd, tx, v).

2) For a # 0 denote the quotient 2 by ¢'. On the part of Ey(¢) that projects to CP!\ (1:0)
(that is diffeomorphic to CP\ (1: 0) x (C?\ 0)) consider the coordinates (¥, y,v) and define ¥
by the formula

U (t,y,v) — %y —tvly t'y —vdv).
The change of coordinates between the two coordinate charts of Ey(() is
t'=t"1, v=v, =ty —t'v? or equivalently
Yy = 2z + tv?.
In order to see that these local coordinates give indeed the bundle ¢ over CP' we can precompose
the first local system with the map (¢, z,v) +— (¢, z—tv%,v). (Note that this map can be connected
to the identity by the diffeotopy (t,z,v) — (¢, — stv?,v), 0 < s < 1.) Then the change from
the first coordinate system to the second one for t € S' on the equator of $2 = CP' will
be given by the map (t,z,v) + (t,t?x,v), where x,v € C. Now it is clear that the obtained
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bundle is ¢ = TCP! @ ¢},. (The map of the equator to U(2) defining the bundle ¢ gives in
m1(U(2)) the double of the generator, and its image in m(SO4) = Zs is trivial. That is why
the bundle ( is trivial as a real bundle although it has first Chern class equal 2 as a complex
bundle.) Note that ¥ maps the part of the first chart corresponding to the points ¢t = 0, (i.e.,
the space C* = {(0 : 1), z,v}) identically onto the coordinate space C2, = {z,0,0,v} of C*.
The restriction of ¥ to this part determines the framed immersion of X, \ 0 to C*. Hence, the
immersion itself is very simple: just the inclusion of C2\ 0 — C*. But we need to consider also
the framing. It is coming a) from the paramatrization ¥ and b) from the defining equation of
Xq.
a) The parametrization gives the complex vector field
aa—f = (0,v¢,z,0).
t=0
b) The defining equation g(z,y, z,v) = xy — 2(z + v¢) = 0 at the points (x,0,0,v) gives the
complex vector field
grad g(z,0,0,v) = (0,2, —v?,0).

These two complex vector fields have zero first and last complex coordinates (on the coordinate
subspace (Ciw = {z,0,0,v}). Hence, we shall write only their second and third coordinates: those
are (v?,x) and (—z,v?) respectively. These two complex vectors give four real vector fields if we
add their i-images as well. Let us denote by a; and as the real and imaginary coordinates of v
v = ay + ias. Similarly x; and x5 are those of z, i.e., * = x1 + iz2. Then the four real vectors
in R* = C? = (0,y, 2,0) are:

(a1,a2,331,332)
(az,*al,@, 1)
= (21,22, —a1, —as)
= (- xz,:m,az,—cn)
The map (x,v) € R*\ 0 — (ul,uz,U3,U4) can be decomposed as a degree d branched

covering (z,v) > (z,v%) and a map representing an element in 73(S04) = 73(S%) @ 73(S03) of
the form (1, %) for some unknown element * in w3(SO3). (This is because the map

(favd) = (z1,22,0a1,a2) = uy = (a1,az,21,22)

is almost the identity, it differs only by an even permutation of the coordinates.) Hence the
composition represents an element of the form (d,?) € m3(S®) @ 73(503), and its image in
7m3(S0)/jax(m3(S03)) = Zso is dmod 2, see Remark 2. That finishes the proof of Theorem 3. O

APPENDIX

For any space Y let us denote by CY the cone over Y. Here we show that the map provided
by the Puppe sequence
a: [C(M)UC(skeM),SO] — [M UC(skoM), SO
can be identified with the coboundary map in the cochain complex:
§: C*(M;Z) — C3(M; 7).

We have seen that the sources and targets of 6 and « can be identified.
For simplicity let us consider the situation when skoM = S? and M has a single 3-cell D3,

attached to this 52 by a map 6 of degree k. Then M = S? LéJ D3.



182 A. KATANAGA, A. NEMETHI, AND A. SzUCS

Let us denote the sets
M UC(skoM) and CM UC(skyM)

by A and B respectively.

Clearly we can choose any degree k map for 6 in order to study the induced map «. Take for 8
a branched k-fold cover of $? along S°. Then the inclusion A C B can be described homotopically
as follows:

In S3 x [0,1] contract an interval % x [0,1] for some * € S3 to a point. A will be identified
with $3 x {0}. Further on S3 x {1} identify the points that are mapped into the same point by
the suspension of 6. The part of B coming from S* x {1} will be denoted by Bj. The space By
is a deformation retract of B.

Let us denote by r the retraction B — Bp. Clearly, its restriction 7|4 : A — Bj is a
degree k map (it is actually the suspension of the branched covering 6). So the inclusion A C B
induces in the 3-dimensional homology group Hj (or in 73) a multiplication by k.

The proof of the special case (when in M there is a single 2-cell and a single 3-cell) is finished.
The general case follows easily taking first the quotient of sko M by all but one 2-cell and
considering any single 3-cell.
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PERIODIC SOLUTIONS OF
DISCONTINUOUS SECOND ORDER DIFFERENTIAL SYSTEMS

JAUME LLIBRE AND MARCO ANTONIO TEIXEIRA

ABSTRACT. We provide sufficient conditions for the existence of periodic solutions of some
classes of autonomous and non-autonomous second order differential equations with discon-
tinuous right-hand sides. In the plane the discontinuities considered are given by the straight
lines either x = 0, or zy = 0. Two applications of these results are made, one to control
systems with variable structure, and the other to small external periodic excitation of a dis-
continuous nonlinear oscillator.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

In these last tens the study of discontinuous differential systems became relevant in the bound-
ary between Mathematics, Physics and Engineering. In the book [2] and in the survey [10] there
are different models coming from the impacting motion in mechanical systems, or from switch-
ings in electronic systems, or from hybrid dynamics in control systems, and so on. All of these
models are formulated with differential equations with discontinuous right—hand sides. Also,
many studies have been done in the qualitative aspects of the phase space of discontinuous
differential systems, see for instance the hundreds of references quoted in [2] and [10].

In this paper we are mainly interested in the study of the periodic solutions of autonomous
and non—autonomous second order differential equations with discontinuous right—hand sides.
Recently discontinuous second order differential equations have been studied for several authors,
mainly non—autonomous ones. Thus, discontinuous differential equations of the form

v’ +u+ asign(y) = F(0),

where F' is a periodic function has been studied in [7]. In [5] periodic solutions of discontinuous
differential equations of the form u” 4+ G(u) = F(0) are analyzed, where F is periodic and
continuous, and G is continuous except at v = 0. In [6] the authors studied the periodic
solutions of the discontinuous differential equations u” + nsign(u) = a sin(St).

Our main results will provide sufficient conditions for the existence of periodic solutions of
the following two classes of autonomous second order differential equations with discontinuous
right—hand sides:

(1) u” +u+ easign(u)G(u,u') = eH (u,u’),
(2) v’ + u + easign(uu')G(u,u') = eH (u,u’).
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Here u = u(t), a € R is a parameter, ¢ is a small parameter, G and H are C* functions, and the
prime denotes derivative with respect to the variable ¢. Note that the differential equation (1)
is discontinuous at u = 0, and that the differential equation (2) is discontinuous at uu’ = 0.

We also shall provide sufficient conditions for the existence of periodic solutions of the following
two classes of non—autonomous second order differential equations with discontinuous right—hand
sides:

(3) " 4 e2asign(cos 0)G(0,r,r") = e2H(0,r, 1),
(4) " 4 2asign(sin(20))G (0,7, 1) = e2H (0,7, 1").

Here (r,0) are the polar coordinates of the plane, i.e. & = rcosf and y = rsinf, a € R is
a parameter, € is a small parameter, G and H are C! functions in the variables r and 7/, the
functions G and H are continuous and periodic in the variable 6 of period 27, and the prime
denotes derivative with respect to the variable 6. Note that the differential equation (3) is
discontinuous at the straight line x = 0 of the plane in cartesian coordinates, and that the
differential equation (4) is discontinuous at the straight lines xy = 0.

Denoting ¢ = u and y = v’ the autonomous differential equations of second order (1) and (2),
respectively can be written as the following differential systems of first order in the plane

dx ,

- =T =Y,

dt
%) p

o = Y = v —easign(2)G(z,y) + el (z,y);
with the discontinuity set x = 0, and

.

a 7
() p

Y~y =~ casign(ay)Ga,y) + eH(w,y)

with the discontinuity set xy = 0.

Denoting = r and y = r’/e the non—autonomous differential equations of second order (3)
and (4), respectively can be written as the following differential systems of first order in the
plane

dr _ ¥ =c

g =V = —casign(@)G(0.2.y) + cH(0,2.y);
with the discontinuity set x = 0, and

dx .

= =g =ey,
3) @ ’

G5 =V = —easign(ey)G(0.2.y) + cH(0.x.y);

with the discontinuity set zy = 0.

The following propositions provide sufficient conditions for the existence of periodic solutions
for the discontinuous differential systems (5), (6), (7) and (8), respectively.
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Proposition 1. For ¢ # 0 sufficiently small the discontinuous differential system (5) has a
periodic solution (x(t,e),y(t,€)) for each simple zero r* of the function
2m

fi(r) = H(rcosf,rsinf)sinf do
0

37 /2 /2

+a </ G(rcosf,rsinf)sinf df — G(rcosf,rsinf) sin@d@) )
/2 —7/2

such that (2(0,¢),y(0,e)) — (r*,0) when € — 0.

Proposition 2. For ¢ # 0 sufficiently small the discontinuous differential system (6) has a
periodic solution (x(t,€),y(t,€)) for each simple zero r* of the function
2

fo(r) = H(rcosf,rsin@)sind do
0

/2 3m/2
—a </ G(rcosf,rsinf)sinddb + / G(rcosf,rsinf) sin9d6‘>
0 ™

/2 3m/2
such that (z(0,¢€),y(0,¢)) — (r*,0) when € — 0.

™ 2
+a </ G(rcosf,rsinf)sin 0 df +/ G(rcos@,rsin&)sin@d@) ,

Proposition 3. For ¢ # 0 sufficiently small the discontinuous differential system (7) has a
periodic solution (x(0,¢),y(8,¢)) for each simple zero x* of the function

27 37 /2 /2
fa(z) = H(0,2,0)d0 + o (/ G(0,x,0)df — G(6,x,0) d9> ,
0 /2 —m/2

such that (z(0,¢),y(0,¢)) — (2*,0) when € — 0.
Proposition 4. For € # 0 sufficiently small the discontinuous differential system (8) has a
periodic solution (x(t,e),y(t,€)) for each simple zero x* of the function

2

/2
falz) = H(0,2,0)df — « (/0 G(0,2,0)db +/

0

37/2

G(6,2,0) d9>

2w

+a (/ G(0,z,0)df + G(6,x,0) d0> ,
/2 37/2

such that (z(0,¢),y(0,¢)) — (z*,0) when € — 0.

The proof of these four propositions is given in section 2. The proofs are based in a recent
result on the averaging theory applied to discontinuous differential systems obtained by the
authors and also by Douglas Novaes, see the appendix.

In the study of control systems with variable structure appear the autonomous discontinuous
second order differential equations similar to

@
(9) v’ 4+ u+easign(u)uu’ = e—u’,

™
see for instance the book [1].

Corollary 5. Fore # 0 sufficiently small the control system with variable structure (9) has one
periodic solution u(t,e), such that \/u(0,e)2 + u/(0,)2 — 3/4 when & — 0.
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In the next corollary we apply Proposition 3 for studying the periodic solutions of the following
small external periodic excitation of a discontinuous nonlinear oscillator

0 2
(10) "+ &2 sign(cos 0) ((2 — 3r) cos 2> — ,5270‘ "2,

Such kind of differential equations are considered in the book [11]. Note that equation (10) is a

non—autonomous discontinuous second order differential equation.

Corollary 6. For € # 0 sufficiently small the small external periodic excitation of the dis-
continuous nonlinear oscillator (10) has two periodic solutions ri(0,e) for k = 1,2, such that
r1(0,€) = cos @ and r2(0,e) — 2cos when e — 0.

The proof of the two corollaries are given in section 3.

2. PROOF OF THE PROPOSITIONS

In this section we prove the four propositions using the averaging theory for discontinuous
differential systems described in the appendix.

Proof of Proposition 1. We write the discontinuous differential system (5) in polar coordinates
(r,0) where x = rcosf and y = rsinf, and we obtain

d

d—z = e(H(rcos,rsinf) — asgn(cos §)G(rcosd,rsin b)) sin b,

do

i -1+ ;((H(r cosf,rsinf) — asgn(cos§)G(r cosd,rsin b)) cos 9).

Now taking as new independent variable the angle 6 this previous discontinuous differential
system becomes

1) % = e(asgn(cos 0)G(r cos 0, rsin ) — H(rcos,rsinb)) sin + O(c?)
=eF(0,r) + O(e?).

This system is under the assumptions of Theorem 7, where the variables of this theorem are
inour case t =0, T =27, x =r, M = h™1(0) = {x = 0}. So we apply this theorem to our
previous discontinuous differential equation and we compute

2m
flr) :/0 F(0,r)do = f1(r),

where fi(r) is the function defined in the statement of Proposition 1. Since by assumptions G
and H are C' functions in their two variables, it follows that fi(r) is C'. Consequently, if r* is
a simple zero of fi(r), i.e. fi(r*) =0 and

dfy
dr

# 0,
then the Brouwer degree dg(f1,V,r*) # 0 being V' a convenient open neighborhood of r*, see
for more details on the Brouwer degree [3] and [9]. Hence, by Theorem 7 it follows that for
¢ # 0 sufficiently small the discontinuous differential system (11) has a periodic solution (6, ¢)
such that 7(0,e) — r* when ¢ — 0. Going back through the polar change of variables we
get that for € # 0 sufficiently small the discontinuous differential system (5) has a periodic
solution (z(t,€),y(t,€)) such that (z(0,¢),y(0,¢)) — (r*,0) when € — 0. So, the proposition is
proved. O
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Proof of Proposition 2. The discontinuous differential system (6) in polar coordinates (r,#) be-
comes

% = e(H(rcosf,rsinf) — asgn(sin(26))G(r cos 0,7 sin )) sin 6,

do € . . .

it R ((H(r cosf, rsinf) — asgn(sin(26))G(r cos 0,7 sin b)) cos 9) )
Taking as new independent variable the angle # this discontinuous differential system becomes
12) % = e(asgn(sin(20))G(r cos§, rsinf) — H(rcosd,rsind)) sinf + O(?)

=eF(0,r) + O(£?).

Applying Theorem 7 to this discontinuous differential equation, where the variables of this
theorem are in our case t = 6, T = 2m, x =7, M = h™1(0) = {xy = 0}, we compute

f(r):/OﬂF(H,r)dGng(r),

where f5(r) is the function defined in the statement of Proposition 2. Since fo(r) is C!, if r*
is a simple zero of f3(r), then the Brouwer degree dp(f2,V,r*) # 0 being V' a convenient open
neighborhood of r*. Therefore, by Theorem 7 it follows that for € # 0 sufficiently small the
discontinuous differential system (12) has a periodic solution (0, €) such that r(0,e) — r* when
¢ — 0. Going back through the polar change of variables we obtain that for e # 0 sufficiently
small the discontinuous differential system (6) has a periodic solution (x(t,¢),y(¢,e)) such that
(2(0,¢),y(0,¢)) — (r*,0) when ¢ — 0. This completes the proof of the proposition.

Proof of Proposition 3. The discontinuous differential system (7) is already in the form (13) for
applying the averaging theory described in Theorem 7, where now the variables of Theorem 7 are
t=0,T=2m,x=(z,y), M=h"1(0) = {z =0}, F(t,x) = F(0,2,y) = (F1(0,7,y), F2(0,1,y))
where

Fl(gvxay) =Y

Fy(0,z,y) = asign(z)G(0,x,y) + H(0,x,y).

Therefore we apply Theorem 7 to the discontinuous differential system (7) and we obtain

21
fey) = / F(6,x,)d,

where f(z,y) = (g1(z,y), g2(z,y)) with

g1(z,y) =y,
2w 3m/2 m/2
g2(z,y) = H,z,y)d0 + « (/ G0, x,y)dd — G(H,x,y)d@) .
0 /2 —m/2
A solution (z*,y*) of the system g;(z,y) = g2(x,y) = 0 satisfies y* = 0 and z* is a solution
of f3(x) = 0 where this function is the one defined in the statement of Proposition 3. Since G
and H are C'! functions in their two variables, it follows that g;(x, ), g2(z,y) and f3(x) are C*.
Consequently, if (z*,0) is a zero of the system g1 (x,y) = g2(z,y) = 0, and the Jacobian

dg1  Og1

or Oy dfs
det = == 0
“ g2 09 A |, 70

9r Oy /(g y)=(a~,0)
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then the Brouwer degree dg(f,V, (x*,0)) # 0 being V' a convenient open neighborhood of (x*,0),
see again for more details on the Brouwer degree [3] and [9]. Hence, by Theorem 7 it follows
that for e # 0 sufficiently small the discontinuous differential system (7) has a periodic solution
(x(8,¢),y(0,¢)) such that (x(0,¢),y(0,e)) — (x*,0) when e — 0. So, the proposition follows. O

Proof of Proposition 4. The discontinuous differential system (8) is in the form (13) for applying
the averaging theory described in Theorem 7, where the variables of Theorem 7 now are t = 6,
T=2mx= (xvy)v M = h_l(o) = {xy = 0}7 F(tvx) = F(Q,:C,y) = (F1(97m7y),F2(97x,y))
where

Fl(ovxay) =Y,

Fy(0,2,y) = asign(zy)G(0,z,y) + H(,z,y).

By applying Theorem 7 to the discontinuous differential system (8) and we obtain

2
Fa,y) = /0 F(0, 2, y)db,

where f($7y) = (gl(xvy)7g2(xay)) Wlth

g1(x,y) =y,
27 37/2

/2
ga(a,y) = H(e,x,y)de—a</ G(e,x,y>d9+/
0 T

G0, z,y) d9>
0

T 27
+a ( G(0,x,y)do + G0, z,y) d€> )
/2 37/2
A solution (z*,y*) of the system g;(x,y) = g2(x,y) = 0 satisfies y* = 0 and z* is a solution
of fs(x) = 0 where this function is the one defined in the statement of Proposition 4. Since
g1(z,y), g2(w,y) and f4(x) are C', and if (*,0) is a zero of the system g;(z,y) = g2(z,y) = 0,
then the Jacobian

891 891

dr Oy dfs
det = — 0
¢ dgs g dz |, _ - 70,

Ox 9y /o y)=(a0)
then the Brouwer degree dp(f,V, (z*,0)) # 0 being V a convenient open neighborhood of (z*,0).
Therefore, by Theorem 7 it follows that for e £ 0 sufficiently small the discontinuous differential
system (8) has a periodic solution (z(6,¢),y(0,¢)) such that (z(0,¢),y(0,¢)) — (2*,0) when
€ — 0. In short, the proposition is proved. ([

3. PROOF OF THE APPLICATIONS

Here we prove the two corollaries.

Proof of Corollary 5. The autonomous discontinuous differential equation of second order (9) is
a particular case of equation (1) with

GO,u,v') =uu’ and H(O,u,u')= Sy
7r

Then computing for equation (9) the function f;(r) given in the statement of Proposition 1 we
get

fi(r) = —%r(élr —3).
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Hence, f1(r) = 0 has a unique positive simple root r = 3/4. Going back through the changes of
variables described in the proof of Proposition 1, we obtain the result stated in the corollary. [

Proof of Corollary 6. The non—autonomous discontinuous differential equation of second order
(10) is a particular case of equation (3) with

0 2
G(O,r,r")y=(2-3r) cos 5 and H(0,r,r") = —Q r?.
T
Then computing for equation (10) the function f3(z) given in the statement of Proposition 3 we
get

f3(z) = —2v2a(z — 2)(z — 1).

Therefore, f3(z) = 0 has two simple roots x = 1 and z = 2. Going back through the changes of
variables described in the proof of Proposition 3, it follows the result stated in the corollary. [

APPENDIX: AVERAGING THEORY OF FIRST ORDER FOR DISCONTINUOUS DIFFERENTIAL
SYSTEMS

We need the following recent result of [8] on averaging theory for computing periodic orbits of
discontinuous differential systems. Its proof uses the theory on the Brouwer degree dg(f,V,0)
for finite dimensional spaces (see the appendix A of [8] for a definition of the Brouwer degree),
and it is based on the averaging theory for continuous non—-smooth differential system stated in
[4].

Theorem 7. We consider the following discontinuous differential system
(13) X' (t) = eF(t,x) + e*R(t,x, ¢),
with

F(t,x) = Fi(t,x) + sign(h(t, x)) F2(t,x),

R(t7 X, 5) =R (t7 X, 5) + Sign(h’(t7 x))RQ (t7 X, 5)7
where F1,F5 : Rx D — R", Ry, Ry : Rx D x (—¢9,e9) = R™ and h : Rx D — R are continuous
functions, T—periodic in the variable t and D is an open subset of R™. We also suppose that h
is a C* function having 0 as a regular value. Denote by M = h~=*(0), by ¥ = {0} x D &€ M, by

Yo =X\M # @, and its elements by z = (0, z) ¢ M.
Define the averaged function f: D — R"™ as

T
(14) F(x) = /O F(t,x)dt.

We assume the following three conditions.

(i) Fi1, Fy, R1, Ry and h are locally L-Lipschitz with respect to x;
(i) for a € Lo with f(a) =0, there exist a neighbourhood V' of a such that f(z) # 0 for all
z € V\{a} and dp(f,V,0) # 0.
(iii) If Oh/Ot(to, z0) = O for some (to,z0) € M, then
((Vxh, F1>2 — <Vxh, F2>2)(t0, Z()) > 0.

Then, for || > 0 sufficiently small, there exists a T—periodic solution X(-,€) of system (13) such
that x(0,¢) = a as € = 0.

DOTI: 10.2140/gt.2001.5.399
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ABELIAN SINGULARITIES OF HOLOMORPHIC LIE-FOLIATIONS

ALBETA MAFRA AND BRUNO SCARDUA

ABSTRACT. We study holomorphic foliations with generic singularities and Lie group trans-
verse structure outside of some invariant codimension one analytic subset. We introduce the
concept of abelian singularity and prove that, for this type of singularities, the foliation is log-
arithmic. The Lie transverse structure is then used to extend the local (logarithmic) normal
form from a neighborhood of the singularity, to the whole manifold.

1. INTRODUCTION

Foliations with Lie transverse structure are among the simplest constructive examples of
foliations. They are however a natural object when one considers the possible applications of the
theory of foliations in the classification of manifolds and dynamical systems. By a foliation with a
Lie group transverse structure we mean a foliation that is given by an atlas of submersions taking
values on a given Lie group G and with transition maps given by restrictions of left-translations
on the group G. Such a foliation will be called a G-foliation. The theory of G-foliations is a
well-developed subject and follows the original work of Blumenthal [2].

In the present work we study the possible Lie transverse structures associated to holomorphic
foliations with singularities. This study initiated in [6] where we prove that a one-dimensional
holomorphic foliation with generic singularities in dimension 3 and having a Lie transverse
structure, outside of some analytic invariant subset of codimension one, is logarithmic.

As a consequence of our results, we conclude that, in dimension two, the presence of generic
singularities forces the transverse structure to be abelian. The exact sense of the term generic is
given below. We stress that our results are first steps in the comprehension of the possible Lie
group for holomorphic foliations with singularities.

Abelian singularities. Let F be a germ of a one-dimensional foliation at the origin 0 € C™.
We recall that F is linearizable without resonances if it is given in some neighborhood U of
0 € C™ by a holomorphic vector field X which is linearizable as

- 0
X=) Nzjm— (1)
; 0%
j=1
with eigenvalues A1, --- , A\, satisfying the following non-resonance hypothesis:
Ifny,--- ,n,, €7Z are such that
m
Z nj)\j = 0,
j=1
then ny =ng =---=n,, = 0.

Now we consider a (m — r)-dimensional holomorphic foliation with singularities F in a con-
nected open subset V' C C™. Denote by sing(F) C V the singular set of 7. The following
definition is motivated by the two dimensional case (cf. Proposition 1):
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Definition 1 (abelian singularity). A (m — r)-dimensional singularity p € sing(F) C C™ is
said to be abelian if F is given by a system of commuting vector fields Xy,--- , X,,—, defined
in a neighborhood U of p such that Xi,---, X,,_, vanish at p and are linearly independent off
sing(F) NU. The singularity p € sing(F) is generic if we can choose the system above such that:

m P
(i) Each vector field is of the form X} = Zl A?Zja%j +h.o.t..
j:

(ii) The m x (m—r) matrix A = ()\é?), where j = 1,....,mand k = 1,...,m — r, is nonresonant
in the following sense: the set of its (m — r) x (m — r) minor determinants is linearly
independent over the integer numbers.

(iii) Some vector field X; is nonresonant and analytically linearizable at the origin.

Remark 1. Regarding the notions above we have:

(1) A germ of a singular holomorphic vector field X at the origin 0 € C™ is in the Poincaré
domain if the convex hull of its eigenvalues does not the origin 0 € C. Otherwise it is
in the Siegel domain. The so called Poincaré-Dulac theorem states that a Poincaré type
singularity is analytically linearizable in the nonresonant case ([1]). In the generic case,
a nonresonant Siegel type singularity is also linearizable ([5]).

(2) If F has dimension one then the singularity is generic if and only if it is generated by a
generic vector field.

In this paper we consider the case where F has a G-transverse structure outside of some
analytic codimension one subset A such that each irreducible component of A contains the
origin 0 € C™. In this case, thanks to the linearization hypothesis, it is natural to assume that
the germ of such a subset A at the origin is the germ of a union of coordinate hyperplanes.

A codimension r holomorphic foliation with singularities in a complex manifold V' is logarith-
mic if it is given by a system of closed meromorphic one-forms with simple poles {ws, ...,w;,} in
V. In this paper we prove:

Theorem 1. Let F be a holomorphic foliation defined in an open connected neighborhood V' of
the origin 0 € C™, such that F has an abelian generic singularity at the origin. Assume that F
has a G-transverse structure outside of some invariant codimension one analytic subset A C 'V,
such that each irreducible component of A contains the origin. Then F is a logarithmic foliation.

Remark 2. Theorem 1 contains the case of dimension two foliations (cf. Proposition 1) and
of codimension one foliations (cf. [3]). We highlight the fact that the conclusion of Theorem 1
states that the foliation is logarithmic in the whole manifold V. From Lemma 1 we will see that
the germ of singularity induced by the foliation at the origin, is already a germ of a logarithmic
foliation. Thus, the main role of the Lie transverse structure is to extend this local (logarithmic)
normal form from a neighborhood of the origin, to the manifold V.

2. GENERIC ABELIAN SINGULARITIES

In what follows we motivate and prove some results about the notion of abelian singularity.
The next proposition motivates our approach.

Proposition 1. Let { A1, A} be an integrable system of linear vector fields on C™. Assume that
Ay and Ay are nonresonant. Then Ay and Ay commute. Indeed, Ay and As are simultaneously
diagonalizable.

Proof. Write A = Ay = (fi;){"—,. By hypothesis A is nonresonant and therefore diagonalizable.
Thus we may assume that A, is in the diagonal form D with eigenvalues dy,...,d,,. Also by
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hypothesis [4, D] = ¢1 A + c2 D, for some holomorphic functions ¢y, ¢a defined in a neighborhood
of the origin 0 € C™.

fuidi fiede ... findm
fizdi  foada ... fondm
AD = . . ) )
fnldl fn2d2 ‘e fnndm
and
firdy  fiady ... fiads
forda  foada ... fondo
DA = ) ) , )
and
0 le(dQ_dl) fln(dm_dl)
fo1(dy — da) 0 coo Jon(dpm — do)
AD — DA = . . . .
fnl(dl _dm) fn2(d2 _dm) 0
On the other hand
c1fi1 + cady c1fi2 c1fin
c1fa cifoa +cada ... c1fon
1A+ D = . .
clfnl lenQ e lenn + Cde

From AD — DA = ¢1 A + ¢co D we obtain:

c1fij = fij(dj —di), erfii = fii(di — dj)
Assume f;; # 0 for some 4, j. Then ¢; = d; — d;. Notice that if also f;; # 0 then ¢; = d; — d;
and therefore d; = d;, contradiction. Therefore, f;; #0 = fj; = 0.

Given now an index k € {1,...,n}, as before we have f; = 0 or fr; = 0. If fir # 0 we get
c1 = dy — d; and therefore dy, — d; = d; —d; and thus dy — 2d; + d; = 0, contradiction. If f; # 0
then ¢; = d; —dj, and thus d; —d; = d; —dj,, that implies d; = d, again a contradiction provided
that k # j. We conclude that f;; = 0 for all k # i and fx; = 0, Vk # j. This means that, except
for the elements f;; on the diagonal of A, at most one element f;; is different from zero. Since
by hypothesis A; = A is also nonresonant and diagonalizable, we conclude that A is also in the
diagonal form and therefore A and D commute. O

A germ of a codimension one holomorphic foliation singularity at the origin is given in a
neighborhood V' of the origin 0 € C™ by an integrable holomorphic one-form w. We can write
w = Wy, + wy41 + --- as a sum of homogeneous one-forms, where w, is the first nonzero jet
of w. According to Cerveau-Mattei [3], under generic conditions on the coefficients of w,, the
foliation is given by an integrable system of n — 1 commuting vector fields, all of them with



194 ALBETA MAFRA AND BRUNO SCARDUA

non-degenerate linear part at the origin. By generic we mean, for an open dense Zariski subset
of the affine space of coefficients of w, (see [3] in a more precise description).

In general, abelian singularities are linearizable, i.e., defined by simultaneously linearizable
commuting vector fields, as the following proposition shows:

Proposition 2. An abelian singularity is analytically linearizable provided that it is defined by
commuting vector fields one of which has an analytically linearizable nonresonant singularity.

Proof. Tt is enough to prove that given two commuting vector fields X and Y in a neighborhood U
of 0 € C™, and such that X has an analytically linearizable nonresonant singularity at 0 € C™
then X and Y are simultaneously linearizable in a neighborhood of the origin. In fact, in a
suitable local chart x = (21, - x,,) we have

X:Zijj£j7 Y:Zbi(x)am, X Y] =) ZAJ x; a —)\ibi(ac) o
j:]- i 7 3

i=1 \j=1

Since [X,Y] = 0 we get

Z G L 3 _/\ibi(x):Q

fori=1,2,---,m
We write b; in its Laurent series expansion in the variable z

R (] Iy Im
bi= Y. g eal

[(l1,.eslim) [0
ob; -
S R W
T ) 10
By hypothesis X is nonresonant. Therefore Z;.n:ll —N#0and Y = Z T 88 (]

j=1

Let now X be a linearizable vector field in neighborhood U of the origin where X can be
written as in (1). We may introduce closed meromorphic one-forms wy, - - ,wy,—1 on U, linearly
independent and holomorphic on U \ A, and such that w;(X)=0,l=1,...,m —1 by

dz;

1 4%5
a; 2
z & )
where [ = 1,---,m — 1 and the vectors a; := (a},...,al,) € C™ are suitably chosen in the
hyperplane z1A1 + ... + zp A = 0 in C™. We extend this fact by defining a nonresonant
linearizable abelian singularity as an abelian singularity which is defined by m —r simultaneously

analytically linearizable nonresonant vector fields. Using this we prove:

Lemma 1. A nonresonant linearizable abelian singularity is a germ of a logarithmic singularity.

Proof. In fact, the singularity is given by a system of vector fields X(y) = Apy, where
Ay, € GL(m,C) is a diagonal matrix for each k =1,2,--- ;m —r. If

o0
A= 0 ... 0
0 0 M\

m
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we define 7 one-forms wy, -+ ,w, on U \ A as in (2). Condition w;(Xy) = 0 is equivalent to the
following system of equations

Za%?:(}, Il=1,---,r (3)
j=1

Set A, = ()\’f, e ,)\ﬁl) € C™ and let P, C C™ be the hyperplane given by
Po=1q (21, ,2m) €C™ Z)\?zj =0
j=1

Then (3) is equivalent to Xk € Pj. Because the vector fields X}, are linearly independent off the
singular set of the foliation, which is of codimension > 2, the vectors Xl e ,Xm_r are linearly
independent in C™ and therefore the hyperplanes Py, - - - , P,,_, intersect transversely at a linear
subspace @ = Py N---N P. C C™ of dimension m — r. Since dim(Q) = m — r, we can choose
linearly independent vectors @ := (a!,...,al,) € C™, 1 =1,...,r so that the corresponding one-

forms wy, ..., w, defined by w; = 7", aé—% satisfy w;(X%) = 0 and the system {wq,--- ,w, } has
J
maximal rank outside the set {w; A --- Aw, = 0}. Therefore F is logarithmic. d

3. PROOF OF THEOREM 1

In this section we prove Theorem 1. The starting point in our study is the following charac-
terization of G-foliations given by the classical theorem of Darboux-Lie (]2, 4]):

Darboux-Lie theorem. Let F be a G-foliation on V. Then there are one-forms 61, ...,6, in
V such that: {61, ...,0,} is a rank r integrable system which defines F and the forms satisfy the
Maurer-Cartan equation:

d@,- = Zcékgj AN Hk (4)
j.k
The numbers {cfj} are the structure constants of a Lie algebra basis of G.
If F,V and G are complex (holomorphic) then the 0; can be taken holomorphic.

The proof of Theorem 1 is also based on the following two lemmas:

Lemma 2. Let {w1,...,w,} be a mazimal rank system of logarithmic one-forms, say

m

dz;
w; = E aéfj,
Zj

j=1

defined in an open connected neighborhood U of the origin 0 € C™. Assume that the coefficients
matriz B = (aé)j’l is nonresonant in the following sense: the set of its (m —r) x (m —r) minor
determinants is linearly independent over the integer numbers. Let f: U — C be a holomorphic
function such that df Nwy A ... ANw, =0 in U. Then f is constant in U.

_ 1 dzji N\...A\dzj,. . .\ dzj A Ndzj,
Proof. We have wy A ... Aw, = _ E aj, ..l W = 3 _ A(jl’m’]T)W
J1sedr J1<...<Jr
where A(j1, ..., jr) is the 7 X 7 minor determinant of the matriz A = (a);, obtained by consid-
ering the lines j; < ... < j,.
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Write f(z1, .y 2m) = 2, fil,“ﬂmzil...z“"r. Then

m
i1yeeeyim

m
. in _ie—1 -
df = g E W fir,im?l 2y e 2prdzg.

O=141,rim
Therefore

del VANAN deT

Zjiee-Rj

m
df/\wl/\.../\wr :Z Z Z'[fil_’mZ‘mzil..Zé['_l....Z:r’L"ng/\ Z A(jl,...,jr)

=11, im 1< <G

"

and then

dze A dzj, N...Ndzj,

7 Zj1--Rj

df Nwi Ao A wyp = Z Z Z B0 fin i A1y ey i) 2502y 2

=1141,..tm J1<...<Jr

r

l=m
; , Codzi Ao Ndzi Nd
df A hehwy = Y 3 (D AG i) Firi 2l iy S Zor [N ORE

1 genestm J1< oo <Jpy =1 J1 Ir

Then df A Awg A ... Aw, = 0 implies

Fis i ( S (1) 3 A1, 3, ) =0

ce{1,...m¥I\{j1,..-,dr }

for all j; < ... < j, and for all 4y, ...,4,,. Therefore, if f;, . ; # 0 then we have

Z (_1)Zi€A(.j17"'7jT) =0.
‘ge{l""am}\{jlv-wjr}

By the nonresonance hypothesis this occurs only for (i1, ...,4,) = (0,...,0).
O

Lemma 3. Let B = (a?)j7k be a r x m matriz and let A = ()\f) am x (m —r) matriz, such
that BA = 0. Denote by A(B;{k,...,k.}) the r X r minor determinant obtained by choosing
the columns (k1, ..., k) in the matriz B and by A(A; {k1, ..., k- }°) the (m —r) X (m — r) minor
determinant obtained by deleting in A the lines k1, ..., k.. Then for any pair of choices (ki, ..., k)
and (ki1, .., k,) we have

sign(o(lfh oy /fr))
sign(a(kl, ey kr))

where sign(o(ky, ..., k) is the sign of the permutation (k1,...,kr, j1, s jm—r), where
{j1 <...<gr}={1,ccmP\ {k1,.... ks }.
Assume that each such minor determinant is nonzero. Then we have

(B; {k1, ..o kr }} — sien(o(i ~ A(B;{I?:l,...,lér})
(A (b, k) et b)) o)

In particular, if A is nonresonant then B is also nonresonant.

AB; {ky, oo ke VIA(A; {Er, o ke }) = A(B; {ky, oy ke DA(A; {Eery oy by Y6)

. A
Slgn(U(kla ey kT))A
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Proof. The proof is standard Linear Algebra. Indeed, we first write BA = 0 as above in the
following linear homogeneous system of equations

Zaé-)\fzo, le{l,---,r},ke{l,--- ,m—r}. (5)
j=1

From now on it is just Gaussian elimination process. We give a sketch for the case r = 2 and
m = 4. The general case is proved in the same way.

Write
AL
A2 H2
A =
A3 p3
Ar g
and

_ ap a2 az a4
B‘<b1 by b b4)'

From BA =0 we get

a1 + asdha +azdz +aghg =0 (6)
aipy + aspia + agps + agpy =0 (7)
bi A1 + badg + bsAs +bsAs =0 (8)
bip1 + bapio + b3piz + baprs = 0 9)

Multiplying equation (5) by by and equation (7) by —as and then summing up these resulting
equations we eliminate Ao in the first and the third equations obtaining:

(bg(Ll — agbl)/\1 + (b2a3 — a2b3))\3 + (b2a4 — a2b4))\4 =0

Eliminating in a similar way ps in the second and fourth equations we obtain

(52a1 - a21)1)u1 + (b2a3 - G2b3)u3 + (52G4 - CL254)M4 =0
Using these two equations and eliminating the term bsas — asbs we obtain

A M1 ayp a2 _ Az Mg a2 G4

A3 p3 by b2 p3 pa || ba by
Notice that, during the Gaussian elimination process, no division is performed. Thus, we do not
need to make considerations regarding whether the coefficients are zero or not. O

Proof of Theorem 1. By Proposition 2 and Lemma 1, in a small neighborhood U C V of the

m
origin the foliation is defined by a system of logarithmic one-forms wy, ..., w, where w; = > aé dzﬁ
=1 "~

and simultaneously by linear vector fields X1, ..., X,,_, of the form
Xi(z1, .., 2 )zzm:)\]-“z-i
)ty Pm — 7 ZaZi.

Since w;(Xx) = 0 we have

doalNi=0, 1e{l ol ke{l, - m—r} (10)
j=1
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Let B = (aé-)jJ be the matrix of coefficients of the forms w; and A = (/\f) the matrix of
coefficients of the vector fields Xj. From equation (10) we have BA = 0. Since A is nonresonant,
by Lemma 3, B is also nonresonant.

On the other hand, by hypothesis the foliation is a Lie-foliation in V' \ A. Let therefore
{61, -+, 6.} be a system of holomorphic one-forms in V'\ A defining F and satisfying the Maurer-
Cartan equation as stated in Darboux-Lie theorem. Since {w;};=1,..,» and {6;};=1,.., define the
same foliation outside a codimension 1 analytical subset, given by the union of A with the
singular locus of F (which has codimension > 2), it is clear that there is a holomorphic map
F: U\ A — GL(r,C) given by F'(2) = (fi;)} j—; such that

0; =Y fuw (11)
=1

Since each wy is closed we have from the above equation

r

do; = deﬂ Awy. (12)
=1
From equations (4) and (11) we have
d0; = 0 Ak =Y (Dl (Finfue — Fiefw) Jwr Awr. (13)
gk <t gk

Claim 1. We have dfiy Awy A -+ Awp—1 = 0.
Proof. Indeed, from equation (13) above we have

d0; Ao A - Awy = 0.
From this last equation and equation (12) we obtain

dfin Nwi Ao+ Awp—1 = 0.

Similarly we prove that

df,‘j N w1 JANRERWA Wm—1 = 0, VZ,] (14)

Since the matrix B of the coefficients of the forms w; is nonresonant, by Lemma 2 each

fij is constant in a neighborhood of the origin in U. On the other hand, each one-form 6; is

defined in V'\ A, and each irreducible component of A contains the origin. Therefore, by classical

Levi-Hartogs’ extension theorem (applied to each irreducible component of A) each one-form 6;
extends to A as a meromorphic one-form ©; in V. We claim:

Claim 2. Fach extension ©; is a closed meromorphic one-form with simple poles in' V.. Moreover
the polar set (©;)oo 1s contained in A.

Proof. First we observe that the extension ©); is closed by the Identity Principle (also note that
since A is a thin set, V' \ A is connected). In order to see that the poles of ©; are contained in A
it is enough to observe that ©; ans 6; coincide in V' \ A, where 6; is holomorphic. Finally, to see
that each irreducible component of A is also contained in the polar set of each ©; it is enough to
use the fact that this is true in a neighborhood of the origin and, by hypothesis, each irreducible
component of A contains the origin. O

Since each ©; is a simple poles closed meromorphic one-form in V', the foliation F is logarith-
mic in V. This ends the proof of Theorem 1. ([l
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SOME REMARKS ABOUT THE TOPOLOGY OF CORANK 2 MAP GERMS
FROM R? TO R?

J.A. MOYA-PEREZ AND J.J. NUNO-BALLESTEROS

ABSTRACT. Let f : (R%,0) — (R2,0) be a finitely determined map germ. The link of f is
obtained by taking a small enough representative f : U C R? — R? and the intersection of its
image with a small enough sphere S} centered at the origin in R2. We will use Gauss words
to classify topologically corank 2 map germs. In particular, we will center our attention in
map germs that belong to the Thom-Boardman class %20,

1. INTRODUCTION

In a previous paper [9] we defined the Gauss word, which is a complete topological invariant
for a finitely determined map germ f : (R%,0) — (R?,0) and we used it to classify corank 1
map germs. The following logical step is to try to extend this classification to germs of corank
2. This classification is also motivated by the fact that, as we will see in proposition 3.7, some
examples of links are not realizable by corank 1 map germs, even if | deg(f)| < 1 (see figure 1).

FIGURE 1.

This classification was completed for the £ Thom-Boardman class in the case of K - equiv-
alence following Mather’s techniques of classification (see for example [5]) and Nishimura proved
in [10] that, dealing with K - C° - classes, the absolute value of deg(f) becomes a complete topo-
logical invariant. In the complex case, we can find related results in [7] and a full clasification
for weighted homogeneous map germs from C2 to C? in an article of T.Gaffney and D.Mond in
[4].

The fact that we are not able to consider our germs as 1-parameter unfoldings of functions,
as we did in the corank 1 case, makes things to become much more complex. The absolute value
of the topological degree does not have to be necessarily less or equal than 1 and although our
Gauss words continue being a complete topological invariant, since their links are not constituted
as the union of 2 curves (as we did in [9]) the simplifications of letters are not allowed anymore.
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In this work, we will classify corank 2 map germs with some additional convenient restrictions.
Firstly we will suppose that f is of type £*9 (that is, f has corank 2, but the pair (f,df) has
corank 0 at the origin). Departing from this point, we will establish a prenormal form of this kind
of germs by using their A2-classes and Eisenbud-Levine formula([2]) will let us to compute their
topological degree. As final step we will consider particular cases and under some restrictions
on the number of monomials which appear in the second coordinate germ, we will obtain the
different topological classes that we have in each case.

2. THE LINK OF A FINITELY DETERMINED MAP GERM

We say that two smooth maps f: M — N and g : M’ — N’ between smooth manifolds are A-
equivalent if there exist diffeomorphisms ¢ : M — M’ and ¢ : N — N’ such that g = o fogp™L.
If ¢, are homeomorphisms instead of diffeomorphisms, then we say that f, g are topologically
equivalent.

In the same way, two smooth map germs f,g : (R%,0) — (R2 0) are A-equivalent if there
exist diffeomorphism germs ¢, : (R?,0) — (R2,0) such that g = ¥ o f o ¢~L. If ¢,¢ are
homeomorphisms instead of diffeomorphisms, then we say that f, g are topologically equivalent.

We say that f: (R%,0) — (R2,0) is k-determined if for any map germ g with the same k-jet,
we have that g is A-equivalent to f. We say that f is finitely determined if it is k-determined
for some k.

Let f : U = V be a smooth proper map, where U,V C R? are open subsets. We denote by
S(f)={p €U : Jf, =0} the singular set of f, where Jf is the Jacobian determinant. It is a
consequence of the Whitney’s work [12] that f is stable if and only if the following two conditions
hold:

(1) 0is a regular value of Jf, so that S(f) is a smooth curve in U.
(2) The restriction f|g(s) : S(f) — V is an immersion with only transverse double points,
except at isolated points, where it has simple cusps.
We denote A(f) = f(S(f)) and we define X (f) as the closure of f=X(A(f))\S(f). If f is stable,
then S(f) is a smooth plane curve and A(f), X(f) are plane curves whose only singularities are
simple cusps or transverse double points.

Given a finitely determined map germ f : (R?,0) — (R?,0), if it is real analytic, we can
consider its complexification f : (C%,0) — (C2,0). It is well known that f is also finitely
determined as a complex analytic map germ. Then, by the Mather-Gaffney geometric criterion
[11], it has an isolated instability. In other words, we can find a small enough representative
f :U — V, where U,V are open sets, such that

(1) F10) = {0},

(2) the restriction f|in o) is stable.
From the condition (2), both the cusps and the double folds are isolated points in U \ {0}. By
the curve selection lemma [6], we deduce that they are also isolated in U. Thus, we can shrink
the neighbourhood U if necessary and get a representative such that f ltn\ {0} is stable with only
simple folds. Coming back to the real map f, we have the following immediate consequence.

Corollary 2.1. Let f : (R%,0) — (R2,0) be a finitely determined map germ. Then there is a
representative f : U — V, where U,V C R? are open sets, such that

(1) f7(0) = {o},

(2) f:U =V is proper,

(3) the restriction f|iqoy 4s stable with only simple folds.
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We finish this section with an important result due to Fukuda [3], which tell us that any
finitely determined map germ, f : (R™,0) — (RP,0), with n < p, has a conic structure over its
link. In order to simplify the notation, we only state the result in our case n = p = 2.

Given € > 0, we denote:

Sl={reR: e =), DP={rcR®:|af?<c}.
and given a map germ f : (R?,0) — (R2,0) we consider a representative f : U — V and put:
S¢=17(sh), D=fHD?).

Theorem 2.2. Let f : (R?,0) — (R%,0) be a finitely determined map germ. Then, up to A-
equivalence, there is a representative f : U — V and €y > 0, such that, for any e with 0 < € < €g
we have:

(1) St is diffeomorphic to S*.

(2) The map fl|z : Sl — Sl is stable, in other words, it is a Morse function all of whose

critical values are distinct.
(3) f|1~)2 is topologically equivalent to the cone of f|§é'

Definition 2.3. Let f : (R?,0) — (R?,0) be a finitely determined map germ. We say that the
stable map f|g : S¢ — S! is the link of f, where f is a representative such that (1), (2) and (3)
of theorem 2.2 hold for any € with 0 < € < ¢y. This link is well defined, up to A-equivalence.

Since any finitely determined map germ is topologically equivalent to the cone of its link, we
have the following immediate consequence.

Corollary 2.4. Two finitely determined map germs f,g : (R%,0) — (R2,0) are topologically
equivalent if their associated links are topologically equivalent.

3. GAUSS WORDS

In this section we recall briefly (for more information and examples see [9]) how we define
an adapted version of the Gauss word in our particular case of study and some consequences of
such definition.

Definition 3.1. Let v : S — S! be a stable map, that is, such that all its singularities are of
Morse type and its critical values are distinct. We fix orientations in each S! and we also choose
base points zy € S' in the source and ag € S! in the target.

Suppose that « has r critical values labeled by r letters a1, ...,a, € S' and let us denote their
inverse images by z1,...,2z; € S'. We assume they are ordered such that ag < a; < -+ < a,
and zp < 21 < --- < z, and following the orientation of each S?.

We define a map o : {1,...,k} — {a1,...,a,,a1,...,a,} in the following way: given i €
{1,...,k}, then v(z;) = a; for some j € {1,...,r}; we define (i) = aj, if 2; is a regular
point and (i) = @j, if 2; is a singular point (i.e., the bar @; is used to distinguish whether the
inverse image of the critical value is regular or singular). We call Gauss word to the sequence
o(l)...0(k).

For instance, the link of the cusp f(z,y) = (z, zy+y>) has two critical values with four inverse
images and the associated Gauss word is abab (see figure 2).

It is obvious that the Gauss word is not uniquely determined, since it depends on the chosen
orientations and base points in each S*. Different choices will produce the following changes in
the Gauss word:

(1) a cyclic permutation in the letters aq, ..., a,;
(2) a cyclic permutation in the sequence o(1)...o(k);
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1) (2) (3)
Z3
b a

Z;

T ~a
Z1
212,232, abab
FIGURE 2.
(3) a reversion in the set of the letters aq, ..., a,;

(4) a reversion in the sequence o(1)...o(k).

We say that two Gauss words are equivalent if they are related through these four operations.
Under this equivalence, the Gauss word is now well defined.

In order to simplify the notation, given a stable map 7 : S' — S, we denote by w(y) the
associated Gauss word and by ~ the equivalence relation between Gauss words. We also denote
by deg(y) the topological degree. Then, we can state the main result of this section (see [9]).

Theorem 3.2. Let v,6 : ST — S' be two stable maps. Then v,§ are topologically equivalent if
and only if

w(y) ~ w(d), if 7,0 are singular,

| deg(y)| = |deg(d)], ifv,0 are regular.

Given a finitely determined map germ f : (R?,0) — (R2,0), we denote by w(f) the Gauss
word of its link and by deg(f) the local topological degree.

If f:(R2,0) — (R2,0) is a finitely determined map germ, then we can compute Gauss word
of the link of f just by looking at the relative position of the branches of the three curves S(f),
A(f) and X(J).

Example 3.3. Let us consider the finitely determined map germ f(z,y) = (z,y> — 2%y). The
discriminant A(f) has a tree structure with one vertex at the origin and 4 adjacent edges labeled
by 4 letters aq, ..., a4. Analogously, S(f)UX(f) has also a tree structure with one vertex at the
origin and 8 adjacent edges labeled by Zi,...,Zs. We assume that the edges are well ordered
ap < -+~ < a4 and 27 < --- < Zg with respect to the chosen base points and orientations in
the source and the target. We define the map o : {1,...,8} — {a1,...,a4,a1,...,04} in the
following way: given ¢ € {1,...,8}, then v(Z;) = a; for some j € {1,...,4}; we define o(i) = a;,
it Z; ¢ X(f) and o(3) = ay, it Z; C S(f). Then, o(1)...0(8) is equal to the Gauss word of the
link of f, obtaining in this case the word ajasa;aza3@4a3as (see figure 3).

As a direct consequence, we have the following corollary.

Corollary 3.4. Let f,g: (R%,0) — (R2,0) be two finitely determined map germs. Then, if f
and g are topologically equivalent, their links are topologically equivalent.

Now,by using theorem 3.2 and corollaries 2.4 and 3.4 we can state the following result:
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FIGURE 3.

Corollary 3.5. Let f,g: (R?,0) — (R2,0) be two finitely determined map germs. Then f,g are
topologically equivalent if and only if

w(f) = w(g), if f,g are singular outside the origin,

|deg(f)| = |deg(g)|, if f,g are reqular outside the origin.

Remark 3.6. If f is regular outside the origin and |deg(f)| = r, then f is topologically equiv-
alent to the germ z — 2", with z = = + iy.

Before finishing this section, let us state a result that will give us a necessary condition that
a stable map « : S! — S! should verify to be the link of a corank 1 map germ.

Proposition 3.7. Any finitely determined map germ f : (R?,0) — (R2,0) of corank 1, with
link v, verifies that

mlt(y) = 4 Y deg(f) =0,
1, if deg(f) = +1.
We will define the multiplicity of a stable map v : S* — S' as mult(y) = minyegs mult(p),
with mult(p) = #v~1(p).

Proof. The three possible values of the topological degree of f are a consequence of a known
result (see for example [9]). Let us suppose that f(x,y) = (2, g,(y)), with

9o(y) =" + an—a(x)y" >+ - + a1 (x)y.

If deg(f) = 0, n is even, n — 1 is odd and, as a consequence, the both curves g, g, , that will
form the link of f will have both an odd number of folds. Thus, v will not be surjective and
mult(y) = 0. If deg(f) = £1, n is odd, n — 1 is even and the union of both partial curves will
completely fill S, so mult(y) = 1. O

4. TOPOLOGICAL CLASSIFICATION OF MAP GERMS OF TYPE £.20

In this section of the chapter we will classify corank 2 map germs, f : (R?,0) — (R?,0)
which are of type %20,
First of all we will state a result that will give us two prenormal forms of map germs of this

type.
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Theorem 4.1. Let f : (R?,0) — (R2,0) a corank 2 map germ of type ¥%°. Then, f can be
written in one of the following prenormal forms:

(1) (zy, 9(z,y))
(2) (2% +y% h(=,y)),
where g,h € M3

Proof. Firstly, we know that if we consider a map germ f of type %20, its 2-jet 2 f(0) is situated
in one of the following .A2-classes (see for example [5]):

(zy, 2 +9%),  (zy,2%), (2y,0), (2®+¢%0).
Therefore, f will present one of the following forms:
(1) (zy +a(z,y),b(z,y)), with a(z,y) € M3, b(z,y) € M3
(2) (@ +y* +c(z,y),d(z,y)), with c(z,y) € M3, d(z,y) € M3
By applying Morse’s lemma we know that if we consider a function germ f : (R?,0) — (R, 0)
of the form f(z,y) = u(x,y) + v(z,y), with u(z,y) being a non degenerate quadratic form and
with v(z,y) € M3, we can choose a suitable change of coordinates
a: (R%0) — (R2%0)
(zy) = (X,Y)
such that u = foa™1.

As we have a non degenerate quadratic form in the first component, if we apply this change
of coordinates in (1) and (2), we arrive to the desired result. O

The first step to classify topologically this kind of germs will be to compute their topological
degree. Taking it into account, we state and prove the following result.
Proposition 4.2. Let f: (R?,0) — (R2,0) be a finitely determined map germ of type X>°.
(1) If f(z,y) = (zy,9(x,y)), f can have degree 0,+1 or 2.
(2) If f(z,y) = (2 + y? h(z,y)), f has degree 0.
Proof. let us prove first (2). If our germ f has as first component 22 + 2 it is not surjective.
Then, deg(f) = 0.
For (1), we can suppose, without loss of generality, that
9(z,y) = az® + by? + k(z,y)
where
p,q>2, a,b>0, and k(z,y)€ (zy).
As we know that (zy, g(x,y)) is K-equivalent to (zy, axP+by?) and that the topological degree

is a K-invariant we only need to compute the topological degree of (zy, azP + by?). We will do
it by applying Eisenbud-Levine’s formula ([2]), given by

deg(f) = Sign<’ >ga7

the signature of the quadratic form associated to a linear function ¢ : Q(f) — R defined
conveniently, with

— 82
Qf) = T fa)”
Thus, we have that
QU = —22

(zy, axP + by9)
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and a basis of this space will be given by
{]‘7x’ ‘,I/.27 R 7xp_17y7 y27 A 7yq_17 J(f)}

with J(f) = gby? — pax?.
We define the map

p: Qf) — R
J(f) — 1

1] — 0

[x] — 0

y  — 0

[zP71] — 0
Wil = 0

We will suppose that a = b = %1, generalizing the result later.

The matrix of
(et QU xQ(f) — R

(P, q) - p(pg)
with respect to the basis of Q(f) is

1 €T :L'Q N xpfl Y y2 yqfl J

1 0 0 0o - 0 0 0 0 1
1
x 0 0 0 - Fig 0 0 0 0
x? 0 0 0o - 0 0 0 0 0
o ) :
Ao xP Fog O 0 0 0 0 O1

y O 0 0 0 0 0 L
y? 0 0 0 0 0 0 0 0
y=' 10 0 0 .- 0 + 0 - 0 0
J 1 0 0o - 0 0 0 e 0 0

taking into account the following facts:

e Each element of the form 2y’ € (xy) and as a consequence is 0 in Q(f)
e Each element of the form Jz?, Jy/, zP+? 491J can be written as linear combination of
the components of f, that is, they are 0 in Q(f)
e The elements zP and y¢ can be written in the following form:
— P = FTolEpeteCEeT YY) _ FL gy 9 (4gp 4 9), with o(aP) = FL

o ip(i+(qi by pt+q ptq +q
_ _ Eqy'FprPEp(£xLy?) _ 41 p . L
yl = Tpta) = p+qJ + ta (j:xp + y‘Z)’ with @(yQ) — :I:p+q

Therefore, by computing the determinant of the matrix (I — A) we obtain the following
characteristic polynomials, depending on the parity of p and g¢:
e If p and ¢ are odd, det(zI — A) = (2% — 1)(2?
deg(f) = sign, )y = 0.

e If p and q are even, det(z] — A) = (22 — 1) (2 — W)

0, ifab>0,
+2, ifab< 0.

ptqg—2
2 and, as a consequence,

1
~ (pt9)? )

ptgq—4

(xF p—iq)(xi p—iq) and, as

a consequence, deg(f) = sign(,), = {
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e If p and ¢ have different parity, det(zl — A) = (2% — 1) (2> L) (4

EE and,

o)
as a consequence, deg(f) = sign(, ), = +1.

Let us see now that we are able to generalize this result for any a,b € R, with a,b # 0. We
will prove this by constructing a homotopy.

Let fo(z,y) = (zy, axP + by?), with a > 0 (analogous for a < 0), fi(z,y) = (zy, 2P + by?) and
we consider the family

fe(z,y) = (zy, (1 = )a + t)z” + by?),
with t € [0,1].

If we prove that for any ¢, f, *(0) = {0} and that if t = 0, f, = fo and if t = 1, f, = f1, we
will have that fo and f; are homotopic and, as a consequence, deg(fo) = deg(f1).

As (1 —t)a+t # 0 for any ¢, we will have that if we want that both terms of f; vanish, z
and y must be 0. Then, for any ¢, f; 1(0) = {0}. On the other hand, by substituting, if ¢t = 0,
ft(xvy) = (xyva'xp + byq) = fO(xvy) and if ¢ = 1, ft(xay) = (my,xp + byq) = fl(x7y)' Then, fo
and f; are homotopic and deg(fo) = deg(f1)-

Analogously, we will have that deg(zy, 2P 4 by?) = deg(zy, 2P + y9) if b > 0. Then,

deg(xy, ax? + by?) = deg(wy, xP + y?).

Now, putting together theorem 4.1 and proposition 4.2, we have the following corollary.

Corollary 4.3. Let f: (R2,0) — (R%,0) be a finitely determined map germ of type ¥2°. Then,
| deg(f)] < 2.

Proof. If f is of type X2, by theorem 4.1 it can be written in the form (xy, g(z,y)) or in the
form (22 +y2, h(z,y)), and we have just seen that the absolute value of their topological degree
is less or equal than 2. O

Before starting to compute the different topological classes of this kind of germs, we should
remember the concepts of admissible weights and weighted degrees of a weighted homogeneous
map germ which were introduced by Gaffney and Mond in [4] and will be very helpful for us in
our classification.

Definition 4.4. Let f : (R?,0) — (R%,0) be a weighted homogeneous map germ. We will
say that its weights wy,ws and its weighted degrees dy,ds are admissible if they verify the two
following conditions:
(1) (w1, w2) = (d1,d2) =1
(2) w; = we =1 (homogeneous case) or d; = kjwiwsy, dy = kswiws + w1 + we (type 1) or
d1 = k1w1w2 + w1, dg = k2w1w2 =+ wo (typ@ 2)

Once we have introduced this concept, let us see its relation with finitely determined map
germs.

Proposition 4.5. Let f: (R2,0) — (R2,0) be a weighted homogeneous finitely determined map
germ. Then, wy,ws,dy,ds must be admissible.

Proof. Given a weighted homogeneous finitely determined map germ f : (R2,0) — (R2,0),
since it is real analytic, we can consider its complexification f : (C2,0) — (C2,0). Tt is well
known that f is also weighted homogeneous and finitely determined as a complex analytic map
germ.Then, by applying [Proposition 5.3, 4], its weights wy, ws and weighted degrees dy, ds must
be admissible for f , and, as a consequence, for f. O
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Remark 4.6. Let us see how we apply this result to a finitely determined map germ in our
particular case of study.

o f(z,y) = (zy,9(x,y))
If f is weighted homogeneous, that is,

g(‘T7 y) = Z a; (;L‘wQ )i(ywl )p—i
i=0

we must have that (w1, w2) = (wy + wa, pwiwse) = 1. Departing from the basis that
w1, we must be relatively primes, we have the following consequences, according to the
value of p.

— If p=1, f is generically finitely determined.

— If p=2, f won’t be finitely determined if w, and ws are odd.

— If p=3, f won’t be finitely determined if wy, + wo = 3k, with k € N.

— In general, if p = tJ* ... t%", f won’t be finitely determined if there exists ¢ such

that wy + we = kt;, with 1 <i <m and k € N.
o f(z,y) = (2° +y* h(z,y))

Because of the first component, we are only able to study this kind of germ in the

homogeneous case wi = wo = 1, with

p
h(z,y) = Z ax'y?”’
i=0

and (2,p) = 1. We arrive quickly to the conclusion that if p = 2k, f won’t be finitely
determined.

4.1. Germs with prenormal form (zy,g(z,y)). We consider the special case of weighted
homogeneous map germs, that is,

gz y) =Y ai(x") (y* )P,
1=0

with (w; +ws, pwiwsy) being the weighted degrees of our germ and (wy, ws) = 1. We also suppose
that p < 3. Then, the following results will give us a complete topological classification of these
particular cases.

Theorem 4.7. (p=1) Let f: (R?,0) — (R?,0) be a finitely determined map germ of corank 2
of the form f(z,y) = (zy, ax™2 + by**). Then,

(1) if wy,ws are odd, f is topologically equivalent to the fold (x,y?),

(2) if wi,wy have different parity, f is topologically equivalent to the cusp (x,xy + 3°).

Proof. Let us prove first (1).

If wq,wy are odd, we know by the proof of theorem 4.2 that deg(f) = 0. In addition to this,
if we compute its singular set, we get the equation w;by™* — weaz™? = 0. Since this equation
is irreducible, we can conclude that S(f), and, as a consequence A(f), only present a single
branch.

Let us see that we are going to have a single topological class which is the class of the fold.
To prove this is enough to see that for any a,b € R\ {0} there are points where f does not have
any inverse image.

Let us consider the point (1,0). We get the equations 2y = 1 and az™2 4 by™* = 0, obtaining

that
B ;(1 1/(w1+ws)
Y= b .
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Thus, if ab > 0 f does not have any inverse image and the result is proved (see figure 4).

A(f) link(f) A(f) link(f)

AN NG

FIGURE 4. FIGURE 5.

Analogously, if we take now the point (—1,0) we have that every map germ f with ab < 0
does not have any inverse image either and we arrive to the conclusion again that we have a
single configuration of inverse images in the discriminant curve, which is the one of the fold.

If wy and wy are of distinct parity, applying an analogous procedure as in (1) to prove the

existence of points with a single inverse image, we obtain the desired result (see figure 5).
O

Theorem 4.8. (p=2) Let f: (R?,0) — (R?,0) be a finitely determined map germ of corank 2
of the form f(x,y) = (vy, az?¥? 4+ br*2y“1 + cy**1). Then,
1 if wy,wo have the same parity, f is not finitely determined,
2 if wy,ws have distinct parity, we have three cases,
o if (w1 — wy)?b? + 16wiwrac > 0,
— f s topologically equivalent to the map germ (wy,z% + zy* +y*) if ac > 0
— £ is topologically equivalent to the map germ (vy,x* + 20xy? — y*) if ac < 0
o if (w1 — w2)?b? + 16wiweac < 0, f is topologically equivalent to the map germ
(zy, 2* + zy® — y*)
o if (wy — wy)?b? + 16wiwaac = 0, f is not finitely determined.

Proof. If wy,ws are both even or odd the result follows from remark 4.6. Let us suppose that
w1 and wy have different parity. The Jacobian determinant is given by

J(f) = —2waaz®"* + b(wy — wa)z Y™ + 2wicy™™*,
that can be factorized in the form
—2w (" — Ayt ) (@ — Aoy™),

with A; = M\i(a,b,c,wi,we) € C, i = 1,2. These \; are obtained by solving the quadratic
equation given by the Jacobian determinant, whose discriminant is

(w1 — wy)?b? + 16wiwoac = 0.

Then, if this discriminant is positive we have two different real solutions for \; and as a conse-
quence two branches in our singular set S(f), if it is negative our singular set is empty outside
of the origin and in the case that the discriminant vanishes, Ay = A2 and f won'’t be finitely de-
termined. If the discriminant is negative, by remark 3.6 and proposition 4.2, taking into account
that ac must be necessarily negative, we have that f will be topologically equivalent to the germ
(ry, 2% — y?). Since this germ is not finitely determined we can choose another member of this
topological class that is finitely determined. let us take, for example, (zy, 22 + zy? — y*).
Thus, we center our attention in the case (w; — wg)Qb2 + 16wiwsoac > 0. If we call

Ci=x"? = \y“r =0
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for ¢ = 1,2, and apply the coordinate changes
r = at™?
y = pt>

Floi(t) = (@Bt (ad} + bA; + ¢)t*1"?),

whose derivative never vanishes out of 0 and it will present double folds if and only if a5 = 0,
which is impossible. Let us observe that these curves are going to be symmetrical with respect
to the y-axis (figure 6). From this point, we must consider two different cases:

we have that

A

FIGURE 6.

e If ac > 0, by proposition 4.2 we know that deg(f) = 0. Taking into account that our
discriminant set has 2 branches and the link of f can’t have more than one connected
component, if we are able to prove that for any b we have points with no inverse images,
we finish.

If we consider the point (0, —1) we obtain the equations

ry=0 and az®"? 4 ba¥2y" 4 eyt = —1,

getting the equality y = (;01)1/(2101) if 2 =0and z = (’71)1/(2“]2) if y = 0. In both
cases if a and c are positive the equalities don’t have any real solution. Thus, f does not
present any inverse image (see figure 7).

A

FIGURE 7.

Considering the point (0,1) and applying a totally analogous procedure we arrive
to the conclusion that if a,c < 0 f does not present any inverse image either (see
figure 8). Then, we have in both cases a single configuration of inverse images in the
discriminant, obtaining the associated link and Gauss word that appear in figure 9. Thus,
f is topologically equivalent to the known corank 1 normal form (x, y* —zy? —22y). If we
want to take a normal form of corank 2 we can choose, for example, (zy, 2% + zy? + y*).
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A(f)

FIGURE 8.

¢ adbc

FIGURE 9.

e If ac < 0, using again proposition 4.2, we know that deg(f) = +2. Taking into account
that we are dealing with a map germ whose discriminant only has two branches if we
are able to prove that the maximum number of inverse images of f is 4 we finish.

Let us consider the equations

zy=d and az??? + bxr*2yt + cy2“’1 =e,
with (d,e) € R?. From here, we get the equality
Cy2(w1+w2) + bdeyw1+w2 _ ey2w2 + ad2w2 —0.

Applying Descartes method and using the hypothesis ac < 0 we arrive to the conclusion
that we can have three sign changes for ¥ > 0 in the best of the cases and since all the
exponents are even except wj + ws, this is the only term whose sign is going to change
when we consider y < 0. Then, we will have in this last case a single inverse image and
a total of 4 inverse images, as we wanted to prove.

Thus, the only possible configuration of the inverse images in the discriminant of a
map germ of this type will be the one that appears in figure 10, having its correspondent
associated link and Gauss word (figure 11).

A(f)

FiGURE 10.
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a
b
ababcdcdabcd
c
d
FIGURE 11.

To finish, let us choose a representative of this topological class, for example,
(zy, x* 4 20xy® — y*).
O

Theorem 4.9. (p=3) Let f: (R?,0) — (R?,0) be a finitely determined map germ of corank 2
of the form f(x,y) = (xy, az3¥? 4+ br?W2yWt + cx29?Wr + dy3¥1). let us denote by

(2ur ;wg)c - ((wl —32w2)b)2,

A = —3wsa
(w1 — 2ws2)b (2wy — wa)c
3 3 ’

2
o (wy —32w2)b3w1d_ <(2w1 ;wg)c)

B = —3wqadwid —

Then:

(1) Let us suppose that wy,wq have different parity,
o if B2 —4AC >0, f is topologically equivalent to the simple cusp (x,zy + y>),
o if B2 —4AC <0, f is topologically equivalent to one of the map germs that appear
in table 1,
e if B2 —4AC =0, f is not finitely determined.
(2) In the case that wy,ws are both odd,
o if B2 —4AC > 0, f is topologically equivalent to one of the map germs that appear
in the table 2,
o if B2 —4AC < 0, f is topologically equivalent to one of the map germs that appear
in table 3,
o if B2 —4AC =0, f is not finitely determined.

Proof. If we compute the Jacobian determinant of f we get
Jf(z,y) = —3waaz®? + (wy — 2w2)bx®2y™* + (2w — wo)ex™2y*™* + 3w, dy>**.
Let us realize that if we make the coordinate changes

T =z

w1

<
I
<

we get the cubic form

Jf(Z,7) = —3w2aT> + (wy — 2w2)bT?G + (2w1 — wo)cTY> + 3w, dy°>.
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Degree Germ Associated link
a
f
d
1 (zy 26 + 7x4y3 + 8x2y6 + y9) ababcdcdefef
(wy, 25 + 2%y + 9229° + 4?)
(zy, 28 — 2y3 + 7225 + 49) abcbedefedebabededef
TABLE 1.
Degree Germ Associated link
a
0 (z,9%) ab
b
a
(zy, 73 — 223 — 215 + 1) ababab

TABLE 2.

213

From this point we apply a known result (see for example [5]) which tell us that a cubic form
will be of symbolic, hyperbolic, parabolic or elliptic type if and only if its associated quadratic
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Degree Germ Associated link

@ cacbedfded
0 | (zy,2® —a®yP +30y° +4°) | ° f

(zy, @3 — 6229 + day® + 1) abcdcedefedcbabafef

(I% 3+ 61’23/3 + 6xy6 + y9) abcdedcdefedcbedeb
TABLE 3.

form obtained by computing the Hessian determinant is of symbolic, hyperbolic, parabolic or
elliptic type respectively. Thus, if we compute the Hessian determinant of Jf(Z,y) we get the
quadratic form AZ? 4+ B7y + Cy? with A, B, C depending on the values of the initial coefficients
a, b, c,d and of the weights wy,ws and undoing the coordinate changes we made earlier we get
the function Az?¥2 + Bx™2y®t 4+ Cy?*¥* which we will use to determine the different cases of
study. Therefore, we have the following possibilities:

(1) Let us suppose that wy and we have different parity. Firstly, if we consider as we did in
the case p = 2 the coordinate changes

r = at™!

y = pt>
together with the image of the restriction of f to each one of the curves of the singular
set, C;, we get

fieaw () = (@Bt™ T2, (aX] + bAF + eX; + )t v2),

realizing that each one of these branches is symmetric with respect to the y-axis. Now, let
us see the different configurations of inverse images that we can have in the discriminant,
in order to obtain the distinct topological classes. As first step we will prove that
#f7Yz) <5,z € R2

Let us take a point (e, f) € R? and let us consider the equations

Ty =€
a$3w2 + be'wgywl + cxwngwl +dy3w1 — f‘

€

Taking in the first equation x = £, with y # 0 and substituting we get

Yy
€ 3’(1)2 € 2’[1)2 w1 € w2 271)1 371)1 —
a(-) er(;) Y +C(§) g+ dyTt =

Y
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As last step we multiply both sides of the equation by 3“2, obtaining the final equation
dy3(1U1+w2) + CewzyQ(w1+w2) — fyPUr 4 pe2wzywitwz 4 gedwa — ()

Now, putting in order the monomials according to their weighted degree and taking
into account that the order of appearance of (¢, —f,b) can suffer variations due to the
different values of (wy,ws), we apply Descartes rule of signs. Since we are working with a
a polynomial consisting of 5 monomials, the worst configuration (with a biggest number
of inverse images) will be given by + — + — 4+. Then, we will have at most 4 inverse
images for y > 0 or y < 0 indistinctly(let us take y > 0). If y < 0, taking into account
the parity of the weighted degrees of the monomials, we have the configuration — ——++
(or — — + + 4+, depending on the parity of ws), obtaining a single inverse image and a
total of 5 inverse images as we wanted to prove. If (¢, —f, b) would appear in a distinct
order, by applying an analogous procedure we would arrive to the same result.

Secondly, we are going to prove that our germ f is always going to have points with
a single inverse image and points with 3 inverse images. To do this we take a point
(0, f) € R? and consider the equations

zy =0
311)2 21.[)2 w1 w2 2w1 3w1 —
ax>? 4+ br=2y" 4 cx2y=t 4 dy°t = f.

Since xy vanishes, z or y must be 0 and using the second equation we get in the first case
£\ Bw) ) £\ Bws) . _ '
y=1\4% and in the second case x = | % . Therefore, if w; is even and wy is

odd we will have 3 inverse images if fd > 0 and a single one if fd < 0; analogously, if w,
is odd and ws is even we will have 3 inverse images if fa > 0 and a single one if fa < 0.
Then, from this point, what we know for sure is that the sectors of our bifurcation set
in the image of f created by the discriminant curves that contain the y-axis are going
to have one of them 3 inverse images and the other, a single one.

With all these previous calculations we are now in conditions to obtain the different

topological classes.

o If B2 —4AC > 0, we have a single branch in our singular set and as a consequence,
the only possible configuration of inverse images in its single discriminant curve is
the one that appear in figure 12, which is clearly identified with the Gauss word
and the link of the simple cusp (figure 13). Then, f is topologically equivalent to
the simple cusp.

abab

FIGURE 12. FIGURE 13.

o If B2 — 4AC < 0 we have three branches and two possible configurations of in-
verse images in the discriminant curves (figure 14), obtaining in the first case
the associated link and Gauss word that appears in figure 15 , with normal form
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(xy, 2% + T2y3 + 82%y5 + »°) and in the second case the two different topological
classes that appear in figure 16, having as normal forms (zy, 26422493+ 92296 +4°)
and (zy, 2% — 2%y3 + 7225 + 9°) respectively.

FIGURE 14.

ababcdcdefef

FIGURE 15.

—

abcbabcdedcbedefedef  abebedefedcbabededef

FIGURE 16.

o If B2 — 4AC = 0 we will have a non reduced component in our singular set and f
won’t be finitely determined.
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(2) If wy and we are odd, we consider again the coordinate changes

r = at™?
{y = pt*=
together with the image of the restriction of f to each one of the curves of the singular
set, C;. In this case, these images are symmetric with respect to the x-axis. Now, let us
see the different configurations of inverse images that we can have in the discriminant, in
order to obtain the distinct topological classes. Firstly, we will prove that # f~1(z) <6,
Vz € R2.
Following a totally analogous procedure to the case of weights with different parity,
taking a point (e, f) € R? we arrive to the equation

dyS(w1+w2) 4 Cew2y2(w1+w2) _ fy3w2 4 beQwalerwg + a63w2 — 0

and applying Descartes method we conclude that points situated in the image of f are
going to present 6 inverse images at most.

Let us see now that f is always going to have points with 2 inverse images in the y-
axis. To prove this, we consider a point (0, f) € R2. Since the first component of f must

| N P R N
vanish we get the equalities y = (8) , with a single inverse image ( 0, (E)

a a

)1/(3102)

f . . . . f 1/(3w2) .
and r = (f , with a single inverse image <7) ,0 ], getting a total of 2

inverse images, as we wanted to prove.

With all these previous remarks we are in conditions of giving a restricted list of the

possible distribution of inverse images that we can have in the discriminant curves.

e If B2—4AC > 0 our singular set and as a consequence the discriminant has a single
real branch. Therefore, we only have two possible distributions of inverse images
(figure 17), getting in the first case the link and Gauss word that appear in the
left hand side of figure 18, with the associated normal form of the fold (x,%?), and
in the last case the one that appear in the right hand side of figure 18, with the
associated normal form (zy, 23 — 22y® — 25 + ¢?).

<

FIGURE 17.

o If B2 — 4AC < 0 our singular set, and as a consequence the discriminant, has 3
distinct real branches and the initial number of possible configurations of inverse
images in the discriminant is much bigger (see figure 19). Let us see that (d) and
(e) can’t occur.
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FIGURE 18.

FIGURE 19.

If we had the configuration of (d), we would have points of the form (e,0) € R?
with 6 inverse images. let us suppose that e > 0. We obtain the equation

dyB(witwe) 4 pewzg2(witwe) 4 polwrgwitws 4 gedws — ()

If we apply Descartes method to this polynomial, the only possible signs configura-
tion to get 6 inverse images is + — +— for y > 0, obtaining + — +— for y < 0. If (d)
was possible, taking a point of the form (e,0) with e < 0 we should have 4 inverse
images. But this is impossible because applying again Descartes method and using
the sign of coefficients (a, b, ¢, d) we have had to choose to obtain 6 inverse images
when e > 0 we obtain a signs configuration of the form ++++ for any y. Therefore,
we have just arrived to a contradiction and the configuration (d) is not possible.
To prove that (e) is not possible either we will choose a point of the form

(e’ler’LUg ) te?)wlwz) c R27
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that is, a point of a generic cusp and we consider the equations

Ty = eW1tw2
awag + bewzywl + cww2y2w1 + dy3w1 — t€3w1w2_

el +wsg

If we suppose that y # 0, we can take x = and by substituting in the second

equation and multiplying both terms by %2 we have

a(ew1+w2)3w2 + b(ew1+w2)2w2 yw1+w2 + c(ew1+w2)w2y2(w1+w2)

_tewlwgy?)wg + dy3(w1+w2) =0,

that is, a polynomial constituted by 5 monomials and where, applying Descartes
method, we are going to have in the worst of the cases 4 sign changes, and as a
consequence, 4 inverse images for e > 0 and e < 0. Then, (e) is not possible.
Thus, we only have 3 possible configurations ((a), (b) and (c)) obtaining for each
one a single topological class given by its correspondent associated link and Gauss
word (see figure 20).

(b)

b a

abcdcdefedcbabafef abcdedcdefedcbedcb
(c)

b f

cacbcdfded

FIGURE 20.

To finish we associate to (a) the normal form (zy,z3 — 622y + 42y® + 3°), to (b)
(zy, 2% + 62293 + 62y® + %) and to (¢) (zy, 23 — 22y3 + 329° + 1°).

o If we consider the remaining case, B2 —4AC = 0, following and analogous argument
to the case of weights with different parity we conclude that f won’t be finitely
determined.

O



220 J.A. MOYA-PEREZ AND J.J. NUNO-BALLESTEROS

4.2. Germs with prenormal form (22 + 4%, h(x,y)). As we did with germs with prenormal
form (xy, g(x,y)), we will suppose that h(x,y) is a weighted homogeneous polynomial, that is,

hiz,y) =Y bi(@?) (y* ),
i=0

although, in general, f won’t be weighted homogeneous. We distinguish two different cases,
according to the parity of p.

4.3. p = 2k. The following theorem will give us the classification of all germs of this type.

Theorem 4.10. Let f be of type £2°,
P
fla,y) = @+, ) bi(a™?) (y")P ),
i=0

with p = 2k. Then, f is not finitely determined.

Proof. We will prove it for p = 2, being analogous for the remaining cases.

If wy or wy are greater than 1, when we compute the Jacobian determinant of f we obtain a
expression of the form 2y A or 2xB with A, B depending on w1, we, ,y. In the first case, we have
the curve y = 0 in the singular set, getting an image (22, az?“?) that clearly presents double
points. If we have £ = 0 by an analogous procedure we arrive to the same conclusion.

If w; = wy = 1 we have branches of the form z = Ay in the singular set, and as a consequence,
each one of the discriminant curves will have the form ((A\y)? + y2, a(\y)? + b(Ay)y + cy?) that
present double points of the form y; = —yo. Then, f is not finitely determined either. O

4.4. General case. Firstly, we will see that if one of the weights is even and the other is different
from 1, f won’t be finitely determined.

Theorem 4.11. Let f be of type £,
P
fla,y) = (2 +y7, ) bil@™?) (" )P ).
i=0

Then, if wy or wsy is even, with the other weight being greater than 1, f is not finitely determined.

Proof. Let us suppose that wy is even and wy > 1. If we compute the Jacobian determinant of
f we get

p—1 D
Jf(l‘, y) =% Z w (p _ i)bi<xu)2)z(yw1)p—z—l _ 2y Z w2ibi(xw2)z—l(ywl);D—l.
=0

=1

Since wy > 1 we can get one x out of the second summation, obtaining

Tf(a,y) = 220> wi(p — i)bi(x?) (Y )P =y Y waib(x2) 2y )P
1=0

i=1
Therefore, one of the branches of S(f) will always be given by the equation z = 0 and
f|x:0 (y) = (y27 ypw1 )7
that will always present double points of the form y; = —ys. Thus, f is not finitely determined.
(]

Let us see now what happen when both weights are odd. We will give some particular results
about it.
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Theorem 4.12. (p = 1) Let f be of type 20, f(z,y) = (z% + 32, ax™? + by™1), with wy,ws
both odd. Then, f is topologically equivalent to the germ (z2 + y?, 23 + y°).

Proof. Let us suppose that wi,wy are both odd and greater than 1 (if one of them was 1, f
wouldn’t be of type 2 anymore). In this case

Jf(x,y) = 2:vy(u)1by“’r2 - wgax“’272)

)

obtaining that our singular set S(f) will have 3 branches, z =0, y = 0 and y*1~2 = “’2“51“:_2

In the first two f does not present any problem. Let us see that it does not present any problem
r = at¥1?

in the third one either. To see this we make the coordinates change with
y=pte?

B = (wea) "7 € C and a = (wib)"/*>7? € C. We have that

fl wpar2 2 (8) = (A(2), B(1)),

w1b
with A(t) = o?t2(1=2) 4 g2¢2(w2=2) and B(t) = aa®2tw2(w1-2) 4 pgwrtwi(w2=2) Tt is clear that
although A(t) is going to present double points of the form ¢t; = —to, it is not going to happen
with B(t). Then, f is finitely determined.

Thus, A(f) will have three branches and we can only have two possible configurations (see
figure 21):

yw172:

A(f)

FIGURE 21.

Let us see that (b) is not possible. To prove this we consider a point (e,0) € R? and we will
prove by Descartes method that it will present at most 2 inverse images. We have the equations

22 by?=e

ax™? +by*r =0

obtaining a single equation of the form A(yT; )2+y? = e with A > 0. We consider the coordinate
change y = 2™ in order to be able to work with integer exponents and we get Az2W1 +22¥2 —¢ =0
that, applying Descartes method will always present at most 1 root if z > 0 and 1 root if z < 0,
having a total of 2 roots z; and z, and as a consequence y; and y2. Therefore, the only possible
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configuration is given by (a) and, since the 3 branches of the singular set are symmetric with
respect to the origin of coordinates the only possible topological class is the associated to the
link and Gauss word of figure 22.

c ° cacbedfded

FIGURE 22.

Then, f is topologically equivalent to (z,y* — x%y? — ix‘?y) and to the corank 2 normal form
(22 + 32,23 + 95).
O
Theorem 4.13. (p = 3, homogeneous case) Let f be of type of ¥2°, f(x,y) = (2 + y?, azx® +
b2y + cxy? + dy®). Then, if we denote by
3d —2b 2¢ — 3a

a=p222)(E2p
B b (2¢ — 3a)9(3d— 2b)’
~ c(3a —2c) 3d —2b
o=z 322y

we have that
(1) if B2 —4AC > 0, f is topologically equivalent to the fold,
(2) if B2 —4AC <0, f is topologically equivalent to one of the germs that appear in table 4,

Degree Germ Associated link
e -
N cacbedfded
0 (2 + 42 7 + ) i f

bedededefedebedca

(z? + 92, 2% + 2%y — 3ay® + )
TABLE 4.

(3) if B2 —4AC =0, f is not finitely determined.
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Proof. Applying the result used earlier for map germs of the form (zy,g(x,y)) in the case
p = 3 we obtain coefficients A = A(a,,b,c,d), B = B(a,b,¢,d) and C = C(a,b,c,d) such
that Jf(z,y) will present a symbolic, elliptical, hyperbolic or parabolic quadratic form if and
only if Az? + Bxy + Cy? presents a symbolic, elliptical, hyperbolic or parabolic quadratic form.
Therefore, we have several cases:

(1) If B2 —4AC > 0, S(f) presents a single branch z = Ay whose image will be, as happen
with all the germs of this form, symmetric with respect to the z-axis. Since the only
possible configuration of inverse images is the one that appears in figure 23, f will be
topologically equivalent to the fold.

FIGURE 23.

(2) If B2 —4AC < 0, S(f) will present three distinct real branches, obtaining in the dis-
criminant the possible configurations of figure 24 and from each one of them a sin-

A(f)

FIGURE 24.

gle topological class, symmetric with respect to the origin of coordinates. In case
(a) we have the associated link and Gauss word of figure 25, taking as normal form
(22 + 92, 2% + y°) and in case (b) we obtain the link of figure 26, taking as normal form
(2% + 42, 2% + 22y — 3292 + y°).

(3) If B2 — 4AC = 0 we obtain a non reduced component in S(f). Then, f is not finitely
determined.

O
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: ° cacbedfded

a

b f
FIGURE 25.

c

f
b a
bedededefedcbedca

FIGURE 26.
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LIPSCHITZ GEOMETRY OF COMPLEX CURVES

WALTER D NEUMANN AND ANNE PICHON

ABSTRACT. We describe the Lipschitz geometry of complex curves. To a large part this is well
known material, but we give a stronger version even of known results. In particular, we give
a quick proof, without any analytic restrictions, that the outer Lipschitz geometry of a germ
of a complex plane curve determines and is determined by its embedded topology. This was
first proved by Pham and Teissier, but in an analytic category. We also show the embedded
topology of a plane curve determines its ambient Lipschitz geometry.

1. INTRODUCTION

The germ of a complex set (X,0) C (CV,0) has two metrics induced from the standard
hermitian metric on CV: the outer metric given by distance in CV and the inner metric given
by arc-length of curves on X. Both are well defined up to bilipschitz equivalence, i.e., they only
depend on the analytic type of the germ (X,0) and not on the embedding (X,0) C (CV,0).
Studies of what information can be extracted from this metric structure have generally worked
under analytic restrictions, e.g., that equivalences be restricted to be analytic or semi-algebraic
or similar. In this note we prove the metric classification of germs of complex plane curves, but
without any analytic restrictions (equivalence of item (1) of the following theorem with the other
items):

Theorem 1.1. Let (C1,0) C (C2,0) and (C2,0) C (C%,0) be two germs of complex curves. The
following are equivalent:

(1) (C1,0) and (C2,0) have same Lipschitz geometry, i.e., there is a homeomorphism of
germs ¢: (C1,0) = (Cq,0) which is bilipschitz for the outer metric;

(2) there is a homeomorphism of germs ¢: (C1,0) — (Ca,0), holomorphic except at 0, which
is bilipschitz for the outer metric;

(3) (C1,0) and (Cs,0) have the same embedded topology, i.e., there is a homeomorphism of
germs h: (C2,0) — (C2%,0) such that h(Cy) = Ca;

(4) there is a bilipschitz homeomorphism of germs h: (C%,0) — (C2,0) with h(C}) = Cs.

The equivalence of (1), (3) and (4) is our new contribution. The equivalence of (2) and (3)
was first proved by Pham and Teissier [7]. By Teissier [8, Remarque, p.354] (see also Fernandes
[5]) it then also follows that the outer bilipschitz geometry of any curve germ (X,0) C (CV,0)
determines the embedded topology of its general plane projection (Corollary 5.2).

For completeness we give quick proofs of all the equivalences. We start with the result for
inner geometry, which will be used in examining outer geometry.

Acknowledgments. We thank Bernard Teissier for helpful comments on the first version of
this paper. This research was supported by NSF grant DMS12066760 and by the ANR-12-JS01-
0002-01 SUSI.

1991 Mathematics Subject Classification. 14B05, 32525, 32505, 57M99.
Key words and phrases. bilipschitz, Lipschitz geometry, complex curve singularity, embedded topological type.
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2. INNER GEOMETRY

An algebraic germ (X, 0) C (CV,0) is homeomorphic to the cone on its link X N S,, where S,
is the sphere of radius € about the origin with e sufficiently small. If it is endowed with a metric,
it is metrically conical if it is bilipschitz equivalent to the metric cone on its link. This basically
means that the metric tells one no more than the topology (and is therefore uninteresting).

Proposition 2.1. Any space curve germ (C,0) C (CN,0) is metrically conical for the inner
geometry.

Proof. Take a linear projection p: C¥ — C which is generic for the curve (C,0) (i.e., its kernel
contains no tangent line of C' at 0) and let 7 := p|¢, which is a branched cover of germs. Let
D. = {z € C: |z| <€} with e small, and let C, be the part of C' which branched covers D.. Since
7 is holomorphic away from 0 we have a local Lipschitz constant K (z) at each point € C'\ {0}
given by absolute value of the derivative map of 7 at . On each branch of C this K (x) extends
continuously over 0, so the infimum and supremum K~ and K+ of K(z) on Ce \ {0} are defined
and positive. For any arc v in C, which is smooth except where it passes through 0 we have
K=4() < V' (vy) < KTL(v), where £ respectively ¢’ represent arc length using inner metric on C,
respectively the metric lifted from B.. Since C. with the latter metric is strictly conical, we are
done. O

3. OUTER GEOMETRY DETERMINES EMBEDDED TOPOLOGICAL TYPE

In this section, we prove (1) = (3) of Theorem 1.1, i.e., that the embedded topological type
of a plane curve germ (C,0) C (C?,0) is determined by the outer Lipschitz geometry of (C,0).

We first prove this using the analytic structure and the outer metric on (C,0). The proof is
close to Fernandes’ approach in [5]. We then modify the proof to make it purely topological and
to allow a bilipschitz change of the metric.

The tangent space to C' at 0 is a union of lines L), j = 1,... m, and by choosing our
coordinates we can assume they are all transverse to the y-axis.

There is €y > 0 such that for any € < ¢y the curve C' meets transversely the set

T. = {(z,y) €C*: |z| = €} .

Let p be the multiplicity of C. The lines x = ¢ for t € (0,¢€p] intersect C' in p points
p1(t),...,pu(t) which depend continuously on ¢. Denote by [u] the set {1,2,...,u}. For each
4,k € [u] with j < k, the distance d(p;(t), px(t)) has the form O(t?0F) where q(j, k) = q(k, 5)
is either a characteristic Puiseux exponent for a branch of the plane curve C' or a coincidence
exponent between two branches of C in the sense of e.g., [1, Chapitre 1, p. 12]. We call such
exponents essential. For j € [u] define ¢(j,j) = oo.

Lemma 3.1. The map q: [u] x [u] — QU {oo}, (4,k) — q(j,k), determines the embedded
topology of C'.

Proof. There are many combinatorial objects that encode the embedded topology of C, for
example the Eisenbud-Neumann splice diagram [4] of the curve or the Eggers tree [3] (both are
described, with the relationship between them, in C.T.C. Wall’s book [9]). The “carrousel tree”
described below is closely related (first described in [6]). All three are rooted trees with edges
or vertices decorated with numeric labels.

To prove the lemma we will construct the carrousel tree from q. We also describe how one
derives the splice diagram from it.

The q(j, k) have the property that q(j,1) > min(q(j, k), q(k,1)) for any triple j, k, . So for any
g € QU {oo},q > 0, the relation on the set [p] given by j ~¢ k < ¢(j, k) > ¢ is an equivalence
relation.
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Name the elements of the set q([u] x [p]) U {1} in decreasing order of size:
0=¢qo>qr>qe> " >qs=1

For eachi =0,...,slet G;1,...,Gj ,, be the equivalence classes for the relation ~g,. So yuo = p
and the sets Gy ; are singletons while gy = 1 and G,1 = [p]. We form a tree with these
equivalence classes G; ; as vertices, and edges given by inclusion relations: the singleton sets
Go,; are the leaves and there is an edge between G; ; and Git11 if Gij € Giq1k. The vertex
Gs,1 is the root of this tree. We weight each vertex with its corresponding g;.

The carrousel tree is the tree obtained from this tree by suppressing valence 2 vertices: we
remove each such vertex and amalgamate its two adjacent edges into one edge. We will describe
how one gets from this to the splice diagram, but we first give an illustrative example.

We will use the plane curve C' with two branches given by

y =232 4 gB3/6 =T/

Fig. 1 gives pictures of sections of C' with complex lines x = 0.1, 0.05, 0.025 and 0.  The
central three-points set corresponds to the branch y = z7/3 while the two lateral three-points
sets correspond to the other branch.

0.1

0.05
0.025

FIGURE 1. Sections of C

The carrousel tree for this example is the tree on the left in Fig. 2 and the procedure we will
describe for getting from it to the splice diagram is then illustrated in the middle and right trees.
We will follow the computer science convention of drawing the tree with its root vertex at the
top, descending to its leaves at the bottom. At any non-leaf vertex v of the carrousel tree we

Carrousel tree Eggers tree Splice diagram
ol ol
1
o
: 1
P ;
: 2 % 1
13 N 13 S % /O\ 2
6 6 14 13 7 22
6 O 06 3 3
14 1 1 O\
3 60 6 l l e}
o o
o

0000000 © o

O

F1GURE 2. Carrousel tree to splice diagram

have a weight ¢,, 1 < g, < g1, which is one of the ¢;’s. We write it as m, /n,,, where n,, is the lem
of the denominators of the g-weights at the vertices on the path from v up to the root vertex. If
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v’ is the adjacent vertex above v along this path, we put r, = n,/n, and s, = n,(q, — ). At
each vertex v the subtrees cut off below v consist of groups of r, isomorphic trees, with possibly
one additional tree. We label the top of the edge connecting to this additional tree at v, if it
exists, with the number 7, and then delete all but one from each group of r, isomorphic trees
below v. We do this for each non-leaf vertex of the carrousel tree. The resulting tree, with the
qy labels at vertices and the extra label on a downward edge at some vertices is easily recognized
as a mild modification of the Eggers tree.

We construct the splice diagram starting from this tree. We first replace every leaf by an
arrowhead. Then at each vertex v which did not have a downward edge with an r, label we add
such an edge (ending in a new leaf which is not an arrowhead). Each still unlabeled top end of
an edge is then given the label 1. Finally, starting from the top of the tree we move down the
tree adding a label to the bottom end of each edge ending in a vertex v which is not a leaf as
follows. If v is directly below the root the label is m] := m,. For a vertex v directly below a
vertex v’ other than the root the label is m/, = s, 4+ ryrym), if v,y does not label the edge v'v
and ml, 1= (s, + ryml,)/ry if it does (see [4, Prop. 1A.1]). O

As already noted, this discovery of the embedded topology involved the complex structure
and outer metric. We must show we can discover it without use of the complex structure, even
after applying a bilipschitz change to the outer metric.

Recall that the tangent space of C' is a union of lines L(). We denote by C) the part of C
tangent to the line LU). It suffices to discover the topology of each CU) independently, since the
CU)’s are distinguished by the fact that the distance between any two of them outside a ball of
radius € around 0 is O(e), even after bilipschitz change to the metric. We therefore assume from
now on that the tangent to C' is a single complex line.

The points pi(t),...,pu(t) we used to find the numbers ¢(j, k) were obtained by intersecting
C with the line = ¢t. The arc p1(t), t € [0, €] satisfies d(0, p1(t)) = O(t). Moreover, the other
points pa(t),...,pu(t) are in the transverse disk of radius 7t centered at p; (¢) in the plane x = ¢.
Here r can be as small as we like, so long as € is then chosen sufficiently small.

Instead of a transverse disk of radius rt, we can use a ball B(p;(t), rt) of radius rt centered at
p1(t). This B(pi(t),rt) intersects C in p disks Dy (t),...,D,(t), and we have d(D;(t), Dy(t)) =
O(t19F)) | so we still recover the numbers (4, k). In fact, the ball in the outer metric on C
of radius rt around p;(t) is Beo(pi(t),rt) := C N B(pi(t),rt), which consists of these p disks
Dy (t),...,D,(t).

We now replace the arc p;(t) by any continuous arc pj(t) on C' with the property that
d(0,p}(t)) = O(t), and if r is sufficiently small it is still true that Beo(pf(t),rt) consists of p
disks Dj(t),..., D, (t) with d(D}(t), D}(t)) = O(t1U%)). So at this point, we have gotten rid
of the dependence on analytic structure in discovering the topology, but not yet dependence on
the outer geometry.

A K-bilipschitz change to the metric may make the components of Bo(p)(t), rt) disintegrate
into many pieces, so we can no longer simply use distance between pieces. To resolve this,
we consider both B (p)(t),rt) and By (p)(t), #=t) where B’ means we are using the modified
metric. Then only p components of B (pi(t),rt) will intersect By (p1(t), #=t). Naming these
components D1 (t),..., D, (t) again, we still have d(D’(t), D} (t)) = O(t10*)) so the q(j, k) are
determined as before. (]

4. EMBEDDED TOPOLOGICAL TYPE DETERMINES OUTER GEOMETRY

In this section, we prove (3) = (2) of Theorem 1.1. The implication (2) = (1) is trivial, so
we then have the equivalence of the first three items of Theorem 1.1.
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We will use the following lemma:

Lemma 4.1. Let (C,0) C (CN,0) be a germ of complex plane curve and let p: CN — C be
a linear projection whose kernel does not contain any tangent line to C. Then there exists a
neighborhood U of 0 in C' and a constant M > 1 such that for each u,u’ € U \ {0}, there is an
arc & in C joining u to a point u” with p(u”) = p(u’) and

d(u,v") < L(@) + d(u”,u'") < Md(u,u’)
where L(&) denotes the length of &.

Proof. There exists a neighbourhood U of 0 in C such that the restriction p|c is a bilipschitz
local homeomorphism for the inner metric on U ~\ {0} (see proof of Proposition 2.1). Choose
any § > 1. If 0 is not in the segment [p(u), p(u)], we set o = [p(u),p(u')]. If 0 € [p(u), p(v)],
we modify this segment to a curve a avoiding 0 which has length at most ¢ times the length of
[p(u), p(u')]. Consider the lifting & of a by p|c with origin u and let u” be its extremity. We
obviously have:
d(u,u’) < L(a) + d(u,u") .

On the other hand, L(a) < KoL(a) < dKod(p(u)

inner bilipschitz constant of p on U \ {0}. As d(p(u)

L(a) < §Kod(u,u’

,p(u’)), where Ky is a bound for the local
,p(v')) < d(u,u), we then obtain:
).

If we join the segment [u, '] to & at u we get a curve from v’ to u”, so
d(u',u") < (14 6Ko)d(u,u’).
We then obtain:
L(a) +d(u/,u") < (14 25Kq)d(u,u’),
and M =1+ 20K is the desired constant. O

Proof of (3) = (2) of Theorem 1.1. Let (C1,0) C (C?,0) be an irreducible plane curve which
is not tangent to the y-axis. Then there exists a minimal integer n > 0 such that (C,0) has

Puiseux parametrization
v (w) = (w", Zaiwi) .

>n
Denote A := {i: a; # 0}. Recall that the embedded topology of C; is determined by n and the
essential integer exponents in the sum Y .. a;w’, where an i € A\ {n} is an essential integer
exponent if and only if ged{j € {n} U A :j <i} < ged{j € {n}UA:j < i} (equivalently %
is a characteristic exponent). Denote by A. the subset of A consisting of the essential integer
exponents.

Now let (C,0) C (C2,0), given by

Yo (w) = (w", meﬁ) )
>n

be a second plane curve with the same embedded topology as C7, so that the set of essential
integer exponents B, C B := {i : b; # 0} is equal to A..

We will prove that the homeomorphism ®: C; — Cs defined by ®(y;(w)) = ~v2(w) is bilips-
chitz on small neighborhoods of the origin.

We first prove that there exists K > 0 and a neighborhood U of 0 in C such that for each
pair (w,w’) with w € U, w # w’ and w™ = (w’)", we have

d(y1(w), 71 (w")) < Kd(y2(w),v2(w"))
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For (w,w’) as above, consider the two real arcs s € [0, 1] — v (sw) and s — 1 (sw’) and their
images by ®. Then we have

d(’yl(ws) v (w's)) =

Zal —n U)Z o (w/)i)

i>n

and
d(@('yl (ws)), <I>(’yl(w s )

st (w' — (w')")

i>n

Let ip be the minimal element of {i € A;w® # (w’)*}. Then iy is an essential integer exponent,
so a;, and b;, are non-zero. Moreover, as s tends to 0 we have

d(y1(ws), m(w's)) ~ s w' — (w)"|as,|
and d(®(y1(ws)), ®(y1(w's))) ~ s®fw' — (w')"]|b;,| and hence the ratio

d(vl(ws),'yl(w’s)) /d(@(’yl(ws)),@('yl(w’s))) ()
laig |
[big |

Notice that the integer iy depends on the pair of points (w,w’). But ig is either n or an
essential integer exponent for v;. Therefore there are a finite number of values for iy and c;,.
Moreover, the set of pairs (w,w’) such that w™ = (w')™ consists of a disjoint union of n lines.
So there exists sop > 0 such that for each such (w,w’) with |w| = 1 and each s < s, the quotient
(%) belongs to [1/K, K] where K > 0. Then U = {w : |w| < s¢} is the desired neighbourhood of
0.

We now prove that ® is bilipschitz on 71 (U). Consider the projection p: C? — C given by
p(z,y) = . Let w and w’ be any two complex numbers in U. Let « be the segment in C joining
w™ to (w')™ and let &; (resp. az) be the lifting of « by the restriction p|c, (resp. p|c,) with
origin ;1 (w) (resp. v2(w)). Consider the unique w” € C such that v, (w”) is the extremity of &.
Notice that y2(w") is the extremity of ay. We have

d(v(w),71(w")) < L(a1) 4+ d(y(w”), n(w)).
According to Section 2, p|c, (resp. p|c,) is an inner bilipschitz homeomorphism with bilip-
schitz constant say K7 (resp. K2). We then have L(&;) < K;1K2L(G2). Therefore setting
C = max(K; Ks, K), we obtain:

A (w), (@) < O(L(62) + () @) ()
Applying Lemma 4.1 to the restriction p|c, with u = v2(w) and u’ = v2(w’), we then obtain:

d(m(w), 11 (w')) < CMd(y2(w), 72(w"))

This proves @ is Lipschitz. It is then bilipschitz by symmetry of the roles.

In the general case where C; and C5 are not necessarily irreducible, the same arguments work
taking into account a Puiseux parametrization for each branch and the fact that the sets of
characteristic exponents and coincidence exponents between branches coincide. ([

tends to the non zero constant ¢;, =

5. OUTER GEOMETRY OF SPACE CURVES

Before proving the final equivalence of Theorem 1.1 we give a quick proof, based on the
preceding proof, of the following result of Teissier [8, pp. 352-354].

Theorem 5.1. For a complex curve germ (C,0) C (CN,0) the restriction to C of a generic
linear projection £: CN — C2 is bilipschitz for the outer geometry.
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Our notion of generic linear projection to C?, defined in the proof below, is equivalent to
Teissier’s, which says that the kernel of the projection should contain no limit of secant lines to
the curve.

Proof of Theorem 5.1. We have to prove that the restriction ¢|¢: C — ¢(C) is bilipschitz for the
outer metric. We choose coordinates (z,y) in C? so £(C) is transverse to the y-axis at 0 and
coordinates (z1,...,2,) in C" with 21 = x o £. So £ has the form (z1,...,2n) — (21, Ziv bjz;)
and any component of C' has a Puiseux expansion of the form (n is the multiplicity of the

component):
’Y(IU) = (wna Z a?iwiv LR Z aNiwi) .
>n >n
We first assume (C, 0) is irreducible. We again denote A := {i : 3j, a;; # 0} and call an exponent
i € A~ {n} an essential integer exponent if and only if

ged{je{nfUA:j<i}<ged{je{ntUA:j<i}.

Define a1, = 1 and aq; = 0 for ¢ > n. We say /¢ is generic if Z;\le bjaj; # 0 for each essential
integer exponent i. We now assume /£ is generic.

As in the proof of the second part of Theorem 1.1 there then exists K > 0 and a neighborhood
U of 0 in C such that for each pair (w,w’) with w € U and w™ = (w’)"™ we have

Ed(ty(w), (W) < d3(w), 7)) < Kd(y(w), ()

Lemma 4.1 then completes the proof, as before.

The proof when C' is reducible is essentially the same, but the genericity condition must take
both characteristic and coincidence exponents into consideration. Namely, ¢ should be generic
as above for each individual branch of C; and for any two branches, given by (with n now the
lem of their multiplicities)

_ n 7 7 / _ n / 7 / 7
’Y(w)—(w72 a2z‘w’-~-7§ aNiw)7 v(w)—(w,i a’2iwa'~-a§ aNiUJ)’
i>n i>n i>n i>n

we require Zj\;l bj(aji—Na’;) # 0 for each n-th root of unity A, where i is the smallest exponent

for which some a;; — a; is non-zero. 0

Corollary 5.2. Let (C1,0) C (CM1,0) and (C2,0) C (CN2,0) be two germs of complex curves.
The following are equivalent:
(1) (C1,0) and (C9,0) have same Lipschitz geometry i.e., there is a homeomorphism of
germs ¢: (C1,0) = (Co,0) which is bilipschitz for the outer metric;
(2) there is a homeomorphism of germs ¢: (C1,0) — (Cs,0), holomorphic except at 0, which
is bilipschitz for the outer metric;
(3) the generic plane projections of (C1,0) and (C2,0) have the same embedded topology. O

6. AMBIENT GEOMETRY OF PLANE CURVES

To complete the proof of Theorem 1.1 we must show the implication (3) = (4) of that theorem,
since (4) = (3) is trivial. We will use a carrousel decomposition of (C%,0) with respect to a plane
curve, so we first describe this (it is essentially the one described in [2]).

The tangent space to C' at 0 is a union U;n:1 LU) of lines. For each j we denote the union of

components of C' which are tangent to L) by CY). We can assume our coordinates (z,y) in

C? are chosen so that no L) is tangent to an axis. Then LU) is given by an equation y = a(lj )2

with agj) # 0.
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We choose ¢ > 0 sufficiently small that the set {(x,y) : || = €} is transverse to C for all

€ < 9. We define conical sets V) of the form
VO = {(z,y) : |y - agj)x\ < nlz|,|z| < e} C C?,

where the equation of the line L) is y = agj )2 and n > 0 is small enough that the cones are
disjoint except at 0. If ¢ is small enough CU) N {|z| < €} will lie completely in V).

There is then an R > 0 such that for any € < ¢ the sets V) meet the boundary of the
“square ball”

B. :={(z,y) € C*: |z < ¢,|y| < Re}

only in the part |x| = € of the boundary. We will use these balls as a system of Milnor balls.
We now describe our carrousel decomposition for each V), so we will fix j for the moment.
We first truncate the Puiseux series for each component of C'¥) at a point where truncation

does not affect the topology of C9). Then for each pair k = (f,px) consisting of a Puiseux

polynomial f = Zi.:ll agj )2 and an exponent p,(gj ) for which there is a Puiseux series

k
o
y=> alar" 4.
i=1

describing some component of CY), we consider all components of C) which fit this data. If
j j . CO N . . .

agfl), o a,(jq)% are the coefficients of #”¥~ which occur in these Puiseux polynomials we define

2 < Bm‘xpg)|

k—1
) |
Bei={ (@) ale?| <[y~ alar
i=1

k—1
NG N ) )
’y - (Z agj)a:pij + a,(jj)a:pkj )) > ym\xpkj | for j=1,... ,mn}.
i=1

Here a4, B«, 7« are chosen so that a, < |a,(fy)| — Y < |a§£| + 9 < By foreachv=1,...,m,. If
€ is small enough, the sets B, will be disjoint for different &.

The intersection B, N {z = t} is a finite collection of disks with smaller disks removed. We
call B,, a B-piece. The closure of the complement in V) of the union of the B,’s is a union
of pieces, each of which has link either a solid torus or a “toral annulus” (annulus x S'). We
call the latter annular pieces or A-pieces and the ones with solid torus link D-pieces (a B-piece
corresponding to an inessential exponent has the same topology as an A-piece, but we do not
call it annular).

This is our carrousel decomposition of V' = V). We call B~ |JV ) a B(1) piece (even
though it may have A- or D-topology). It is metrically conical, and together with the carrousel
decompositions of the V()’s we get a carrousel decomposition of the whole of B,.

Proof of (3) = (4) of Theorem 1.1. Let (C1,0) C (C%,0) and (Ca,0) C (C2,0) have the same
embedded topological type. Consider two carrousel decompositions of (C2,0): one with respect
to C and the other with respect to Cs, constructed as above. The proof consists of constructing
a bilipschitz map of germs h: (C?,0) — (C?,0) which sends the carrousel decomposition for C;
to the one for Cs (being careful to include matching pieces for inessential exponents which occur
in just one of Cy and Cy). We first construct it to respect the carrousels, but not necessarily
map Cp to Cy. Once this is done, we adjust it so that C7 is mapped to Cs.

Let ng) and ng), j =1,...,m, be the tangent lines to C; and C5 and Cl(j) resp. Céj) the
union of components of C; resp. Co which are tangent to L(lj ) resp. ng ). We may assume we
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have numbered them so C{j ) and C’Q(j ) have matching embedded topology. Let Vl(j ) and V2(j ),
j =1,...,m, be the conical sets around the tangent lines as defined earlier.

The B(1) pieces of the carrousel decompositions for C; and Cs are metrically conical with the
same topology, so there is a conical bilipschitz diffeomorphism between them. We can arrange
that it is a translation on each x = ¢ section of each 8V1(j ). We will extend it over the cones Vl(j )
and Vz(j ) using the carrousels.

Consider the Puiseux series y = Zle agj ) gpt”) + ... describing some component of Cfﬂ ) and
the Puiseux series y = Zle bz(»] ) gpt + ... describing the corresponding component of C’éj ) It
a term with inessential exponent appears in one of the series, we include it also in the other,
even if its coefficient there is zero. This way, when we construct the carrousel as above we have
corresponding B-pieces for the two carrousels. Moreover, we can choose the constants oy, B«, VY«
used to construct these corresponding B-pieces to be the same for both. The {x = ¢} sections of
a pair of corresponding A-pieces will then be congruent, so we can map the one A-piece to the
other by preserving x coordinate and using translation on each x = ¢ section. The same holds
for D-pieces. It then remains to extend to the B-pieces.

A B-piece By, in the decomposition for C; is determined by some k1 = (f1, pr) with

k—1
fl = E aiqui,
i=1

and is foliated by curves of the form y = f; + &aP* for varying & (we call py the rate of B,;). The
corresponding piece By, for Cy is similarly determined by some ko = (fa2, pr) with

k-1
fo= Z b;xPt
=1

and is foliated by curves y = fa + £xP*. The x = ¢y section of By, has a free cyclic group action
generated by the first return map of the foliation, and the same is true for B,,. We choose a
smooth map (B, N{x = €}) = (Bx, N{x = €}) which is equivariant for this action and on the
boundary matches the maps, coming from A- and D-pieces, already chosen. This map extends
to the whole of B, by requiring it to preserve the foliation and z-coordinate.

By construction, the resulting map of germs ¢: (C2,0) — (C2,0) is an isometry on the A- and
D-pieces and bilipschitz on the B(1) piece. We must check that it is bilipschitz on the B-pieces
of type By. Pick such a B and suppose the rate of B is r. The Lipschitz constant of ¢ is bounded
in a neighborhood of the link B(®) := BN {|z| = €} of B by compactness. For 0 < ¢ < ¢, if we
move points inwards z-distance € — ¢’ along the leaves of the foliation of B, each section at x =t
with |t| = € moves to the section at x = %t while scaling by a factor of (¢//e)”. The same holds
for the images of these sections in the carrousel for C5. So to high order the Lipschitz constant
of ¢ at a point of the x = t section equals the Lipschitz constant at the corresponding point of
the x = %t section. It follows that the local Lipschitz constant is bounded on the whole of B,
so ¢ is bilipschitz.

However, ¢ maps C7 not to Cs, but to a small deformation of it, since we constructed the
carrousels by first truncating our Puiseux series beyond any terms which contributed to the
topology. But it is not hard to see that, by a small change of the constructed map inside the
D-pieces which intersect C, one can change ¢ so it maps C to Cy while changing the bilipschitz
coefficient by an amount which approaches zero as one approaches the origin. Namely, let D,
be such a piece and Dy = ¢(D;) the corresponding piece for the curve Cy. In each x = ¢ slice
D;(t) := DiN{x = t} we take the map D;(t) — D1 (t) which moves the point p;(¢) := Dy (¢t)NCy
to pa(t) := ¢~ 1(Da(t) N Cq) and maps each ray from p;(t) to a point p € 9D (t) linearly to the
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ray from po(t) to p. This gives a map ¢: D1 — D; whose bilipschitz constant rapidly approaches
1 ast — 0 and ¢ o1 does what is required on this piece. O
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THE RIGHT CLASSIFICATION OF UNIVARIATE POWER SERIES IN
POSITIVE CHARACTERISTIC

NGUYEN HONG DUC

ABSTRACT. While the classification of univariate power series up to coordinate change is
trivial in characteristic 0, this classification is very different in positive characteristic. In this
note we give a complete classification of univariate power series f € K|[z]], where K is an
algebraically closed field of characteristic p > 0 by explicit normal forms. We show that the
right determinacy of f is completely determined by its support. Moreover we prove that the
right modality of f is equal to the integer part of u/p, where p is the Milnor number of f. As
a consequence we prove in this case that the modality is equal to the proper modality, which
is the dimension of the p-constant stratum in an algebraic representative of the semiuniversal
deformation with trivial section.

1. INTRODUCTION

In [Arn72] V.I. Arnol’d introduced the “modality”, or the number of moduli, for real and
complex hypersurface singularities and he classified singularities with modality smaller than or
equal to 2. In oder to generalize the notion of modality to the algebraic setting, the author and
Greuel in [GN13] introduced the modality for algebraic group actions and applied it to high jet
spaces.

Let the algebraic group G act on the variety X. Then there exists a Rosenlicht stratification
{(Xiypi)yi = 1,...,8} of X wrt. G, ie. the X; is a locally closed G-invariant subset of X,
X = U{_; X, and the p; : X; = X;/G a geometric quotient. For each open subset U C X we
define

G-mod(U) := 1r£1%xs{d1m (ps(UN X))},
and for x € X we call
G-mod(z) := min{G-mod(U) | U a neighbourhood of x}

the G-modality of x.

Let K be an algebraically closed field of characteristic p > 0, let K[[x]] = K[[z1,...,zy]]
be the formal power series ring and let the right group, R := Aut(K][x]]), act on K][x]] by
(®, f) — ®(f). Two elements f,g € K|[[x]] are called right equivalent, f ~, g, if they belong to
the same R-orbit, or equivalently, there exists a coordinate change ® € Aut(K][[x]]) such that
g="2(f).

Let f € (x) C K[[x]] and let u(f) := dim K[[x]]/{fz,,---, fz,) be its Milnor number. We
call f isolated if u(f) < oco. By [BGMI12, Thm. 5|, f is isolated if and only if it is finitely
right determined, i.e. f is right k-determined for some k. Here f is right k-determined if each
g € K[[x]] st. j¥g = j*¥f, is right equivalent to f, where j*f denotes the k-jet of f in the
k-th jet space Jy := (x)/(x)**1. The minimum of such k is called the right determinacy of f.
For each isolated f, the right modality of f, R-mod(f), is defined to be the Ry-modality of j* f
in Ji with & > 2u(f) and Ry the k-jet of R. Notice that if f is right equivalent to g then
R-mod(f) = R-mod(g) (cf. [GN13, Prop. A.4]).
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In Section 2, we show that the right determinacy of an isolated univariate formal power
series f is equal to d(f), which is defined by a concrete formula determined by the support
of f (Definition 2.1, Proposition 2.8). Moreover we give an explicit normal form for any (not
necessary isolated) univariate power series f w.r.t. right equivalence (Theorem 2.11). We prove
in Section 3 that the right modality of an isolated series f is equal to the integer part of u(f)/p
(Theorem 3.1). As a consequence we show that the right modality is equal to the dimension
of the p-constant stratum in an algebraic representative of the semiuniversal deformation with
trivial section (Corollary 3.6).
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2. NORMAL FORMS OF UNIVARIATE POWER SERIES

Let f=3,~ocne™ € K[[z]] be a univariate power series, let supp(f) :={n >0 | ¢, # 0} be
the support of f and mt(f) := min{n | n € supp(f)} the multiplicity of f. If char(K) = 0 and
if o(z) = a12 + asx® 4+ ...,a; # 0, is a coordinate change, then the coefficients a; of ¢ can be
determined inductively from the equation f(x) = co + (¢(z))™9) with g(x) := f — ¢o. Hence f
is right equivalent to ¢o + 2™,

In the following we investigate f € K[[z]] with char(K) = p > 0. The aim of this section
is to give a normal form of f. It turns out that it depends in a complicated way on the
divisibility relation between p and the support of f. To describe this relation we make the
following definition, where later on A will be supp(f).

Definition 2.1. For each n € N and each non-empty subset A C N\ {0}, we define
(a) m:=m(A):=min{n | n € A}.

(b) e:=e(A) :=min{e(n) | n € A}, where e(n) := max{i | p* divides n}.
(¢) ¢:=¢q(A) :=min{n € A | e(n) = e}.
(d) k:=k(A):=1and ey(A) :=e+1if e(m) = e (i.e. m = q), otherwise,
k:=k(A) :=max{ka(n) | m <n<gq,ne A},
where
ka(n) := {E])nw denotes the ceiling of ?);n
pe n) __ p€ pe n) _ pe
and

eo = eo(A) :=min{e(n) | m <n < g,n € A}.
(e) d:=d(A):=q+p°(k—1).
(f) A(A) =0 if e(m) = e, otherwise,
AA):={neN|m<n<de <e(n)}uUiq}.
(g) If e(m) > e (i.e. m < q) we define -
Ag = {n €A ‘ n < q}, qo = q(Ao), dp = d(Ao), dy = min{d, do},
Ao(A) := 0 if e(m) = eq,
Ao(A) :={neN|m<n<dyes<e(n)}U{qg}if e(m) > e, and
A(A):={neN|g<n<d,e<e(n) <ep}.
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(h) If e(m) = e then A(A) := 0, otherwise,
A(A) = Ag(A) U Ay (A).

Remark 2.2. If f € K[[z]] with u(f) < oo and A = supp(f) then

(a) m(A) = mt(f), the multiplicity (or, the order) of f.
(b) q(A) = u(f) + 1, the first exponent in the expansion of f which is not divisible by p.
(¢) ka(n) is the minimum of ! for which

mt (p(a") —z") > mt (p(a?) —2%) = ¢ +1

with ¢ := ¢(A) and ¢ = x + ;127 + terms of higher order,u;y; # 0, a coordinate

change.
Indeed,
(") = (z+wpa ™+ )n
1P
= {x—i—ul 1xl+1+ . )n/p }
o) pe(m
= {x”/” pe) g™

pe(™ e(n) e(n)
_ .’[n—I-(TL/pe(n)) f—&- n+lp +

It yields that
n n q—n
mt (p(e") —2") 2 g+l e 1>~
pe n) _ 1
This proves the claim.
(d) k(A) is then the minimum of [ for which

o(f) = mod a7

with ¢ = ¢(A) and a coordinate change ¢ as above. This is used to show that:
(e) d(A) is the right determinacy of f, cf. Proposition 2.8.

Remark 2.3. The following facts (a)-(e) are immediate consequences of the definition.
Property (f) follows from elementary calculations.
(a) e(A) < ep(A), E(A) > 0.
(b) If g(A) = g(A’) =: ¢ and ANN.y = A’ NNy, then d(A) = d(A’) and A(A) = A(A").
That is, ¢(A) is the “determinacy” of A(A).
(c) pr does not divide m(A), then

e(A) = e(m(A)) = 0 and g(A) = m(A),

E(A) =1 and d(A) = m(A).
(@) Ife(m( )) = e(A), then

a(A) = m(A).

kE(A) =1 and d(A) = m(A).
(e) If n —|—l e(n) < d(A) for some | and some n € A, then I < k(A).
(f) If k(A) = ka(n), then

RK(A) =1+ — Ld(A)J,

pe(n) pe(n)

(A)

where L‘ffﬁgJ denotes the floor (or, integer part)
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In fact, one has, by denoting e := e(A), ¢ := q(A), k:= k(A), ), that

d g+ pi(k—1)
e (k 1+ e(n)) = e \FTLE pe<n>
f’(") _ _

_ qg—-_n _

- e(n) (pe(n _ k+ 1) :
Then

0 7d —1 1
< pe(n) - e(n <

since k = [ﬁ—‘. This gives us the formula.

Example 2.4. Let p = char(K) = 2, let
f=a® 4+ 2% + 237 + terms of higher order in K/[[z]],

and let
A :=supp(f) = {8,36,37,...}.
Then
e=0,q=37,k=ka(8) =5,d =41,
eo = 2,q0 = 36,dy = 60,dy = d = 41.
and

A(f) = {16, 24, 32,36, 37,38, 39, 40,41},
_g_| 2| _|m
M) =9= LJGOJ LJGOJ +2'
The following proposition is the first key step in the classification.

Proposition 2.5. With the notions as in Definition 2.1, assume that e(A) = 0. Then

EA(A) < E])J - % +1.

More precisely,
(i) Ife(m) < e then tA(A) =0
(ii) If e(m) = e then tA(A) = [ J
(iii) If e(m) > ep and
(1) ifp>2 then tA(A) < | % | — 2 +1;
7]
y<e

(2) if p=2 then fA(A) < — 5 T2

Proof. (i) It is easy to see that, e(m) < eq if and only if e(m) = e and then A(A) = ().
(ii) Since e(m) = eg, Ag(A) =0 and ka(m) = k. Then
AA)=M(A)={neN|g<n<de(n) <ep}

-1 (][ - [+

since k — 1+ =t = L e(m)J due to Remark 2.3(f).

(iii) Since e(m) > eg one has

_ Go—7n _ Go—m
k(AO) —1= lrpe(n) _peo—‘ 1< peo-‘rl _pEO

and hence
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for some n € Ag, e(n) > ep, and

Ao(A) ={n" eN|m<n <dge(n)>en} U{q}

A(A) = {0 N | g <n' <de(n') < o}
This implies that

do
tho(A) = L,HJ ~ e T

A (A) = (d—q+1)— QPC;J - L,ZOD
q

and

Il
E
|
7N
—_—
3|~
| S
|
—_—
s
o]
o
—_
~_

We consider the following cases:

Case 1: ka(qo) = k.

Then k — 1+ % = | -4 | by Remark 2.3(f). We obtain
s = snesinio 2] (220

q 0 do m
S pe() o (pe() o \‘pEO“I’lJ + p€0+1 - 2)
< |al_ qio_qo+(/€(Ao)—1)pe“Jr m_o_,
— _pﬁ’() ] peo pe()Jrl p60+1
_ e (P -2atm  m
_pﬁ’() ] p€0+2 _ p60+1 p60+1

< | L] (™o
>~ _peo— peo )

due to k(Ag) — 1 < pq‘);m respectively gg > m. Hence

co+tT —peo
HA(A)S{QJ— = 41
pe]  pe

Case 2: ka(qo) < k.
Then

[ qg-n qg—m
k= lrpe(n)_l—‘ <peg+1_1+1

for some n € Ag, e(n) > eg. It yields that

d=q+k—1>(k—-1)p°tt4+m
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and hence B
WA= _PZ°_ - (_pcel“J - LD”’O“J * p:il ke 1)
: _pZO_ - <_p(‘iJ - {peilJ p@z’il " 1)
< [l ([Ber] o)
< _;_—<(p—1)(k—1)+£—k—1>
- _pzo_ _pﬁ) +2—(p—2)(k—1).
This completes the proposition. (I

Note that if f € K[[z]] and mt(f) = 0 then mt(f — f(0)) > 0. Applying the results from
mt(f) > 0 to f — f(0) we obtain that f ~, f(0) 4+ g, where g is a normal form of f — f(0) (cf.
Theorem 2.11). From now on we assume that mt(f) > 0. We denote, by using notations as in
Definition 2.1 for A = supp(f),

e(f) = e(A), q(f) = a(A), k(f) = k(A), d(f) :=d(A)

and

A(f) == A(A), A(f) == A(A).

Remark 2.6. (a) The above numbers mt, e, ¢, k,d and the sets A and A are invariant w.r.t.

right equivalence.
(b) Let f=3_,5, cua™ € K[[z]] and let

o
= 2. o

n>m(f)
Then f € K[[z]], f(z) = f(a:pem) and e(f = 0. Moreover,

)=
k(f) = k(f), 8A(F) = EA(S), EA(Sf) = $A(F)
and if (f) denotes one of mt(f),e(f),q(f),d(f) then

¢(f) = p"D¢(f).

(¢) Note that p(f) < oo if and only if e(f) = 0 and then ¢(f) = p(f) + 1. By [BGMI12,
Thm. 2.1] f is then right (2¢(f) — mt(f))-determined. In Proposition 2.8 we will show
that d(f) is the right determinacy of f.

Lemma 2.7. If e(mt(f)) = e(f) then f ~, ™),

Proof. By Remark 2.6, there exists f € K[[z]] such that f(z) = F(a”") and e(f) = 0. This
implies that u(f) = q(f) — 1 and then u(f) = mt(f) — 1 since e(mt(f)) = e(f). It follows from
[BGM12, Thm. 2.1] that f is right (mt(f) + 1)-determined. That is,

oy eppa™() o, gmt(h)

and hence f ~, (/) with the same coordinate change.
In fact, in this case an inductive proof as in the case of characteristic 0 works. (|

The next proposition is the second key step in the classification.
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Proposition 2.8. With f and d(f) as above, assume that p(f) < oo then d(f) is exactly the
right determinacy of f.

Proof. We may assume that e(mt(f)) > e(f) since the case e(mt(f)) = e(f) follows from Lemma
2.7. Let us denote A := supp(f) and use the notions as in Definition 2.1.

Step 1: Let us show that if g € K[[z]] with j¢(f) = j%(g) and d := d(f) then f ~, g.
By Remark 2.3(b), d(g) = d(f) = d since

supp(f) N{n € N [ n < ¢} =supp(g) N{n e N[ n <q}.
It suffices to show that
[ foi=300).
Indeed, we write
f=fo+ f1 with mt(f;) >d+ 1.
and assume without loss of generality, that

fi= bq+lxq+l + terms of higher order, with b,4; # 0.

l

Then the coordinate change ¢1(x) = x+uj41x 1 with uy41 a root of the following non-constant

polynomial:

qcqX + Z (”/pe(n))pC(n)CnXpC(n) +bgr =0

g—n -
pe(nLl*l

is sufficient to increase the multiplicity of f; and does not change fo by Remark 2.2(d). We thus
finish by induction.

Step 2: We now show that f is not right (d — 1)-determined.
For this we need the following
Claim: f ~, g if and only if j%¢g € Ry, - j%f, where
Ry = {w:uox—i—ule—i—...—i—uk,lxk | up #0} C R
and it acts on the jet space Jy by (¥, j%h) — j4(v(j%h)).
Proof of the claim. The “if”-statement follows easily from the first step. We assume that f ~,. g,
ie. g = (f) with
gpzuox—l—ula:Q—i—...,uo £ 0.
Setting
)= ugxr + w4+ ...+ up_q2*
and ¢ := ¢ 0 ~! we obtain that ¢ = ¢; 01 and that
Y1 =x+ ak;v’”'l + terms of higher order.

Note that k = k(f) = k(¢0(f)) due to Remark 2.6(a). It follows from Remark 2.2(d) that
i (o1 ())) = 34 (1))
Hence
39 = % (f) = i (er(0 () = j* () = 74w (GF)).
This completes the claim.
We write, for new indeterminates uq, ..., ur_1,1,

d
f+tat —y(f) = Z bi(uo, - - ., up—1, 1)’

i=m
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with ¢ = uoz + w1z + ... + up_12* and b; € Kluo, ..., ux_1,t], and define
Vi=Z(bm,. . ba) = {(u1,...,up_1,t) € A* | b(ug,...,up_1,t) = 0}
with the structure sheaf Oy and its algebra of global section
Oy (V) = Klug, ..., up—1,t]/{bms - -, ba).

We prove the second step by contradiction. Suppose the assertion were false. Then for all
t € K, f would be right equivalent to f + tz?, equivalently, j¢f + tz? € Ry, - j%f for all t due to
the above claim. This implies that the map p defined by
p 1% — Al
(UO,...,'U,kfl,t) — t
is surjective. It yields that dimV > 1. We may assume without loss of generality that
dimp V' > 1, where O = (1,0,...,0) € V and dimp V denotes the maximal dimension of irre-
ducible components of V' containing O. Since Oy,o C R := K|[ug, U1, ..., Uk—1,t]]/{bm, - -, ba)
with uf = up — 1,
dim R > dim Ov)o = dimo \%4 > 1.

By the Curve Selection Lemma, there exists a non-constant K—algebra homomorphism

¢ Klug,uty. .. ,ug—1,t] — K[[7]]
uy — ug(T)
u; = w(7)

t — t(r)

such that
bi (14 uy(7),ur (1), ..« up—1(7),t(7)) =0 for all i =m,...,d.
Since by, = ¢ (uy® — 1), it follows that
(1+uy(r)™ —1=0
and therefore uf(7) = 0. Notice that, the series u;(7),7 = 1,...,k — 1 could not be all equal to
zero since ¢ # 0 and since
ba(l,ut, ... up—1,t) = gequp—1 +t + bjy(u1, ..., up—1), with mt(d);) > 2.
We set
[ :=min{j | u;(7) # 0},

L :=min{n + 1p°™ | n € A}
and

I'={neA|L=n+p™}.
By Remark 2.2 we can conclude that m < L < d and that

e(n)
v(f)—f= Z (n/pe(")>p cnul(r)pe(n)xL + terms of higher order
nel

where
Y= +u(r) T+ up (7)F

It follows that
e(n)

br (L (7). s (), 40) = X (n/p )" (™ 0

nel
which is a contradiction. This proves the second step. (I
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In Corollary 2.9, Lemma 2.10 and Theorem 2.11 below we do not assume that f is an isolated
singularity, i.e. u(f) may be infinite or, equivalently, e(f) may be bigger than 0.

Corollary 2.9. Let f € K[[z]] and d = d(f). Let g € K|[z]] be such that e(f) = e(g) and

34(f) = j%g). Then [~ g.
We have in particular that f ~, j¢(f).

Proof. By Proposition 2.8, it suffices to prove the corollary for the case that e := e(f) = e(g) > 0.
Taking f € K|[[z]] and § € K[[z]] such that f(z) = f(2?"), g(x) = g(2?") as in Remark 2.6 we
have

e(f) =e(g) =0, d:=d(f) = d/p".
Since j4(f) = j%(g), j%(f) = j4(g) and hence f ~, g according to Proposition 2.8. This implies
f ~ g with the same coordinate change. (I

Lemma 2.10. With f, mt(f) and A(f) as above, we have
f’\’r xmt(f) + Z /\nxn7
neA(f)
for suitable A\, € K.

Proof. We decompose f = fo + f1 with

fo:= Z ¢zt and fy = Z cp.

e(f)<e(i)<eo e(n)>eo

Then mt(fo) = ¢(f) and e(mt(fo)) = e(fo) = 0 and hence fy ~, z9/) by Lemma 2.7. That is,
©(fo) = 29 for some coordinate change ¢ € Aut(K([[z]]). It yields that

g9:=0(f) = e(fo) +(f1) = "D + o(f).
By Remark 2.6, d(g) = d(f) and

@(fl) = Z Anz"

for some \,, € K. Hence
frrger jd(g) (9) = xmt(f) + Z Anz”
neA(f)
due to Corollary 2.9. O

From Proposition 2.5 and Remark 2.6(b), replacing f by f if e(f) > 0, and denoting
A :=supp(f) we can conclude that

IA(F) < m - ETE LfJ - 22— 1A,

The following theorem is therefore stronger than Lemma 2.10 because it reduces the number of
parameters.

Theorem 2.11 (Normal form of univariate power series). With f, mt(f) and A(f) as above,
we have
[ ™) 4 Z Anx"
neA(f)
for suitable A\, € K.
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Proof. We set A := supp(f) and use the notations as in Definition 2.1. Tt is sufficient to prove
the theorem for the case that e(m) > e, because the case e(m) = e follows from Lemma 2.7.
Then

Ao(A) = {n eEN|m<n<dye< e(n)} U{qo},
MA)={neN|g<n<d,e<e(n) <ep}.

We decompose f = fy + f1 with

fo:= Zcixi and fi := chm".

1<q n>q
Applying Lemma 2.10 to fy we obtain, by denoting Aj(A) := A(A)N{n € N | n < ¢} that
forra™+ Z bpr™ =a™ + Z bpz™ mod z7,
n€A(Ao) neAL(A)

for suitable A,, € K, since

AAp)N{neN|n<q} CAyA).
This means that there exists a coordinate change ¢ such that
o(fo) =2™+ Z bpz™  mod 9.
nEAL(A)
We denote g := ¢(f),
go = z™ + Z bnxna
neAy(A)

and

GLi=g—go= bpx", by #0.

n>q

We will construct a series h such that f ~, h and
h=a2"+ Z Apz”  mod z?
neA(A)
by eliminating inductively all terms of exponent in
I={ieN|g<i<d,e<e(i)}\AA).
If we succeed then by Corollary 2.9
f ~p h ~p th ~op [L‘m + Z )\nl‘n
neA(A)

Let ¢; be the minimum exponent in I for which b;; # 0. According to Remark 2.3 the coordinate

change

p1(x) =2+ gttt

i1 —
with [ := %Oqo and w41 a root of the non-constant polynomial:
()P xpt™)
S ba(n/p™)” X by, =0,
n+lpe(™) =iy
makes the coefficient of 2% vanish, and no term of exponent 4 in I with i < ¢; occurs. We prove
the last claim by contradiction. Suppose the claim were false, then we could find j € I,j < 73
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such that the coefficient of 7 in ¢ (g) differs from zero. That is, j is an exponent of a term in
(z + w1 2H1)" for some n € A(A) with b, # 0. Then there exists an i € N such that
j=mn+ilps™.
Note that ¢ > 0 by the definition of ¢;. This implies that
n+ilp*™ >n+1p*™ > jfor all n € A(A) with b, # 0,
because
o if e(n) < eg then n is either ¢ or gy, and hence
qo+1Ip*° =i1>j
and
q+1p°>qo+1Ip* =i1 >

since | < k due to Remark 2.3(e). -
e If e(n) > ey then e(j) > e(n) > ey and therefore j > dy. This implies that

dy=dy<j<ip<d
and therefore )
I = “quo > k(D).
It follows that
n+ilp™ > n+p*™ > go + Ip% =iy > j.
This contradiction shows that there is no term of exponent ¢ in I with ¢ < ¢; in p1(g). Hence
we obtain by induction a series h as required. O

Note that the families over A(f) resp. A(f) in Theorem 2.11 resp. Lemma 2.10 contain all
possible normal forms having the same set A resp. A (and hence having the same m, ¢, k and d).
The number of parameters of normal forms in the p—constant stratum (proof of Theorem 3.1)
could be bigger.

The following example shows that this normal form is in general not the best one we can get.
This means that, we can sometimes reduce the number of parameters even more.

Example 2.12. We consider
f =284 235 + 237 + terms of higher order
in characteristic 2, as in Example 2.4. Then d(f) = 41 and
A(f) = {16, 24, 32, 36, 37, 38, 39, 40,41}.
It follows from Theorem 2.11 that
[ 2® 4+ XMz + Ao + X332 + Xg2®0 4+ Ms2®™ 4+ Ngx®® + A3 + Agz®0 + Agz?!

for suitable \; € K.
On the other hand, applying Lemma 2.7 to fi := f — (2% + 23%) we get f; ~, 237. That is,
©(f1) = 237 for some coordinate change . It yields
o(f) = aor® + a1z + agx® + a32x®? 4+ ay2® + 237 mod z*.
By Proposition 2.8,
I~ o(f) ~p apz® + a1z 4+ agz® + azx® + ag2® + 237 + az2?°

and hence
[~ 28 4+ b2’ + boa®t + b31’32 + b0 + b59:37 + b6x40.
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This shows that, we can find a “better normal form” for f. Moreover by the coordinate change
T+ bﬁ/b5$4,

we can even get rid of the term bgz*° and obtain that

f o~ 28 + 1218 + ot + 639:32 + e 230 + 051:37.

In the following, we will give a set of terms of f which can not be removed by coordinate
changes and then we conjecture the “best normal form” for f.

Remark 2.13. Let f € K[[z]] be such that u(f) < co. Let A := supp(f) and let
¢; :=min{n € A | e(n) <i}.
Then
qf)=q>q > ... > qe(m) =m = g, for all i > e(m).

We can see easily that the set {qo,...,qe(m)} is the set of exponents of terms which can not be
removed by coordinate changes. However it is not true in general that

e(m)

f ~r Z Az
=1

for suitable A\; € K as the following example shows:
f=a%+2% 4237 + 2% ¢ K[[2]] with char(K) = 2.
Then
Go=q =q=237,q2 =36,q3 = m = 8.
It is not difficult to see that
I A Aoz + A0 + No2?7
for any Mg, A1, A2 € K.
We like to pose the following conjecture.
Conjecture 2.14. With notations as in Remark 2.13, let A*(f) := 0 if e(m) = 0, otherwise
A(f)={neN|m<n<gen)>iifqg <n<g-1}

Then f is right equivalent to

xmt(f) + Z )\nxn
neA*(f)

for suitable \,, € K, and moreover this is a modular family. That is, for each A = (An)nen=(f),
there are only finitely many X' = (X, )nea=(y) such that

™) 4 Z A"~y ™) Z ALz
neA*(f) neA*(f)
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3. RIGHT MODALITY

Theorem 3.1. Let charK =p > 0. Let f € (x) C K[[z]] be a univariate power series such that
its Milnor number p = u(f) is finite. Then

R-mod(f) = [u/p)

For the proof we need the following lemmas which are proven in [GN13] for unfoldings but
the proof works in general (for algebraic families of power series).

Let us recall the notion of unfoldings (see, [GN13]). Let T be an affine variety over K with the
structure sheaf O and its algebra of global section O(T'). An element f;(z) := F(z,t) € O(T)[[z]]
is called an algebraic family of power series over T. A family f;(x) is said to be modular if for
each t € T there are only finitely many ¢ € T such that fy is right equivalent to f;. An
unfolding, or deformation with trivial section of a power series f at tg € T over T is a family
fi(x) satistying f;, = f and f; € (z) for all t € T

Remark 3.2. Let f € (z) C K][[z]] be a univariate power series with Milnor number p < oo.
Then the system {x,z% ..., 2"} is a basis of the algebra (z)/(z - %> By [GN13, Prop. 2.14]
the unfolding over A*,

o
fe(z) == f + th‘ -t
i=1

with ¢ := (t1,...,t,) the coordinates of ¢ € A¥, is an algebraic representative of the semiuniversal
deformation with trivial section of f.

Lemma 3.3. With f and fi:(x) as in Remark 3.2, assume that there exists a finite number of

algebraic families of power series hiz)(x) over varieties T i € T and an open subset U C A*
satisfying: for allt € U there exists an i € I and t; € T such that f,(x) is right equivalent to

hgl)(x) Then
R-mod(f) < _maxldimT(i).

1=1,...,
Proof. cf. [GN13, Proposition 2.15(i)]. O

Lemma 3.4. If fi(x) is a modular unfolding of f over T then
R-mod(f) > dimT.
Proof. Tt follows from [GN13, Propositions 2.12(ii) and 2.15(ii)]. O

Proof of Theorem 3.1. We first prove the inequality R-mod(f) < |u/p]. Indeed, let

I={Ac{l,....a(f)} a(f) € A},
and let
B () i= ™) 4 Z SXL)Z‘“, Ael
neA(A)
the finite set of families over Ap = A2 with [x = A(A) and SXL), n € A(A) the coordinates of

sA in An.
Notice that if A € I, then e(A) = 0,¢(A) < ¢g(f) and therefore, by Proposition 2.5,

dim Ax = #A(A) < [¢(A)/p] < q(f)/p) = [n/p] -
With f; as in Remark 3.2, setting

Ay = {n € supp(fi) | n < q(f)}
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for each t € A*, we conclude that A; € T and A(A;) = A(supp(f;)) according to Remark 2.3(b).
By Theorem 2.11, f; ~; hs,, for some sa,.
This implies that the finite set of families h, (x), A € I satisfies the assumption of Lemma 3.3.
Hence
R-mod(f) < 1le$<dimAA < |u/p].

In order to prove the other inequality we consider the two following cases.
Case 1: m(f) =p.

Then q = g(f) = u(f) + 1,k = k(f) = | 42| ,d:=d(f) =g+ k— 1 and
A(f) ={neN|g<n<de(n) =0}
and $A(f) = |¢/p] due to Proposition 2.5. It follows from Theorem 2.11 that
frogma?t Y o
neA(f)
for suitable ¢,, € K with ¢, # 0. Consider the unfolding

gri=g+ A"
neA(f)
of g over S :={A = (An)neacs) € A | X, + ¢, # 0}, where \,,n € A(f) are the coordinates
of A. Let us show that g, is a modular unfolding. In fact, if ' = (A],)nea(y) € S for which
gx ~r g, then there exists a coordinate change

gp::am+a1xl+1+...

such that

©(gr) = gn-
Looking at the coefficient of P we deduce that a? = 1 and therefore a = 1. We have moreover
that | > k, because if | < k, equivalently, ¢ +1 > p(l + 1) then p(I + 1) € supp(p(gxr)) but

p(l+ 1) & supp(gy ), that is ¢(gx) # gr, a contradiction. It then follows from Remark 2.2(d)
that

390 = 3%(e(9r)) = % (gw),
i.e. A = ). This implies that g, is a modular unfolding and hence

R-mod(f) = R-mod(g) = #A(f) = la/p] = |1/p]

due to Lemma 3.4
Case 2: m(f) > p.
By the upper semicontinuity of the right modality (cf. [GN13, Prop. 2.7]) one has

R-mod(f) > R-mod(fs)
with fs = f +s- 2P, for all s in some neighbourhood W of 0 in A'. Take a sy € W \ {0} then
R-mod(fs,) = [1+/p] by the first case and hence
R-mod(f) = R-mod(fs,) = [1/p] -
(]

Remark 3.5. We have R-mod(f) > #A(f) by Theorem 3.1 and Proposition 2.5 with equality if
m(f) < p. Moreover, if m(f) = p, then fy ~, fi for A\, € A(f) implies A = X, which follows
from the proof of Theorem 3.1.

The example f = zP™! with R-mod(f) = 1 but A(f) = 0 shows that a strict inequality
R-mod(f) > #A(f) can happen.
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With f and the semiuniversal unfolding f;(z) as in Remark 3.2 we define

A= {te A% [ ul(f) = )
the p-constant stratum of the unfolding f;.

Corollary 3.6. Let f € (z) C K[[z]] with the Milnor number p < co. Then
R-mod(f) = dimA,.

Proof. For each t = (t1,...,t,) € A*, if the set Ny := {i =1,...,u | t; # 0,e(i) = 0} is not
empty, then u(f:) =n —1 < p with n := min{i | ¢ € N;}. This implies that
AM:{t: <t17~-~7ty) e A* | t; =0 if 6(2) :0}
It yields that
dimA, = {1l <n <p|e(n) >0} = [u/p]
and hence R-mod(f) = dimA,, by Theorem 3.1. O
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THE GEOMETRY OF DOUBLE FOLD MAPS

G. PENAFORT-SANCHIS

AssTrACT. We study the geometry of a family of singular map germs (C2,0) — (C3,0) called
double folds. As an analogy to David Mond’s fold map germs of the form
f@y) = (2,92, f3(2,9)), f3 € Oz,
double folds are of the form
flz,y) = ('7:272/27 f3(z,v))-
This family provides lots of interesting germs, such as finitely determined homogeneous corank
2 germs. We also introduce analytic invariants adapted to this family.

1. INTRODUCTION

A classification of complex analytic map germs from the plane to 3-space under A-equivalence,
that is, changes of coordinates in the source and target, was carried out by David Mond [8]. Like
in the work of a taxonomist, Mond’s list starts with the simplest singular map germs, the so
called fold maps. We say that a map germ f : (C%,0) — (C3,0) is a fold map if its first two
coordinate functions form a Whitney fold, T : (C%,0) — (C2,0), T(x,y) = (z,y?). The image
of a fold map f(x,y) = (x,y?, f3) looks like the graph of the function f3 ‘folded’ along the OX
axis. The third coordinate function of a fold map can be any but, under A-equivalence, we
can assume that it is of the form yp, where p = T* P for some germ P in the ring of germs of
functions in two variables Q5. Hence, the normal form of a fold map is

fla,y) = (z,9°, yp).
Fold maps are easy to study because they are germs of corank 1 and because they behave well
under the action of the group G = {1,4}, generated by the reflection i(x,y) = (z, —y). One can
see that all lifted double points of a double fold f (that is, pairs (z,2’) € C? x C? such that
f(z) = f(#) and, if z = 2/, then f is singular at z) are of the form (z,i(z)).

In this work we explore a family which is also related to a group, while it contains lots of
interesting corank 2 maps. In general, corank 2 maps are much harder to study than corank 1
ones, but the group action and some ideas lent by the fold case are going to help us. To generate
the simplest corank 2 maps for our studies, we can not allow linear terms in f. Thus, we are going
to ‘fold’ twice, once through OX and once through OY axis. We denote «a : (C2,0) — (C?,0)
the folded hankerchief

az,y) = (QSQ,yQ).
Take the reflections i1 (z, y) = (—z,y) and is(z,y) = (z, —y) and the rotation i3 (z,y) = (—z, —y).
We write G for the group {1,iy,i2,43}. The orbit of any z € C? is Gz = a~(a(z)) and z is a
singular point of « if and only if z belongs to Fiz(i1) U Fiz(iz) = OX UOY. Now, related to
the group G, we have a family of maps of the form

f(x7y> = ($2,y2,f3(.’1,',y)),
which we call double folds.

Work supported by DGICYT Grant MTM2012-33073 and FPUMEC Grant AP2010-4509.
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Section 2 covers the basics about double folds. First we compute their multiple point schemes
(this was first done by Marar and Nufio-Ballesteros, who introduced double folds in [5]). Then
we introduce a decomposition of the multiple point spaces related to the group G. In Section 3
we restrict ourselves to the double fold family and define the notion of DF-stability (and that
of SDF-stability). DF-stable singularities are the ones preserved by small perturbations inside
the double fold world. We show that the DF-stable singularities are the stable singularities,
plus another kind of singularities, namely the standard self tangencies (and also the standard
quadruple points in the special double fold case). We introduce an equivalent notion, DF-
genericity, to characterize DF-stability in terms of transversality conditions on the facets of the
Coxeter complex of the group G. Section 4 deals with DF-stabilizations, where only DF-stable
singularities appear. We use these deformations and the decomposition of the multiple point
spaces given in 2 to relate certain numbers to double folds. These numbers are candidates for
A-invariants (up to a permutation of indices induced by an isomorphism of G). In Section 5 we
consider general families of map germs (C",0) — (C**1,0), constructed in the same manner as
the folds and double folds: choosing a finite map germ « : C* — C" and attaching any (n + 1)-
th coordinate function to obtain a map germ of the form («, fr+1). We find results relating
the A-equivalence of this kind of germs to some subgroup of K-equivalence adapted to each «.
These results imply that the numbers introduced in section 4 are A-invariant among the finitely
determined quasihomogeneous double folds.

Thanks are due to David Mond and to the author’s supervisors, Juan José Nuno Ballesteros
and Washington Luiz Marar, for guidance and useful conversations about the topic of this paper.
The author wants to thank also the referee for many valuable comments and suggestions.

2. MULTIPLE POINT SCHEMES

Definition 2.1. We call double fold (abbreviated as DF) any map germ f : (C%,0) — (C3,0)
of the form f(z,y) = (z2,%?, f3(x,y)). The function germ f3 € O can be written in the form
f3(x,y) = Po(2?,9?) + 2Pi(2?,y?) + yPo(2?,y?) + 2yPs(2?,y?), for some P; € Oy. Under
A-equivalence, we can eliminate Py. Then we obtain a double fold in normal form

flz,y) = (22,42, xp1 + yp2 + zyps3),

with p; = o*P;, for some P; € Oy. We call special double folds (abbreviated as SDF') the double
folds in normal form such that ps = 0.

Example 2.2. Fold and double fold families are not exclusive. The cross-cap is usually param-
eterized as a fold in normal form (z,y) — (z,y?, xy), but it can also be regarded as double fold
with parameterization (z,y) — (2%, 9%,z +y) (see figure 1).

Multiple point spaces were introduced by Mond [9] as a key tool to study map germs
(C™,0) — (C?,0), n <p.

Initial papers about map germs (C?,0) — (C3,0) (like [7], [8] and [9]) focussed mainly on the
case of corank 1, but some recent ones (for instance [5], [6] and the present paper) deal with
corank 2 germs. Altough this was done first by Marar and Nuno-Ballesteros, who introduced
double folds in [5], we shall sumarize here the computations of some of their multiple point
spaces for a better understanding.

Multiple point spaces in the target are computed as described in [10]. Let f: X — (C**1,0)
be a finite map germ, where X is a n-dimensional Cohen-Macaulay space. Let f.Ox denote
Ox as Op41-module via f. The k-multiple point space in the target is given by the (k — 1)-th
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FIGURE 1. The cross-cap is a double fold.

Fitting ideal of the module f,Ox defined next: Take a presentation of f,Ox, that is, an exact
sequence
or. 201 £ f.0x — 0.

The matrix M (f) which represents A is called a presentation matriz for f.Ox. The k-th Fit-
ting ideal of f.Ox is the ideal Fy(f) generated by the minors of size min(p, q) — k of M(f) if
k < min(p, q), and Fj(f) = On41 otherwise. The following method to compute certain presen-
tation matrices can be found in [10, Section 2.2]: Assume f = (f1,..., far1) : X — C**1is such
that f = (f1,---fn) : X = (C™,0) is finite. If g1,...g, are generators of f+Ox, then they are
generators of f,Ox too. Therefore, we obtain an epimorphism ¢ : O}, .| — Ox which sends the
canonical vector e; to the generator g;. For any 1 < ¢ < r, there exist germs a;; € O,,, 1 <j<r
such that f,119; = Y, f*aijg;. If X1,..., X, 41 denote the variables in C**! and §;; is the
Kronecker’s delta function, then the matrix M(f) with entries a;;(X1,...,X,) — 0;;Xp41 is a
presentation matrix for f,Ox.

Given a double fold f(x,y) = (22, y2, xp1 + yp2 + zyp3), we use the method explained above
to find M(f). Take g1 = 1,92 = x,935 = y, g4 = zy as generators of a,Oy. For i = 1, we have
f3g1 = xp1 + yp2 + xyps = 0 g1 + a* P1gs + a* Pogs + a* P3gy4. Therefore, the elements of the
first column of the matrix are —Z, Py, Py, P3. After computing f3g; for i = 2,3,4, we get the
matrix

-7 XP, YP, XYP

| n -z vPy YR
M)=| p, xp, -z xp |

P, P, P —Z

where P; represents P;(X,Y). Since M(f) has size 4 x 4, f has no points with multiplicity
greater than 4. For special double folds, the space of quadruple points in the image is given by
the ideal F3(f) = (P1(X,Y), P»(X,Y), Z) and Fy(f) = (F3(f))?. Hence, triple points of special
double folds appear concentrated at quadruple points.

We define the source double point space D(f) as the zero locus of the pull back f*(Fi(f)).
In the double fold case we have D(f) = V ((p1 + yps)(p2 + ps)(xp1 + ypz2)). Its defining ideal
factorizes as the product of the ideals Iy := (p1 + yps), Iz := (p2 + xp3) and I3 := (xp1 + yp2).
Analogously, the source triple point space, defined as V(f*(Fa(f)), is given by the product of
the ideals I1 5 := (p1 +yp3,p2 +2p3), 11,3 := (p1 +yp3, p2 — xp3) and Iz 3 := (p2 +xp3, p1 — Yp3)-
Quadruple points (again with the structure induced by the target) are given by the zeros of



DOUBLE FOLDS 253

FIGURE 2. The image of a double cone.

I := (p1,p2,ps3). We observe the collapse of triple points in the special double fold case: If ps
equals zero, then the radical of I1 217 302 3 is (p1,p2), which is the ideal defining the quadruple
point locus.

Definition 2.3. Given a double fold f = (a, zp1 + yp2 + zyps), we decompose the double point
locus as the union of D;(f),1 < ¢ < 3, with D;(f) := V(I;) and the triple point space as the
union of Di,j(f)7 1 S 1 < j S 3, with DiJ = V(Iz,j) Finally, we denote D17273(f) = V(Il7273)
the quadruple point locus.

Remark 2.4. It’s immediate that:

e w belongs to D;(f) if and only if i;(w) does so. Moreover f(w) = f(i;(w)).
e w belongs to D; ;(f) if and only if 4;(w) and ix(w) do so. Moreover

flw) = fu(w)) = f(ix(w)).

e w belongs to Dy 2 3(f) if and only if 41 (w), i2(w) and i3(w) do so. Moreover

f(w) = flir(w)) = fiz(w)) = fis(w)).

Example 2.5. Take the family (z,y) — (22,92 Mz + Aoy + A32y), \; € C. Assume A3 # 0,
then its double points are the following: D1 (f) = V(A1 4+ yAs) is the line y = —A; /A3, which is
obviously ii-invariant, Dy(f) is the is-invariant line = —A2 /A3 and, if Ay # 0, then D3(f) is
the iz-invariant line y = —Ajz/A2. We find the triple points where these lines meet:

Dio(f) = {(=A2/A3,=A1/A3)}, Dis(f) = {(A2/ A3, =A1/A3)}
and
D3 3(f) = {(—=X2/A3,A1/A3)}

(see figure 3). In the case A3 = 0 we have a special double fold. Thus, its triple points should
appear collapsed at quadruple points, with equations p; = ps = 0. Since p; = Ay and ps = Ao, the
appearance of quadruple point forces \; = Ay = 0 and hence, the map is the folded hankerchief.
Another map that fits into this family is the so called double cone (x,y) — (22,y?, 2y) (Figure
2). It parameterizes the cone Z? = XY, but does so in a two-to-one way. Indeed, its double
point branch D3(f) = V(xp; + yp2) = V(0) equals C2.
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FIGURE 3. Image and double points of a double fold (see Example 2.5).

3. DOUBLE FOLD STABILITY

In this section we study the singularity types which are characteristic of the double folds.
By a singularity type we mean an A-equivalence class of multigerms f : (C%,S) — (C3,y).
A singularity type, represented by fg, is stable if it appears in any section fs,s € C, of any
deformation of fy. It is well known that in the case C?> — C? the stable types are transverse
double points, triple points and cross-caps. Our goal is to make a version of the concept of
stability adapted specifically for double folds. Some types, despite not being stable, are preserved
by deformations which occur inside the double fold world. We call them DF-stable types and
these deformations DF-deformations. This concept can be adapted to the special double fold
case and we shall use the notation (S)DF to refer respectively to both, the double fold and the
special double fold case.

Definition 3.1. We call (S)DF-deformation of fo any germ F : (C2xC,0) — (C3,0) of the form
F(z,t) = fi(z), such that the germ f; : (C2,0) — (C?,0) is a (special) double fold for all t. We
call (S)DF-unfolding any map germ F : (C2 x C,0) — (C? x C,0) of the form F(x,t) = (fi(z),t)
such that f;(z) is a (S)DF-deformation.

Definition 3.2. We say a multigerm ¢ is (S)DF-stable if any (S)DF-unfolding F' of a multigerm
f of type £ is trivial. That is, if there exist some unfoldings of the identity ¥, ® such that
fxid=¥oFod. A (special) double fold f: U — C? is (S)DF-stable if all its multigerms at
FH(f(w)),w € U are (S)DF-stable.

Remark 3.3. Every stable type is (S)DF-stable.

A priori, it might seem difficult to identify all possible (S)DF-stable maps, but a better
understanding of the map « will help us to do so. The map « is the invariant map associated
to the Coxeter group G (see [3] for Coxeter group theory). For any Coxeter Group there is a
Coxeter complex, in this case C := {C?\ (OX UOY),0X \ {0},0Y \ {0},{0}}. The Coxeter
complex stratifies the space in a way such that the behavior of the group, and thus that of
«, changes whenever we go from a facet to another. Consequently, much information about a
double fold is contained in the way its multiple point spaces meet the Coxeter complex. The
following proposition is an example of this.

Lemma 3.4. The germ of a fold f(x,y) = (22,42, xp1 + yp2 + xyp3) centered at a point w € C?
s a cross-cap if and only if one of the three conditions is verified:
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i) w e OX \ {0} and the restricted function (p2 + xp3)|ox has a simple zero at w.
iil) w e OY \ {0} and the restricted function (p1 + yps)|oy has a simple zero at w.

ili) w =0 and p1(w) # 0 # pa(w).

Proof. A monogerm of map from C? to C3 is a cross-cap if and only if its source double point
space is smooth (this follows immediately from [6, Theorem 3.3]). Since cross-caps are singular
monogerms, they lie on OX UQOY . Assume first that w € OX \ {0}. Looking at the 2 X 2 minors
of the differential of f at w it follows that f is singular at w if and only if py + xp3 vanishes
at w. Now the source double point space of the germ of f at w is Da(f), given by the zeros
of ps + xp3 (notice that, by Remark 2.4, the branches of double points D;(f) and D3(f) at
OX \ {0} produce multigerms, not monogerms). Therefore, the double point space of the germ
of f at w is smooth if and only if the Milnor number of the germ of function ps +yps at w equals
0. This happens if and only if at least one of the partial derivatives % and 8”%;” does
3;02[;‘;76173

not vanish at w. Since py and p3 are functions of 22 and y?, we deduce that vanishes at

OX. Hence, f has a cross-cap at w € OX \ {0} if and only p, + xp; vanishes at w and %

does not, that is, if and only if the restriction (ps + xp3)|ox has a simple zero at w. The case
w € OY \ {0} is analogous. Assume now w = 0. The source double point of f is the germ of
complex space given by the zeros of (p1 + zps)(p2 + ps)(xp1 + yp2). The non vanishing of p; and
po at 0 is a necessary and sufficient condition for this germ of complex space to be smooth. [

Points where the source double point space meets the facets of the Coxeter complex in a
generic way are called (S)DF-generic. We shall determine the different possible (S)DF-generic
singularities and then show that they are exactly the (S)DF-stable singularities. Let us state
the (S)DF-genericity conditions rigorously:

Definition 3.5. Let f = (o, 2p1 + yp2 + zyps) : U — C3 be a double fold. We say that a point
w € C?, that belongs to a facet C € C, is DF-generic if:

1) (p1 + yps)lc, (p2 + xps)|c and (xp1 + yp2)|c are transverse to {0} at w, with the
exception (zp1 + yp2)|{o} (notice that no double fold in canonical form could verify this
transversality condition).

2) (p1 +yp3, p2 +xp3)lc, (p1 + yp3,p2 — xp3)|c and (p2 + zps, p1 — yps)|c are transverse
to {(0,0)} at w.

3) w is not a quadruple point of f.

A double fold f: U — C? is DF-generic if all points w € U are DF-generic

Conditions 1) and 2) adapt to the special double fold case just taking ps = 0 but, since
quadruple points are more likely to appear at special double folds (they are the zeros of just two
equations in C2), the SDF genericity conditions don’t include condition 3).

Definition 3.6. Let f = (a, zp; + yp2) : U — C? be a special double fold, we say that a point
w € C2, that belongs to a facet C € C, is SDF-generic if:
1) pilc, p2|lc and (zp1+yp2)|c are transverse to {0} at w, with the exception (2p1+yp2)|{o}-
2) (p1,p2)|c is transverse to {(0,0)} at w.

A special double fold f : U — C3 is SDF-generic if all points w € U are SDF-generic

Remark 3.7. It is immediate from its defining ideals that every point belonging to D1 (f)NOX
or to Da(f) N OY must belong to D3(f) too. It is also immediate that Ds(f) always crosses
the facet {0}. Apart from these exceptions, which are inherent to the double fold family, the
genericity conditions imply the following more geometric assertion: Given a regular stratification
of D(f), the strata have their expected dimension (double points have dimension 1 and triple
(quadruple) points have dimension 0) and are transverse to the strata of the Coxeter complex C.
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FIGURE 4. Images of a standard self tangency and a standard quadruple point.

Let us introduce our new candidates to be (S)DF-generic multigerms.

Definition 3.8. We call a standard self tangency the multigerm formed by two smooth branches
with Morse contact. We call a standard quadruple point the multigerm formed by four smooth
branches such that every three of them meet transversally. These singularities are depicted in
Figure 4.

Proposition 3.9. All standard self tangencies are A-equivalent. All standard quadruple points
are A-equivalent.

Proof. In [12] it is shown that the A-class of a bigerm with smooth branches is determined
by the contact type of its branches. Since there is only one contact class of Morse type, all
standard self tangencies are equivalent. Let f be a multigerm of standard quadruple point.
Any three of its branches form a triple point and there is only one .A-class of triple points.
Therefore, there exists a change of coordinates that takes f to a multigerm whose branches send
(z,y) respectively to (z,y,0), (x,0,y),(0,z,y) and g(z,y) for some regular monogerm g with
Img = {U1 X + UsY + UsZ = 0}, U; € O3. The plane tangent to Im g is determined by the
equation t1 X +t.Y +t37 = 0, with t; = U;(0,0). If we assume t; = 0, then the intersection of the
tangent plane with the branches {Y = 0} and {Z = 0} is the line {Y = Z = 0}. This contradicts
the transversality of these three branches. We deduce t; # 0 and, analogously, to # 0 # t3. The
change (X,Y, Z) — (U1 X,UsY,UsZ) defines a germ of diffeomorphism that takes our multigerm
to the one with image {XYZ(X +Y + Z) = 0}. Now the four branches of our multigerm send
(x,y) to (urx,u2y,0), (urz,0,uzy), (0, usx, usy) and

(a1 + b1y, asx + bay, —(a1 + b1)x — (a2 + ba2)y),

where u; = U; o f, and aq,as, by, by are some function germs in Os. We take germs of diffeo-
morphisms at the source, at the four different points where our multigerm is centered. The first
three diffeomorphisms send (x,y) respectively to (z/u1,y/us2), (x/u1,y/uz) and (x/ug,y/us).
The fourth diffeomorphism is the inverse of the germ

(z,y) = (a1 + bry, asx + bay).

These four source coordinate changes take the multigerm to one multigerm defined by four
branches sending (z,y) respectively to (z,y,0), (x,0,y),(0,z,y) and (z,y,—x — y). Hence, all
germs of standard quadruple point are equivalent. O

Lemma 3.10. The (S)DF-generic points are reqular points, transverse double points, cross-caps,
standard self tangencies and triple points (resp. standard quadruple points).
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Proof. Given a (special) double fold f and a point w = (x9,y9) € C? satisfying the (S)DF-
genericity conditions, we shall determine the type of singularity of the multigerm of f at
f71(f(w)). First of all, notice that singular points lie in O X UOY and the genericity condition 2)
implies that all triple points belong to the facet C?\ (OXUQY'). Hence, from genericity condition
1), together with Lemma 3.4, it follows that all points where f is singular are cross-caps.

Now suppose that f is regular at w and the point w belongs to D;(f), 1 <1 < 3. Take the
vector fields along f defined by the cross product 7 := % X g—{/ and n =noi, for 1 <[ < 3.
The branches of the multigerm of f at w and i;w are transverse unless 7 x 1; or, equivalently,
& == (n—m) x (n+m) vanish at w. We study the different cases a), b) and c), where w belongs
to D1(f), D2(f) and Ds(f) respectively.

Case a) Let w belong to D;(f), then we have:

o o o) o
&1 lw = 4zoyo(dzo (fﬂmg;ryp:s)|u”4y0 (rplg;ﬂsyps”w’( (xmg;myps)m@giz o — (rm(;_ryps)m 8%2 o))

Suppose first w ¢ OX U OY, then &, vanishes if and only if apl((;;ypﬂw = 6”15;”3 lw = 0,
that is, if and only if p; + yps is not transverse to {0} at w. This is in contradiction with
the first genericity condition. Suppose now w € OX U OY and notice w ¢ OY because it
would be a singular point. Thus, we have w € OX \ {0}. We claim that the bigerm of f at
(£, 0) forms a standard self tangency at (Xo,0,0), where X, = z3. The genericity conditions
imply that P; has a simple zero at (Xy,0) and P> does not vanish at (Xy,0). Let the germ
of f: C? — C? at zy parameterize one of the branches and let ¢ : C3 — C be the germ at
(X0,0,0) which defines the other branch implicitly. Then, following Montaldi [11], the contact
between the branches is given by the KC-class of the composition ¢ o f. The branches are given
by (72 + VXP))? — YP} £ 2YVXPyP; — XYP? = 0. After choosing the preimage (g, 0)
and composing we get the function 4z (py + yps)(zp1 + yp2), which is of Morse type in (xg,0).
Therefore, the multigerm of f at (+xg,0) is a standard self tangency.

Case b) is symmetric interchanging indices 1 and 2, and OX and OY.

Case ¢) If w € D3(f), then we can assume w € D3(f) \ (OX U OY) because otherwise
w € Dy(f) U Da(f). We have

O(xp1 + yp
&lw = 4xoyo (4950(182/2)

d(xp1 + yp2) |
ax w

(3(96191 +yp2)| 890yp3| ~ O(zp +ypz)| 5xyp3| ))
Oy Yoox Y Ox Yooy M)

|u)7 —4yo

which vanishes if and only i vanish in w, if and only if xp; + ypo is not

f 9zp1typs and dzp1+yp2
ox oy
transverse to {0} at w.
As we have seen before, all triple points (and therefore all quadruple points) belong to the
facet C2\ (OX N OY), where the second genericity condition implies that the branches are
transverse. Therefore, all triple points are transverse (respectively all quadruple points are

standard quadruple points). (I

Lemma 3.11. Every (special) double fold admits a (S)DF-deformation f; defined in a neigh-
borhood U x V of (0,0) € C% x C such that, for everyt € V, f; is (S)DF-generic.

Proof. Let f = (o, xp1 +yp2 + xyps) be a representative defined at some neighborhood U of the
origin. we consider DF-deformations of the form f, 5. = (o, 2(p1 + a) + y(p2 + b) + zy(ps +¢)).
Denote A the analytic space of the points (a, b, c) € C3, such that for some point w in U the map
Ja.b.c does not satisfy all genericity conditions. We claim that A is a proper subspace of C?. Take
the first function, p; +yps, of the first condition and any facet of the Coxeter complex C' € C. We
consider the map ¢ : C x C? — C, given by ¥(w, a, b, ¢) = py(w) +a+y(p3(w)+c). This is clearly
a submersion. Therefore, the Basic Transversality Lemma |2, Lemma 4.6] tells us that, for almost
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every (a,b,c¢) € C3, the map fqp, is transverse to 0. We can proceed analogously for all the
maps given by the DF-genericity conditions to finally show that, for almost every (a,b,c) € C3,
all the genericity conditions hold at every point in U. Thus, A is a proper subspace. Hence, we
can find some particular (a,b,c) € C3 and some neighborhood V' of 0, such that t(a,b,c) ¢ C?
for any t € V. If we take the DF-deformation

filz,y) = (2,9, z(p1 + ta) + y(p2 + tb) + zy(ps + tc)

defined at U x V, then for any ¢ € V', the map f; has only D F-generic points at U. The special
double fold case is analogous. O

Theorem 3.12. (S)DF-stable and (S)DF-generic points are the same. As a consequence:
The DF-stable singularities are

e Transverse double points, cross-caps and triple points.
e Standard self tangencies.

The SDF-stable singularities are

e Transverse double points and cross-caps.
e Standard self tangencies.
e Standard quadruple points.

Proof. By Lemma 3.11, the DF-stable singularities must be DF-generic. Now take a DF-generic
point w of a double fold f. If w is a transverse double point, a cross-cap or a triple point, then it
is stable and, hence, DF-stable. Suppose w is a standard self tangency and Let F' = (fy,t) be a
DF-unfolding of f. Assume w € D;(f). Then, as we have seen in the proof of Lemma 3.10, the
point belongs to OX \ {0}, (p1 +yps)|ox has a simple zero at w and the functions ps + zps and
xp1 + ype don’t vanish at w. Therefore, there exist a neighborhood U x V of (w,0) and a curve
of points wy € UNOX \ {0}, with ¢t € V and wy = w, such that (p; + yps)|ox has a simple zero
and the functions ps + xps and xp; + yp2 don’t vanish at w;. All this points are also standard
self tangencies and, since they are all A-equivalent by 3.9, they are DF-stable. The proof holds
in the special case and is analogous for standard quadruple points. (Il

4. COUNTING (S)DF-STABLE POINTS

A usual way to study germs is to count the number of stable 0-dimensional points of each
type which appear in a stabilization of the original germ. One can show that these numbers can
be obtained as the dimension (as C-vector space) of certain local algebras related to the different
stable 0-dimensional types. We adapt these techniques specifically to (S)DF-deformations and
to (S)DF-stable points.

Definition 4.1. We call (S)DF-stabilization any (S)DF-deformation F such that there exists a
neighborhood U x V of (0,0) € C? x C such that, for every t € V, f; is (S)DF-stable.

Remark 4.2. By Lemma 3.11 and Theorem 3.12, every (special) double fold admits a (S)DF-
stabilization.
Definition 4.3. For any (special) double fold f we define:

STi(f) = 1 dimc Oy /57 L;(f), for i = 1,2,

Ci(f) = dime O1/j;Li(f), for (i,k) = (1,2),(2,1),

T(f) = dimc Oz/11 2(f) (in the special DF case: QD(f) = %dimc Oo/{(p1,p2)),

where j; and j3 denote the inclusions of OX and OY into C? respectively.
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FIGURE 5. A non SDF-stable special double fold (see Example 4.6).

Remark 4.4. We don’t include indices for the triple points in different branches because the
complex spaces D; ;(f) are all isomorphic, since Oz/I1 o(f) = O2/11 3(f) = O2/I>3(f) via the
isomorphisms induced by i1 and is.

Proposition 4.5. Let ST;(f), Ci(f) and T(f) (respectively QD(f)) be finite. Let fs be a (S)DF-
stabilization of f. Then, for a small enough s # 0, the following equalities hold:

ST;(f) = # standard self tangencies f(D;(fs)),
Ci(f) = # cross-caps in Di(f,) \ {0},
T(f) = # triple points of fs (QD(f) = # standard quadruple points of f).

Proof. Take the zero locus of the different ideals which appear in 4.3. If ST;(f), C;(f) and T'(f)
(respectively QD(f)) are finite, then the spaces are 0-dimensional. In this case, the codimension
of any of these spaces equals the number of generators of its defining ideal. Hence, the spaces are
complete intersection and the Principle of Conservation of Number (see for example [4, Theorem
6.4.7]) applies to them. We only need to check that, if the multigerm of fs at f;1(fs(w)) is
(S)DF-generic, then the numbers are 1 if it is the considered singularity and 0 otherwise. g

Example 4.6. Take the family of special double folds
(z,y) = (%97, 2(a12” + b1y — c1) + y(aaz”® + bay® — c2)).

The double points D1 (f) and Ds(f) are given by a;2? + b1y? = ¢; and asx? + bay? = co. In the
real case, these two spaces collapse to the point 0 if ¢; = ¢co = 0. For the germ

flz,y) = (% 9%, 2(a” + 20°) + y(22° + 7))

(Figure 5), we can easily compute ST} = 1/2dim¢(O;/(z?)) = 1 and similarly ST = 1 and
Cy = Cy = 2. We also have QD = 1/4dimc(0s/(22% + 32,2y + 22)) = 1. Now take the
2-parameter deformation f; = (22,92, x(2? + 2y® — t1) + y(22% + y? — t3)), where t = (t1,t3).
We see that, for almost every fixed t with t; # 0 # t3, f; is a SDF-stable map where we can
find (Figure 6) a standard self tangency and two cross-caps along D1 (f;) \ {0} and the same on
D5 (f:)\ {0}. We also see the cross-cap at f;(0) and a standard quadruple point. For these good
values of ¢ we can also see that, apart from the restrictions on D;(f) N D3(f) and Ds(f) N {0}
(see Remark 3.7), the regular stratification of D(f;) is transverse to every facet of the Coxeter
complex.
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FIGURE 6. A SDF-stable deformation of the surface shown in figure 5.

Example 4.7. If we take the double cone (z,y) — (22,92, zy) of Example 2.5, we see easily
that ST; =0, C; = dim¢ O1/m; =1 for i = 1,2 and T = dim¢ Oz /my. In fact

filz,y) = (2%, y° te + ty + xy)

is a DF-stabilization of the double cone where each section ¢t # 0 has, as in figure 3, three
cross-caps (one in Di(f) \ {0}, one in Da(f) \ {0} and the other at 0) and one triple point.

Remark 4.8. Let ST(f), C(f), T(f) (and respectively @QD(f) in the special case) denote the
number of standard self tangencies, cross-caps, triple points (and standard quadruple points)
respectively that appear taking a (S)DF-stabilization of f. It is known that C(f) and T(f)
are well defined A-invariants of f. It is immediate that Q(f) is also invariant, because any
map showing a quadruple point can be deformed (outside the special double fold world) into
another that shows 4 triple points. It is not clear whether ST is A-invariant or not, but it
is easy to see that the numbers with indices ST;(f) and C;(f) are not. Given a double fold
f, we can interchange x and y at the source and then permute the first two coordinates at
the target to obtain a new double fold, say g, such that STi(f) = ST2(g), ST2(f) = Ni(9),
C1(f) = C2(g) and Ca(f) = C1(g). Apart from the permutation of indices 1 and 2 that this
change of coordinates produces, examples suggest that changes of coordinates don’t make the
singularities jump from one space D;(f) to another one. Therefore, the numbers ST;(f) and
C;(f) seem to be A-invariant, modulo a simultaneous permutation of all indices 1 and 2 (and
that would make ST A-invariant). However, we have only succeeded in showing it for finitely
determined quasi homogeneous double folds (Corollary 5.6).

5. A-EQUIVALENCE AND K“-EQUIVALENCE

The aim of this section is to mimic a result of David Mond [8, Theorem 4.1:1], which shows
the coincidence between the A-equivalence of folds f : (C2,0) — (C3,0), f(z,y) = (z,y?, f3)
and some easier to use equivalence of the third coordinate function, f3, defined ad hoc. This
equivalence is given by a subgroup of K called KT which behaves well with respect to the
Whitney Fold T'(z,y) = (x,y?). We take, instead of the Whitney Fold, any finite mapping
a : (C",0) — (C*,0) and consider mappings («, fnt1) : (C*,0) — (C"*1,0). We define the
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group K and the generalization of one direction of Mond’s results comes easily: K“-equivalence
for f,4+1 implies A-equivalence for (o, fr41)-
As usual, we denote R,, the group of germs of biholomorphism ¢ : (C™,0) — (C”,0).

Definition 5.1. Let « : (C™,0) — (C",0) be a finite germ. We define R* as the subgroup
consisting of the germs ¢ € R, such that there exists a germ ¢ € R,, such that

poa=aop.

We say that two germs g, h € O,, are K%-equivalent if there exist a function k € a*Oq, k(0) # 0
and a germ of diffeomorphism ¢ € R®, such that

g=~K-hop.
Example 5.2. Let a(z,y) = (z2,5?), then any diffeomorphism ¢ € R is of the form

o(r,y) = (zp1,yp2) or  w(z,y) = (yp1, Tp2)

for some functions @1, p2 € a*Oa, ¢;(0,0) # 0. In particular, if g, h € C[z,y] are homogeneous
K“-equivalent polynomials, the factors x and h o ¢ are homogeneous. Hence, on one hand, k
is a constant in C*. On the other hand, since ¢ is a diffeomorphism, both h and h o ¢ are
homogeneous of the same degree. We can replace ¢ by its linear part without changing the
composition. Thus, we can assume that ¢ is of the form (z,y) — (az,by) or (x,y) — (by, ax).

Lemma 5.3. A diffeomorphism ¢ € R, belongs to R* if and only if the algebras a*O,, and
(vo p)*O,, are equal.

Proof. Let ¢ € R* with ¢ oa o ¢ = a. Any function hoa € a*0, is equal to

(hog)oaop e (o) O,.

Now take hoaoyp € (aop)*O,,. This function is equal to hogp~logoaop = (hop~t)oa € a*O,,.

Now suppose that the two sub-algebras above are equal, then there exist some functions ¢;
such that a; = @;oaop. Take = (P1,...,%yn). Then we have o = poaoyp. As « is finite and
@ is a biholomorphism, o and « o ¢ have the same finite multiplicity. Therefore ¢ must have
multiplicity 1, and hence is a biholomorphism. O

Theorem 5.4. Let o : (C™,0) — (C™,0) be a finite germ and fny1, gnt1 be two K*-equivalent
functions of Oy, then the map germs (C*,0) — (C"*1,0) f = (a, far1) and g = (a, gns1) are
A-equivalent.

Proof. f ~xo g implies that there exists 6, : (C" x C,0) — (C,0) of the form
0.(X,Z2) =0(a(X), Z)

for some germ of function 6 and such that 6,0, ) is a germ of biholomorphism, and there exists
v € RY such that g(X) = 0,(X, f o o(X)). Since ¢ € RZ, then there exists some germ of
biholomorphism ¢ such that a = p o a o . We define 1, : C**1 — C" by 9 = ¢ o m; and
1o = 0 o (11, ™), where ; represents the projection over the i-th component of C" x C. Now
we define ¥ = (11,19) : (C**1,0) — (C**1,0) and, for every X € C", we have

Yo (a, f)op(X) = (¢la(p(X))), 0(¢((p(X))), f((X)))) =
((X), 00 (X, f((X)))) = (e, 9)(X).

As a consequence of ¢ and 6,(X, ) being biholomorphisms, we have that ¢ is a biholomorphism.
O
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Again, examples suggest that the converse of Theorem 5.4 also holds: A-equivalence of
(o, fnt1) and (o, gn41) implies K%-equivalence of f,,+1 and g,+1. However we have not suc-
ceed in proving this in general. It was proved by Mond in [8] that it holds when « is the
Whitney Fold. We have only succeeded in showing it for finitely determined quasihomogeneous
double folds.

It is shown in [5] that any quasihomogeneous double fold must be a homogeneous one. There
are only two ways to obtain a homogeneous double fold f(z,y) = (o, zp1 + yp2 + zyps). One is
p3 = 0 and the other p; = ps = 0. Every finitely determined double fold must have a reduced
double point space, which is given by (p1+yps)(p2+xps)(zp1+yp2) = 0. We deduce immediately
that every finitely determined quasihomogeneous double fold must be, in fact, a homogeneous
special double fold.

Theorem 5.5. Let f = («, f3) and g = (o, g3) be A-equivalent finitely determined quasihomo-
geneous double folds , then fs and gs are K-equivalent.

Proof. Suppose there exist ¢ and ¢ such that g =1 o f o¢. Denote by ; ., the derivative of
the i-th component with respect to the variable x;. Taking into account that p;,ps € m?, the
2-jet of the first two coordinate functions of the equality g = ¥ o f o p gives us

2% =1 x (07,7 + 9120152y + 05 ,¥°) + Y1y (93 .27 + P2202,4TY + 93 ,Y7),
2 _ 2" 2 272 2" 2 272
y* =2 x (0T .07 + 012015 TY + 93 ,Y7) + Y2y (03,77 + P2.202,7Y + @3 ,y°).
Since dy is invertible, we have @1 y@2 y # 0 or @1 42 4 # 0. In the first case from the equations
we obtain ¢, = @2, = 0 and, in the second case @1, = @2, = 0. Suppose we are in the first
case (the second one is analogous). Then the differential of ¢ is of the form dy(u,v) = (au,bv)
for some a,b € C*.

Notice that w is a source double point of g if and only if it is so for f o, if and only if @(w)
is a source double point of f. Since f and g are finitely determined, their double point spaces
are reduced and thus ¢|p,) : D(g) — D(f) is an isomorphism between complex space germs.
We claim that ¢|p,(4) is an isomorphism between D3(g) and Ds(f). We proceed by reduction
to the absurd: suppose there is a irreducible component R of D3(g), such that o(R) ¢ Ds(f).
For example, suppose p(R) C D1(f) (the other case, ¢(R) C Dy(f), is analogous). Since f and
g are finitely determined, their diagonal double points are isolated and thus, since R C Ds3(g)
and ¢(R) C D1(f), we have ¢(i3(R)) = i1(p(R)). Let (u,v) be the tangent vector to the curve
germ R, we have the equality do(iz(u,v)) = i1(de(u,v)), that is (—au, —bv) = (—au,bv). The
last equality implies (u,v) is a horizontal vector. Since g is homogeneous, the equation which
defines R is also homogeneous and, thus, it is independent of z. This is implies that y divides
xq1 + yq2, which in turn implies that y divides ¢;. Then y? divides g1q2(7q1 + yg2). This is a
contradiction, because g is finitely determined and, thus, D(g) = V(q1g2(2q1 + yg2)) must be
reduced.

Now we have the isomorphism of complex spaces ¢|p,(g) : D3(g) — D3(f), that is, we have
the equality (g3) = ¢*(f3). This implies the existence of a function h, with h(0,0) # 0, such
that g3 = h - f3 0 ¢. Since g3 y f3 are homogeneous, we can take the diffeomorphism ¢ = dp
and the constant k = h(0,0) # 0 and get g3 = k- f3 o . Moreover, as we have seen before, ¢ is
a diagonal linear change and thus it belongs to R<. O

Notice that the K*-equivalence of f3 and g3 splits into two simultaneous equivalences between
P, P, and 1, Q2. In the diagonal case we get an expression

Q1 (22, 9%) + yQa(2?,y?) = kaw Py (a’x?,b%y?) + kbyPa(a’x?, b*y?).
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This is equivalent to Q1(z,y) = kaPi(a’z,b%y) and Q2(x,y) = kbPs(az,b%y). In the antidiag-
onal case we obtain the expression

Q1 (2%, y%) + yQa(2?,y?) = kayPi(ay?, b22?) + kba Py(a®y?, b*2?),

which is equivalent to Qi (z,y) = kbP2(a?y,b*x) and Q2(z,y) = rkaP;(a’y,b*r). Now the next
corollary follows immediately.

Corollary 5.6. Let f and g be two A-equivalent quasihomogeneous finitely determined special
double folds, then:

Ci(f) = Cilg),

QD(f) = QD(y),

w(Di(f)) = m(D;(9)),
where j =i in the diagonal case, and in the antidiagonal the pairs (i,j) are (1,2), (2,1), (3,3).
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ABsTRACT. We prove Koenderink type theorems with the terminology of the singular curva-
tures of cuspidal edges of wave fronts.

1. INTRODUCTION

In 1984 and 1990, J. J. Koenderink showed theorems that relate to how one actually sees
a surface. Let f : U — R® be a non-singular smooth surface in R® and M = f(U). Let
7 : R® — P be the orthogonal projection onto a plane P C R? and 7o : R® — 52 the central
projection onto a unit sphere S2 of R® centered at 0 € R®. We denote the singular set of a map
g by S(g). Koenderink showed the following:

Theorem. ([11, Appendix], [12, page 433]) Suppose p € S(mwo f), and wo f(S(mwo f)) is a
reqular curve near p. Let k1 be the curvature of the plane curve wo f(S(mo f)) C P, and ks
the curvature of the normal section of M at p by the plane that contains the kernel of w. Then

K= K1R2

holds at p, where K is the Gaussian curvature of M.

Suppose p € S(mpo f), and moo f(S(moo f)) is a regular curve near p. Let k, be the geodesic
curvature of the curve mgo f(S(mo o f)) and d be the distance of p from 0. Then K = rgyka/d
holds at p.

See [15, p223] for further considerations of this type problem. See also [3, 2, 14, 8, 9, 10]. If f
has a singular point, generically the Gaussian curvature is unbounded. Thus this theorem does
not hold at the singular points of f. In [16], it was shown that if f is a front, then the Gaussian
curvature form KdA is bounded, and introduced the singular curvature function on the singular
set which consists of cuspidal edges. The singular curvature has a certain geometric property.
So it is natural to expect a Koenderink type theorem of fronts using the Gaussian curvature
form and the singular curvature. In this paper, we give Koenderink type theorems for cuspidal
edges with the terminology of the Gaussian curvature form and the singular curvature. We also
give the same type theorems for the cuspidal edges in the hyperbolic space.

2. SINGULAR CURVATURE AND STATEMENT OF RESULTS

Let (U;u,v) C R? be a domain, N a three dimensional manifold, and W a five dimensional
contact manifold with a Legendrian fibration pr: W — N. A smooth map f: U — N is called a
front if there exists a Legendrian immersion lift Ly : U — W of f; that is, L is an immersion, the
pull-buck of the contact form vanishes on U, and proLs = f holds. We remark that a front in a
two dimensional manifold can be defined in a similar manner by replacing U with an interval, N
with a two dimensional manifold, and W with a three dimensional contact manifold respectively.
Let us consider the case W is the unit tangent bundle 7} R® with the canonical contact form
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and pr is the Legendrian fibration pr : 7 R> — R®. In this case, a smooth map [f U — R? is
a front if there exists a unit vector field v along f such that Ly = (f,v): U — R)x S?2=T,R?
is an immersion and the following orthogonality condition holds:

where ( - ) is the Euclidean inner product of R*. Let f: U — R® be a front. Set

A(um)zdet(af of )(uw%

o "
called the signed area density function. We also set
(2.1) dA = Xdu A dv,

called the signed area form. Suppose p € U is a singular point of f, then A(p) = 0 holds. If
d\(p) # 0 holds, then there is a regular smooth curve y(t) : (—¢,e) — U (y(0) = p) such that
the image of v coincides with S(f) near p. Furthermore, there exists a non-vanishing vector field
1 along v satisfying

(n(t)) g = kerdf ).
We call ~ the singular curve and 7 the null vector field.

It was shown in [13], if n(0) transverse to 4/(0), then the map germ f at p is A-equivalent to a
map germ (u,v) — (u,v?,v%) at 0; that is, there exist diffeomorphic germs o : (R?,0) — (R?,p)
and 7 : (R?, f(p)) — (R?,0) such that 7o f o o(u,v) = (u,v?,v%) holds as map germs at 0. A
singular point p of a front f is called a cuspidal edge if f at p is A-equivalent to (u,v) — (u,v?, v3).

Now we suppose that the singular curve ~ of a front f : U — R consists of cuspidal edges.
Then we can choose the null vector field n such that (v/(¢),n(¢t)) is a positively oriented frame
field along ~y, where ’ = d/dt. We then define the singular curvature as follows ([16]):

det(5'(t), 4" (t), v o 1(t))
A1) ’
where 4 = f o~. For the geometric meanings of the singular curvature, and further details, see
[16, 17].
Now we consider the Gaussian curvature form of fronts.

Proposition 2.1 ([16]). Let f: U — R be a front, and K the Gaussian curvature of f which

is defined on the set of regular pointsAof f- Then K dA can be continuously extended as a
globally defined 2-form on U, where dA is the signed area form as in (2.1).

#s(t) = sgn(dA(n))

A similar proposition as above also holds for plane curves. Let ¢ : I — R? be a front, and &
the curvature of ¢, defined on the set of regular points. By the same method, one can show that
kds can be continuously extended as a globally defined 1-form on I, where s is the arclength
parameter of c.

Let f: U — R? be a front and p € U a cuspidal edge. Then one can see that a section
of M = f(U) near f(p) by a plane through f(p) which transverse to df,(M) is a 3/2-cusp, in
particular a front (see [13, Proposition 2.9], for example). Several curvatures of fronts in the
plane are investigated in [18].

Using the notions of the curvature forms above, we state the Koenderink type theorems for
fronts.

Theorem 2.2. Let f: U — R® be a front, p € U a cuspidal edge, and ~ the singular curve with
7(0) =p. Set 4= for, & =vp) x ¥ (p)/I¥ (p)| and vg = cos €, + sinfv(p). Let Py be a
plane normal to vy and my the orthogonal projection my : R? — Py with respect to vgy. Let k1(t)
be the curvature of the plane curve v, (t) := mgo4(t), and ka(s) the curvature of the intersection
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curve ¥4 of M at p by the plane P := <§p,1/(p)>
0 € (0,7/2) then

R where s is the arclength parameter of v,. If

(2.2) KdA = (sinfks — K1) dt A ko ds

cos

holds at p, where ks is the singular curvature. Here, we give a orientation of ~4(s) passing
through p from the region {\ < 0} to the region {\ > 0}. Also we give a orientation of Py such
that {—sin0€,, + cosOv(p), ¥1(0)} forms a positive basis, and P such that {§,,v(p)} forms a
positive basis.

3. PROOF OF THEOREM 2.2

Let f: U — R® be a front and p € U a cuspidal edge. Then by [16, Lemma 3.2], we can take
a coordinate system (u,v) near p satisfying
(u,v) is compatible with the orientation of U,
p = 0 and the u-axis is the singular curve,
the null vector field is 9, on U,
Ay(0) > 0, and
|fu(u70)| =1
We call such a coordinate system (u,v) adapted coordinate system with respect to p. In an
adapted coordinate system (u,v), since A\, > 0, it holds that

(3.1) ks(u) = det(fu, fuu, V) (1,0) = (fuu - v X fu) (u,0),

where f,, = 0%f/0u?, for example.

Proof of theorem 2.2. We take an adapted coordinate system (u,v). Since f,(u,0) = 0 and
fuw(0,0) # 0, there exists a smooth function ¢ satisfying ¢(0) # 0 and

(3.2) fo(u,v) = vep(u,v).

In this setting, the Gaussian curvature form has the following expression on U:

i = (fuu V) (o) —v (1)’ 2
KdA = . — (fo - du A dv.
e e LSRR

This is equal to
(fuu . V) (fv'u . V’u)

. \/(fvv . fv'u) - (fu : f'uv)2

at p. On the other hand, we calculate the curvatures k1 and ka. Let v1(u) be the plane curve
mg o f(u,0). Then the curvature xq of v is

(3.4) K1 = (_ cos 6 (fuu : V(p)) + sin 6 (fuu ’ Ep)) :

Let -2 be the plane curve of the intersection of f(M) at p by P and ky its curvature. Since
(fulu,v) - fu(p)) # 0, by the implicit function theorem, there exists a function v = u(v) such
that

(3.3) du A dv

(f (u(v),v) - fu(p)) = 0.

Hence 5 is expressed by
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Using (3.2), since v = fi, X ¢/|fu X ¢|, one can compute kg ds as follows

(35) Ko ds — det(fuv ®, QOU) dv = — (l/v . fvv) dv’

(0 @) =@ S fuo) — (- fu)?

at p, where s is the arclength parameter of 7. By (3.4) and (3.5), we have (2.2). O

To get the spherical projection version of the theorem, we need the following lemma.

Lemma 3.1. Let v : I — R® be a smooth curve and k its curvature as a space curve. Take a
point p € I satisfying that ~(p) and ~'(p) are linearly independent. Let mo : R* — S? be the
central projection onto a unit sphere S* centered at 0 and k, be the geodesic curvature of oo~y
as a spherical curve. Then

(3.6) w(p) = "oP)

holds, where d is the distance of p from 0.

Proof. Direct computations. U

By Lemma 3.1 and Theorem 2.2, we have the following:

Corollary 3.2. In the same setting as in Theorem 2.2, suppose that 4(0) and 4'(0) are linearly
independent, and 4(0) and vy are parallel. Let mg : R? — 52 be the central projection onto a
unit sphere S* centered at 0 and kg, the geodesic curvature of mo o4 as a spherical curve. If

0 € (0,7/2), then

(3.7) Kdd =

(Sin Oks — @> Ko du A dv

cos d

holds at p, where d is the distance of f(p) from 0.

4. HOROSPHERICAL KOENDERINK TYPE THEOREM

Recently an extrinsic geometry on submanifolds in the hyperbolic space is discovered by
Shyuichi Izumiya and investigated [5, 7]. See also [4, 6]. It is called horospherical geometry. In
this section, we show a horospherical geometric Koenderink type theorem for cuspidal edges. It
should be noted that horospherical geometric Koenderink type theorems for regular surfaces in
the hyperbolic space are shown in [9]. See also [8, 10].

To state a Koenderink type theorem, we prepare some notion. Let R‘ll be the Minkowski 4-
space with the inner product ( , ) = (—, +,+,+). We denote by H3(—1), LC% and S$(1) C R}
the hyperbolic space, the lightcone and the de Sitter space defined by

H3}(-1) = {zeRy|(z,2)=—1u >0},
LC%t = {x € Ry| (z,z)=0,u9 >0},
Si(1) = {z € Ri|(z,2) =1}

Let (U;u,v) C R? be a domain and f: U — H?3(—1) a smooth regular surface. Define a vector

_ JunNfonS
[fu A fu A

e(u, v) (u, ),
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where f, = df/0u, for example. Here for any ¢, x2, x5 € R‘ll, the vector &1 A xo A x3 is defined
as

ozl oz
Ty ATy Axz=—det | 23 23 2% |eg—det| 22 23 23 |es
o ad o i ad o
ozl ol w zb )
+det | 22 22 2% |ey—det| 23 2% 23 |es
@ 2 @ 2 o

where eg, e1, es, e3 is the canonical basis of R‘l1 and x; = (v}, 2%, 25, 2%) (i = 1,2,3). We can
easily show that (x,x; A 2 A x3) = det(x, 1, T2, x3), so that ¢ A &2 A 3 is orthogonal to
any ; (i = 1,2,3). Thus we have (e, f,) = (e, f,) = (e, f) = 0 and (e,e) = 1. This map
e: U — S3(1) is called the de Sitter Gauss image. We also define a map
1£(u,v) = fu,v) £ e(u,v) : U — LCY,

which is called the lightcone Gauss image. We consider the lightcone Gauss image as a Gauss
map. See [5] for details. With this notion, we consider fronts in the hyperbolic space as follows.
Consider the following double fibration:

e Mo i Ay — Hi(—].), Tog : Ay — LCi,

o 01 = (dw,y) ‘A27022 = (:c,dy) |A2'
Here, 3 3
mo1(2,y) = T, ma(x,y) =y, (dz,y) = —yodzo+ Y _yidu;, and (x,dy) = —zodyo+ Y i dy:.

i=1 i=1

We remark that 021 and 32 define the same tangent hyperplane field over Ay which is denoted
by Ky. In [4], it has been shown that (As, K2) is a contact manifold such that each fibration
mo; (i =1,2) is a Legendrian fibration. See [4] for details.

As we have seen in Section 2, a smooth map f : U — H3(—1) is a front if there exists
amap l : U — LC7 such that (f,1) : U — Az is a Legendrian immersion with respect to
Ky. The map I is called a Ag-dual of f. One can show that —dpl is a linear transformation
—dpl : T,U — ((U(p), f(p))R)L C Tf(p)Ril, by an identification Tf(p)R;l = R}, where 1 means

the orthogonal complement. It is called the hyperbolic shape operator. The hyperbolic Gaussian
curvature is defined as

K"(p) = det(—d,l),
and the hyperbolic Gaussian curvature form is defined as
K"dA = K"\ du A do,
where A" is the the signed area density function \*(u,v) = det(fy, fo,1, f). If K" identically
vanishes, then f is a one-parameter family of horocycles, more precisely, f is an envelope of a
one-parameter family of horospheres and is a locus swept out by horocycles ([7]). It can be easily

seen that if f is a front, then K" dA can be continuously extended as a globally defined 2-form
on U.

Let f: U — H3(—1) be a front and p € U a cuspidal edge. We denote y(t) : I — U by a
parameterization of S(f). Let I be a Ag-dual of f. We define the hyperbolic singular curvature

h
Kg as

det(¥,4”, 1o~,4
() = sen(in() T2 ),
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where 4(t) = fov(t) and n(t) is a null vector field, namely, non-zero vector field along v satisfying
(n(t)) g = kerdf,) and (7', n) is positively oriented. Here,” = d/dt and 4" (t) = D;4'(t), where
D is the Levi-Civita connection of H i(—l). The hyperbolic singular curvature has the same
type geometric meaning as the Euclidean case. See Section 2 and [16, 17].

4.1. Curves in hyperbolic space. For a vector v € S;(1), define the hyperplane normal to v
as HP(v,0) = {z € R} | (z,v) = 0}. It is well known that the set H?(v) = HP(v,0)NH?3(-1)
is a totally geodesic hyperbolic plane. Let ¢(s) : I — H?(v) be a regular curve and s an
arclength parameter. Then since T,H?(v) = ((v,p)R)L holds for p € H?(v), the geodesic
curvature of ¢ is det(c/, ¢”, v, ¢) modulo a sign. Thus we define the curvature in H*(v) of ¢
by k"(s) = det(c/, ¢’, v, ¢)(s). It can be easily seen that if a curve germ ¢ : (I,0) — H?(v)
is a cusp (A-equivalent to ¢ ~ (t2,¢%) at 0), then x"(s)ds can be continuously extended as a
globally defined 1-form on I, where s is the arclength parameter of c.

4.2. Projections to planes. To state Koenderink type theorems, we need orthogonal projec-
tions in H i(—l) to hyperbolic planes. Let us consider a hyperplane

HP(v,0) = {x € R}| (x,v) = 0}

for a vector v € S$(1). Given a point g € H3(—1), there is a unique geodesic in H3 (—1) which
intersects orthogonally the hyperbolic plane H?(v) = HP(v,0)N H3(—1) at some point (g, v).
We call the point 7(q,v) the orthogonal projection of q in the direction v to H?(v). The point
r(qg,v) is given by
T(qa 'U) = ;(q - <q7 U> ’U).
1+ (q,v)’

See [9] for details.
4.3. Koenderink type theorem. In this section, we prove the following theorem:

Theorem 4.1. Let f: U — H3(—1) be a front, p € U a cuspidal edge, M = f(U) and v a
singular curve with v(0) = p. Set ¥ = fo~,

& =9 0)/15 () A Lp) A fp),
and vg = cos0€, + sinOl(p). Let ro the orthogonal projection rg : H3(=1) — H?(vg) in the
direction vg. Let k7 (t) be the curvature in H?(vg) of the curve v,(t) = rgo~(t), and K (s) the
curvature in H?(1(p) A &, N f(p)) of the intersection curve o of M at f(p) by the hyperplane
HP(l(p) N&, N f(p),0), where s is the arclength parameter of ~,. If 0 € (0,7/2) then

- 1
h . h h h
K"dA = @( — cosf + sin Ok — k1) dt A Ky ds
holds at p, where k! is the hyperbolic singular curvature. Here, we give a orientation of ~o(s)
passing through p from the region {\" < 0} to the region {\" > 0}.

Proof. By changing coordinates on (U;wu,v), we may assume p = 0 and S(f) = {v = 0}. Also
by isometries of H$(—1), we may assume

flu,v) = (\/fl(u,v)2 + fo(u,v)? +u? + 1, f1(u,v), f2(u,v),u> ,

where df; = 0 at 0 (i = 1,2). Then there exist functions g (u), g2(u), h1(u,v), ha(u,v) such that
filu,v) = u?g;(u) + vhi(u,v) (i = 1,2). Since S(f) = {v = 0}, it holds that dh;/dv(u,0) =0

(i = 1,2). Thus there exist functions h;(u,v) such that h;(u,v) = vh;(u,v) (i = 1,2). By a

rotation of H3(—1), we may assume h1(0) = 0. Thus we have fi(u,v) = u?a1(u) + v2b1(u,v)
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~—

and fo(u,v) = u?as(u) + uvaz(u) + v3be(u,v). where a;(u),as(u),az(u), b (u,v),ba(u,v) are
functions, and b1(0)b2(0)

Then 1(0) = (0,0, 1,0),
tion, we have

= (0,1,0,0) and vy = (0, cos8,sind,0) holds. By a direct calcula-

3b2(0)
2b1(0)
at 0 since one can counsider 4(t) = f(t,0) and ~,(t) = f(0,¢). On the other hand,
3(1 4 2a2(0))b2(0)

kM = —2a,(0), k"' = 2a5(0) cos — 2a1(0)sin b, khds = —

S

ds

K"du A dv = dund
u A dv 21 (0) u A dv
holds at 0. By these computations, we have the result. ([
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CLASSIFICATIONS OF COMPLETELY INTEGRABLE IMPLICIT SECOND
ORDER ORDINARY DIFFERENTIAL EQUATIONS

MASATOMO TAKAHASHI

Dedicated to Professor Shyuichi Izumiya on the occasion of his 60th birthday

ABSTRACT. An implicit second order ordinary differential equation is said to be completely
integrable if there exists at least locally an immersive two-parameter family of geometric
solutions on the equation hypersurface like as in the case of explicit equations. An implicit
equation may have an immersive one-parameter family of geometric solutions (or, singular
solutions) and a geometric solution (or, an isolated singular solution). In this paper, we give
a classification of types of completely integrable implicit second order ordinary differential
equations and give existence conditions for such families of solutions.

1. INTRODUCTION
An implicit second order ordinary differential equation is given by the form

F(z,y,p.q) =0,
where F is a smooth function of the independent variable z, the function vy, its first and second
derivatives p = dy/dx and q = d?y/dx? respectively.

It is natural to consider F' = 0 as being defined on a subset in the space of 2-jets of smooth
functions of one variable, F' : O — R where O is an open subset in J?(R,R). Throughout this
paper, we assume that 0 is a regular value of F. It follows that the set F~1(0) is a hypersurface
in J2(R,R). We call F~1(0) the equation hypersurface. Let (x,y,p,q) be a local coordinate on
J2(R,R) and ¢ C TJ?(R,R) be the canonical contact system (the Engel structure) on J?(R,R).
It is well-known that locally the contact system is given by the vanishing of the two 1-forms
ay = dy — pdx and oy = dp — qdzx.

We now define the notion of solutions. A smooth solution (or a classical solution) of F =0
passing through a point zg is a smooth function germ y = f(z) at a point tg such that

<t07 f(tO)a f/(t0)7 fl/(tO)) =20 and F(SL‘, f($)7 fl(x), f”(.’l?)) = 0.
In other words, there exists a smooth function germ f : (R,¢3) — R such that the image of the 2-
jet extension, j2f : (R, ) — (J?(R,R), 2p), is contained in the equation hypersurface. It is easy
to see that the map j2f is an integral (Engel) immersion. More generally, a geometric solution of
F = 0 passing through a point zo is an integral immersion 7 : (R, %) — (J%(R,R), z9) such that
the image of v is contained in the equation hypersurface, namely, 7'(t) # 0, v*a1 = v*ag =0
and F(v(t)) = 0 for each t € (R, ).
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In this paper, the following notions are basic (cf. [3, 6, 10, 11, 12, 20]):
A smooth complete solution on F~1(0) at 2y is defined by a two-parameter family of smooth
function germs y = f(t,r, s) such that

F (t,f(t,r,s)7 %(t,r, s), gztf(uns)) =0

and the map germ j2f : (R x R2, (o, 70, 80)) — (F~1(0), z9) defined by

0 02
#1(0r0) = (1m0, G o), Gk )
is an immersion. It follows that the equation hypersurface is foliated locally by a two-parameter
family of smooth solutions.
On the other hand, consider the corresponding definition for geometric solutions. We call
I : (R x R2 (tg,70,50)) — (F71(0),20) a complete solution on F~1(0) at zy if T is a two-
parameter family of geometric solutions of F' = 0 and

Ox/ot 0Oy/ot Jp/ot 0Oq/ot
rank | Ox/0r Oy/Or Op/Or 0q/0r | (to,r0,S0) = 3,
dx/0s 0Oy/0s 9Ip/ds 0Oq/ds

where I'(t,r, s) = (x(t,r,s),y(t,rs),p(t,r,s),q(t,r,s)). This condition means that I is an im-
mersion germ, that is, the equation hypersurface is foliated locally by a two-parameter family
of geometric solutions. We say that an equation F' = 0 is smoothly completely integrable (re-
spectively, completely integrable) at zg if there exists a smooth complete solution (respectively,
a complete solution) on F~1(0) at z.

In the study of implicit ODEs from the view point of singularity theory, there is a lot of
research. For example, generic singularities and properties were given in the case of first order
in [1, 2, 4, 5, 7, 8, 10, 17, 19], in the case of second order in [14, 15] and in the case of any
order in [9] etc. This paper is focused on the theory of completely integrable implicit ODEs
(cf. [18, 20, 21]). Especially, we shall classify types of completely integrable implicit second
order ODEs. In §2, we give previous results for completely integrable implicit second order
ODEs, for more detail see [3, 19, 20]. In §3, we divide types of completely integrable implicit
second order ODEs into ten and give an existence condition for families of geometric solutions
for each type. In §4, we give examples which are useful to understand the notions of complete
solutions and results. Moreover, as an application of the results, we consider the confluent
hypergeometric equations (the degenerate hypergeometric equations) from the view point of
complete integrability (Example 4.5). In Appendix, we give a corresponding result for completely
integrable implicit first order ODEs. These results had been essentially given by Shyuichi Izumiya
(1)),

All map germs and manifolds considered here are differential of class C*°.

2. BASIC NOTIONS AND PREVIOUS RESULTS

Let F(z,y,p,q) = 0 be an implicit second order ODE. We denote the total derivative of F' by
Fx = F, + pF, + qF),, where F, (respectively, Fy, F},, F;) is the partial derivative with respect
to x (respectively, y,p, q).

We say that F' = 0 is of (second order) Clairaut type (for short, type C) at zq if there exists
a function germ a : (F~1(0), z9) — R such that

FX|F*1(0) = - Fqu*1(0)7
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and of reduced type (for short, type R) at 2 if there exists a function germ 3 : (F~1(0), 29) — R
such that

Fylp-100) =B Fx|p-1(0)-
Note that we call F' = 0 is of reduced type as of first order type in [20]. Then we have shown
the following result.

Theorem 2.1. ([20])

(1) F =0 is smoothly completely integrable at zo if and only if F =0 is of type C at zp.

(2) F =0 is completely integrable at zo if and only if F' = 0 is either of type C or of type R
at zg.

We say that a geometric solution v : (R, t9) — (F'~1(0), 29) is a singular solution of F =0 at
zg if for any representative 5 : I — F~1(0) of v and any open subinterval (a,b) C I at to, 7| (a,p)
is never contained in a leaf of a complete solution (cf. [3, 11, 13]).

Around z € F~1(0) such that the contact plane ¢, intersects T, F~1(0) transversally, it is
easy to see that a complete solution on F~1(0) exists by integrating the line field £ N TF~1(0).
We call points where transversality fails contact singular points and denote by ¥, = X.(F) the
set of contact singular points. It is easy to check that the contact singular set is given by

Se={z € J2(R,R)| F(z) =0, Fx(2) = 0, F,(2) = 0}.
From the definition of singular solutions, it is easy to see that a geometric solution
v (Rv tO) — (Fil(o)vzo)

t is a singular solution only if it is contained in 3. (cf. [21]). We also consider the subset
A = A(F) C ¥, which is defined to be the set of points z € . such that T, F~1(0) coincides
with the kernel of aq(z). Explicitly, it is given by A = {z € X.| F,(z) = 0}.

Now suppose that F' = 0 is completely integrable at zy; and X, is a 2-dimensional manifold
around zg. We say that a map germ

D (R X R, (to,ao)) — (EC,ZO)

is a complete solution on . at zp if ® is an immersion germ and ®(-, a) is a geometric solution
for each a € (R, ap), that is, an immersive one-parameter family of geometric solutions of F' = 0.
Moreover, we call ® a complete singular solution on ¥, at zg if ®(-,a) is a singular solution for
each a € (R, agp).

If £, intersects T, Y. transversally in 7, F~1(0), then integrating the line field £ N TY,. yields
a complete solution on ¥.. We call a point where transversality does not hold a second order
contact singular point and denote the set of such points by E.. = E..(F) (cf. [3, 20, 21]).

Conditions for existence of a complete solution on F~1(0) and a complete (singular) solution
on X, for implicit second order ODEs were given under a regularity condition.

Theorem 2.2. ([3]) Suppose that 0 is a regular value of Fy|p-1 (o).
(1) F =0 is completely integrable at z if and only if zo € L. or X, is a 2-dimensional manifold
around zg.
(2) Let F =0 be completely integrable.

(i) The leaves of the complete solution on F~1(0) which meet ¥. away from A intersect 3.
transversally.

(ii) The leaves of the complete solution on F~1(0) which meet A are tangent to X..
(3) Let F' =0 be completely integrable and 3. # 0.

(i) There exists a complete singular solution on X, at zy if and only if 20 & Xee o1 Xee i @
1-dimensional manifold around zg.
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(ii) Suppose that F = 0 admits a complete singular solution on X.. Then each leaf of the
complete singular solution on Y. intersects Y., transversally.
(4) Let F = 0 be completely integrable at zg € L. If zg € A, then A is a 1-dimensional manifold
around zo.

Theorem 2.3. ([20]) Suppose that 0 is a regular value of Fx|p-1(0)-
(1) F =0 is completely integrable at z if and only if zo € L. or X, is a 2-dimensional manifold
around zo.
(2) Let F =0 be completely integrable.

(i) The leaves of the complete solution on F~1(0) which meet ¥. away from A intersect 3.
transversally.

(ii) The leaves of the complete solution on F~1(0) which meet A are tangent to 3.
(3) Let F' =0 be completely integrable and 3. # 0.

(i) There exists a complete solution on X. at zg if and only if zg & Bee or Xee s a 1-dimensional
manifold around zy.

(ii) Suppose that F = 0 admits a complete solution on X.. Then each leaf of the complete
solution on Y. intersects Y.. transversally.

Remark 2.4. The important differences between Theorems 2.2 and 2.3 are (3) and (4). One is
an existence condition for a complete singular solution on 3. and the other is only for a complete
solution on Y.. Moreover, if F' = 0 is completely integrable at zy € A and 0 is a regular value
of Fy|p-1(0), then A is a 1-dimensional manifold around zy. However, A is not necessarily a
1-dimensional manifold around zp when 0 is a regular value of F'x|p-1(g), see Examples 4.1 and
4.4.

Proposition 2.5. ([18, 20]) Let F =0 be completely integrable at zp € %..
(1) If 0 is a reqular value of Fy|p-1(g), then F' =0 is of type C at zp.
(2) If 0 is a regular value of Fx|p-1(0), then F' =0 is of type R at z.

Proposition 2.6. ([20]) Let F' = 0 be completely integrable at zy and 3. be a 2-dimensional
manifold around zg. Then the second order singular set X.. is contained in A.

3. COMPLETELY INTEGRABLE IMPLICIT SECOND ORDER ODESs

In this section, we analyse completely integrable implicit second order ODEs in detail. Let
F(x,y,p,q) = 0 be an implicit second order ODE at zg. If 29 ¢ X, then F = 0 satisfies either
Fy(z0) # 0 or Fx(z9) # 0.

First we assume that Fj(29) # 0. By the implicit function theorem, F' = 0 can be represented
by an explicit equation at least locally. In this case, F' = 0 is of type C at 2z and we call this
type Cy. Next we assume that Fy(zp) # 0. Then F' = 0 is of type R at zp and we call this type
Rx. In both cases, there is a unique geometric solution passing through each point of F~1(0).
It follows that there is a complete solution on F~1(0) and no singular solution.

By Theorem 2.1, a completely integrable ODE at zj is either of type C or of type R at zj.
If zp € ., then F' = 0 satisfies either Fj,(29) # 0 or F,(29) # 0 by the assumption that F' =0
is regular at zp (see §1). The main purpose of this paper is to classify types of the completely
integrable implicit second order ODEs at a point in detail, and to give existence conditions for
a complete (singular) solution on X, for each type respectively. It is concluded that there are
ten kinds of types, see Table 1.
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Conditions Type | Name
20 ¢ EC Fq(Zo) 75 0 C Cq
FX (ZO) 75 0 R RX
20 € X | Fp(20) # 0 | 20 is a regular point of Fy|p-1(g) C RC,
2o is a regular point of Fix|p-1(g R RR,
Fy(z0) # 0, | 2o is a regular point of Fy[p-1(p C RC,
Fy(20) =0 | 2 is a regular point of Fix|p-1(q) Ye=A R RR.}!
e2A=%.| R RR;
Y. 2A2X.| R | RR;
2o is a singular point of Fy|p-1(q) C SC,
and FX|F*1(O) R SRy

Table 1. A classification of types of completely integrable implicit second order ODEs at zg.

3.1. On the types RC, and RR,. If zy € ¥, and F,(z9) # 0, by the implicit function
theorem, there exists a smooth function g : V' — R, where V is an open set in R3, such that in a
neighbourhood of zg, (z,y, p,q) € F~1(0) if and only if —p+g(x,y,q) = 0. Thus we may assume
without loss of generality that F(x,y,p,q) = —p + g(z,y,q) = 0. Under this notations, F, = g,
and Fx = g, +9g- gy — q. It follows that zg is a regular point of either Fy|p-1¢9) or Fx|p-1(0)-

If 29 is a regular point of Fy|p-1(g), then F' = 0 is of type C at zg and X. is a 2-dimensional
manifold around zy by Proposition 2.5 and Theorem 2.2. We call this type RC,. By 2o ¢ A and
Proposition 2.6, we have zg & ... Hence F' = 0 has a complete singular solution on X, at zg.

On the other hand, suppose that zg is a regular point of FX\F—l(O). By Proposition 2.5 and
Theorem 2.3, F' = 0 is of type R at zg and X, is a 2-dimensional manifold around zy. We call this
type RR,. By zo ¢ A and Proposition 2.6, we have 2y ¢ X.. Since the leaves of the complete
solution which meet 3. away from A intersect X, transversally, ' = 0 has a complete singular
solution on Y. at zg.

3.2. On the type RC,. If 2y € X, and Fy(z9) # 0, again by the implicit function theorem,
there exists a smooth function f : U — R, where U is an open set in R?, such that in a
neighbourhood of zq, (x,y,p,q) € F~(0) if and only if —y+ f(z, p,¢) = 0. Thus we may assume
without loss of generality that F(z,y,p,q) = —y + f(z,p,q) = 0. Define the diffeomorphism
¢:U — F~Y0), (z,p,q) — (z, f(x,p,q),p,q) and ug = ¢~ (20). Below, if Fy(z) # 0, we keep
the notations of the above.

Suppose that zg is a regular point of F;|p-1(g). By Proposition 2.5 and Theorem 2.2, F' = 0 is
of type C' at zp and X, is a 2-dimensional manifold around zy. We call this type RC,. Moreover,
F = 0 has a complete singular solution on 3. at zg if and only if zg & X, or ¥, is a 1-dimensional
manifold around zy by Theorem 2.2.

Remark 3.1. If X.. is a 1-dimensional manifold around zg, then A = ¥.. and X.. is an isolated
singular solution passing through zo (see, [3, Proposition 1.4]). In this case, F = 0 have a
two-parameter family of geometric solutions, a one-parameter family of singular solutions and
an isolated singular solution passing through zg € .., see Example 4.2.

3.3. On the type RR}J. Let zp € X, and Fy(z0) # 0. Suppose that z is a regular point
of Fx|p-1(0). By Proposition 2.5 and Theorem 2.3, F' = 0 is of type R at zy and X, is a 2-
dimensional manifold around zy. In this case, there are three types. First one is ¥, = A around
zo (type RR)), second is ¥, 2 A = X, around z (type RR?), and the last is ¥, 2 A 2 ¥,
around zg (type RR%). We may assume that F,(z9) = 0, namely, zy € A.
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Let F' = 0 be of the type RR; at zp. By Theorem 2.3, F' = 0 has a complete solution of X,
at zg if and only if zg & 3. or X is a 1-dimensional manifold around zy. In this case, we have
the following result, see Examples 4.1 and 4.4.

Theorem 3.2. Let F = 0 be of type RR; at zg € A. If zo & Y., then there exists a unique
geometric solution passing through zg.

Proof. We denote F(z,y,p,q) = —y+ f(z,p,q) = 0. Since F = 0 is of type R at zp, there exists
a smooth function germ a : (F~1(0), z9) — R such that

(1) fo=a-(fa —p+afp)
A complete solution, ' : (R x R2,0) — (F~1(0), 29), is given by integrating the vector field ¢, X,
where X : U — TU is given by
X=(-a,—a-q1)
(cf. [3, Lemma 3.1]). By (1), we have

(fo =P+ afp)g = (w+qap) (fo —p+afp) +a (fo =P+ afp)s +a(fo =P+ afp)p) + fp
It follows from the assumption . = A that

(fe =P+ afp)alo—r =) = o1z - (fe =P+ afp)e + a(fe =P+ afp)p)ls-1(=0)-
In this case, a complete solution on ¥., ® : (R x R,0) — (X, 20), is given by integrating the
vector field ¢.Y, where Y : ¢~ 1(.) — T¢p~1(Z.) is given by
Y = (=alp-1m0, (- dlo-1(s0): 1)

(cf. [20, Lemma 3.5]). It follows that I'|p-1(x,) = ® and hence there is a geometric solution
on X.. Let v: (R,tg) — (¢, 20);7(t) = (x(t),y(t),p(t),q(t)) be a geometric solution passing
through zg. Since zp & .., we have 2/ (t)+a-¢'(t) = 0 at to. It follows that we can reparametrise
~(t) as (z(t),y(t), p(t),t). By the analogous way in the proof of Lemma 3.2 in [21], we can show
uniqueness of the geometric solution passing through zo. m|

Proposition 3.3. Let F = 0 be of type RR; at zp € A. If X is a 1-dimensional manifold
around zg, then .. is a singular solution passing through zg.

Proof. Tt is easy to see that X . is a geometric solution passing through zy. By definition,

¢ (Se) = (fo —p+afp) 1 (0)
and
0 (Bee) = (fa =2+ afp) T O) N ((fe =P+ afp)e + a(fo — P+ afp)p) 1 (0).

To show that 3. is not a leaf of the complete solution on F~1(0) (and on X.) at 2, it is sufficient
to check that the scalar product of grad((f, —p+qfp)z +a(fz —p+qfp)p) and the vector field
X is non-zero at ug. Now

<grad((fz —-p+ pr)z +q(fe—p+ qu)p)? (—a,—a-q, 1)>

=—a ((fo—p+afp)eta(fo =P+ afp)p)e —a-a((fo =P+ afp)e +a(fo =P+ afp)p)p
(2) +((fac_p+pr)x+Q(fx_p+pr)p)Q'

It follows from (1) that (2) is equal to 2(fzp +qfpp) — 1 at ug. By the assumption X, = A, there
exists a smooth function germ /5 such that f, = 8- (fz —p+qfp) at least locally. Differentiating
this equality with respect to z and p, we get

fzp:530'(fz*p+pr)+6'(fm*p+pr):c



COMPLETELY INTEGRABLE IMPLICIT SECOND ORDER ODE’S 277

and
Jop =Bp - (fe —p—f—qu) + B (fa =P+ afp)p-

It follows that (2) is non-zero at wy. O

3.4. On the type RR.. Suppose that F' = 0 is of type RR; at zy. See Example 4.2. Then
Y. 2 A =X, around z9. By Theorem 2.3, F' = 0 has a complete solution on ¥. at zg if and
only if X.. is a 1-dimensional manifold around zy. In this case, we have the following result.

Theorem 3.4. Let F = 0 be of type RRZQI at zg € A. F =0 has a complete singular solution
on X at zg if and only if X is a 1-dimensional manifold around zg.

Proof. By Theorem 2.3, each leaf of the complete solution on F~1(0) which meet Y. away
from X.. intersect Y. transversally, and each leaf of the complete solution on X, intersects ..
transversally. Therefore the complete solution on ¥, is the complete singular solution on X.. O

By the definition of X,

(fo—p+afp)e+a(fo—p+afp)p =0, (fe =P+ qfp)g =0

at zo € Y. Since 2o is a regular point of Fx|p-1(0), (fo =P+ qfp)p # 0 at zp. The equation
F = 0 satisfies either

(i) (fa—p+ pr)m +aq(fe—p+ pr)p)q #0

or
(ii) ((fx —-p+ pr)x + Q(fx —-p+ pr)p)q =0
at zo. It follows that zg is a regular point of (fz —p+qfp)s+a(fo —P+afp)p, or of (fo—DP+qfp)q-

Proposition 3.5. Let ' = 0 be of type RR% at zog € A. Suppose that 3. is a 1-dimensional
manifold around zg.

(1) If F = 0 satisfies the condition (i), then each leaf of the complete solution on F~1(0) is
intersects X.. transversally and hence Y., is a singular solution passing through zg.

(2) If F = 0 satisfy the conditions (ii) and Fpq|s,, = 0 around 2o, then each leaf of the complete
solution on F~1(0) is tangent to ... If v(t) = (z(t),y(t),p(t),q(t)) € See is a geometric
solution, y(t) is represented by the form (a,b,c,t), where a,b,c € R. Moreover, v(t) is a leaf of
the complete solution on F~1(0).

Proof. (1) Since Qsil(zcc) =(fe—p+ pr)il(o) N((fe—p+ pr)x +q(fe—p+ pr)p)il(o)v it
is sufficient to check that the scalar product of grad((fz —p+ ¢fp)s + ¢(fo — P+ ¢fp)p) and the
vector field X is non-zero at ug. By the same calculations in Proposition 3.3,

(grad((fe —p+afp)e +a(fo =P+ afp)p), (—a, —a - q,1)) = 2(fup + qfpp) — 1

at ug. The condition (i) guarantees that 2(fzp + ¢fpp) — 1 # 0 at ug. Therefore each leaf of the
complete solution on F~1(0) intersects ¥.. transversally and hence ¥, is a singular solution
passing through z.

(2) Since ¢~ H(Zee) = (fe — 2+ qfp) HO0) N ((fo — p+ afp)g) 1(0), it is sufficient to check
that the scalar product of grad(fs — p + ¢fp)q and the vector field X is zero. By the direct
calculations, the consequence follows from the condition F,|x,, = 0 around zo.

Let v(t) = (z(t),y(t),p(t), q(t)) € T be a geometric solution passing through zg. By differ-
entiating f,(x(t), p(t), ¢(t)) = 0 with respect to ¢, we get

(fap + afpp) (2 (), p(), q(t)) - 2 (t) + Fpq (1), p(1), () - ¢'(t) = 0.
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By the condition (ii), we have fa, + ¢fpp = 1/2 at ug and hence z’(¢) = 0. This means that z(¢)
is constant on X, around zg. Differentiating (1) with respect to p, we have
Jpa=0p- (fz _p+pr) +a-(fs _p"‘pr)p'

It follows that a|s,. = 0 around z5. By the form of the vector field X (see, in the proof of
Theorem 3.2), I'|p-1(x, ) =7 a

3.5. On the type RR;. Suppose that F' = 0 is of type RR; at zg9. See Example 4.3. Then
e 2 A D 3. around 2. In this subsection, assume that A is a 1-dimensional manifold around
zo and zg € Y., since we consider complete solutions. By Theorem 2.3, F' = 0 has a complete
solution on ¥, at zg. If A is not a geometric solution passing through zg, the complete solution
on Y. is the complete singular solution on ¥.. On the other hand, if A is a geometric solution
passing through zy, we have the following result.

Proposition 3.6. Let F' =0 be of type RR} at zo € A\ Xee. If y(t) = (2(t),y(t),p(t),q(t)) € A
is a geometric solution passing through zo, then y(t) is represented by the form (a,b, c,t) where
a,b,c € R. Moreover, y(t) is a leaf of both complete solutions on F~(0) and X..

Proof. Since zg & X¢c, we have (fy —p+ qfp)s + ¢(fo — P+ afp)p # 0 at ug. Differentiating
equalities (fz —p+qfp)(x(t),p(t),q(t)) = 0 and f,(z(t),p(t), q(t)) = 0 with respect to ¢, we have

< (fo—pt+afp)etalfo—p+afp)p (fo—P+afp)g ) ( '(t) ) _ ( 0 )
Jap + qfpp Ipq q'(t) 0/
Since v(t) is a geometric solution, (z'(t),¢'(t)) # (0,0) on A. Thus
det( (fo =P+ afp)e +a(fo =P+ afp)p (fo =D+ afp)q ) _0
Jap + Qfpp fra

on A. Tt follows that a|a = 0 and hence 2/(t) = 0. This means that x(¢) is constant on A
around zg. By the forms of the vector field X for a complete solution on F~1(0) and of the
vector field Y for a complete solution on X, (which appeared in the proof of Theorem 3.2), it
follows that F|F*1(A) = (I)|<I>*1(A) =. O

3.6. On the type SC,. Suppose that F' =0 is of type C at 2y € X, and zj is a singular point
of Fy|p-1(0) and Fx|p-1(0). We call this type SC,. See Example 4.4.

Proposition 3.7. Let F' = 0 be of type SC, at zy. If X is a 2-dimensional manifold around
2o, then zg & Yec.

Proof. Let F(z,y,p,q) = —y+ f(z,p,q) = 0. Since F = 0 is of type C' at zg, there is a function
germ « : (F71(0), 29) — R such that

(3) fo—pt+afp=a-fq

By differentiating (3) with respect to p, we have fop, — 14+ qfpp = ap - fq + - fpq. Hence
fep +afpp =1 at up. By a direct calculation,

(4) (fz —-p+ q,fp):nq + Q(fm —p+ pr)pq = (facq + prq)m + q(fa:q + prq)p + fmp + przr

On the other hand, by (3),

(.fac —p+ pr)wq + Q(fw —-p+ pr)pq
(5) = (g + qopq) - fo + g - (fou + afpg) + (z +qap) - foq +  (fagq + afpaa)-

By definition, ¢~1(2.) = ft;l(()). Since Y. is a 2-dimensional manifold around zy, there is

a regular function germ ¢ : (U,up) — R and a function germ k : (U,ug) — (R,0) such that
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¢~ (Z.) = g71(0) and f, = k- g at least locally. By a direct calculation, the right hand of (4)
is given by

(ke +akp)a+a(ks+kp)p) - 9+2(ks +akp) - (92 +a9p) + k- (92 +a9p) 2+ a(92 +a9p)p) + fop + a0 fpp-
Also the right hand of (5) is given by

(Qag + qopg) " k- g+ ag - ((ka + qkp) - g+ k- (92 +a9p)) + (aw +qap) - (kg g+ k- gq)
+a ((keg + qhpg) - 9 + kg - (92 + agp) + (ke + akp) - g + k- (gzg + q9pq)) -

If 2 € ¥¢c, then g = g, + qgp = g4 = 0 at uo. This contradicts the fact that (4) = (5), namely
1=0 at ug. O

Under the assumption of Proposition 3.7, it follows from zy ¢ .. that there is a complete
solution on X, at zg. According to Theorem 3.11 in below, a geometric solution passing through
zp on X, is a singular solution for type C. Hence the complete solution on Y. is the complete
singular solution on X, at zp.

3.7. On the type SR,. Suppose that F' =0 is of type R at 2y € X, and 2y is a singular point
of Fy|p-1¢0) and Fx|p-1(0). We call this type SR,. We can also prove the following result by
using the same arguments in the proof of Proposition 3.7, so we omit the proof.

Proposition 3.8. Let F' = 0 be of type SR, at zy. If X is a 2-dimensional manifold around
20, then zg & Yec.

Moreover, we have the following result.

Proposition 3.9. Let F' =0 be of type SR, and not of type C at zy. If 3. is a 2-dimensional
manifold around zg, then A is a 1-dimensional manifold around zy. Moreover, A is not a
geometric solution passing through zg.

Proof. By (1), fy = a- (fo —p+qfp) with a(z0) = 0. Since ¢~ (Zc) = (fo —p+4qfp) ' (0) is a
2-dimensional manifold around zg, there exist a regular function germ g : (U,up) — (R,0) and
a function germ k : (U, ug) — (R,0) such that f, —p+qf, = k- g and k~1(0) C g~*(0) at least
locally. By a direct calculation, we have

(fo —p+afp)eq+a(fo =P+ afp)pg =1
at ug. On the other hand,

(fw —-p+ pr)xq + Q(fx —-p+ pr)pq = kq : (gw + qu) + (kl + qkp) *Yq

at ug. Hence kq - (9 + qgp) + (kz + gkp) - g¢ = 1 at ug. If gq(uo) = 0, then kq(ug) # 0. It follows
that k is represented by A(z,p, q) - (¢ — p(x, p)) at least locally, where A and p are function germs
with A(ug) # 0. Since k~1(0) C ¢g=1(0), g(x, p, p(x,p)) = 0. By differentiating this equality with
respect to x and p, we have

9o (2, p, (2, p)) + po(x, p)gq (2, p, (2, p)) = 0

and

p (2, p, 1(2, p)) + pp(@, p)gq (2, p, (2, p)) = 0.
This contradicts the fact that g is regular at uy. Therefore we have g, # 0 at uo.
By the definition of A, ' (A) = g1 (0)Nf,*(0). To show that A is a 1-dimensional manifold
around zg, it is sufficient to show that the matrix

_ 9z g g
A_(fxp fon quq)
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has rank 2 at ug. Since f, —p+qfp and f, are singular at ug, fzp + qfpp = 1 and fpq = 0 at ug.
Therefore rank A = 2 at ug.

Next suppose that v : (R, t0) = (A, 20);7(t) = (x(t), y(t), p(t), q(t
passing through zg. By differentiating equalities g(z(t), p(t),q(t)) =0
with respect to t, we have

( (92 + q9p) (2 () p(1),4(t)) — gq((t), p(t), q(t)) > ( a'(t) ) _ < 0 >
(fop + afpp)(@(t),p(£),4(8))  fpg(x(t), p(), 4(t)) q '

Since the determinant of the matrix

)) is a geometric solution
a

nd fp(z(t),p(t), q(t)) = 0

< 9o+ a9  9q )
fap +afop  foq
does not vanish at tg, (2/(¢),¢'(t)) = (0,0) at ¢o. This contradicts the fact that v(¢) is a geometric

solution passing through zp. m|

As a conclusion, if F' = 0 is of type SRy, not of type C' at zp and X, is a 2-dimensional
manifold around zg, then there is a complete singular solution on X, at zg by Propositions 3.8
and 3.9.

Finally, in this section, we give an important difference between type C and type R.

Lemma 3.10. Let F = 0 be of type RCy at zo. If 29 € A\ e, then A is not a geometric
solution passing through zg.

Proof. By Theorem 2.2, A is a 1-dimensional manifold around zy. Suppose that

7 (Rito) = (A, 20);7(t) = (2(1), y (1), p(t), a(t))

is a geometric solution passing through zy. Differentiating

fo(@(t),p(t),q(t)) =0 and  fy((t),p(t),q(t)) = 0

with respect to ¢, we have

< (fap + afpp)(@(8), p(2), 4(£))  fpq(x(t), p(t), q(t)) > ( a'(t) ) _ < 0 >
(feq + afpa)(@(1), (1), q(8))  faq(2(t), p(t), (1)) q'(t) 0/

Moreover, differentiating (3) with respect to p and g, fop — 1+ qfpp = ap - fq + - fpq and
feq + o+ afpg = g - fg + - foq respectively. Then

(Fop + o) @000, 0(8) Foa((8), p(0),a(®) )
det ( (Foo + aho)(t). p(1). 4(8))  Fog(e(t). p1), a()) ) = Jaal2(t), p(), 4(1)).

The condition zy & X.. guarantees that f,q # 0 at ug. It follows that (2'(t),q'(t)) = (0,0) at to.
This contradicts the fact that v(¢) is a geometric solution passing through zj. O

Theorem 3.11. Let F' = 0 be of type C at zo. Ify(t) = (x(¢),y(t),p(t), q(t)) € L. is a geometric
solution passing through zo, then y(t) is the singular solution.

Proof. First we assume that 2o is a regular point of I |p-1(g). If 20 € A, then () is a singular
solution passing through zp and hence we may regard that v(¢) C A by Theorem 2.2. Also if
20 & Yee, then ~(¢) is not a geometric solution passing through zg by Lemma 3.10. We may
assume that v(t) C X... Then we can conclude that ~(t) is a singular solution passing through
2o, see Remark 3.1.
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Next we assume that zq is a singular point of Fy|p-1(0). Also we may regard that v(t) C A.
By differentiating f,(z(t), p(t), q(t)) = 0 with respect to ¢,

(fop + afpp)(@(t),p(t),q(t)) - () + fpq(x(t), p(t), a(t)) - ¢'(t) = 0.
Since fop — 1+ qfpp = ap - fg + p - fpg, We have
(Lt a- fog(@(t),p(t), (1)) - ' (£) + foq (1), p(t), q(2)) - ¢'(t) = 0.
By the assumption, fp,(uo) = 0. Hence 2/(tg) = 0 and ¢'(¢9) # 0. It follows from the form of

smooth complete solution, v(t) is the singular solution passing through zy. This completes the
proof of Theorem 3.11. O

As a consequence, if F' =0 is of type C' and there exists a geometric solution on the contact
singular set, then uniqueness for geometric solutions does not hold.

4. EXAMPLES

We give examples of completely integrable second order ODEs. For more examples, refer to
[3, Examples 5.1 and 5.2] etc.

Example 4.1. Let F(z,y,p,q) = y + (1/2)p*¢*>" ™! = 0, where n is a natural number. In this
case, Fx = p(1+¢*"*2) and F, = (1/2)(2n+1)p*¢*". Hence F = 0 is of type R at 29 € F~1(0).
Since 0 is a regular value of Fix|p-1(p), and

Ye={(zyp,q) ly=p=0} =4, Y.={(z,y,p,9) |y=p=q=0},
F = 0 is of type RR; at zp € X.. By Theorems 2.3, 3.2 and Proposition 3.3, there exist a

complete solutions on F~1(0) and ¥., and a singular solution. Indeed, the complete solutions
I''RxR?— F71(0),®:R xR — X, and the singular solution v : R — .. are given by

2 1
L(t,rs) = (7 n2+

r /(1 + t2”+2)7%t2ndt + s,
—%erQ”H(l +t2n+2)—%’r(1 +t2n+2)—%,t),
®(t,a) = (a,0,0,t) and () = (£,0,0,0). We can observe that I'|p-1(s,) = ®.

Example 4.2. Let F(x,y,p,q) = —y + pq" — (n/(2n +1))¢** ™ = 0, where n is a natural
number. In this case, Fx = —p + ¢"™! and F, = —ng" ' (—p+ ¢"™'). Hence F = 0 is of type
C and of type R for n = 1, and of type R for n > 2 at zp € F~1(0). Since 0 is a regular value
of FX|F*1(O) and
_ oon+l oo _ I U
e = {(wyyyp,q) |y = il o P=4 } A={(z,y,p,q) |y=p=q=0} =2,

F = 0is of type RR; at zo € A. Note that F' = 0 is also of type RC), at zg if n = 1. By Theorems
2.3 and 3.4, there exist a complete solution on F~1(0) and a complete singular solution on Y.
Moreover, F' = 0 satisfies the condition (i) of Proposition 3.5 in §3.4, ¥, is an isolated singular
solution. Indeed, the complete solution on F~1(0), the complete singular solution on ¥, and the
isolated singular solution are given by

n2

e = (748 G

n
t2n+1 + Stn, ?thrl + S,t) ,
n

n+1 n+1

CI) _ n 2n+1 jn+1 — .
(t,a) (n t" + a, 2n+1t LTt ) and ~y(t) = (¢,0,0,0)
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If n = 1, the complete solution on F~1(0) can be parametrised by

1 1 1.1
D(t,r,s) = (t, 6t3+27"t2+8t+7‘8—3T3,2t2+7ﬂt+s,t+r>,

Example 4.3. Let
F(z,y,p,q) = —y + (1/2)2* = (1/n)pq" + (1/n)zq" + (1/2n*)¢*" — (1/n(2n +1))¢*" " =0,

where n is a natural number. In this case, Fx = z+ (1/n)¢" —p— (1/n)¢" ™! and F, = ¢" ' Fx.
Since 0 is a regular value of Fx|p-1(g) and

1 1, n+l
Y. = {(xayap7Q) |y = §$2—ﬁq H“‘m(f H}a

1
A= {(x7y7p7q) | Y= 21'2,17:1'7(]:0}, Ecc:®7

F =0 is of type RR; at 2o € A. Note that if n = 1, then F' = 0 is also of type RCy at z.
By Theorem 2.3, there exist complete solutions on F~1(0) and 3.. Since A is not a geometric
solution, the complete solution on ¥, is the complete singular solution on .. The complete
solution on F~1(0) and the complete singular solution on ¥, at 0 are given by

1

1 n
L(t,r,s) = <—nt + CEFSCEE)

, 1 1 1
P = st o or® -t s,t> :

1 1 n+1 1 1
d(t _ t Zx(t 2 tn+1 t2n+1 t g 7tn+1 t
(t0) (33( ,a)72$( @) 2n2 +n2(2n+1) ! ’a)+n n )

where

1 1 1 1
z(t,a) = —= nt " ——t" e St log|t—1] ) +a.
n n n—1 2

Example 4.4. Let F(z,y,p,q) = —y + 2p — (1/2)x%q + 2" = 0, where n is a natural number.
In this case, Fx = nz"" ! and F, = —(1/2)z%. Hence F = 0 is of type R for n = 1 and 2 at
2o € F71(0). Also F = 0 is both types of C' and R for n = 3, and of type C for n > 4 at z.

First suppose that n = 1. Since Fix = 1, we have X. = ). It follows that F' = 0 is of type Rx
at zg. The complete solution on F~1(0) at 0 is given by

2 4 4 2 2
I‘(t,r,s)z( r r 7+ 2rs

r
log |1 —rt
og |1 —rt] + 1—rt +(17Tt)
Second suppose that n = 2. Since 0 is a regular value of Fix|p-1(g) and
Ee={(z,y,p,q) [z =y=0}t=A, Ecc. =0,
F =0 is of type RR; at zgp € A. The complete solutions on F~1(0) and X, are given by

1—7rt’'1—rt

2
27210g|1_rt|+1’rt+87t) .

2
L(t,rs) = (7‘63, %te

®(t,a) = (0,0,a,t). We can observe that I'|p-1(5 ) = .
Finally suppose that n > 3. Since 0 is a singular value of Fy|p-1¢py and Fx|p-1¢p), F' = 0 is
of type SC, at zp € A. We have

EC:{(Iay7p7Q) | Z'Zy:O}:A, Ecczw-

The complete solution on F~1(0) and the complete singular solution on ¥, are given by

D(trs)= (t,——2 oyl g 2 merg gy 2 2
r,Ss) = =T S T S T
T "(n—2)(n—-1) 2 "(n—2)(n—1) "n—2 ’

ST

ot L L L
—3re2 +rsed,rter —4res + s, t |,
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®(t,a) = (0,0,a,t). Note that if n = 3, then F' = 0 is also of type SR, at z.

Example 4.5. Let F(z,y,p,q) = zq¢ + (a — 2)p — by = 0 be the confluent hypergeometric
equations (the degenerate hypergeometric equations), where a,b € R, see in [16]. The equation
have the confluent hypergeometric function as a solution. However, we can decide by using the
results whether the equation have a complete solution or not. This is a new viewpoint for the
equation as far as we know.

Since we consider the regular equation, we may assume that b # 0. By

Fx =q(14+a—2)—p(l+b) and F,=uz,

Ye={(z,y.p,q) | x=0,ap— by =10,q(1 +a) — p(1 +b) = 0}.
If zg € X, then there exist a complete solution at zy and also a unique geometric solution passing
through zp. If zp € ¥. and a = —1,b = —1, then Fx = ¢q- F,, ¥, is a 2-dimensional manifold
and X.. = (. It follows that F' = 0 is of type RC), at zy. By Theorem 2.2, there exist a complete
solution on F~1(0) and a complete singular solution on .. The complete solution on F~1(0)
and the complete singular solution on . are given by

L(t,r,s) = (t,ret + (1 +t)s, e + s, ret) , ®(t,a) = (0,a,a,t).

If 2o € . and a = —1,b # —1 (respectively, a # —1), then X. is a 1-dimensional manifold.
Hence F' = 0 is not completely integrable at z.

APPENDIX A. COMPLETELY INTEGRABLE IMPLICIT FIRST ORDER ODES

In this appendix, we quickly review known results for the theory of completely integrable
implicit first order ODEs

F(x,y,p) =0, p=dy/dx.

For more detail, see [10, 11, 12, 13, 19]. Assume that 0 is a regular value of F. We say that
F = 0 is completely integrable at a point if there exists an immersive one-parameter family of
geometric solutions on F~1(0) at the point. The contact singular set ¥. = 3.(F) is given by

Ye={z€ J'R,R) | F(2) =0, Fx(z) =0, F,(2) = 0}.

Here Fx = F, + pF,. We say that an equation F' = 0 is of (first order) Clairaut type (for short,
type C) at zg if there exists a function germ a : (F~1(0), z9) — R such that

Fx|p-10) = @ Fplp-1(0),

and of reduced type (for short, type R) at 2 if there exists a function germ 3 : (F~1(0),29) — R
such that

Fplp-10) = B Fx|r-1(0)

In [11], it has been shown the following results.

Theorem A.1. ([11]) Let F(z,y,p) = 0 be an implicit first order ODE at zg. The following are
equivalent:

(1) F =0 is completely integrable at zp.

(2) F =0 is either of type C' or of type R at zg.

(3) z0 € X or X, is a 1-dimensional manifold around z.

Moreover, if 3. is a 1-dimensional manifold around zo, then . is a singular solution of FF =0
passing through zg.
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Now suppose that zp € X.. Since F' = 0 is regular, Fy(z9) # 0. By the implicit function
theorem, there exists a smooth function f : U — R, where U is an open set in R?, such that in
a neighbourhood of 2y, (z,y,p) € F~1(0) if and only if —y + f(x,p) = 0. Thus we may assume
without loss of generality that F(z,y,p) = —y + f(z,p) = 0. It follows that zy is a regular point
of either Fp|p-1(gy or Fx|p-1(p). Therefore, completely integrable implicit first order ODEs have
four kinds of types (cf. [19]), see Table 2.

Conditions Type | Name
20 € B¢ Fp(ZO) #0 C Cp
Fx(20) #0 R Rx

20 € X | Fy(20) #0 | 20 is a regular point of Fp[p-1(g) C RC,
zp is a regular point of FX|F71(0) R RR,
Table 2. A classification of types of completely integrable implicit first order ODEs at zg.
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LIPS AND SWALLOW-TAILS OF SINGULARITIES OF PRODUCT MAPS

KAZUTO TAKAO

ABSTRACT. Lips and swallow-tails are generic local moves of singularities of a smooth map to
a 2-manifold. We prove that these moves of singularities of the product map of two functions
on a 3-manifold can be realized by isotopies of the functions.

1. INTRODUCTION

We consider the relationship between a pair of maps and the product map. Let M, P,Q be
smooth manifolds and let C*°(M, ) denote the space of smooth maps from M to a smooth
manifold % endowed with the Whitney C* topology. Two smooth maps F' € C*°(M, P) and
G € C*(M, Q) determine the product map (F,G) € C*°(M, PxQ) by (F,G)(p) = (F(p),G(p)).
Conversely, a smooth map ¢ € C>°(M, P x Q) can be decomposed into mp oy € C*°(M, P) and
mgop € C®(M,Q), where mp : P x Q — P and mg : P x Q — @ are the projections. By
Chapter II, Proposition 3.6 of [1], this correspondence gives the homeomorphism

(1) C®(M,P) x C®(M,Q) 2 C™®(M,P x Q).

The homeomorphism (#) however does not mean the singularity theoretic equivalence. More
specifically, isotopies of F' and G do not always induce an isotopy of (F, G), and an isotopy of ¢
does not always induce isotopies of mp o ¢ and mg o ¢. Here, an isotopy of a map is a homotopy
preserving the topological properties of the map. The partition of a mapping space into isotopy
classes is of general interest in singularity theory, but few things are known about the relation
between the partitions of the both sides of the homeomorphism (f).

We focus on the case where M is closed and 3-dimensional, and P, ) are 1-dimensional. We do
not assume the orientability of M. Suppose F' : M — P and G : M — @ are smooth functions
such that ¢ = (F, G) is stable. A singular point of ¢ is then either a fold point or a cusp point.
By Levine’s [5] theorem, we can eliminate the cusp points by a homotopy of ¢. It implies that
we can eliminate the cusp points by homotopies of F' and G. Note that we cannot reduce the
number of cusp points by an isotopy of . We propose the following question.

Question 1. Can we eliminate the cusp points of ¢ by (quasi-)isotopies of F' and G ¢

Our strategy to attack Question 1 is to deform ¢ by a sequence of global isotopies and local
homotopies which can be realized by (quasi-)isotopies of F,G. Johnson [3, Section 6] showed
what kind of global isotopy of ¢ can be realized by (quasi-)isotopies of F,G (see Corollary 7).
In this paper, we prove the following.

Theorem 2. The local moves of the discriminant set of ¢ as in Figure 1 can be realized by
isotopies of F' and G.
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f f

g g

FIGURE 1. Local moves which reduce the number of cusp points of ¢. Here,
(f,g) is the coordinate system given by the product structure of P x Q. We
require that the local moves do not involve tangent lines of the discriminant set
parallel to the axes.

Forgetting the axes, these moves are ones of generic local moves of singularities of ¢ known as
a “lip” and a “swallow-tail”, respectively. See [11] for the classification of generic local moves.
We expect that we can use our method (Proposition 11) to work out other local moves, and we
hope that we can use them to approach a global theory.

We would like to mention here the relation of this work to Heegaard theory of 3-manifolds.
Rubinstein—Scharlemann [13] introduced the graphic for comparing two Heegaard splittings.
Kobayashi—Saeki [4] interpreted the graphic as the discriminant set of the product map of two
functions representing the splittings. Johnson [3] gave an upper bound for the Reidemeister—
Singer distance between two Heegaard splittings in terms of the graphic. The author [14] devel-
oped Johnson’s idea to show that the Reidemeister—Singer distance is at most the sum of the
genera of the splittings plus the number of cusp points of the product map. If Question 1 is
answered positively, it ensures that the Reidemeister—Singer distance is at most the sum of the
genera, which is the best possible bound by Hass-Thompson—Thurston’s [2] example.

Acknowledgement. The author would like to thank Osamu Saeki, Takashi Nishimura and
Kentaro Saji for valuable discussions and conversations. He would also like to thank the referee
for many helpful suggestions.

2. MORSE FUNCTIONS AND STABLE MAPS

In this section, we briefly review standard definitions and facts on singularities of smooth
maps. We refer the reader to [10] for basic notions in Morse theory, and to [1] for detailed
description of stable maps.

A Morse function on a compact smooth manifold M possibly with boundary is a smooth
function F from M to either R or S! satisfying the following:

e All the critical points of F' are non-degenerate and belong to int M.
e The function F' is constant on each component of OM.
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We regard R and S' as oriented. This gives the distinction between locally minimal components
and locally maximal components of OM with respect to F'. A smooth homotopy consisting of
Morse functions is called a quasi-isotopy. Two Morse functions are said to be quasi-isotopic if
there is a quasi-isotopy between them.

We consider generic homotopies of smooth functions from a compact connected surface 3 to
R. Let {a; : ¥ = R};¢[_1,1) be a smooth homotopy. A birth (resp. death) of {}e[—1,1] is the
pair (0,0) of 0 € (—1,1) and o € intY such that a,(&,n) = 7& — & + n? for a local coordinate
system (&,7n) at o, a local coordinate T at o whose direction agrees (resp. disagrees) with that
of t, and a local coordinate of the target R. Here {(£,n) — (&,n-)}+ is a smooth family of
coordinate transformations. A passing of {;}ie[—1,1] is the pair (o,{0,0'}) of 0 € (—=1,1) and
{o,0’} C int¥ such that 0,0’ are non-degenerate critical points of a, with the same value, and
{(t,v) € R? | v is a critical value of ay|yuy} has a transverse crossing at (0, a,(c)) for small
neighborhoods U, U’ of o,0’, respectively. The homotopy {a}se[—1,1) is said to be generic if
it consists of Morse functions whose critical points have pairwise distinct values except that
{at}ee(—1,1] has either a single birth, a single death or a single passing at each ¢ in a finite subset
of (—1,1). Note that a generic homotopy without births and deaths is a quasi-isotopy.

Theorem 3 (Maksymenko [7]). Two Morse functions from ¥ to R are quasi-isotopic if and
only if they have the same number of critical points of each index, and the same sets of locally
minimal and locally maximal components of 0%.

An isotopy of a smooth map ¢ : M — N between general smooth manifolds M, N is a
homotopy {¢ : M — N }4e(0,1] which is decomposed as ¢ = HY o @ o HM. Here {HM }4c0.11,
{HtN}te[O,l] are smooth ambient isotopies of M, N, respectively, such that H} = idy and
HY = idyn. Two smooth maps are said to be isotopic if there is an isotopy between them.

A stable map from M to N is a smooth map ¢ : M — N such that there exists an open
neighborhood U of ¢ in C*°(M, N) such that every map in U is isotopic to ¢. We remark
that an equivalent definition of stable map is given by using “right-left equivalent” in place of
“isotopic”. We note that, in the case where M is closed and N is either R or S', the smooth
map ¢ is stable if and only if ¢ is a Morse function whose critical points have pairwise distinct
values.

Consider the case where M is a closed smooth 3-manifold and NN is a smooth surface. Recall
that p € M is a regular point of ¢ if the differential (dy), : T,M — T,y N is surjective, and
otherwise a singular point. The set S, of singular points of ¢ is called the singular set and its
image ¢(S,) is called the discriminant set of ¢. At a regular point p € M \ S,, the map ¢ has
the standard form p(u, x,y) = (u, z) for some coordinate neighborhoods of p and ¢(p). Standard
forms are also known for generic types of singular points as follows.

A fold point is a singular point p where ¢ has the form o(u, z,y) = (u, 22 £y?) for a coordinate
neighborhood U of p = (0,0,0) and a coordinate neighborhood of ¢(p) = (0,0). The Jacobian
matrix of p(u,z,y) = (u,2* £ y?) says that the singular set S, N U is the arc {(u,0,0)}. It
follows that each singular point on {(u,0,0)} is also a fold point by a translation of the local
coordinates. The arc {(u,0,0)} is embedded to the arc {(u,0)} C N by ¢.

A cusp point is a singular point p where ¢ has the local form p(u,z,y) = (u,uz — 23 + y?).
One can check that the singular set S, N U is the arc {(3z2,z,0)}, and consists of fold points
except for the cusp point p = (0,0,0). Note that the arc {(322,2,0)} is a regular curve but its
image {(32%,22%)} C N has a cusp at p(p) = (0,0).

Assume that the singular set S, consists only of fold points and cusp points. By the above
local observations and the compactness of M, we can see the outline of S,. It is a 1-dimensional
submanifold of M, namely a collection of smooth circles. There are finitely many cusp points
and the restriction ¢|s, is an immersion except that each cusp point maps to a cusp. The next



LIPS AND SWALLOW-TAILS OF SINGULARITIES OF PRODUCT MAPS 289

characterization of stable maps follows from Mather’s theorems [8, Theorem A, Proposition 1.8]
and [9, Theorem 4.1].

Theorem 4 (Mather). A smooth map ¢ from a closed smooth 3-manifold to a smooth surface
is stable if and only if:

o The singular set S, consists only of fold points and cusp points.
e The restriction p|s, has no double points at cusps, and the immersion gp\sw\(wsp points)
has only normal crossings.

The Stein factorization W, of a general smooth map ¢ : M — N is the quotient space M/ ~,
where p1 ~ py if p1,pe belong to the same connected component of a level set of ¢. Let g,
denote the quotient map form M to W,. We can see that there is also a unique continuous map
@ : W, — N such that ¢ = ¢ ogq,. The Stein factorization of a stable map from a closed smooth
3-manifold to a smooth surface is, in fact, a 2-dimensional cell complex. See [6] for example.

3. TWO FUNCTIONS AND THE PRODUCT MAP

In this section, we review a local theory of singularities of two functions and the product map.

We use the following notation. Suppose M is a closed smooth 3-manifold and P, Q) are either
Ror S'. Let F: M — P and G : M — @ be smooth functions, and ¢ denote the product map
(F,G). While we do not assume F, G to be Morse, we assume ¢ to be stable in this section.

The singular set S, includes the critical points of F' and G, which can be seen as follows. For
each point p € M, there is a local coordinate system (f, g) at ¢(p) given by the product structure
of P x Q. The Jacobian matrix of ¢ with respect to this coordinate system is composed of the
gradients of F' and G. If p is a critical point of F' or G, the Jacobian matrix has rank at most
one, namely p is a singular point of ¢.

We read information about F, G from the discriminant set of . Note that ¢[s,, is an immersion
of circles with finitely many cusps. We can define the slope of the discriminant set ¢(S,) at
¢(p) for each p € S, with respect to the coordinate system (f,g). In particular, a point on the
discriminant set with slope zero (resp. infinity) is called a horizontal (resp. wvertical) point. We
can also define the second derivative of ¢(S,) outside of vertical points and cusps, by regarding
an arc of p(S,) as the graph of a function. In particular, a point with second derivative zero is
called an inflection point. Since zero or non-zero of the second derivative is preserved by rotating
the coordinate system, an inflection point can be defined also for vertical points.

Lemma 5. A point p € M is a critical point of F (resp. G) if and only if ¢(p) is a vertical
(resp. horizontal) point of the image of a small neighborhood of p in S.,.

Lemma 6. A critical point p of F' (resp. G) degenerates if and only if p is a fold point of ¢
and @(p) is a vertical (resp. horizontal) inflection point of the image of a small neighborhood of
pin S,.

The above lemmas were originally described by Johnson [3, Lemmas 10 and 11], and simple
analytic proofs were given by the author [14, Lemmas 11 and 12]. Both Johnson and the author
considered only the case of P = Q = R, but the proofs are independent of whether P, @ are R
or St

By Lemmas 5 and 6, the function F' (resp. G) is Morse if the discriminant set ¢(S,) does not
have vertical (resp. horizontal) inflection points. Note that the f-coordinate (g-coordinate) of
each vertical (resp. horizontal) point of ¢(S,) corresponds to the critical value of F' (resp. G).
It follows that the Morse function F' (resp. G) is stable if ¢(S,) does not have vertical (resp.
horizontal) double tangent lines.
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Corollary 7. A deformation of (S,) by an ambient isotopy of PxQ can be realized by isotopies
of F, G if it keeps ©(S,) without horizontal or vertical, inflection points and double tangent lines.

Proof. Let {H;},c[0,1] be a smooth ambient isotopy of P x @ such that Hy = idpxq. By the
definitions, {H; o ¢};c[0,1] is an isotopy of ¢ and consists of stable maps. It induces homotopies
{Fy =mpoHiop}lic of Fand {Gy = mg o Hyopliep,1) of G. The deformed discriminant set
Hi(p(S,)) is the discriminant set of Hy o ¢ = (F}, Gy) for each t € [0,1]. Since Hy(¢(S,)) does
not have horizontal or vertical, inflection points and double tangent lines, F; and G, are stable
for each ¢ € [0,1]. The homotopies {F}};c(0,1) and {G¢}sefo,1] are therefore isotopies. O

4. RESTRICTIONS TO LEVEL SURFACES

In this section, we consider the relation between a product map restricted to an appropriate
domain and the family of the restrictions of one function to level surfaces of the other function.

We use the following notation again. Suppose M is a closed smooth 3-manifold and P, @ are
either R or S'. Let F: M — P and G : M — @ be smooth functions, and ¢ denote the product
map (F,G). We do not assume F, G to be Morse nor ¢ to be stable at this stage.

We consider the restriction of F' to a level surface of G. Suppose p € M is a regular point
of G, and hence the level set G=(G(p)) is a regular surface near the point p. The point p is
a critical point of F|g-1(g(p)) if and only if p is a singular point of ¢, which can be seen as
follows. The gradient of the restriction F'|g-1(¢(p)) is the projection of the gradient of F' to the
orthogonal complement of the gradient of G. It is zero if and only if the gradients of F' and G
are linearly dependent. They are linearly dependent if and only if the differential (dy), is not
surjective.

Lemma 8. A critical point p of F|g-1(c(p)) is non-degenerate if and only if p is a fold point of
®.

Proof. Since p is a regular point of G, there is a local coordinate system (&,m,7) of M at
p = (0,0,0) such that G(£,m,7) = 7+ G(p) and (£, 7) is a local coordinate system of G~1(G(p))
at p. This giVGS us 90(577777) = (F(E,?],T),T + G(p)) and F|G*1(G(p))(€7n) = F(€7n30) By
Morin’s [12, Lemme 1] characterization, the point p is a fold point of ¢ if and only if the critical
point p of F(£,7,0) is non-degenerate. O

We consider the restrictions of F' to the level surfaces of G in a domain V C M which is
defined as follows. Note that there is a canonical covering R? — P x @ by identifying S with
R/Z. Let R C R? be the region {(f,g) € R? | h_(g9) < f < he(9), 9- < g < g+}, where
g—,g9+ € R are constants such that g_ < ¢4 and h_,h; : R — R are smooth functions such
that h_(g) < hy(g) for every g € [g_,g+]. We assume that R is embedded to R C P x Q by
the covering map. Let V be a connected component of the preimage ¢ ~!(R). From now on, we
consider ¢, F', G restricted to V', which allows us to assume that P = Q = R. We assume that G
does not have critical points in V, and that the discriminant set of ¢ does not intersect the two
edges {f =h_(g9),hs(g9), g- < g < gs} of R. Each level set G~*(g)NV is then a regular surface
whose boundaries are regular level curves of F'|g-1(4). The space V' is therefore a ¥-bundle over
[9—,g+], namely the direct product ¥ x [g_,g+]. Here ¥ is a compact connected surface and
each ¥ x {g} is the level surface G (g) N V.

The restrictions of F' to the level surfaces of G' determine a homotopy {a; : ¥ — R}erg_ 4,1
That is to say, ay(o) = F(o,t) for each point (o,t) in ¥ X [g_,g+] = V. The range of each oy is
contained in [h_(¢), h4(t)], and each component of 9% is either at the minimal level h_(t) or at
the maximal level i (t). In particular, {a;}iecfy_ 4,1 Preserves the sets of locally minimal and
locally maximal components of 9%. By Lemma 8 and the definition of a quasi-isotopy, we have
the following.
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Corollary 9. The homotopy {c}ieg_ g.] 15 a quasi-isotopy if and only if the singular set S,NV
consists only of fold points.

The “only if” direction of this corollary extends to the following.
Lemma 10. If the homotopy {Oét}te[g_,g+] s generic, the map @ s stable in V.

Proof. At each birth or death, {oy}iey 4, has the local form a,(&,n) = 7& — & + 7?2 with
the notation of Section 2. Choosing a local coordinate system (u,x,y) of M asu =17, x = &,
y = 10, the map ¢ has the local form p(u,r,y) = (u,ur — 23 + y?), which is of a cusp point.
Taking this together with the “only if” direction of Corollary 9, the singular set S, NV consists
only of fold points and cusp points. The conditions of a generic homotopy about the critical
values imply the second condition in Theorem 4. ([l

The discriminant set ¢(S, N'V) is the so-called Cerf graphic of {a;}iecig_ g.1- That is to say,
the intersection of (S, NV') with each line I; = {(f,g) € R? | g = t} corresponds to the critical
values of oy, and we can read from (S, N V) how the critical values of a; moves with ¢.

We can read more about the behavior of {a;}iey_ 4. from the Stein factorization g, (V).
For a general homotopy {B; : ¥ — R},e[y_ 4.1, We call the Stein factorization of the map
(0,t) = (Be(o),t) from ¥ x [g_,g4] to R? the Cerf complex of {Bi}efy_,4,]- Note that for
each t € [g_, g4], the intersection of the Cerf complex g, (V') of {at}sefg_ 4,1 With the preimage
¢~ 1(l;) is the Stein factorization W,, of a;, and that the composition 7p o Pla,(ving-1(1,) is the
map a; : W,, = R. Suppose ¢ is stable in V' and I; is disjoint from cusps and crossing points of
the discriminant set ¢(S, N'V). The function a; is Morse by Lemma 8, and the critical points
have pairwise distinct values. The Stein factorization W,, = ¢,(V) N @~ *(l;) is then a graph
whose vertex has valence 1, 2 or 3. Here, points in g,(S,NV)N@~1(l;) are considered as vertices
of the graph W,,. We remark that W,, has no valence 2 vertices if M is orientable. We can
see that a vertex of valence 2 or 3 corresponds to an index 1 critical point of a;. Regarding a;
as a height function, a locally minimal (resp. locally maximal) valence 1 vertex corresponds to
an index 0 (resp. 2) critical point of a; except that those at the minimal level h_(¢) (resp. the
maximal level hy (t)) correspond to minimal (resp. maximal) components of 9X.

For example, consider the situation of the bottom left of Figure 1. We can choose a par-
allelogram R as in the top of Figure 2 after an appropriate isotopy of ¢(S,). There exists a
component V of the preimage ¢~ !(R) containing the two cusp points. The left of the bottom
four rows of Figure 2 shows the possible structures of ¢, (V'), and the right shows the correspond-
ing structures of W,, for t = g_,¢97,g",g+. We remark that the structures as in the bottom
row may not appear if M is orientable.

5. MOVES OF PRODUCT MAPS

For the proof of Theorem 2, we make more general statements about moves of singularities
of product maps.

We use the following notation. Suppose M is a closed smooth 3-manifold and P, Q) are either
Ror S'. Let F: M — P and G : M — @ be smooth functions, and ¢ denote the product
map (F,G). Let RC P xQ,V C M and {a; : ¥ — R}¢cg_ 4.1 be as described in Section 4.
We consider ¢, F, G restricted to V and we can assume that P = Q = R. We assume that ¢ is
stable in V, and the following:

(1) The region R is a parallelogram

{(f,9) eR* | f-+alg—9g-) < f<fr+alg—g-), 9- <g<g4},
where f_ < f1, 9- < g4,a€Rand fi < f- +algs —g-).
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FIGURE 2. A choice of R and the four possible structures of g,(V) and the
corresponding structures of W, .

(2) The discriminant set ¢(S, N V') has neither horizontal points nor vertical points.
(3) The Stein factorization g,(V') has at least one edge which maps to one of the edges

{f=fr+alg—9g-), - <g=<gi} of R.
We can then regard a modification of the homotopy {a}+c[y_,g,] as an isotopy of the function
F' in the sense of the following proposition.
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Proposition 11. Let {f; : ¥ — R}y 4.1 be a generic homotopy from B, = ay_ to
By, = Qg Then there exists a smooth function F isotopic to ' such that F\M\V = Fly\v, and
= (F, Q) is stable, and the Stein factorization g5 (V') is homeomorphic to the Cerf complex of

{Bt}te[g—ﬂﬂ'

Proof. We can assume that a = 1, f_ =0, fi = %, g— = 0 and gy = 1 after an isotopy of
©(S,) by the condition (1) and Corollary 7. Let B;(c) = Bi(c) —t for t € [0,1], 0 € %, and let
c=|inf {2 Bi(c) |t €[0,1], o € X}|. We define a continuous homotopy {Bt}te[o,l] by

(1 20) o) + & (te[o0.3)
Bi(o) = ﬁBSt (o) +t+3 (tels5.3])-
(St~ 4e) Pl + 30§ (e [3,1])
In the first interval [O ] the derivative &; ,Bt(a) is positive since
. 6c+ 2 4 6c+2 4
) = Gyl + 5 = e ane) 5
and 0 < (o) < % It is positive also in the last interval [%, 1] similarly. In the middle interval,
since 9 .
— +1
gt o) = 6c+38tﬂ3t (o) +
and
—3c< — <3
C> 8tﬁ3t 1(o) C,
we have ) 5 5 5
—3c c
- < = 1< -
2 6cr3 _8tﬂt( )< G373

The derivative %Bt(a) is thus positive for t € [0,1] except that the right and left derivatives
may disagree at t = %, %

Note that the ranges of Bg, B%, B%, 31 are bounded as follows:

. 14 4] _[45
Bilo) = gozhol@) +3 [9 18c+9 9] “ _9’9]’
. . 7 17 (78
b3lo) = Go3hlo)+g [9 18¢+9 9]C 9’9]’
bilo) = (o) +1= halo) =an(o) € |13

Since {ﬂt}te | connects Bo and 51 linearly, we can see that §;(c) € [t,5 +1t] fort € [0,3]. The
same holds for t € [ ] We can see that the same holds also for ¢ € [3, 3] since B (o) € [g, g}
B% (o) €[%,8] and § < Eﬁt(o) < 3. The range of $; is thus contained in [t 3 ] for ¢t € [0,1]
as well as that of ;. R

Note that the differential (df;), is a scalar multiplication of (dfy),, where t’ = 0if t € [O, %},

=3t—-1ift e [%,%] ort/ =1ift e [%,1]. The homotopy {Bt}te[o,l] therefore keeps
0% without critical points as well as {;};¢[0,1]- In particular, {Bt}te[o,l] preserves the sets of

’3
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locally minimal and locally maximal components of 9%.. By deforming {Bt}te[o,l] in a collar
neighborhood of 0%, we can obtain a homotopy {Bt}te[o,l] such that the locally minimal (resp.
the locally maximal) components of 0% are at the level ¢ (resp. % 4 t) for each t € [0,1].

The homotopy {Bt}te[o,l] then determines a continuous function F : M — P. That is to
say, F'(0,t) = B,(0) for each point (o,t) in V = X x [0,1] and F|M\V = F|pynv. By arbitrarily
small deformation in V', we can make {Bt}te[o,u generic and F smooth keeping the differential
%F(O’, t) = %Bt(a) positive. The map ¢ = (F, @) is then stable by Lemma 10. The Stein
factorization gz(V) is homeomorphic to the Cerf complex of {f;}¢cjy_ 4,1 by the constructions
of {Bi}ieio.1)> {Bt}eepo,1] and {Bi}ecio.)-

The condition (3) implies that ¥ has non-empty boundary, and hence V = X x [0,1] is a
handlebody. By the condition (2) and Lemma 5, the original function F' has no critical points in
the handlebody V. By %F(U, t) > 0, the new function F' also has no critical points in V. The
topologies of the level sets F~1(f)NV and F~1(f ) NV change with f according to singularities
of F|sy and F lov s respectlvely Since Flgy and F |ov coincide, there is a homeomorphism of V
which takes each F~1(f)NV to F~'(f)NV. It is known that the canonical homomorphism from
the mapping class group of a handlebody to the mapping class group of the boundary surface is

injective. It follows that the homeomorphism is isotopic to the identity, and so Fis isotopic to
F. O

Corollary 12. Assume the following in addition to the above. Then there exists a smooth
function F isotopic to F' such that F|M\V = Fly\v, and ¢ = (F G) is a stable map without
cusp points in V.

(4) The discriminant set (S, N'V) has no cusps and no crossing points on the two edges
{f-+alg—9g-)<f<fr+alg—9g-), g=9-,9+} of R.

(5) The intersections of the Stein factorization q,(V') with the preimages ' (l_), & (1, )
have the same numbers of locally minimal valence 1 vertices, valence 2 or 3 vertices and
locally maximal valence 1 vertices.

Proof. By the condition (4) and Lemma 8, a,_, oy, are Morse functions whose critical points
have pairwise distinct values. By the condition (5) and the arguments in Section 4, ag_, g,
have the same number of critical points of each index. By Theorem 3, there exists a quasi-
isotopy {Bt}iefg_,g.] from By = a4 to By, = a4, . Corollary 12 follows from the proposition
and Corollary 9. O

The local moves in Theorem 2 are the simplest ones to which we can apply the above. We
can see that the choice of R in Figure 2 satisfies the conditions (1), (2) and (4). We can also see
that the structures of ¢, (V') in Figure 2 satisfies the conditions (3) and (5). By Corollary 12, we
can cancel the pair of cusp points, and the result is uniquely as in the bottom right of Figure 1.
Similarly, we can obtain the local move of the top of Figure 1. This completes the proof of
Theorem 2.
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