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Motivic Milnor Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Shoji Yokura
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SPECIAL GENERIC MAPS ON OPEN 4-MANIFOLDS

OSAMU SAEKI

Abstract. We characterize those smooth 1-connected open 4-manifolds with

certain finite type properties which admit proper special generic maps into

3-manifolds. As a corollary, we show that a smooth 4-manifold homeomorphic
to R4 admits a proper special generic map into Rn for some n = 1, 2 or 3

if and only if it is diffeomorphic to R4. We also characterize those smooth

4-manifolds homeomorphic to L ×R for some closed orientable 3-manifold L
which admit proper special generic maps into R3.

1. Introduction

A special generic map f : M → N between smooth manifolds is a smooth map
with at most definite fold singularities, which have the normal form

(x1, x2, . . . , xm) 7→ (x1, x2, . . . , xn−1, x
2
n + x2

n+1 + · · ·+ x2
m), (1.1)

where m = dimM ≥ dimN = n. In particular, submersions are considered special
generic maps.

In [24, 25], the author has shown that a smooth connected closed m-dimensional
manifold M admits a special generic map into Rn for every n with 1 ≤ n ≤ m
if and only if M is diffeomorphic to the standard m-sphere Sm. Furthermore,
certain cobordism groups of special generic maps into R are naturally isomorphic
to the h-cobordism groups of homotopy spheres in higher dimensions [26]. In [27,
28] Sakuma and the author found some pairs of homeomorphic smooth closed 4-
manifolds such that one of them admits a special generic map into R3, while the
other does not. These show that special generic maps are sensitive to detecting
distinct differentiable structures on a given topological manifold.

On the other hand, it has been known that a smooth m-dimensional manifold
is homeomorphic to Rm if and only if it is diffeomorphic to the standard Rm,
provided m 6= 4 (see [18, 31]), while for m = 4, there exist uncountably many
distinct differentiable structures on R4 (for example, see [4, 8, 10, 32]). In fact, it is
known that most open 4-manifolds admit infinitely (and very often, uncountably)
many distinct differentiable structures [1, 3, 7, 9].

In this paper, we characterize those smooth 1-connected open 4-manifolds of
“finite type” which admit proper special generic maps into 3-manifolds, using the
solution to the Poincaré Conjecture in dimension three (see [19, 20, 21] or [17],
for example). Here, an open 4-manifold is of finite type if its homology is finitely
generated and it has only finitely many ends, whose associated fundamental groups
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2 OSAMU SAEKI

are stable and finitely presentable. As a corollary, we show that a smooth 4-manifold
homeomorphic to R4 is diffeomorphic to the standard R4 if and only if it admits
a proper special generic map into Rn for some n = 1, 2 or 3. We also prove similar
results for certain standard 1-connected open 4-manifolds.

Furthermore, in §4 we show that if a smooth 4-manifold M is homeomorphic to
L×R for some connected closed orientable 3-manifold L and if M admits a proper
special generic map into R3, then M is diffeomorphic to L×R and the 3-manifold
L admits a special generic map into R2.

All these results claim that among the (uncountably or infinitely) many distinct
differentiable structures on a certain open topological 4-manifold, there is at most
one smooth structure that allows the existence of a proper special generic map into
a lower dimensional manifold.

Throughout the paper, manifolds and maps between them are differentiable of
class C∞ unless otherwise indicated. The (co)homology groups are with integer
coefficients unless otherwise specified. The symbol “∼=” denotes a diffeomorphism
between smooth manifolds or an appropriate isomorphism between algebraic ob-
jects. For a topological space X, the symbol “idX” denotes the identity map of
X.

The author would like to express his sincere gratitude to Kazuhiro Sakuma for
stimulating discussions and invaluable comments. He would also like to thank the
referee for his/her comments that improved the presentation of the paper.

2. Preliminaries

Let us first recall the following notion of a Stein factorization, which will play
an important role in this paper.

Definition 2.1. Let f : M → N be a smooth map between smooth manifolds. For
two points x, x′ ∈M , we define x ∼f x′ if f(x) = f(x′)(= y), and the points x and
x′ belong to the same connected component of f−1(y). We define Wf = M/∼f
to be the quotient space with respect to this equivalence relation, and denote by
qf : M → Wf the quotient map. Then, we see easily that there exists a unique
continuous map f̄ : Wf → N that makes the diagram

M
f−−−−−→ N

qf↘ ↗f̄

Wf

commutative. The above diagram is called the Stein factorization of f (see [15]).

The Stein factorization is a very useful tool for studying topological properties
of special generic maps. In fact, we can prove the following, which is folklore (for
example, see [24]). (In the following, a continuous map is proper if the inverse
image of a compact set is always compact.)

Proposition 2.2. Let f : M → N be a proper special generic map between smooth
manifolds with m = dimM > dimN = n. Then, we have the following.

(1) The set of singular points S(f) of f is a regular submanifold of M of di-
mension n− 1, which is closed as a subset of M .

(2) The quotient space Wf has the structure of a smooth n-dimensional mani-
fold possibly with boundary such that f̄ : Wf → N is an immersion.



SPECIAL GENERIC MAPS ON OPEN 4-MANIFOLDS 3

(3) The quotient map qf : M → Wf restricted to S(f) is a diffeomorphism
onto ∂Wf .

(4) The quotient map qf restricted to M \ S(f) is a smooth fiber bundle over
IntWf with fiber the standard (m− n)-sphere Sm−n.

In the following, we recall several notions concerning ends of manifolds. For
details, the reader is referred to Siebenmann’s thesis [30].

Definition 2.3. Let X be a Hausdorff space. Consider a collection ε of subsets of
X with the following properties.

(i) Each G ∈ ε is a connected open non-empty set with compact frontier G−G,
(ii) If G,G′ ∈ ε, then there exists G′′ ∈ ε with G′′ ⊂ G ∩G′,
(iii)

⋂
G∈ε

G = ∅.

Adding to ε every connected open non-empty set H ⊂ X with compact frontier
such that G ⊂ H for some G ∈ ε, we produce a collection ε′ satisfying (i), (ii) and
(iii), which we call the end of X determined by ε.

An end of a Hausdorff space X is a collection ε of subsets of X which is maximal
with respect to the properties (i), (ii) and (iii) above.

A neighborhood of an end ε is any set N ⊂ X that contains some member of ε.

Definition 2.4. Let ε be an end of a topological manifold X. The fundamental
group π1 is stable at ε if there exists a sequence of path connected neighborhoods
of ε, X1 ⊃ X2 ⊃ · · · , with

⋂
Xi = ∅ such that (with base points and base paths

chosen) the sequence

π1(X1)
f1←−−−−−π1(X2)

f2←−−−−− · · ·

induced by the inclusions induces isomorphisms

Im(f1)
∼=←−−−−−Im(f2)

∼=←−−−−− · · · .

The following lemma is proved in [30].

Lemma 2.5. If π1 is stable at ε and Y1 ⊃ Y2 ⊃ · · · is any path connected sequence
of neighborhoods of ε such that

⋂
Y i = ∅, then for any choice of base points and

base paths, the inverse sequence

G : π1(Y1)
g1←−−−−−π1(Y2)

g2←−−−−− · · ·

induced by the inclusions is stable, i.e. there exists a subsequence

π1(Yi1)
h1←−−−−−π1(Yi2)

h2←−−−−− · · ·

inducing isomorphisms

Im(h1)
∼=←−−−−−Im(h2)

∼=←−−−−− · · · ,

where each hj is a suitable composition of gi’s.

Definition 2.6. When π1 is stable at an end ε, we define π1(ε) to be the projective
limit lim

←−
G for some fixed system G as above. According to [30], π1(ε) is well defined

up to isomorphism.
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3. Open 4-manifolds that admit special generic maps

In the following, a manifold is open if it has no boundary and each of its com-
ponent is non-compact, while a manifold is closed if it has no boundary and is
compact.

Let us begin by the following.

Lemma 3.1. Let M be a smooth connected open 4-manifold with finitely many
ends such that H2(M ; Z2) is finitely generated. We assume that for each end ε, π1

is stable and π1(ε) is finitely presentable. If f : M → N is a proper special generic
map into a smooth orientable 3-manifold N , then there exists a smooth compact

3-manifold W̃ possibly with boundary and a smooth embedding h : Wf → W̃ such

that h(IntWf ) = Int W̃ .

Proof. Suppose that S(f) ∼= ∂Wf has infinitely many components. Let Si, i =
0, 1, 2, . . ., be an infinite family of distinct components of ∂Wf . SinceM is connected
and qf is surjective, Wf is connected. Thus, there exists an infinite family of
disjointly embedded arcs αi, i ≥ 1, connecting S0 and Si in the 3-manifold Wf

such that each αi intersects ∂Wf transversely at its end points and Intαi ⊂ IntWf .

Then, {q−1
f (αi)}i≥1 is an infinite family of disjointly embedded 2-spheres in M .

Furthermore, for each i ≥ 1, q−1
f (Si) is a submanifold of M which is closed as a

subset of M , intersects q−1
f (αi) transversely at one point, and does not intersect

q−1
f (αj) for j 6= i. This implies that the homology classes in H2(M ; Z2) represented

by q−1
f (αi), i ≥ 1, are linearly independent. This contradicts our assumption

that H2(M ; Z2) is finitely generated. Therefore, ∂Wf has at most finitely many
components.

Let the number of ends of M be denoted by r. Let K be an arbitrary compact
subset of Wf . Since f is proper, so is qf , and hence K ′ = q−1

f (K) is a compact

subset of M . Therefore, M \K ′ has at most r unbounded components1 (see [30,
Lemma 1.8]). Thus, qf (M \K ′) = Wf \K has at most r unbounded components,
since qf is proper. Hence, Wf has finitely many ends.

Let ε be an end of Wf and U1 ⊃ U2 ⊃ · · · be any path connected sequence of

neighborhoods of ε such that
⋂
U i = ∅. Then, for Vi = q−1

f (Ui), V1 ⊃ V2 ⊃ · · · is
a path connected sequence of neighborhoods of the corresponding end of M with⋂
V i = ∅. By Lemma 2.5 together with our assumption, there exists a subsequence

Vi1 ⊃ Vi2 ⊃ · · · such that the sequence

π1(Vi1)
f1←−−−−−π1(Vi2)

f2←−−−−− · · ·

induced by the inclusions induces isomorphisms

Im(f1)
∼=←−−−−−Im(f2)

∼=←−−−−− · · · .

Since Uij is open in Wf , every Vij contains an S1-fiber of qf . Thus, each fj induces

an isomorphism between the cyclic subgroups generated by the S1-fibers. Since
(qf )∗ : π1(Vij )→ π1(Uij ) is an epimorphism whose kernel coincides with the cyclic

subgroup generated by the S1-fibers, we see that the sequence

π1(Ui1)
g1←−−−−−π1(Ui2)

g2←−−−−− · · ·

1A subset of a topological space is bounded if its closure is compact; otherwise, it is unbounded.
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induced by the inclusions induces isomorphisms

Im(g1)
∼=←−−−−−Im(g2)

∼=←−−−−− · · · .

Therefore, for each end of Wf , π1 is stable. Furthermore, by our assumption, π1 is
finitely presentable.

On the other hand, since f̄ : Wf → N is an immersion and N is orientable, Wf

is also orientable. Therefore, by [13] (see also [14]), we have the desired conclusion.
(In fact, what we need here is [13, Theorem 3] with the condition π1(εi) 6∼= Z2 for
each i being replaced by the orientability of the 3-manifold M . This version of the
theorem holds by the same reason as explained in the proof of [13, Corollary 2.1]:
when the manifold is orientable, no projective plane appears in the boundary, and
the argument works.) �

Remark 3.2. By [5], the compact 3-manifold W̃ as in Lemma 3.1 is unique up to
diffeomorphism.

Using Lemma 3.1, we prove the following.

Theorem 3.3. Let M be a smooth connected open orientable 4-manifold with
finitely many ends such that H∗(M) is finitely generated. We assume that for each
end ε, π1 is stable and π1(ε) is finitely presentable. If f : M → N is a proper spe-
cial generic map into a smooth orientable 3-manifold N , then there exists a smooth

connected closed 4-manifold M̃ and a compact orientable surface F possibly with

boundary smoothly embedded in M̃ such that M is diffeomorphic to M̃ \ F .

Proof. By [24], there exists an orientable linear D2-bundle π : Ef → Wf such
that M is diffeomorphic to ∂Ef , where an `-dimensional disk bundle is linear if
its structure group can be reduced to a subgroup of the orthogonal group O(`).
Moreover, if C denotes a small closed collar neighborhood of ∂Wf in Wf , then

NS = q−1
f (C) is a tubular neighborhood of S(f) in M and π restricted to (∂Ef ) ∩

π−1(Wf \ C) can be identified with the smooth S1-bundle qf |M\NS
: M \ NS →

Wf \ C.
Now, let us consider the cohomology exact sequence for the pair (Ef ,M \NS) '

(Ef ,M \ S(f)):

H̃k(Ef )→ H̃k(M \ S(f))→ H̃k+1(Ef ,M \ S(f)).

We have H̃k(Ef ) ∼= H̃k(Wf ), since Ef →Wf is a D2-bundle. Furthermore, by the

Thom isomorphism theorem (for example, see [16]), we have H̃k+1(Ef ,M \S(f)) ∼=
H̃k−1(Wf ). Therefore, putting k = 2, we have the exact sequence

H2(Wf )→ H2(M \ S(f))→ H1(Wf ).

Since H∗(Wf ) ∼= H∗(W̃ ) is finitely generated, so is H2(M \ S(f)), where W̃ is the
compact orientable 3-manifold as in Lemma 3.1.

By excision, we have H̃k+1(M,M \S(f)) ∼= H̃k+1(NS , ∂NS). Since M and S(f)

are orientable, NS is an orientableD2-bundle over S(f). Therefore, H̃k+1(NS , ∂NS)

is isomorphic to H̃k−1(S(f)) by the Thom isomorphism theorem. Thus, we have

H̃k+1(M,M \ S(f)) ∼= H̃k−1(S(f)).
Let us consider the cohomology exact sequence for the pair (M,M \ S(f)):

H2(M \ S(f))→ H3(M,M \ S(f))→ H3(M).
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Since H2(M \ S(f)) and H3(M) are finitely generated, so is H3(M,M \ S(f)) ∼=
H1(S(f)). This implies that H∗(S(f)) is finitely generated, since S(f) has finitely
many components by the proof of Lemma 3.1. Then, we see that S(f) ∼= ∂Wf

is diffeomorphic to ∂W̃ \ F1, where F1(⊂ ∂W̃ ) is a compact orientable surface
possibly with boundary (see [13, Proposition 2]). In fact, we can prove that Wf is

diffeomorphic to W̃ \ F1.

Let π̃ : Ẽ → W̃ be the linear D2-bundle which naturally extends π : Ef → Wf .

Then, by the above arguments, we see that M ∼= ∂Ef is diffeomorphic to ∂Ẽ \
π̃−1(F1). Set M̃ = ∂Ẽ and let F be the compact surface in M̃ which corresponds
to the zero section of π̃ over F1. Then the desired conclusion follows. �

Remark 3.4. As the above proof shows, the closed 4-manifold M̃ in Theorem 3.3
is the boundary of an orientable linear D2-bundle over the compact orientable

3-manifold W̃ as in Lemma 3.1. In particular, it admits a special generic map

f̃ : M̃ → R3 whose quotient space can be identified with W̃ (see [24]). Furthermore,

the surface F in Theorem 3.3 is a codimension zero submanifold of S(f̃) and the
quotient map qf : M →Wf can be identified with qf̃ |M̃\F .

Remark 3.5. Theorem 3.3 holds true even if N is non-orientable, provided that Wf

is orientable. If for each end ε, π1(ε) contains no cyclic subgroup of index two, then
even the orientability of Wf is not necessary (but, in this case, the surface F may
possibly be non-orientable).

As a corollary, we have the following characterization of smooth 1-connected
open 4-manifolds of “finite type” which admit proper special generic maps into
3-manifolds.

Corollary 3.6. Let M be a smooth 1-connected open 4-manifold with finitely many
ends such that H∗(M) is finitely generated. We assume that for each end ε, π1 is
stable and π1(ε) is finitely presentable. Then there exists a proper special generic
map f : M → N into a smooth 3-manifold N with S(f) 6= ∅ if and only if M is
diffeomorphic to the connected sum of a finite number of copies of the following
4-manifolds:

(1) R4,
(2) the interior of the boundary connected sum of a finite number of copies of

S2 ×D2,
(3) the total space of a 2-plane bundle over S2,
(4) the total space of an S2-bundle over S2,

where at least one manifold of the form (1), (2) or (3) should appear in the con-
nected sum. In particular, each end of such an open 4-manifold has a neighborhood
diffeomorphic to L ×R, where L is the 3-sphere S3, a lens space, or a connected
sum of a finite number of copies of S1 × S2.

Proof. Suppose that there exists a proper special generic map f : M → N into a
3-manifold N with S(f) 6= ∅. Since (qf )∗ : π1(M) → π1(Wf ) is an isomorphism

(see [24]), Wf is also 1-connected and hence is orientable. Let W̃ be the compact

3-manifold as in Lemma 3.1 (see also Remark 3.5). Note that W̃ is 1-connected.
Then by the solution to the 3-dimensional Poincaré Conjecture (see [19, 20, 21]

or [17], for example), W̃ is diffeomorphic either to the 3-disk or to the boundary
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connected sum of a finite number of copies of S2× I, where I = [0, 1]. By the proof

of Theorem 3.3, there exists a compact surface F possibly with boundary in ∂W̃

such that Wf is diffeomorphic to W̃ \ F . Note that ∂Wf
∼= ∂W̃ \ F 6= ∅, since

S(f) 6= ∅.
We can decompose W̃ as the boundary connected sum of a finite number of

compact 3-manifolds Wi such that

(i) each Wi contains at most one component of F , say Fi,
(ii) if Wi contains no component of F , then we put Fi = ∅ and Wi

∼= S2 × I,
(iii) if Fi 6= ∅ has no boundary, then Fi ∼= S2 is a component of ∂Wi and

Wi
∼= S2 × I,

(iv) if Fi has non-empty boundary, then Wi
∼= D3.

The 3-manifold Wf can also be decomposed as the boundary connected sum of
the manifolds W ′i = Wi \ Fi. Then, M is decomposed into the connected sum of
the 4-manifolds Mi, which is obtained by attaching 4-disks to q−1

f (W ′i ) along the

boundary 3-spheres (for details, see [24]).
If Wi contains no component of F , then Mi admits a special generic map whose

quotient space in the Stein factorization is diffeomorphic to S2 × I. Therefore, Mi

is diffeomorphic to an S2-bundle over S2 (see [24]).
If Fi 6= ∅ has no boundary, then Mi admits a special generic map whose quo-

tient space in the Stein factorization is diffeomorphic to S2 × [0, 1). Then, Mi is
diffeomorphic to a 2-plane bundle over S2.

If Fi has non-empty boundary, then by Theorem 3.3 Mi is diffeomorphic to

∂Ẽi \ Fi, where Ẽi is a D2-bundle over Wi
∼= D3 and Fi is identified with the zero

section over Fi. Therefore, Mi is diffeomorphic to S4 \ Σ, where Σ is a connected
non-empty surface with non-empty boundary embedded in S4. If Σ is a disk, then
Mi is diffeomorphic to R4. Otherwise, Σ is homotopy equivalent to a bouquet
of a finite number of circles. Then, S4 \ Σ is diffeomorphic to the interior of the
boundary connected sum of a finite number of copies of S2 ×D2.

Thus, we have proved that M is diffeomorphic to a manifold of a desired form.
Conversely, each 4-manifold in the list admits a proper special generic map into a

3-manifold with non-empty set of singularities. By the connected sum construction
with respect to the quotient space (for details, see [24]), we see that their connected
sums also admit proper special generic maps into 3-manifolds.

This completes the proof. �

Remark 3.7. The 4-manifold S2 ×R2 admits at least two types of proper special
generic maps into R3 as follows. Let g : S2 → R be the standard height function
with exactly two critical points, which are non-degenerate. Then, g × idR2 : S2 ×
R2 → R×R2 is a proper special generic map whose quotient space is diffeomorphic
to [−1, 1] × R2. On the other hand, let h : R2 → [0,∞) be the proper smooth
function defined by h(x, y) = x2 + y2. Then, idS2 × h : S2 × R2 → S2 × [0,∞)
composed with a proper embedding S2 × [0,∞) → R3 is a proper special generic
map whose quotient space is diffeomorphic to S2 × [0,∞).

The above observation corresponds to the fact that S2 × R2 appears twice in
Corollary 3.6: it is the interior of S2 × D2, and at the same time it is the total
space of the trivial 2-plane bundle over S2.

The 4-manifold (CP 2]CP 2) \ {two points} is another such example. It is the
connected sum of a non-trivial S2-bundle over S2 and two copies of R4, and at
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the same time it is the connected sum of two 2-plane bundles over S2 with Euler
numbers +1 and −1.

Remark 3.8. For 4-manifolds as in Corollary 3.6, two are homeomorphic if and
only if they are diffeomorphic. Note that every 4-manifold in Corollary 3.6 admits
infinitely many distinct differentiable structures by [1]. In fact, most of them admit
uncountably many distinct differentiable structures (see [3, 7, 9]).

Remark 3.9. In Corollary 3.6 we assumed that S(f) 6= ∅. If f is a proper sub-
mersion, then Wf is still 1-connected and is diffeomorphic to the interior of the
connected sum of a finite number of copies of S2 × [0, 1]. Furthermore, M is dif-
feomorphic to the total space of an orientable S1-bundle over Wf . Since M is
1-connected, the Euler class of the S1-bundle should be primitive.

As a corollary, we have the following.

Corollary 3.10. Let M be a smooth 4-manifold homeomorphic to R4. Then there
exists a proper special generic map f : M → Rn for some n = 1, 2 or 3 if and only
if M is diffeomorphic to the standard R4.

Proof. First note that the standard R4 admits a special generic map into Rn for
n = 1, 2 and 3: just consider the map defined by (1.1) for m = 4 globally. Therefore,
if M ∼= R4, then M also admits proper special generic maps into Rn for n = 1, 2
and 3.

Suppose that there exists a proper special generic map f : M → R3. If f is a
submersion, then M must be diffeomorphic to R3 × S1, which is a contradiction.
Then by Corollary 3.6, M must be diffeomorphic to R4.

Suppose now that there exists a proper special generic map f : M → R2.
Then, the quotient space Wf is a 1-connected non-compact surface with non-empty
boundary.

Lemma 3.11. The boundary ∂Wf is connected and non-compact.

Proof. Suppose that S(f) ∼= ∂Wf is not connected. Let S1 and S2 be distinct con-
nected components of ∂Wf . Note that Wf is connected, since so is M . Therefore,
there exists an arc α in Wf which intersects S1 and S2 at its end points transversely

such that Intα ⊂ IntWf . Then, q−1
f (α) is a smooth submanifold of M diffeomor-

phic to S3. Furthermore, it intersects the component q−1
f (S1) of S(f) transversely

at one point. Note that q−1
f (S1) is a 1-dimensional submanifold of M , which is a

closed subset of M . This is a contradiction, since M is contractible and H3(M) = 0.
Therefore, S(f) must be connected.

Suppose that S(f) is compact. Since M is non-compact and qf is proper, Wf is
non-compact. Therefore, there exists a proper embedding γ : [0,∞) → Wf which

intersects with ∂Wf (∼= S(f)) transversely at its end point. Then, q−1
f (γ([0,∞))) is

a properly embedded open 3-disk in M which intersects S(f) transversely at one
point. This implies that S(f) represents a nontrivial homology class in H1(M),
which is a contradiction, since H1(M) = 0. Therefore, S(f) must be non-compact.

�

Therefore, Wf is diffeomorphic to R×[0,∞) (for example, see [13, Proposition 2]
or [23]). Then, we see that M ∼= ∂(Wf ×D3) is diffeomorphic to the standard R4.
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Finally, suppose that M admits a proper special generic map into R. Then, Wf

is diffeomorphic to [0,∞) and M is diffeomorphic to the boundary of [0,∞)×D4,
which is diffeomorphic to the standard R4. �

Remark 3.12. It has been known that a smooth m-dimensional manifold is home-
omorphic to Rm if and only if it is diffeomorphic to the standard Rm, provided
that m 6= 4 (see [18, 31]), while for m = 4, there exist uncountably many distinct
differentiable structures on R4 (for example, see [4, 8, 10, 32]). This shows that
among the uncountably many differentiable structures on R4, the standard one is
the unique structure that allows the existence of a proper special generic map into
Rn for n ≤ 3.

Remark 3.13. If a smooth 4-manifold M is homeomorphic to R4, then there always
exists a proper special generic map M → R4. See [6] and [11, The Folding Theorem
(p. 27)] for details.

Remark 3.14. If we omit the properness, then every smooth 4-manifold homeomor-
phic to R4 admits a submersion into Rn for all n with 1 ≤ n ≤ 4 (see [22]).

In fact, by virtue of [22], an open 4-manifold admits a submersion into Rn if and
only if it has n everywhere linearly independent vector fields. Therefore, we have
the following.

Proposition 3.15. Let M be a smooth connected open orientable 4-manifold. Then
we have the following.

(1) There always exists a submersion M → R.
(2) There exists a submersion M → R2 if and only if W3(M) = βw2(M) = 0,

where W3 (or w2) denotes the 3rd Whitney (resp. 2nd Stiefel–Whitney)
class.

(3) There exists a submersion M → R3 if and only if w2(M) = 0.
(4) There exists a submersion M → R4 if and only if w2(M) = 0.

Remark 3.16. Let f : R4 → R3 be a proper special generic map. Then, we can show
that the quotient map qf : R4 → Wf is C∞ right-left equivalent to the standard
map g : R4 → R2 × [0,∞) defined by (1.1) with (n,m) = (4, 3).

Note that the map f̄ : Wf → R3 is a proper immersion. Since there are plenty
of proper immersions R2 × [0,∞) → R3, the C∞ right-left equivalence class of a
proper special generic map f : R4 → R3 is far from being unique. In fact, we can
show that two proper special generic maps fi : R4 → R3, i = 0, 1, are C∞ right-left
equivalent if and only if the proper immersions f̄i : Wfi → R3 are C∞ right-left
equivalent.

Remark 3.17. By [24] together with the solution to the 3-dimensional Poincaré
Conjecture, we have the following: a smooth 4-manifold M homeomorphic to S4

admits a special generic map into Rn for some n = 1, 2 or 3 if and only if M
is diffeomorphic to the standard S4. Furthermore, when n = 3, the singular set
of a special generic map M → R3 is always isotopic to the standardly embedded
2-sphere in S4. (For details, see [29].)

Similarly, we have the following.2

2Corollaries 3.18 and 3.19, and Theorem 4.1 in §4 were first conjectured by Kazuhiro Sakuma

to whom the author would like to express his sincere gratitude.
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Corollary 3.18. Let M be a smooth 4-manifold homeomorphic to S3 ×R. Then
there exists a proper special generic map f : M → Rn for some n = 1, 2 or 3 if and
only if M is diffeomorphic to the standard S3 ×R.

Note that S3 ×R ∼= R4]R4.

Corollary 3.19. Let M be a smooth 4-manifold homeomorphic to S2 ×R2. Then
there exists a proper special generic map f : M → Rn for some n = 2 or 3 if and
only if M is diffeomorphic to the standard S2 ×R2.

4. Manifolds homeomorphic to L3 ×R

In this section, we prove the following.

Theorem 4.1. Let L be a smooth connected closed orientable 3-manifold. A smooth
4-manifold M homeomorphic to L × R admits a proper special generic map into
R3 if and only if M is diffeomorphic to L×R and L is a smooth closed 3-manifold
that admits a special generic map into R2.

Proof. First suppose that M admits a proper special generic map f : M → R3.
Note that S(f) 6= ∅, since otherwise M is diffeomorphic to S1×R3, which leads to
a contradiction.

By the proof of Theorem 3.3, there exist a compact orientable 3-manifold W̃

and a compact surface F possibly with boundary embedded in ∂W̃ such that Wf is

diffeomorphic to W̃ \F . In particular, for each end of Wf , there exists a neighbor-
hood Ci diffeomorphic to Fi× [0,∞) for some compact connected orientable surface

Fi possibly with boundary. Then, each C̃i = q−1
f (Ci) is a neighborhood of an end

of M . Set F̃i = q−1
f (Fi × {1}), which is a connected closed orientable 3-manifold.

Since M has exactly two ends and each of them has a neighborhood homeomorphic

to L× [0,∞), we see that Wf also has exactly two ends and the inclusions F̃i →M
induce homotopy equivalences.

Let us consider the following commutative diagram:

π1(F̃i)
(ι̃i)∗−−−−→ π1(M)

(qf )∗

y y(qf )∗

π1(Fi)
(ιi)∗−−−−→ π1(Wf ),

where ι̃i : F̃i → M and ιi : Fi → Wf are the inclusions. Since (qf )∗ ◦ (ι̃i)∗
is an isomorphism, (qf )∗ : π1(F̃i) → π1(Fi) is a monomorphism. Since it is an
epimorphism, it must be an isomorphism. Therefore, (ιi)∗ is also an isomorphism
and Wf has a surface fundamental group.

Then by [12, Theorem 10.6] together with the solution to the 3-dimensional

Poincaré Conjecture, we see that W̃ is diffeomorphic to (Fi × [0, 1])]
(
]kB3

)
for

some k ≥ 0, and hence Wf is diffeomorphic to (Fi×R)]
(
]kB3

)
, where B3 denotes

the 3-dimensional ball. Then, by an argument similar to that in [27], we can show

that M is diffeomorphic to the connected sum of F̃i ×R and S2-bundles over S2.
Since M is homeomorphic to L × R for a closed orientable 3-manifold L, we see

that M is diffeomorphic to F̃i ×R.

If Fi has no boundary, then F̃i is an S1-bundle over Fi. Since (qf )∗ : π1(F̃i) →
π1(Fi) is an isomorphism, we see that F̃i is diffeomorphic to S3 and the S1-bundle
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is the Hopf fibration. If Fi has non-empty boundary, then for any immersion η :

Fi → R2, the composition η ◦ qf : F̃i → R2 is a special generic map. In either case,

F̃i admits a special generic map into R2.

Note that F̃i has a free fundamental group. Since the inclusion F̃i →M induces
a homotopy equivalence, L also has a free fundamental group. Therefore, L is
diffeomorphic to S3 or the connected sum of some copies of S1 × S2 by virtue
of [12, Chapter 5] and the solution to the 3-dimensional Poincaré Conjecture. In
particular, L admits a special generic map into R2 (see [2]).

Conversely, if M is diffeomorphic to L×R and L admits a special generic map
g : L→ R2, then the map

M ∼= L×R
g×idR−−−−−→R2 ×R = R3

is a proper special generic map. This completes the proof. �

Remark 4.2. As has been seen in the above proof, the 3-manifold L in Theorem 4.1
is diffeomorphic to S3 or the connected sum of a finite number of copies of S1×S2.
For details, see [2].

Remark 4.3. We can also show that if M is homeomorphic to L × R for some
connected closed orientable 3-manifold L and M admits a proper special generic
map into R2, then L is diffeomorphic to S3 and M is diffeomorphic to S3 ×R.

The following conjecture seems plausible.

Conjecture 4.4. For a topological 4-manifold M , there exists at most one differen-
tiable structure on M that allows the existence of a proper special generic map into
R3.

Remark 4.5. In the above conjecture, the properness of the special generic map
is essential. Suppose that f : M → N is a special generic map of a smooth
open 4-manifold M into a smooth manifold N with dimN < 4. Let us consider
a homeomorphism h : M ′ → M , where M ′ is another smooth open 4-manifold.
Then, by using h, we can construct a “formal solution” over M ′ on the jet level
for the open differential relation corresponding to special generic maps (see [11]).
Then, by virtue of the Gromov h-principle for open manifolds, we see that M ′ also
admits a special generic map into N . Note that even if the original special generic
map f is proper, the resulting special generic map on M ′ may not be proper.

Compare this with the situation in Remark 3.13, where the target has dimension
four. In the equidimensional case, the C0 dense h-principle holds for special generic
maps and the properness can be preserved (see [11]).
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Théorèmes d’annulation et groupes de

Picard

H. A. Hamm, Lê Dũng Tráng

Résumé

Dans cet article nous donnons des théorèmes du type de Lefschetz pour
les groupes de Picard des variétés quasi-projectives. En particulier pour leur
démonstration nous démontrons une généralisation du théorème d’annulation
de Kodaira que nous interprétons comme un théorème de Lefschetz pour le
faisceau structural.

Abstract

In this paper we give Lefschetz type theorems for Picard groups of quasi-
projective varieties. In particular we prove a generalization of the Kodaira
vanishing theorem that we understand as a Lefschetz theorem for the structural
sheaf.

Introduction

Dans SGA2 ([9]) A. Grothendieck étudie le théorème de Lefschetz sur les sections
hyperplanes pour la cohomologie des faisceaux cohérents sur les schémas projectifs. Il
considère également en topologie le groupe fondamental et en géométrie algébrique le
groupe de Picard. En particulier il démontre l’isomorphisme entre le groupe de Picard
d’un schéma algébrique projectif et celui d’une section hyperplane sous une hypothèse
ad hoc d’annulation de cohomologie analogue à celle du théorème de Kodaira.

Dans cet article nous étudions systématiquement le comportement du groupe de
Picard d’une variété algébrique complexe quasi-projective par section hyperplane.
Nous obtenons des énoncés pour des variétés algébriques complexes quasi-projectives
mais nous faisons des hypothèses topologiques et analytiques. Une étape importante
est la démonstration d’un théorème d’annulation qui généralise à notre situation le
théorème d’annulation de Kodaira et qui est équivalent à un théorème du type de
Lefschetz pour le faisceau structural.

Nous donnons trois méthodes pour établir des théorèmes du type de Lefschetz
pour le groupe de Picard. Outre le calcul de Grothendieck, les méthodes utilisées
sont les suivantes. L’une d’elles consiste à se ramener au cas où la variété est quasi-
projective et non singulière. L’autre identifie sous certaines hypothèses le groupe de
Picard algébrique et le groupe de Picard analytique que l’on étudie à l’aide de la suite
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exacte exponentielle, puis, comme dans [16], où l’ on étudie le cas projectif, on utilise
des théorèmes du type de Lefschetz pour la cohomologie à coefficients entiers et pour
la cohomologie du faisceau structural. Nous utilisons essentiellement des méthodes
transcendantes, mais les résultats de P. Deligne et L. Illusie dans [4] permettent
d’espérer que les résultats basés sur la méthode de Grothendieck s’étendent aux corps
de caractéristique zéro.

1 Théorème de Lefschetz singulier pour le groupe
de Picard

Soit Y un espace analytique complexe réduit (resp. une variété algébrique complexe).
Soit OY son faisceau structural. Soit m un entier. On note (cf [2] Part II §2):

Sm(OY ) = {x ∈ Y |prof OY,x ≤ m},

où prof OY,x désigne la profondeur de l’anneau local OY,x (dans le cas algébrique pour
définir Sm(OY ) on ne considère que les points fermés x de Y ). D’après un théorème
de G. Scheja ([27]), Sm(OY ) est un sous-espace analytique fermé de Y .

Pour un sous-espace analytique fermé A, on peut prendre pour définition:

profAOY ≥ n :⇔ dim(A ∩ S`+n(OY )) ≤ `,∀`,

en convenant dim(∅) = −∞. On a le théorème suivant (voir [2] Part II Theorem 3.6):

1.1 Théorème. Soit Y un espace analytique, A un sous-espace analytique fermé de
Y . Pour tout entier n ≥ 1, les conditions suivantes sont équivalentes:

1. profAOY ≥ n;

2. pour tout ouvert U de Y , on a:

Hi
A∩U (U,OY ) = 0

pour i < n.

Ce théorème montre clairement comment une condition sur la profondeur se
traduit par l’annulation de cohomologies. Remarquons que la condition 2 du théorème
ci-dessus peut s’écrire:

2 bis. pour tout ouvert U de Y , le morphisme naturel:

Hi(U,OY )→ Hi(U \A,OY )

est bijectif pour i ≤ n− 2 et injectif pour i = n− 1.
Rappelons que le groupe de Picard d’un espace annelé est le groupe des classes

d’isomorphismes des faisceaux inversibles sur l’espace annelé. Donc, le groupe de
Picard d’une variété algébrique est le groupe des classes d’isomorphismes des fais-
ceaux inversibles sur la variété. Le groupe de Picard analytique est le groupe des
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classes d’isomorphismes des faisceaux analytiques inversibles sur l’espace analytique
considéré.

De façon analogue au cas du théorème de Lefschetz sur les sections hyperplanes
(voir [20]), nous avons un théorème du type de Lefschetz pour le groupe de Picard
dans lequel nous avons des hypothèses de profondeur, i.e. des hypothèses d’annulation
sur certaines cohomologies:

1.2 Théorème. Soit X une variété projective complexe dans Pm, Z un sous-espace
fermé. Fixons une stratification de Whitney de X qui soit compatible avec Z et
SingX. Soit H un hyperplan de Pm qui coupe X transversalement au sens stratifié.
On fait l’hypothèse (H) suivante:

dim(X \ Z) ≥ 4, prof(SingXan\Zan)O(Xan\Zan) ≥ 3

et on suppose de plus que H3(Xan, Xan \{x};Z) = 0 pour tout x ∈ Xan \Zan. Alors

Pic(X \ Z) ' Pic(X ∩H \ Z).

Démonstration: Comme X est quasi-projectif, d’après [10] Prop. 21.3.3 et Cor.
2.3.5, le groupe de Picard de X \ Z est isomorphe au groupe des classes de diviseurs
de Cartier CaCl(X \ Z) :

Pic(X \ Z) ' CaCl(X \ Z).

La même chose vaut pour X ∩H \ Z. En plus, l’application canonique

CaCl(X \ Z) −→ Cl(X \ Z)

dans le groupe des classes de diviseurs de Weil est injective, car avec les hypothèses
du théorème, X \ Z est normal (voir la Proposition 21.3.4b) et le Corollaire 21.6.10
de [10] ou aussi Lemma 2.2 de [16]).

D’après la définition de Sm avec m = dim (Xan \ Zan), on a évidemment:

Sdim (Xan\Zan)(O(Xan\Zan)) = Xan \ Zan

Pour ` = dim Xan \ Zan − 3, l’hypothèse (H) implique que

dim(Sing (X \ Z)) ≤ dim (Xan \ Zan)− 3,

c’est à dire
codim(X\Z)Sing (X \ Z) ≥ 3 (donc ≥ 2).

Par [17] Theorem 1.5, comme codim(X\Z)Sing (X\Z) ≥ 2 nous savons que les groupes
de classes de diviseurs de Weil Cl(X \ Z) et Cl(X ∩H \ Z) sont isomorphes:

Cl(X \ Z) ' Cl(X ∩H \ Z).

Ceci implique, en considérant le diagramme commutatif suivant:

Pic(X \ Z) ' CaCl(X \ Z) → CaCl(X ∩H \ Z) ' Pic(X ∩H \ Z)
↓ ↓

Cl(X \ Z) ' Cl(X ∩H \ Z)
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que l’application canonique CaCl(X \Z) −→ CaCl(X∩H \Z) est injective puisqu’on
vient de voir que CaCl(X \Z) −→ Cl(X \Z) est injective. Il reste donc à démontrer
la surjectivité de

h : Pic(X \ Z) −→ Pic(X ∩H \ Z)

Soit [D0] ∈ CaCl(X ∩H \ Z) ' Pic(X ∩H \ Z). Comme on vient de voir que

Cl(X \ Z) ' Cl(X ∩H \ Z),

la classe [D0] a une image inverse [D] dans Cl(X \ Z). Il faut démontrer que [D] est
dans l’image de CaCl(X \Z). Comme X \Z est normal, il suffit de démontrer que le
faisceau O(X\Z)(D) des germes de sections méromorphes de X \Z dont la valuation
le long d’une composante Di de D est ≥ −ni, où ni est la multiplicité de Di dans D
(voir [23] Definition p. 126), est inversible, ou bien que les fibres de O(X\Z)(D) sont
isomorphes à celles de O(X\Z). En effet, comme le faisceau O(X\Z)(D) est engendré
sur la partie non singulière de X \ Z par des équations locales de D, le diviseur de
Cartier ainsi associé au faisceau inversible O(X\Z)(D) donne un diviseur de Weil qui
cöıncide avec le diviseur D sur la partie non-singulière de X \Z, ce qui établit notre
assertion car X \ Z est normal.

Pour démontrer que le faisceau O(X\Z)(D) est inversible on considère l’espace an-
alytique Xan sous-jacent à la variété X. Par fidèle platitude, nous sommes emmenés
à démontrer que les fibres de O(Xan\Zan)(D

an) sont libres de rang 1, c’est-à-dire que
O(Xan\Zan)(D

an) est inversible.
Soit Σ le lieu où O(Xan\Zan)(D

an) n’est pas libre de rang 1. L’ensemble Σ est un
sous-espace algébrique fermé de Xan \Zan car il est défini par un idéal de Fitting du
O(Xan\Zan)-module O(Xan\Zan)(D

an).
Comme H est transverse à une stratification de Whitney de X (adaptée à Z et

SingX), l’inclusion de X ∩H dans X est normalement non-singulière au sens de §1.1
de [12]. On peut donc choisir un voisinage tubulaire ouvert V de Xan ∩ Han dans
Xan au sens stratifié. Soit π : V −→ Xan ∩Han la rétraction correspondante.

Nous allons montrer que Σ ∩ V = ∅.
Soit z ∈ Xan ∩Han et W un voisinage de z dans Xan ∩Han tel que π−1(W ) soit

homéomorphe à W × N , avec N := π−1(z). Remarquons que N est homéomorphe
à un disque. Pour z′ ∈W \Zan, comme par hypothèse O((Xan\Zan)∩Han)(D

an
0 ) est lo-

calement libre, il existe un voisinageW ′ de z′ dansW\Zan tel queO((Xan\Zan)∩Han)(D
an
0 )|W ′

soit trivial. Par ailleurs, comme Dan est un diviseur de Weil, sur la partie non-
singulière Xan \ (SingXan ∪ Zan) le faisceau

O(Xan\Zan)(D
an)|Xan\(SingXan∪Zan)

est localement trivial. Soit x un point de π−1(W ′), il existe un voisinage de Stein V ′

de x dans π−1(W ′). Donc, H1(V ′,OV ′) = 0. Ceci implique que:

1.3 Lemme. Le faisceau O(Xan\Zan)(D
an)|V ′\SingXan est trivial.

Preuve : Le faisceau O(Xan\Zan)(D
an)|V ′\SingXan est inversible. Sa classe ξ dans le

groupe de Picard analytique Pic(an)(V
′ \ SingXan) est en fait nulle. Ceci provient

de l’étude que nous allons faire de la suite exacte suivante :

H1(V ′ \ SingXan,OV ′)→ Pic(an)(V
′ \ SingXan)→ H2(V ′ \ SingXan,Z).
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Comme le faisceau O((Xan\Zan)∩Han))(D
an
0 )|W ′ est trivial, la classe de Chern

c1(O((Xan\Zan)∩Han)(D
an
0 )|W ′) = 0.

Par conséquent, on a aussi par restriction :

c1(O((Xan\Zan)∩Han)(D
an
0 )|W ′\SingXan) = 0.

Comme H est un hyperplan assez général, le premier lemme d’isotopie de Thom
(voir [25]) implique que l’espace π−1(W ′) \ SingXan est homéomorphe au produit
(W ′ \ SingXan)×N . La cohomologie H2(W ′ \ SingXan, Z) est isomorphe par π∗ à
la cohomologie H2(π−1(W ′) \ SingXan, Z). Par π∗ la classe de Chern

c1(O(Xan\Zan)(D
an)|π−1(W ′)\SingXan)

a pour image la classe de la restriction de O(Xan\Zan)(D
an)|π−1(W ′)\SingXan à Han.

On vient de voir qu’elle est nulle. Comme π∗ est un isomorphisme, on a:

c1(O(Xan\Zan)(D
an)|π−1(W ′)\SingXan) = 0

ce qui donne par restriction :

c1(O(Xan\Zan)(D
an)|V ′\SingXan) = 0.

La suite exacte ci-dessus montre alors que la classe ξ est dans l’image du groupe:

H1(V ′ \ SingXan,OV ′).

D’autre part d’après le Théorème 3.6 du Chap.2 de [2] (voir 1.1), l’hypothèse (H)
sur la profondeur

dim(Sing(X \ Z) ∩ S`+3(OXan\Zan)) ≤ `

donne que le groupe de cohomologie H1(V ′ \SingXan,OV ′) est isomorphe au groupe
H1(V ′,OV ′) qui est nul. Ceci implique que ξ est nul et que le faisceau inversible
restriction de (OXan\Zan)(Dan) à V ′ \ SingXan est trivial.

Suite de la démonstration de Théorème 1.2: Grâce au Lemme 1.3, il y a
une fonction méromorphe f sur V ′ \ SingXan dont le diviseur cöıncide avec Dan ∩
V ′ \ SingXan. Soit U un voisinage ouvert de x dans V ′. D’après le théorème 1.1
l’hypothèse (H) implique que

H1(U,U \ SingXan;OXan) = 0,

ce qui implique que V ′ est localement irréductible en x. Cette irréducibilité locale est
aussi conséquence de la normalité de X \Z donnée par les hypothèses du Théorème.
Quitte à rétrécir V ′ nous pouvons donc supposer que V ′ est irréductible. Or, comme
ci-dessus, l’espace V ′ ∩ SingXan est de codimension ≥ 3 > 2 à cause de l’hypothèse
(H) . Il y a donc une extension méromorphe f̂ de f sur V ′, voir [24] §53A.9. Le
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diviseur de f̂ doit cöıncider avec Dan ∩V ′. Le faisceau (OXan\Zan)(Dan)|V ′ est donc
trivial.

Ceci démontre que la restriction (OXan\Zan)(Dan)|V \Zan est inversible.

Par conséquent on a bien obtenu Σ ∩ V = ∅.
Ceci implique que Σ est de dimension 0, donc fini. D’autre part on a évidemment:

Σ ⊂ Sing (Xan \ Zan).

Supposons x ∈ Σ. Soit U un voisinage de Stein convenable du point x ∈ Σ dans
l’espace Xan \ Zan pour lequel U ∩ Σ = {x}. Alors Dan définit un fibré en droites
sur U \ {x}. On sait que c1(O(Xan\Zan)(D

an)|U\{x}) = 0, parce que:

H2(U \ {x};Z) = H3(Xan, Xan \ {x};Z) = 0.

Par un raisonnement analogue à celui fait précédemment, on montre queO(Xan\Zan)(D
an)

est inversible et trivial sur U \ {x}. En effet, on montre que:

c1(O(Xan\Zan)(D
an)|U \ {x}) = 0

donc la classe dans Pic(an)(U \ {x}) du faisceau inversible O(Xan\Zan)(D
an)|U \ {x}

provient du groupe de cohomologie H1(U \ {x},OU ).
D’après le Théorème 1.1 et l’hypothèse (H) qui donne prof OXan,x ≥ 3, la cohomologie
locale Hi

{x}(U,OU ) = 0 pour i < 3 donc, en particulier, que le groupe de cohomologie

H1(U,OU ) est isomorphe à H1(U\{x},OU ). Or l’ouvert U étant de Stein, H1(U,OU )
est nul, ce qui montre que le faisceau (OXan\Zan)(Dan)|U \ {x} est trivial.
Comme précédemment, comme codimU ({x}) ≥ 2 ce faisceau se prolonge à U en
un faisceau inversible trivial, car la fonction méromorphe qui définit son diviseur se
prolonge à U et définit une extension de ce faisceau.

Ceci contredit x ∈ Σ. Donc Σ = ∅, ce qu’il fallait démontrer.
Observation: En utilisant la Proposition 2.6 de [15], on peut montrer:

prof(SingXan\Zan)O(Xan\Zan) ' prof(SingX\Z)O(X\Z).

Remarque: Dans la démonstration précédente nous avons en fait établi (voir Lemma
2.6 de [16]) :

1.4 Proposition. Soit X une variété algébrique complexe. Soit x ∈ X un point
fermé de X. On suppose que prof(OXan,x) ≥ 3 et que H3(Xan, Xan \ {x},Z) = 0,
alors X est parafactoriel en x.

Preuve: La notion de parafactorialité a été introduite par A. Grothendieck (cf. [9]
XI, §3, Définition 3.1). Il suffit de démontrer que tout faisceau inversible sur X \ {0}
se prolonge uniquement à isomorphisme près à X. C’est précisemment ce que nous
avons fait.

1.5 Corollaire. Soient X une variété projective complexe dans Pm et Z un sous-
espace fermé de X. On suppose que Xan \ Zan est localement une intersection
complète de dimension ≥ 4 et Sing(Xan \ Zan) de codimension ≥ 3. Fixons une

18



stratification de Whitney de X qui soit compatible avec Z et SingX. Soit H un
hyperplan de Pm qui coupe X transversalement au sens stratifié. Alors

Pic(X \ Z) ' Pic(X ∩H \ Z).

Preuve: Ce corollaire est une conséquence immédiate du théorème précédent, parce
que l’hypothèse que Xan\Zan est localement une intersection complète de dimension
≥ 4 implique les hypothèses du théorème 1.2, car

prof(OXan,x) = dimX

car une intersection complète est localement Cohen-Macaulay et topologiquement:

H3(Xan, Xan \ {x};Z) = 0

si dimX ≥ 3.

2 Cas affine

Comme nous utilisons des méthodes analytiques, nous rappelons les points suivants.
Pour un espace analytique général il y a une différence entre le groupe des classes

diviseurs de Cartier et le groupe de Picard.
Soit Y un espace analytique complexe normal. Soit Cl(Y ) le groupe des classes de

diviseurs de Weil sur Y . On remarque que CaCl(Y ) est le sous-groupe de Cl(Y ) formé
par les éléments [D] tels que le faisceau OY (D) soit inversible. On a une injection
canonique CaCl(Y ) −→ Pic(Y ).

On peut définir CaCl(Y ) d’une autre façon: Soit M∗Y le faisceau de germes de
fonctions méromorphes non-triviales. Alors H0(Y,M∗Y /O∗Y ) est l’espace des distribu-
tions multiplicatives de Cousin. On a une flèche canonique injectiveH0(Y,M∗Y /O∗Y ) −→
Div Y où Div Y désigne le groupe des diviseurs de Weil sur Y . La suite exacte

0 −→ O∗Y −→M∗Y −→M∗Y /O∗Y −→ 0

donne une suite exacte de cohomologie

H0(Y,M∗Y )
i−→ H0(Y,M∗Y /O∗Y ) −→ H1(Y,O∗Y ) −→ H1(Y,M∗Y )

On a donc une injection de Coker i dans Pic(Y ) = H1(Y,O∗Y ) qui est bijective si
H1(Y,M∗Y ) = 0.

De plus, on obtient une flèche injective Coker i −→ Cl(Y ). Évidemment, on peut
identifier Coker i avec CaCl(Y ).

Il y a un cas où il y a une coincidence de CaCl(Y ) et de Pic(Y ):

2.1 Lemme. Si Y est un espace analytique de Stein on a:

CaCl(Y ) ' Pic(Y ) ' H2(Y ;Z).

19



Démonstration: D’après [24] Cor. 54.8, CaCl(Y ) ' H2(Y ;Z). Comme Y est de
Stein, H1(Y, OY ) = 0 et la suite exacte exponentielle donne Pic(Y ) = H1(Y,O∗Y ) '
H2(Y ;Z).

Rappelons la définition de la profondeur cohomologique rectifiée pcr(Z) d’un es-
pace analytique complexe Z (voir Definition 1.2 of [16]). Soit:

Sm(Z) := {x ∈ Z |Hm(Z,Z \ {x},Z) 6= 0}.

On définit
pcr(Z) ≥ n :⇔ dimSn+m(Z) ≤ m,∀m.

Remarquons qu’avec la définition 1.2.1 de [20] nous avons pcr(Z) ≥ n si et seule-
ment si le faisceau constant ZZ est dans 1/2D≥n(Z,Z) ce qui s’exprime aussi par
l’annulation de cohomologies. On obtient alors:

2.2 Théorème. Soit X une variété projective complexe dans Pm, Z un sous-espace
fermé. Supposons que X \ Z est affine. Fixons une stratification de Whitney de
X qui soit compatible avec Z et SingX. Soit H un hyperplan de Pm qui coupe X
transversalement au sens stratifié.

a) Supposons pcr(Xan \ Zan) ≥ 3. Alors la flèche canonique

Pic(an)(X
an \ Zan) −→ Pic(an)(X

an ∩Han \ Zan)

est injective.
b) Soit pcr(Xan \ Zan) ≥ 4. Alors

Pic(an)(X
an \ Zan) ' Pic(an)(X

an ∩Han \ Zan).

Démonstration. Comme la variété affine X \ Z est un espace analytique de Stein,
le groupe de Picard analytique de X \Z est isomorphe à H2(Xan \Zan;Z). De même
pour X ∩H \ Z. L’assertion a) revient à démontrer que l’homomorphisme

H2(Xan \ Zan;Z)→ H2(Xan ∩Han \ Zan;Z)

est injectif. Comme pcr(Xan \ Zan) ≥ 3, cette assertion est un théorème du type de
Lefschetz comme dans [19].

L’assertion b) revient à montrer que l’homorphisme précédent est surjectif, ce qui
est impliqué par pcr(Xan \ Zan) ≥ 4, d’après les théorèmes du type de Lefschetz de
[19].

3 Comparaison entre les cas algébriques et analy-
tiques

Dans le cas où Z est de codimension ≥ 2 (dans ce cas Z ∩H est aussi de codimension
≥ 2 dans X ∩H):
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3.1 Lemme. Soient X une variété projective complexe, Z un sous-espace fermé de
codimension ≥ 2.
a) Cl(Xan \ Zan) ' Cl(X \ Z) et CaCl(Xan \ Zan) ' Pic(X \ Z).
b) S’il existe un voisinage ouvert U(Z) de Z dans X pour lequel

dimU(Z) ∩ Sk+2(OXan\Zan) ≤ k

pour tout k ≤ dimZ, on a

Pic(an)(X
an \ Zan) ' Pic(X \ Z).

Démonstration: a) La flèche Cl(X \ Z) −→ Cl(Xan \ Zan) est bijective.
En effet, par le théorème de Remmert-Stein ([13] p.169), chaque diviseur de Xan\Zan
peut être étendu à Xan. Par le théorème de Chow l’extension est algébrique. Il en
résulte que les groupes des diviseurs de Weil Div(Xan \Zan) ' Div(X) ' Div(X \Z)
sont isomorphes. Comme chaque fonction méromorphe sur Xan \ Zan peut être
étendue à Xan par [24] 53.A.9 et que l’extension est algébrique par le théorème de
Hurwitz [7] 4.7 on a Cl(X \ Z) ' Cl(Xan \ Zan).

Comme CaCl(X \ Z) correspond au sous-groupe de Cl(X \ Z) formé par les
éléments [D] tels que OX\Z(D) soit inversible, on obtient que

Pic(X \ Z) ' CaCl(X \ Z) ' CaCl(Xan \ Zan).

b) La flèche Pic(X \ Z) −→ Pic(an)(X
an \ Zan) est surjective. En effet soit L un

faisceau inversible sur Xan \ Zan et j : Xan \ Zan −→ Xan l’inclusion. Alors j∗L
est cohérent à cause de l’hypothèse sur la profondeur, voir [8] Cor. VII.4 ou [31]
Theorem 2 (voir la remarque à la fin de l’article); par GAGA ce faisceau provient
d’un faisceau algébrique cohérent F sur X. Alors la restriction F|X\Z est inversible
et représente l’image inverse cherchée.
La composition

Pic(X \ Z) −→ CaCl(X \ Z) −→ CaCl(Xan \ Zan) −→ Pic(an)(X
an \ Zan)

montre que Pic(X \ Z) −→ Pic(an)(X
an \ Zan) est injective parce que les premières

flèches sont bijectives et la troisième injective (§2), comme on l’a vu ci-dessus.
Dans la démonstration du lemme précédent on ne suppose pas qu’une variété

algébrique est irréductible.

3.2 Corollaire. Sous les hypothèses du Théorème 1.2, si codimXZ ≥ 3, on a:

Pic(an)(X
an \ Zan) ' Pic(X \ Z) ' Pic(X ∩H \ Z) ' Pic(an)(X

an ∩Han \ Zan).

Démonstration: Si k + 2 < dim(Xan \ Zan), on a évidemment

Sk+2(OXan\Zan) ⊂ Sing(Xan \ Zan),

donc dimSk+2(OXan\Zan) ≤ k − 1, à cause de l’hypothèse (H) du théorème 1.2.
Pour k+ 2 ≥ dim(Xan \Zan) nous avons k > dimZ car on a supposé codimXZ ≥ 3.

Nous pouvons donc appliquer le lemme 3.1 et ceci nous donne le corollaire.
Ce qui se passe dans le cas où Z est de codimension ≤ 2 sans que X \Z soit affine

n’est pas clair.
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4 Théorème de Lefschetz pour le faisceau struc-
tural

Du paragraphe qui précède nous pouvons déduire un théorème du type de Lefschetz
pour le faisceau structural:

4.1 Théorème. Sous les hypothèses de Théorème 1.2, supposons en plus que la pro-
fondeur cohomologique rectifiée vérifie l’inégalité pcrZ(Xan \Zan) ≥ 3 et codimXZ ≥
3. Alors

H1(Xan \ Zan,OXan) ' H1(Xan ∩Han \ Zan,OXan∩Zan).

Démonstration: On applique le lemme des cinq à la suite exacte exponentielle.
D’abord, on a

H1(Xan \ Zan,O∗Xan) ' H1(Xan ∩Han \ Zan,O∗Xan∩Han)

à cause du Corollaire 3.2. Le théorème de Lefschetz géométrique (cf. [18]) donne que
l’homomorphisme

Hk(Xan \ Zan;Z) −→ Hk(Xan ∩Han \ Zan;Z)

est bijectif pour k = 1 et injectif pour k = 2. Il reste à démontrer la surjectivité de

H0(Xan \ Zan,O∗Xan)→ H0(Xan ∩Han \ Zan,O∗Xan∩Han).

Soit f une section de H0(Xan∩Han\Zan,O∗Xan∩Han). L’hypothèse (H) du théorème
1.2 implique (par normalité) que f s’étend à Xan ∩ Han. Comme Xan ∩ Han est
compact, f est localement constante et la surjectivité provient de l’isomorphisme de
Lefschetz géométrique ci-dessus quand k = 0.

Nous allons maintenant donner un théorème d’annulation qui nous donnera une
généralisation du théorème de Kodaira et nous permettra d’étudier le groupe de
Picard.

La notion de la profondeur par rapport à un sous-espace introduite dans le §1
peut se généraliser aux faisceaux cohérents de la façon suivante:

Soit X une variété algébrique complexe, Y un sous-espace fermé. Soit F un
faisceau algébrique cohérent sur X. On définit:

profY F ≥ n⇐⇒ dim{x ∈ Y, x point fermé de Y |prof Fx ≤ n+k} ≤ k pour tout k.

Ici prof Fx est la profondeur du OX,x-module Fx (cf. [28]).
D’abord on a le théorème suivant qui est bien connu dans le cas Z = ∅ (cf. [9]

Exposé XII, corollaire 1.4):

4.2 Théorème. Soient X une variété projective complexe, Z un sous-espace algébrique
fermé, S un faisceau algébrique cohérent sur X, prof S|X\Z ≥ n. Soit L un faisceau
ample sur X. Alors

Hq(X \ Z,S ⊗OX
L−l) = 0

pour q < n−max(dimZ,−1)− 1, l� 0.
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Démonstration: Soit X ⊂ Pm et i : X −→ Pm l’inclusion. En remplaçant S par
i∗S on peut supposer que X = Pm. Soit d := dim Z.
Notons que n ≤ m. On procède par récurrence sur m− n.
Si n = m on a que la restriction S|Pm\Z est localement libre, car Pm \ Z est lisse.
En effet, soit x un point fermé de Pm \ Z, alors prof Sx + dhSx = m, où dh désigne
la dimension homologique (voir [28] IV D Prop. 21); comme prof Sx = m, Sx est
projectif, donc libre (voir [28] IV Prop. 20).

On remarque que sur Pm \ Z on a

S|Pm\Z ' Hom(Hom(S,OPm
),OPm

)|Pm\Z

Soit S ′ = Hom(S,OPm). Choisissons une résolution localement libre à gauche F ′∗
de S ′ (cf. [21] Corollary II 5.18). Comme S ′|Pm\Z est localement libre, le faisceau

Extq(S ′,OPm
) est concentré sur Z pour q > 0, donc

0→ Hom(S ′,OPm
)|Pm\Z → F

0
|Pm\Z → F

1
|Pm\Z → . . .

avec Fq := Hom(F ′q,OPm) est exacte. Or on a

Hq(Pm \ Z,S ⊗ L−l) = Hq(Pm \ Z,Hom(S ′,OPm)⊗ L−l)

qui est isomorphe à l’hypercohomologie Hq(Pm \ Z,F∗ ⊗ L−l).
D’autre part, pour k ≥ 0, dans [9] III Lemme 3.1, comme profZFk ⊗ L−l ≥

m − dimZ un résultat de A. Grothendieck donne que Hq(Pm \ Z,Fk ⊗ L−l) '
Hq(Pm,Fk⊗L−l), pour q < m−dimZ−1. Un autre résultat de Grothendieck (voir
[9] XII Corollaire 1.4) donne

Hq(Pm,Fk ⊗ L−l) = 0

pour q ≤ m et l� 0. Une suite spectrale donne l’annulation de l’hypercohomologie :

Hq(Pm \ Z,F∗ ⊗ L−l) = 0

pour q < m− dimZ − 1 et l� 0.
Par conséquent

Hq(Pm \ Z,S ⊗ L−l) = 0

pour q < m− dimZ − 1 et l� 0.
Soit n < m. Il y a une suite exacte 0 −→ T −→ F −→ S −→ 0 avec F localement

libre (voir e.g. [21] Cor. 5.18 Chap II). On a prof T|Pm\Z ≥ n + 1 (voir [2] I Cor.
1.13) et prof F = m. La suite exacte de cohomologie et l’hypothèse de récurrence
donnent le résultat cherché.

Le théorème suivant a déjà été énoncé dans le cas Z = ∅ avec une démonstration
par Anapura et Jaffe [1] (Proposition 1.1), par une démonstration différente :

4.3 Théorème. Soient X une variété projective complexe dans Pm, Z un sous-espace
fermé, H un hyperplan dans Pm qui ne contient pas X. Soit n ∈ N:

codimXZ ≥ n+ 1 et profSing(X\Z)OX\Z ≥ n,
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dim X ≥ n. Alors

Hq(X \ Z,OX\Z) −→ Hq(X ∩H \ Z,OX∩H\Z)

est bijectif pour q < n− 1 et injectif pour q = n− 1.

Démonstration: Soit I = OX(−H) l’idéal de H dans OX . Il faut démontrer que

Hq(X \ Z, I) = 0, q < n.

On peut remplacer H par un hyperplan générique L car

Hq(X \ Z,OX(−H)) ' Hq(X \ Z,OX(−L)).

On va procéder par récurrence sur dimX.
Dans le cas dimX = n, nécessairement Z = ∅. La condition sur la profondeur

donne prof(OX) = n et signifie que X est de Cohen-Macaulay. De plus les singularités
de X sont isolées. Si X est lisse,

Hk(X,OX(−L)) = 0,

pour k < n, par le théorème de Kodaira, voir [21] p. 248, car, pour L assez général,
OX(L)) est un faisceau très ample.

Supposons que X ait des singularités isolées. Comme L est assez général, on a
que

Hk(Xan \ SingXan;Z) −→ Hk((Xan \ SingXan) ∩ Lan;Z)

est bijectif pour k < n−1, et injectif pour k = n−1, d’après le Théorème de Lefschetz
de [18]. Comme les singularités sont isolées, on a

(Xan \ SingXan) ∩ Lan = Xan ∩ Lan,

c’est à dire
Hk(Xan \ SingXan;Z) −→ Hk(Xan ∩ Lan;Z)

est bijectif pour k < n− 1, et injectif pour k = n− 1.
Soit π : X̃ −→ X une désingularisation de X telle que D := π−1(SingX) soit un

diviseur à croisements normaux. Alors l’homorphisme

Hk(Xan \ SingXan;C) −→ Hk(Xan ∩ Lan;C)

s’identifie avec l’homorphisme d’hypercohomologie

Hk(X̃,Ω∗X̃(log D)) −→ Hk(X ∩H,Ω∗X∩L),

où X ∩ L est identifié à son image inverse par π puisque π est un isomorphisme en
dehors des singularités isolées. Or, il s’agit d’une application de structures de Hodge
mixtes; en considérant le terme Gr0F en degré 0, on obtient que Hk(X̃,OX̃) −→
Hk(X ∩H,OX∩L) est bijectif pour k < n− 1 et injectif pour k = n− 1 (Voir [3]).
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Comme Hk(X̃,OX̃(−L)) = Hk(X̃an,OX̃an(−L)) d’après GAGA, ce qui précède

implique que Hk(X̃,OX̃(−L)) = Hk(X̃an,OX̃an(−L)) = 0, k < n, où OX̃an(−L)

désigne l’idéal qui définit L dans X̃.
Soit U un voisinage fermé convenable de Xan ∩ Lan dans Xan tel que U ne

contienne pas de singularités et que Xan \ U soit un ouvert de Stein. Alors (voir [2]
I Theorem 3.6)

Hk
c (Xan \ U,OXan(−L)) = 0, k < n,

car on a vu que profOX = n.
La composition des flèches

Hk(Xan,OXan(−L)) −→ Hk(X̃an,OX̃an(−L)) −→ Hk(U,OXan(−L))

est donc injective pour k < n; comme Hk(X̃an,OXan(−L)) = 0, k < n, par GAGA on
obtient que Hk(X,OX(−L)) ' Hk(Xan,OXan(−L)) = 0, k < n. Cette annulation
est aussi obtenue grâce au théorème (7.80) de [29] et ceci est l’annulation cherchée.

Soit dimX > n. Soit Y le lieu des points qui sont ou bien dans Z ou bien en
lesquels la profondeur prof OX,x ≤ n+d, avec d = dimZ. Alors dimY = d. En effet,
comme on a supposé profSing(X\Z)OX\Z ≥ n, on a dim(Y ∩ Sing(X \ Z)) ≤ d. Par
ailleurs Y ∩(X\Z)\Sing(X\Z) = ∅, car, pour x ∈ (X\Z)\Sing(X\Z), la profondeur
profx(OX) ≥ dimX ≥ n+ 1 + dimZ, car on a supposé codimXZ ≥ n+ 1. On peut
se réduire au cas Z = Y . En effet, l’hypothèse garantit que Hk(X \ Z,OX(−L)) →
Hk(X \Y,OX(−L)) est bijectif pour k < n et injectif pour k = n (voir [2] II Theorem
3.6.).

Supposons donc que Z = Y , c.-à d. que prof OX\Z ≥ n + d + 1. On a choisi L
générique, donc en particulier transverse aux strates d’ une stratification de Whitney
de (X,Z). On a dimX ≥ n + 1. Pour l � 0 on a Hq(X \ Z,OX(−L)l) = 0, q < n,
parce que l’on a prof OX\Z,x ≥ n + d + 1 pour tout x ∈ X \ Z, d’après le théorème
2.1 précédent.

Il reste à démontrer que Hq(X \ Z,OX(−L)l/OX(−L)l+1) = 0, q < n, l ≥ 0.
Mais OX(−L)l/OX(−L)l+1 un faisceau très ample sur L. On peut donc procéder

par récurrence en montrant

Hq((X \ Z) ∩ L,OX(−L)l/OX(−L)l+1) = 0

pour q < n, l ≥ 0.
Notons que

profSingX∩L\ZOX∩L\Z ≥ profSingX\ZOX\Z ≥ n

et dim X ∩ L ≥ n.

Un corollaire intéressant du Théorème précédent est la généralisation suivante du
Théorème de Kodaira (voir e.g. Theorem 1.2 §1 de [5]) ainsi considéré comme le
théorème d’annulation de cohomologie associé à notre théorème du type de Lefschetz
pour le faisceau structural:
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4.4 Corollaire. Soient X une variété projective complexe, Z un sous-espace fermé,
L un faisceau ample sur X. Soit n ∈ N et supposons que codimXZ ≥ n + 1,
profSing(X\Z)OX\Z ≥ n, dim X ≥ n. Alors

Hq(X \ Z,L−1) = 0

pour q < n.

Démonstration: Si on suppose que L est très ample, on peut plonger la variété
projective X dans Pm de telle sorte que L soit la restriction à X du faisceau OPm(1).
L’annulation de Hq(X \Z,L−1) équivaut donc à l’annulation de Hq(X \Z, I), où I
est l’déal dans X d’une section hyperplane de X dans Pm. Or cette annulation pour
q < n est une conséquence immédiate du Théorème 4.3.

Dans le cas général, on procède de façon analogue à [26] Lemma 1, dans le cas
non-singulier. Soit l � 0 tel que Ll soit très ample. Fixons un tel entier l. On a
dans H0(X,Ll) − {0} une section σ de diviseur D := [σ]. Dans le fibré π : L → X
défini par L sur X, la sous-variété X ′ des points x ∈ L où xl = σ(π(x)) ∈ Ll est un
revêtement cyclique

f : X ′ → X

sur X ramifié le long de D. Localement L est trivial sur X donc

profSing(L\π−1(Z))OL\π−1(Z) ≥ n+ 1.

Comme X ′ est donné localement par s− tl = 0 dans L, on a

profSing(X′\f−1(Z))OX′\f−1(Z) ≥ n.

On peut donc appliquer le résultat précédent à X ′ et f∗(L−1) qui est très ample:

Hq(X ′ \ f−1(Z), f∗(L−1)) = 0

pour q < n. Comme f est fini,

Hq(X ′ \ f−1(Z), f∗(L−1)) = Hq(X \ Z, f∗(f∗(L−1))).

D’autre part f est fini et galoisien et ramifié le long de D, donc la partie invariante de
f∗(f

∗(L−1)) sous l’action du groupe de Galois est L−1 (comparer avec [26]). Comme
la partie invariante de la cohomologie est la cohomologie de la partie invariante du
faisceau, on obtient le résultat cherché

Hq(X \ Z,L−1) = 0

pour q < n.

Remarque. Le théorème 4.3 est une conséquence immédiate du corollaire 4.4. Ils
sont donc équivalents.
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5 Cas des faisceaux cohérents analytiques

On a les analogues analytiques suivants des Théorèmes 4.2 et 4.3:

5.1 Théorème. Soient X une variété projective, Z un sous-espace algébrique fermé,
S un faisceau analytique cohérent sur X et supposons que prof S|X \ Z ≥ n. Soit L
un faisceau ample sur X. Alors

Hq(Xan \ Zan,S ⊗OX
L−l) = 0

pour q < n− dimZ − 1 et l� 0.

Démonstration. On procède comme dans le cas algébrique. Au lieu de [9] III
Lemme 3.1 et [9] XII Cor. 1.4 on utilise [27], [33], [32], [2] II Theorem 3.6 et [2] IV
Cor. 3.3, respectivement.

5.2 Théorème. Soient X une variété projective complexe dans Pm, Z un sous-espace
fermé, H un hyperplan dans Pm qui ne contient aucune composante irréductible de
X. Soit n ∈ N et supposons que codimXZ ≥ n+ 1,

profSing(Xan\Zan)OXan\Zan ≥ n,

dim X ≥ n. Alors

Hq(Xan \ Zan,OXan\Zan) −→ Hq(Xan ∩Han \ Zan,OXan∩Han\Zan)

est bijectif pour q < n− 1 et injectif pour q = n− 1.

Démonstration: Au lieu de [9] on utilise [2] IV Theorem 3.1, de plus au lieu du
théorème 4.2 on utilise le théorème 5.1 précédent.

On obtient le corollaire suivant qui est aussi obtenu par Y.T. Siu dans [30] (The-
orems A and B p. 348) :

5.3 Corollaire. Soient X une variété projective complexe dans Pm, Z un sous-espace
fermé. Soit n ∈ N et supposons que codimXZ ≥ n + 1, profSing(X\Z)OX\Z ≥ n,
dim X ≥ n. Alors

Hq(X \ Z,OX\Z) ' Hq(Xan \ Zan,OanX\Z)

pour q < n− 1.

Démonstration: On a un morphisme naturel

Hq(X \ Z,OX\Z)→ Hq(Xan \ Zan,OX\Z).

On procède par récurrence sur dim X. On a dim X ≥ n. Pour dim X = n, on a
Z = ∅, l’assertion est donc vraie dans ce cas à cause de GAGA.
Soit donc dim X > n, H un hyperplan générique dans Pm. Alors les hypothèses
restent valables pour X ∩ H et Z ∩ H au lieu de X et Z, respectivement, on peut
donc leur appliquer l’hypothèse de récurrence. Avec le Théorème 4.3 (resp. 5.2) on
obtient le résultat cherché.
Remarque: On a aussi l’analogue du corollaire 4.4 :
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5.4 Corollaire. Soit X une variété projective complexe dans Pm, Z un sous-espace
fermé. Soit L un faisceau ample sur X. Soit n ∈ N, codimXZ ≥ n+1, profSing(Xan\Zan)OXan\Zan ≥
n, dim X ≥ n. Alors,

Hq(Xan \ Zan,L−1) = 0

pour q < n.

6 Applications au groupe de Picard

On peut appliquer le Théorème 5.2 au groupe de Picard analytique, en utilisant la
suite exacte exponentielle:

6.1 Théorème. Soient X une variété projective complexe dans Pm, Z un sous-
espace fermé. Fixons une stratification de Whitney de (X,Z). Soit H un hyperplan
dans Pm qui est transverse aux strates de Z.
a) Supposons

pcr(Xan \ (Z ∪H)an) ≥ 3, codimXZ ≥ 3, profSingXan\ZanOXan\Zan ≥ 2.

Alors la flèche Pic(an)(X
an \ Zan) −→ Pic(an)(X

an ∩Han \ Zan) est injective.
b) Supposons

pcrZ(Xan \ (Z ∪H)an) ≥ 4, codimXZ ≥ 4,profSingXan\ZanOXan\Zan ≥ 3.

Alors Pic(an)(X
an \ Zan) ' Pic(an)(X

an ∩Han \ Zan).

Démonstration: Si pcrZ(Xan \ (Z ∪H)an) ≥ n, le théorème de type de Lefschetz
sur les sections hyperplanes (voir par exemple [20]) nous dit que

Hk(Xan \ Zan,Z) −→ Hk(Xan ∩Han \ Zan,Z)

est bijectif pour k ≤ n − 2 et injectif pour k = n − 1, car on a supposé que H est
transverse aux strates de Z. D’autre part on dispose du Théorème 5.2.

La suite exacte de l’exponentielle

0→ ZXan\Zan → OXan\Zan → O∗Xan\Zan → 0

et la suite analogue pour l’espace Xan ∩Han \ Zan conduisent à des suites exactes
longues de cohomologie que l’on compare. On conclut par le lemme des cinq que

H1(Xan \ Zan,O∗Xan\Zan)→ H1(Xan ∩Han \ Zan,O∗Xan∩Han\Zan)

est injectif dans le cas a) (resp. bijectif dans le cas b)).
Remarque: Sous les hypothèses qu’on a faites on a Pic(X \Z) ' CaCl(Xan\Zan) '
Pic(an)(X

an\Zan) et l’énoncé analogue pour X∩H\Z d’après le Lemme 3.1. On peut
comparer ce résultat avec le Théorème 1.2 où il y a une hypothèse de transversalité
plus forte.
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6.2 Corollaire. Soient X une variété projective complexe dans Pm, Z un sous-espace
fermé, H un hyperplan dans Pm.
a) Soit Xan \Zan localement intersection complète de dimension n ≥ 3 et supposons
que codimX∩HZ ∩H ≥ 3, codimXSingX ≥ 2. Alors la flèche

Pic(an)(X
an \ Zan) −→ Pic(an)(X

an ∩Han \ Zan)

est injective.
b) Soit Xan\Zan localement intersection complète de dimension n ≥ 4, codimX∩HZ∩
H ≥ 4, codimXSingX ≥ 3. Alors

Pic(an)(X
an \ Zan) ' Pic(an)(X

an ∩Han \ Zan).

Démonstration: On peut supposer que Xan \Zan est connexe. L’énoncé est trivial
si Xan \ Zan est contenu dans H. Nous pouvons donc supposer que:

dim(Xan \ Zan) ∩H = dim(Xan \ Zan)− 1.

Choisissons un sous-espace projectif générique L de H tel que dimL = m − n + 2
(resp. dimL = m−n+ 3). Alors L∩Z = ∅. Le Théorème 6.1 précédent nous donne
dans le cas a) (resp. b))

Pic(an) (Xan \ Zan)→ Pic(an) (Xan ∩ L \ Zan)

et
Pic(an) (Xan ∩H \ Zan)→ Pic(an)X

an ∩ L \ Zan)

sont injectifs (resp. bijectifs), d’où le résultat.
Rappelons qu’il n’y a pas de différence entre le groupe de Picard algébrique et

analytique dans ce cas. Ce corollaire se compare donc avec le Corollaire 1.5.
En fait, on obtient à partir du Corollaire 6.2 :

6.3 Corollaire. Soient X une variété projective complexe dans Pm, H un hyper-
plan dans Pm. Soit Xan localement une intersection complète de dimension ≥ 4 et
supposons que codimXSingX ≥ 3. Alors

PicX ' Pic(X ∩H).

En comparaison avec Corollaire 1.5 avec Z = ∅ il n’y a plus besoin de condition
de transversalité!

Il y a une variante du Théorème 6.1 sans hypothèse de transversalité:

6.4 Théorème. Soient X une variété projective complexe dans Pm, Z un sous-
espace fermé, H l’hyperplan défini par z0 = 0, U := {(z0 : . . . : zm) ∈ Xan | |z1|2 +
. . .+ |zm|2 ≤ R|z0|2} avec R > 0; il s’agit d’un voisinage de Xan ∩Han dans Xan.
a) Supposons pcr(Xan \ Zan) ≥ 3, profZanOXan ≥ 3, prof OXan\Han ≥ 2. Alors la
flèche

Pic(an)(X
an \ Zan) −→ Pic(an)(U \ Zan)

est injective.
b) Supposons que pcrZ(Xan \ Zan) ≥ 4, profZanOXan ≥ 4, prof OXan\Han ≥ 3.
Alors

Pic(an)(X
an \ Zan) ' Pic(an)(U \ Zan).

29



Démonstration: b) Hk
c (Xan \ U,OXan) = 0 pour k ≤ 2 parce que Xan \ U est

de Stein et Xan \ Han est de profondeur ≥ 3, voir [2] I Theorem 3.6. La flèche
Hk(Xan,OXan) −→ Hk(U,OXan) est donc bijective pour k = 1 et injective pour k =
2. À cause de l’hypothèse sur la profondeur par rapport à Zan on a Hk(Xan,OXan) '
Hk(Xan \ Zan,OXan), k = 1, 2, et un énoncé pareil pour U au lieu de Xan. On
obtient le reste à cause de la suite exacte exponentielle en utilisant un théorème de
Zariski-Lefschetz qui nous donne

Hk(Xan \ Zan,Z) ' Hk(U \ Zan,Z)

pour k = 0, 1, 2 (voir e.g. Cor. 4.3.8 de [19], avec la définition de pcr donnée ci-dessus
et le fait que U est un bon voisinage de Xan ∩Han).

a) La démonstration de a) est analogue à celle de b).
Remarque. En utilisant [14] on peut donner des hypothèses plus faibles que celles du
théorème précédent en ne supposant que prof OXan\(Han∪Zan) ≥ 2 (resp. prof OXan\(Han∪Zan) ≥
3).

7 Approche algébrique

Dans cette section nous reprenons le point de vue de A. Grothendieck développé dans
[9]. On considèrera la complétion X̂ du schéma projectif X le long d’une section
hyperplane X ∩H (voir [21] (Chap. II §9)

Le point de vue de A. Grothendieck consiste à établir les isomorphismes :

lim
→

Pic(U) ' Pic(X̂ \ Ẑ) ' Pic(X ∩H \ Z)

pour des sous-variétés projectives X de PN (k), où Z une partie fermé de X, H
un hyperplan de PN (k) satisfaisant certaines hypothèses et U parcourt le système
inductif des voisinages de Zariski ouverts de X ∩H \ Z dans X \ Z.

La première comparaison est donnée par le théorème suivant (comparer au corol-
laire 3.6 de l’exp. XII de [9]):

7.1 Théorème. Soient X ⊂ PN (k) un sous-schéma projectif sur le corps k, Z une
partie fermée de X, H un hyperplan de PN (k) dont l’équation donne un élément
non-diviseur de zéro sur X. Soit X̂ la complétion de X le long de X ∩H. Supposons
que:

dim S`(OX∩H\Z) ≤ `− 2, pour tout ` ≤ 2 + dimZ ∩H.

Alors
lim
→

Pic (U) ' Pic (X̂ \ Ẑ),

où U parcourt le système inductif des voisinages ouverts de X ∩H \ Z dans X \ Z.

En fait ce théorème est une conséquence immédiate du théorème suivant inspiré
par le Corollaire 3.4 de [9] Exposé XII, (voir aussi dans le cas du groupe de Picard
le point 2 de la démonstration du Theorem 3.1 de [22] Chapter 4 §3):
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7.2 Théorème. Soient X ⊂ PN (k) un sous-schéma projectif sur le corps k, Z une
partie fermée de X, H un hyperplan de PN (k) dont l’équation donne un élément
non-diviseur de zéro sur X. Soit X̂ la complétion de X le long de X ∩H. Supposons
que:

dim S`(OX∩H\Z) ≤ `− 2, pour tout ` ≤ 2 + dimZ ∩H.

Alors
lim
→
V ect (U) ' V ect (X̂ \ Ẑ) ' lim

←
V ect (Xn \ Zn),

où U parcourt le système inductif des voisinages ouverts de Zariski de X∩H \Z dans
X\Z, V ect (U) est le semi-anneau des classes d’isomorphismes des fibrés k-vectoriels
algébriques sur U et Xn le voisinage infinitésimal d’ordre n de X ∩H dans X.

Démonstration. Rappelons que:

S`(OX∩H\Z) := {x point fermé de X ∩H \ Z |prof OX∩H\Z,x ≤ `}.

Par ailleurs on a

dim S`(OX∩H\Z) ≤ `− 2, pour tout ` ≤ 2 + dimZ ∩H.

Donc sur un voisinage ouvert U ′ de X ∩H \ Z dans X \ Z on a

dim S`+1(OU ′) ≤ `− 2, pour tout ` ≤ 2 + dimZ ∩H.

On peut donc supposer que sur un voisinage ouvert U ′ de X ∩H \Z dans X \Z,
on a:

dim S`(OU ′) ≤ `− 3, pour tout ` ≤ 3 + dimZ ∩H.

Donc avec ` = 1 on a prof OU ′ ≥ 2 et, avec Z ′ = X \ U ′ et Z ′′ := Z ′ ∪ Sm(OX\Z′),
où

m := dim(Z ∩H) + 3,

par définition (cf. §1), on a:
profZ′′\Z′ OU ≥ 2.

Donc la Proposition 2.6 de [15] montre que

HiZ′′\Z′(OU ) = 0

pour i ≤ 1.
On obtient alors l’injectivité de V ect (U) → V ect (X \ Z ′′). En effet, soient E et

E ′ deux fibrés vectoriels sur U dont les restrictions à X \ Z ′′ soient isomorphes. Le
fibré Hom(E , E ′) des morphismes de fibrés k-vectoriels a donc une section sur X \Z ′′
qui se prolonge uniquement à U . Pour cela, on considère la suite exacte:

H0
Z′′\Z′(X \ Z

′, Hom (E .E ′))→ Γ(X \ Z ′, Hom (E .E ′))→

→ Γ(X \ Z ′′, Hom (E .E ′))→ H1
Z′′\Z′(X \ Z

′, Hom (E .E ′))→ . . .

Il suffit d”etablir que Hi
Z′′\Z′(X \ Z

′, Hom (E .E ′)) = 0, pour i = 0, 1.
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Comme Hom (E .E ′) est localement libre, HiZ′′\Z′(OU ) = 0, pour i ≤ 1, implique:

HiZ′′\Z′(Hom (E .E ′)) = 0,

pour i ≤ 1.
Comme on a une suite spectrale (cf. [9], exposé 1, théorème 2.6):

Hp(X \ Z ′,HqZ′′\Z′(Hom (E .E ′))⇒ Hp+q
Z′′\Z′(X \ Z

′, Hom (E .E ′)),

on obtient le résultat cherché avec p, q ≤ 1.
On a donc un isomorphisme:

Γ(X \ Z ′, Hom (E .E ′))→ Γ(X \ Z ′′, Hom (E .E ′)).

Donc tout homomorphisme sur X \ Z” s’étend uniquement en un homorphisme sur
X \Z ′. En choisissant l’isomorphisme inverse de E ′ sur E sur X \Z”, l’isomorphisme
sur X \ Z” entre E et E ′ s’étend sur X \ Z ′ uniquement en un isomorphisme. Ceci
donne l’injectivité V ect (U)→ V ect (X \ Z ′′).

Montrons maintenant l’injectivité de V ect (X\Z ′′) dans lim
←
V ect (Xn\Z ′′n). Soient

E et E ′ deux fibrés vectoriels sur X \ Z ′′ tels que E|Xn \ Z ′′n et E ′|Xn \ Z ′′n soient
isomorphes pour tout n ≥ 0. Par définition de Z ′′, on a prof(Hom(E , E ′)|X \ Z ′′) ≥
dim (Z ∩H) + 4 ≥ dim Z + 3.

D’après le théorème 4.2, on a:

Hi(X \ Z ′′, Hom(E , E ′)⊗OX\Z′′ L
−n|X \ Z ′′) = 0,

pour n� 0 et i = 0, 1 avec un faisceau ample L sur X.
Comme H est défini localement par une fonction qui n’est pas localement diviseur

de zéro sur X, on peut remplacer L−1 par l’idéal I qui définit H. On a donc:

Hi(X \ Z ′′, InHom(E , E ′)) = 0,

pour n� 0 et i = 0, 1. Ceci donne:

H0(X \ Z ′′, Hom(E , E ′)) ' H0(Xn \ Z ′′n , Hom(E , E ′)),

en considérant la suite exacte de faisceaux:

0→ InHom(E , E ′)→ Hom(E , E ′)→ Hom(E , E ′)/InHom(E , E ′)→ 0.

On a donc une application injective V ect (U) → lim
←
V ect (Xn \ Z ′′n). Comme

ceci factorise par V ect (U)→ lim
←
V ect (Xn \Zn), cette dernière application est aussi

injective. Donc:
lim
→
V ect (U)→ lim

←
V ect (Xn \ Zn)

est injective. Ceci donne immédiatement l’injection lim
→
V ect (U)→ V ect (X̂ \ Ẑ).

Démontrons maintenant la surjectivité de lim
→
V ect (U)→ V ect (X̂ \ Ẑ). Pour cela

nous allons démontrer qu’un fibré vectoriel E sur X̂ \ Ẑ définit un fibré vectoriel sur

32



un voisinage de X ∩H \ Z. Pour cela il est pratique de passer au cône affine X̃ de

X et au complété ˆ̃X le long de H̃ ∩ X̃ de X̃.

Le fibré vectoriel E induit un faisceau Ẽ sur ˆ̃X \ ˆ̃Z. Soit ˆ̃j l’inclusion de ˆ̃X \ ˆ̃Z

dans ˆ̃X. D’après le théorème 2.2 de [9], le faisceau T := ˆ̃j∗E est cohérent. D’après le

Théorème 10.10.2 de [11], les sections globales T := Γ( ˆ̃X, T ) forment donc un module

de type fini sur l’anneau A := Γ( ˆ̃X,O ˆ̃X
).

Comme ˆ̃X est le complété d’un cône, on a une action de k[t, t−1] sur T induite par
l’action de k[t, t−1] sur Γ(X̃,OX̃/InOX̃). Le sous-groupe de T où la multiplication
par t est donnée par t 7→ tn est noté Tn. On a aussi une section à l’inclusion Tn ⊂ T .

En effet, si Ĩ définit la section hyperplane sur X̃, T /ˆ̃IkT est un O ˆ̃X
-module cohérent,

donc unOX̃ -module cohérent, puisque la complétion est faite le long de H̃. On obtient
donc:

T/ ˆ̃IkT ' ⊕n∈Z(T/ ˆ̃IkT )n.

On obtient donc une section naturelle de l’inclusion (T/ ˆ̃IkT )n dans T/ ˆ̃IkT . Par
passage à la limite projective, on a donc une flèche de T dans Tn qui est la section
cherchée.

Soient g1, . . . , gm les générateurs du A-module T . Pour tout k ≥ 1, comme

T/ ˆ̃IkT ' ⊕n∈Z(T/ ˆ̃IkT )n, il existe un ensemble fini M tel que, pour tout n ∈ Z \M
l’image de gi soit 0 dans (T/ ˆ̃IkT )n pour 1 ≤ i ≤ m. Soient g̃1, . . . , g̃m les images
de g1, . . . , gm dans l’application de T dans ⊕n∈MTn. Remarquons que g1, . . . , gm et

g̃1, . . . , g̃m ont les mêmes images respectives dans T/ ˆ̃IkT .
Soit x ∈ X̃ ∩ H̃. Les éléments (g̃1)x, . . . , (g̃m)x représentent des générateurs du

OX̃∩H̃,x-module (T / ˆ̃IT )x, en considérant k = 1. Le lemme de Nakayama montre

que ces générateurs de (T / ˆ̃IT )x donnent des générateurs du O ˆ̃X,x
-module Tx. En

effet Tx/(< g̃1)x, . . . , g̃m)x > +ˆ̃IxTx) = 0, et ˆ̃Ix est contenu dans l’idéal maximal de
O ˆ̃X,x

.

On a donc un épimorphisme de faisceaux:

(O ˆ̃X
)m → T

Le théorème de [21] Chapter II 9.7 permet d’établir que (g̃1)x, . . . , (g̃m)x donnent des
générateurs du A-module T .

On peut supposer que les (g̃1)x, . . . , (g̃m)x sont homogènes. CommeB := Γ(X̃,OX̃)
est gradué, les (g̃1)x, . . . , (g̃m)x engendrent un sous B-module gradué T ′ de ⊕n∈ZTn.
D’après [21] Chapter II 5.11, le faisceau T ′ correspondant définit une extension
cohérente F de E à X = ProjB.

Dans un voisinage U de X̂ \ Ẑ dans X \Z, le faisceau F est localement libre (voir
[11] Chapitre I 10.8.15).

Ce raisonnement donne la surjectivité de lim
→
V ect (U)→ V ect (X̂ \ Ẑ).

La surjectivité de V ect (X̂ \ Ẑ) sur lim
←
V ect (Xn \ Zn) est obtenue e.g. avec [11]

Chapitre I 10.11.10.
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On a cité ci-dessus des résultats énoncés pour k = C, mais qui sont vrais pour k
arbitraire.

En particulier on a en plus :

7.3 Corollaire. Sous les mêmes hypothèses que le théorème 7.1, on a :

lim
→

Pic (U) ' Pic (X̂ \ Ẑ) ' lim
←

Pic (Xn \ Zn).

Remarque: En utilisant un résultat de G. Faltings (voir [6] Corollary 3), on peut
établir que CaCl(X̂ \ Ẑ) ' Pic(X̂ \ Ẑ) dans le cas où X est géométriquement intègre.
Pour cela on utilise les suites exactes de cohomologie associées aux suites exactes de
faisceaux :

0→ O∗
X̂\Ẑ →M

∗
X̂\Ẑ →M

∗
X̂\Ẑ/O

∗
X̂\Ẑ → 0

0→ O∗U →M∗U →M∗U/O∗U → 0

ce qui nous donne

lim
→
H0(U,O∗U ) → lim

→
H0(U,M∗U ) → lim

→
H0(U,M∗U/O∗U )→

↓ ↓ ↓
H0(X̂ \ Ẑ,O∗

X̂\Ẑ) → H0(X̂ \ Ẑ,M∗
X̂\Ẑ) → H0(X̂ \ Ẑ,M∗

X̂\Ẑ/O
∗
X̂\Ẑ)→

→ lim
→
H1(U,O∗U ) → 0

↓ ↓
→ H1(X̂ \ Ẑ,O∗

X̂\Ẑ) → H1(X̂ \ Ẑ,M∗
X̂\Ẑ)

La deuxième flèche verticale est un isomorphisme pour le faisceauM d’après [6]. On
en déduit l’isomorphisme pour le sous-faisceauM∗. On conclut en utilisant le lemme
des cinq.

8 Application

En utilisant des hypothèses et des techniques transcendantes, nos résultats conduisent
au théorème suivant (voir [16] Théorème 5.1 dans le cas projectif):

8.1 Théorème. Soient X une sous-variété projective complexe de Pm, Z un sous-
ensemble algébrique fermé de X, H un hyperplan de Pm. Supposons que H ne con-
tienne aucune composante irréductible de X et soit transverse à une stratification de
Whitney donnée S de Z dans Pm, codimX∩HZ ∩H ≥ 4 et

pcr(Xan \ Zan) ≥ 4, prof Sing(X∩H\Z)OX∩H\Z ≥ 3, prof Sing(X\Z)OX\Z ≥ 3.

Alors:
Pic (X \ Z) ' Pic (X ∩H \ Z).
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Démonstration. Reprenons les notations de 7.1 et 7.2. Nous avons

lim
→

Pic (U) ' lim
←

Pic (Xn \ Zn).

Par conséquent, comme les voisinages ouverts de X ∩H \ Z dans X \ Z sont de la
forme X \Z ′ où Z ′ est un sous-ensemble algébrique fermé de X tel que Z ⊂ Z ′ ⊂ X
et Z ∩H = Z ′ ∩H, il nous suffira de démontrer que

1. pour tous les fermés Z ′ de X tels que Z ⊂ Z ′ ⊂ X et Z ∩ H = Z ′ ∩ H,
Pic (X \ Z) ' Pic (X \ Z ′);

2. pour tout n ≥ 1, Pic (Xn \ Zn) ' Pic (Xn+1 \ Zn+1).

Preuve de 1. Remarquons que X est normal (voir par exemple [16] Lemma 2.2)
donc, pour tous les fermés Z ′ de X tels que Z ⊂ Z ′ ⊂ X et Z ∩ H = Z ′ ∩ H,
l’homomorphisme Pic (X\Z)→ Pic (X\Z ′) est injectif par un raisonnement analogue
à celui donné pour les fibrés vectoriels dans la démonstration du Théorème 7.2.

Maintenant considérons un élément [D′] de Pic (X \Z ′) et un diviseur de Cartier
D′ qui le représente. Soit D la fermeture dans X \ Z du diviseur de Weil D associé
à D′. Nous devons démontrer que D est le diviseur de Weil associé à un diviseur
de Cartier de X \ Z. Comme dans la section §1, il nous faut établir que le faisceau
(OX\Z)(D) est localement libre sur X \Z. Par platitude fidèle cela revient à montrer

que (OXan\Zan)(D
an

) est localement libre.
Pour cela considérons S le sous-espace des points de X ∩H où H n’intersecte pas

stratification de Whitney S de X transversalement. Ce sous-espace est un fermé de
Zariski dans X et par hypothèse S ∩ Z = ∅.

Nous allons recouvrir Xan ∩Han par deux ouverts U1 et U2 de Xan, tels que les
restrictions de (OXan\Zan)(D

an
) à U1 et U2 soient localement libres.

En fait U1 est un voisinage tubulaire au sens stratifié de Xan∩Han \S dans Xan.
L’ouvert U2 est Xan \ Z ′an. Clairement l’ouvert U1 ∪ U2 contient Xan ∩ Han. Par
hypothèse la restriction de (OXan\Zan)(D

an
) à U2 est inversible.

Comme dans la démonstration du Théorème 1.2, appelons Σ le sous-espace de X \
Z des points au voisinage desquels le faisceau (OXan\Zan)(D

an
) n’est pas localement

libre. Le même raisonnement conduit à U1 ∩Σ = ∅. Comme U1 ∪U2 est un voisinage
ouvert de Xan ∩ Han dans Xan, on en déduit que Σ est un ensemble fini. En
terminant comme dans la démonstration du Théorème 1.2 on obtient que le faisceau
(OXan\Zan)(D

an
) est inversible.

Preuve de 2. Soit I le faisceau d’idéaux de OPm qui définit H, alors la restriction
de I à X engendre un faisceau I sur OX , tel que I−1 soit ample sur X, et (I ⊗OX

(OX∩H))−1 est un faisceau ample L sur X ∩H.
Si l’on suppose que H ne contienne aucune composante irréductible de X, comme

X est réduit, on a:
In/In+1 ' In ⊗OX

(OX∩H)

qui est donc L−n.
Comme dans [9] (exposé XI §1(1,1)), avec l’isomorphisme précédent, on a la suite

exacte
0→ In ⊗OX∩H → O∗Xn+1

→ O∗Xn
→ 0.
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Pour démontrer 2, il suffit de démontrer que, pour tout n ≥ 1, on a :

Hk(X ∩H,L−n) = 0, pour k = 1, 2,

qui est conséquence du Corollaire 4.4 car dimX ≥ 4.
Ceci termine la démonstration de 8.1.

Remarque. Dans [16] (Theorem 5.1) nous donnons un théorème analogue, mais
avec l’hypothèse Z = ∅. Ce dernier résultat est en fait conséquence du Corollaire
3.2 de l’exp. XII de [9]. La différence essentielle de nos résultats avec celui de A.
Grothendieck est que l’hypothèse de parafactorialité de Grothendieck est remplacée
dans ce cas sur le corps des complexes par des hypothèses topologiques et analytiques
qui l’impliquent.
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[17] H.A.Hamm, Lê D. T.: On the Picard group for non-complete algebraic varieties,
Singularités Franco-Japonaises, Sém. Congr. 10, 71-86, Soc. Math. Fr., Paris
2005.
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MOTIVIC MILNOR CLASSES

SHOJI YOKURA(∗)

ABSTRACT. The Milnor class is a generalization of the Milnor number, defined as the dif-
ference (up to sign) of Chern–Schwartz–MacPherson’s class and Fulton–Johnson’s canon-
ical Chern class of a local complete intersection variety in a smooth variety. In this paper

we introduce a “motivic” Grothendieck group KProp
`.c.i (V/X h−→ S) and natural trans-

formations from this Grothendieck group to the homology theory. We capture the Milnor
class, more generally Milnor–Hirzebruch class, as a special value of a distinguished ele-
ment under these natural transformations. We also show a Verdier-type Riemann–Roch
formula for our motivic Milnor–Hirzebruch class. We use Fulton–MacPherson’s bivariant
theory and the motivic Hirzebruch class.

1. INTRODUCTION

The Milnor class is defined for a local complete intersection varietyX in a non-singular
variety M as follows. The local complete intersection variety X defines a normal bundle
NX in M , from which we can define the virtual tangent bundle TX of X by

TX := TM |X −NXM

which is a well-defined element of the Grothendieck groupK0(X). Then Fulton-Johnson’s
or Fulton’s canonical (Chern) class of X (see [FJ] and [Fu]) is defined by

cFJ∗ (X) := c(TX) ∩ [X].

Here c(TX) is the total Chern class of the virtual bundle TX .
In general, Fulton-Johnson’s and Fulton’s canonical (Chern) classes are defined for any

schemeX embedded as a closed subscheme of a non-singular varietyM (see [Fu, Example
4.2.6]): Fulton–Johnson’s canonical class cFJ∗ (X) ([Fu, Example 4.2.6 (c)]) is defined by

c(TM |X) ∩ s(NXM),

where TM is the tangent bundle of M and s(NXM) is the Segre class of the conormal
sheaf NXM of X in M [Fu, §4.2]. Fulton’s canonical class cF∗ (X) ([Fu, Example 4.2.6
(a)]) is defined by

c(TM |X) ∩ s(X,M),

where s(X,M) is the relative Segre class [Fu, §4.2]. As shown in [Fu, Example 4.2.6], for
a local complete intersection variety X in a non-singular variety M these two classes are
both equal to c(TX) ∩ [X].

On the other hand there is another well-known notion of Chern class for possibly singu-
lar varieties. That is Chern–Schwartz–MacPherson’s class c∗(X) [Mac1, Schw1, Schw2,

(*) Partially supported by Grant-in-Aid for Scientific Research (No. 21540088), the Ministry of Education,
Culture, Sports, Science and Technology (MEXT), and JSPS Core-to-Core Program 18005, Japan.
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Schw3, BrSc]. Then the Milnor class of the local complete intersection variety X , de-
noted by M(X), is defined by, up to sign, the difference of Fulton–Johnson’s class and
Chern–Schwartz–MacPherson’s class c∗(X); more precisely

M(X) := (−1)dimX
(
cFJ∗ (X)− c∗(X)

)
.

Since Chern–Schwartz–MacPherson’s class c∗(X) and Fulton–Johnson’s class cFJ∗ (X)
are identical for a nonsingular variety, the Milnor class is certainly supported on the sin-
gular locus of the given variety, thus is an invariant of singularities. Prototypes of the Mil-
nor class were studied by P. Aluffi [Alu1, Alu2], A. Parusiński [Pa1, Pa2], A. Parusiński
and P. Pragacz [PP2] and T. Suwa [Su3]. Many people have been investigating on the
Milnor class from their own viewpoints or interests, and many papers are now available
[Alu2, Alu3, Br, BLSS1, BLSS2, Max, Pa3, PP1, PP3, Sea1, SeSu, Su2, Yo2, Yo3]. A
category-functorial aspect of the Milnor class is its connection to the so-called Verdier–
Riemann–Roch theorem for MacPherson’s Chern class [Yo4, Sch1].

Some functoriality of the Milnor class was investigated in [Yo4], but so far it has never
been captured as a natural transformation from a certain covariant functor to the homology
theory. In this paper we try to capture the Milnor class from a motivic viewpoint and we
show that in fact we can capture it as a natural transformation from a pre-motivic covari-
ant functor to the homology theory. For this we need to use the motivic Hirzebruch class
[BSY1, BSY2] and a key idea comes from the construction of a universal bivariant theory
given in [Yo5].

In §2 we make a quick review of the motivic Hirzebruch class, following [BSY1] (also
see [Yo6] and [Sch4]). In §3 we construct the motivic Grothendieck groupKProp`.c.i (V/X h−→
S), motivated by the construction of an oriented bivariant theory [Yo5]. The main results
are given in §4 and §5. In §4 we construct a motivic Milnor–Hirzebruch class as a nat-
ural transformation from the above motivic Grothendieck group to Fulton–MacPherson’s
bivariant homology theory, a special case of which captures the Milnor class as a natural
transformation from the motivic Grothendieck group to the Borel–Moore homology theory.
In §5 we show a Verdier-type Riemann–Roch theorem for the motivic Milnor–Hirzebruch
class.

In [CMSS] (also see [CLMS1, CLMS2, CMS1, CMS2, CS2, CS3]) Sylvain Cappell
et al. independently consider the motivic Hirzebruch–Milnor class and they describe it in
terms of other invariants of singularities, thus dealing more with singularities. Our present
work is more category-functorial, compared with [CMSS]. A more general work is done
in [Yo8].

2. MOTIVIC HIRZEBRUCH CLASSES

In the following sections we use the motivic Hirzebruch class [BSY1, BSY2], thus we
very quickly recall some ingredients which are needed later.

Let V denote the category of complex algebraic varieties. The relative Grothendieck
group K0(V/X) of a variety X is the quotient of the free abelian group IsoProp(V/X) of
isomorphism classes [V

h−→ X] of proper morphisms toX , modulo the following additivity
relation:

[V
h−→ X] = [Z ↪→ V

h−→ X] + [V \ Z ↪→ Y
h−→ X]
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for Z ⊂ Y a closed subvariety of Y . We set the quotient homomorphism by

Θ : IsoProp(V/X)→ K0(V/X).

From now on the equivalence class Θ([V
h−→ X]) of the isomorphism class [V

h−→ X] is
denoted by the same symbol [V

h−→ X] unless some possible confusion occurs.

Remark 2.1. Furthermore it follows from Hironaka’s resolution of singularities that the re-
striction Θsm := Θ|IsoProp(Sm/X) of Θ to the subgroup IsoProp(Sm/X) of isomorphism

classes [V
h−→ X] of proper morphisms from smooth varieties V to X is surjective:

Θsm : IsoProp(Sm/X)→ K0(V/X).

Here we just remark that F. Bittner [Bit] identified the kernel of the above map Θsm :
IsoProp(Sm/X) → K0(V/X) by some “blow-up relation”, for the details of which see
[Bit]. This “blow-up relation” plays an important role for constructing a bivariant analogue
of the motivic Hirzebruch classes. Since we do not deal with this bivariant analogue, we
do not go further into details of this “blow-up relation”.

If we use the above “pre-motivic” group IsoProp(Sm/X) we can get the following
“pre-motivic” characteristic classes of singular varieties for an arbitrary characteristic
class c` of complex vector bundles.

For a proper morphism f : X → Y we have the obvious pushforward

f∗ : IsoProp(Sm/X)→ IsoProp(Sm/Y )

defined by f∗([V
h−→ X]) := [V

f◦h−−→ Y ]. Let c` be any characteristic class of complex
vector bundles with values in the cohomology theoryH∗( )⊗R, whereR is a coefficient
ring. Then we define

γc` : IsoProp(Sm/X)→ HBM
∗ (X)⊗R

by

γc`([V
h−→ X]) := h∗(c`(TV ) ∩ [V ]).

Then it is clear that

γc` : IsoProp(Sm/ )→ HBM
∗ ( )⊗R

is a unique natural transformation satisfying the normalization condition that for a smooth
variety X the homomorphism γc` : IsoProp(Sm/X)→ HBM

∗ (X)⊗R satisfies that

γc`([X
idX−−→ X]) := c`(TX) ∩ [X].

A naı̈ve question is whether γc` can be pushed down to the relative Grothendieck group
K0(V/X) , i.e., for some natural transformation ? : K0(V/X) → HBM

∗ ( )⊗ R so that
the following diagram commutes:

IsoProp(Sm/X)

Θsm

wwoooooooooooo
γc`

((QQQQQQQQQQQQQ

K0(V/X)
?

// HBM
∗ (X)⊗R
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If we require that c` is a multiplicative characteristic class, the above normalization
condition and another extra condition that the degree of the 0-dimensional component of
the class γc`(CPn) equals 1 − y + y2 + · · · (−y)n, then the characteristic class c` can be
identified as the Hirzebruch class. Namely, let αi’s be the Chern roots of a complex vector
bundle E over X . Then

td(E) =

rankE∏
i=1

αi
1− e−αi

∈ H2∗(X;Q)

is the Todd class of E, and its modified version of it

td(y)(V ) :=

rankE∏
i=1

(
αi(1 + y)

1− e−αi(1+y)
− αiy

)
∈ H∗(X)⊗Q[y]

is called the Hirzebruch class (see [Hir] and [HBJ]. In fact, the Hirzebruch class unifies
Chern class, Todd class and Thom–Hirzebruch L-class:

(1) y = −1: td(−1)(E) = c(E) Chern class,
(2) y = 0: td(0)(E) = td(E) Todd class,
(3) y = 1: td(1)(E) = L(E) Thom–Hirzebruch L-class.

Our previous paper [BSY1] (also see [BSY2] and [SY]) showed the following theorem
(originally using Saito’s theory of mixed Hodge modules [Sai]):

Theorem 2.2. (Motivic Hirzebruch class of singular varieties) There exists a unique nat-
ural transformation

Ty∗ : K0(V/ )→ HBM
∗ ( )⊗Q[y]

satisfying the normalization condition that for a smooth variety X

Ty∗([X
idX−−→ X]) = td(y)(TX) ∩ [X].

This motivic Hirzebruch class Ty∗ : K0(V/ )→ HBM
∗ ( )⊗Q[y] in a sense “unifies”

the following three well-known characteristic classes of singular varieties:

Theorem 2.3. (A “unification” of three characteristic classes)

(1) c = Chern class: There exists a unique natural transformation

γF : K0(V/ )→ F ( )

such that for X nonsingular γF ([X
id−→ X]) = 11X . And the following diagram

commutes

K0(V/X)

γF

yyssssssssss
T−1∗

''OOOOOOOOOOO

F (X)
c∗⊗Q

// HBM
∗ (X)⊗Q.

Here c∗ : F (X) → HBM
∗ (X) is MacPherson’s Chern class transformation

[Mac1] defined on the group F (X) of complex algebraically constructible func-
tions.
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(2) td = Todd class: There exists a unique natural transformation

γG0
: K0(V/ )→ G0( )

such that for X nonsingular γ([X
id−→ X]) = [OX ]. And the following diagram

commutes

K0(V/X)
γG0

yyssssssssss
T0∗

''OOOOOOOOOOO

G0(X)
td∗

// HBM
∗ (X)⊗Q.

Here td∗ : G0(X) → HBM
∗ (X) ⊗ Q is Baum–Fulton–MacPherson’s Todd class

(or Riemann–Roch) transformation [BFM1] defined on the Grothendieck group
G0(X) of coherent algebraic OX -sheaves.

(3) L = Thom-Hirzebruch L-class:There exists a unique natural transformation

γΩ : K0(V/ )→ Ω( )

such that for X nonsingular γΩ([X
id−→ X]) = [QX [dimX]] . And the following

diagram commutes

K0(V/X)

γΩ

yytttttttttt
T1∗

''OOOOOOOOOOO

Ω(X)
L∗

// HBM
∗ (X)⊗Q.

Here Ω(X) is the Cappell–Shaneson–Youssin’s cobordism group of self-dual con-
structible sheaves (see [CS1] and [You]) and L∗ : Ω(X) → HBM

∗ (X) ⊗ Q is
Cappell–Shaneson’s homology L-class transformation [CS1] (also see [GM]).

We also have the following

Corollary 2.4. The following diagram commutes:

IsoProp(Sm/X)

Θsm

wwoooooooooooo γtd(y)

((QQQQQQQQQQQQQ

K0(V/X)
Ty∗

// HBM
∗ (X)⊗R

Definition 2.5. For a complex algebraic variety X

Ty∗(X) := Ty∗([X
id−→ X]) ∈ HBM

∗ (X)⊗Q[y]

is called the motivic Hirzebruch class of X .

Remark 2.6. As to the homomorphism γF : K0(V/X) → F (X) we have that for any
variety X

γF ([X
id−→ X]) = 11X , therefore T−1∗(X) = c∗(X)⊗Q,
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whether X is singular or non-singular. However, as to the other two homomorphisms
γG0 : K0(V/X) → G0(X) and γΩ : K0(V/X) → Ω(X), if X is singular, in general we
have that

γG0([X
id−→ X]) 6= [OX ], γΩ([X

id−→ X]) 6= [ICX ],

where ICX is the middle intersection homology complex of Goresky–MacPherson [GM].
Hence, if X is singular, in general we have that

T0∗(X) 6= td∗(X), T1∗(X) 6= L∗(X).

If X is a Du Bois variety, i.e., a variety with Du Bois singularities, then we have that

γG0
([X

id−→ X]) = [OX ], therefore T0∗(X) = td∗(X).

If X is a rational homology manifold, then conjecturally

γΩ([X
id−→ X]) = [ICX ], therefore T1∗(X) = L∗(X).

For more details, see [BSY1] and also [CMSS, Theorem 4.3], where the conjecture is
proved in some special cases.

3. THE GROTHENDIECK GROUP KProp`.c.i (V/X h−→ S)

Let S be a complex algebraic variety and fixed. Let VS be the category of S-varieties,
i.e., an object is a morphism h : X → S and a morphism from h : X → S to k : Y → S
is a morphism f : X → Y such that the following diagram commutes:

X

h ��@
@@

@@
@@

f // Y

k����
��

��
�

S

.

A morphism f : X → Y is called a local complete intersection (`.c.i.) morphism if
f admits a factorization into a closed regular embedding followed by a smooth morphism
(e.g., see [Fu] or [FM]). In particular, regular embeddings and smooth morphisms are `.c.i.
morphisms. The composite of `.c.i. morphisms are again an `.c.i. morphism.

Definition 3.1. Let MProp`.c.i (V/X h−→ S) be the monoid consisting of isomorphism classes
[V

p−→ X] of proper morphisms p : V → X such that the composite h ◦ p : V → S is an
`.c.i. morphism, with the addition (+) and zero (0) defined by

• [V
h−→ X] + [V ′

h′−→ X] := [V t V ′ h+h′−−−→ X],
• 0 := [φ→ X].

Then we define
KProp`.c.i (V/X h−→ S)

to be the Grothendieck group of the monoid MProp`.c.i (V/X h−→ S).

Remark 3.2. In other words, KProp`.c.i (V/X h−→ S) is the free abelian group generated by
the set of all isomorphism classes of [V

p−→ X] of proper morphisms p : V → X such that
the composite h ◦ p : V → S is an `.c.i. morphism, modulo the subgroup generated by the
elements of the following form

[V
h−→ X] + [V ′

h′−→ X]− [V t V ′ h+h′−−−→ X].



MOTIVIC MILNOR CLASSES 45

Lemma 3.3. (1) The Grothendieck group KProp`.c.i (V/X h−→ S) is a covariant functor
with pushforwards for proper morphisms, i.e., for a proper morhism f : X →
Y ∈ VS

X

h ��@
@@

@@
@@

f // Y

k����
��

��
�

S

the pushforward

f∗ : KProp`.c.i (V/X h−→ S)→ KProp`.c.i (V/Y k−→ S)

defined by

f∗([V
p−→ X]) := [V

f◦p−−→ Y ]

is covariantly functorial.
(2) The Grothendieck group KProp`.c.i (V/X h−→ S) is a contravariant functor with pull-

backs for smooth morphisms, i.e., for a smooth morhism f : X → Y ∈ VS the
pullback

f∗ : KProp`.c.i (V/Y k−→ S)→ KProp`.c.i (V/X h−→ S)

defined by

f∗([W
p−→ Y ]) := [W ′

p′−→ X]

is contravariantly functorial. Here we consider the following commutative dia-
grams whose top square is a fiber square:

W ′
f ′ //

p′

��

W

p

��
X

h !!B
BB

BB
BB

B
f // Y

k~~}}
}}

}}
}}

S.

Proof. (1) The well-definedness of the pushforward homomorphism f∗ is clear.
(2) In the diagram of Lemma 3.3 (2) , by the definition k ◦ p : W → S is an `.c.i.

morphism, and f ′ : W ′ → W is smooth since it is a base change of a smooth morphism
f : X → Y . The composite h ◦ p′ : W ′ → S is equal to the composite k ◦ p ◦ f ′, thus it is
an `.c.i. morphism because it is the composite of two `.c.i. morphisms. Thus the pullback
homomorphism f∗ is well-defined. �

Remark 3.4. (1) As to the contravariance of the Grothendieck groupKProp`.c.i (V/X h−→
S), one might be tempted to consider the pullback for a local complete intersec-
tion morphism f : X → Y instead of a smooth morphism. But a crucial problem
for this is that the pullback of a local complete intersection morphism is not neces-
sarily a local complete intersection morphism, thus in the diagram of Lemma 3.3
(2) f ′ : W ′ → W is not necessarily a local complete intersection morphism and
hence we do not know whether or not the composite k ◦ p ◦ f ′ = h ◦ p′ is a local
complete intersection morphism.
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(2) If we consider the finer class Sm of smooth morphisms instead of the class L.c.i
of local complete intersection morphisms, we do have a bivariant theory, from
which we can construct a motivic bivariant characteristic class [Yo7].

4. MOTIVIC MILNOR–HIRZEBRUCH CLASSES

For a morphism f : X → Y , H(X → Y ) is the Fulton–MacPherson bivariant homol-
ogy theory [FM]. Since the main theme of the present paper is not a bivariant theoretic, we
do not recall a general bivariant theory, thus see [FM] for details. In the paper • denotes
the bivariant product, i.e., for morphisms f : X → Y , g : Y → Z the bivariant product •
is

• : H(X
f−→ Y )×H(Y

g−→ Z)→ H(X
g◦f−−→ Z).

Then H(X
idX−−→ X) is the usual cohomology theory H∗(X) and H(X → pt) (for a

mapping to a point) is the Borel–Moore homology theory HBM
∗ (X).

Proposition 4.1. Let c` : K0 → H∗( )⊗ R be a characteristic class of complex vector
bundles with a suitable coefficients R. Then on the category VS we have that

(1) There exists a unique natural transformation (not a Grotendieck transformation)

γ̃c`∗ : KProp`.c.i (V/X h−→ S)→ H(X
h−→ S)⊗R

such that for a local complete intersection morphism h : X → S

γ̃c`∗([X
idX−−→ X]) = c`(Th) • Uh.

Here Th is the (virtual) relative tangent bundle of h and Uh ∈ H(X
h−→ S) is the

canonical orientation.
(2) There exists a unique natural transformation

γc`∗ : KProp`.c.i (V/X h−→ S)→ HBM
∗ (X)⊗R

such that for a local complete intersection morphism h : X → S

γc`∗([X
idX−−→ X]) = c`(Th) ∩ [X].

Proof. (1) We define γ̃c`∗ : KProp`.c.i (V/X h−→ S)→ H(X
h−→ S)⊗R by

γ̃c`∗([V
p−→ X]) := p∗(c`(Th◦p) • Uh◦p).

First we observe that γ̃c`∗ is well-defined. Let p′ : V ′ → X be another representative
of [V

p−→ X], i.e., the composite h ◦ p′ is an `.c.i. morphism and there is an isomorphism
g : V ′ ∼= V such that the following diagram commutes:

V ′

p′ !!B
BB

BB
BB

B
g

∼=
// V

p
~~}}

}}
}}

}}

X.
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Then we have

γ̃c`∗([V
′ p
′

−→ X]) = p′∗(c`(Th◦p′) • Uh◦p′)
= p∗g∗(c`(g

∗Th◦p) • Uh◦p′)
= p∗g∗(c`(g

∗Th◦p) • Uh◦p′)
= p∗g∗(g

∗c`(Th◦p) • Uh◦p′)
= p∗(c`(Th◦p) • g∗Uh◦p′) (projection formula)

= p∗(c`(Th◦p) • Uh◦p) (since g is an isomorphism)

= γ̃c`∗([V
p−→ X]).

The equality g∗Uh◦p′ = Uh◦p is due to the following observation. By the definition or
the construction of Fulton–MacPherson’s bivariant homology theory H (see [FM]), for the
isomorphism g : V ′

∼=−→ V we have

• Hi(V ′ g−→ V ) = Hi(V )

• g∗ : Hi(V ′ g−→ V )→ Hi(V idV−−→ V ) is the identity map,
• Ug = 1V ∈ H0(V ).

Since h ◦ p′ = (h ◦ p) ◦ g and g is also an `.c.i. morphism, it follows from [FM, Part II,
§1.3] that we have

Uh◦p′ = U(h◦p)◦g = Ug • Uh◦p.

Then we have

g∗Uh◦p′ = g∗
(
Ug • Uh◦p

)
= g∗Ug • Uh◦p ([FM, A12, p.20])
= Uh◦p (since g∗Ug = 1V )

Thus γ̃c`∗ is well-defined.
Now, for a morphism f : X → Y , i.e., for the following commutative diagram

X

h ��@
@@

@@
@@

f // Y

k����
��

��
�

S

the following diagram commutes:

KProp`.c.i (V/X h−→ S)
γ̃c`∗−−−−→ H(X

h−→ S)⊗R

f∗

y yf∗
KProp`.c.i (V/Y k−→ S) −−−−→

γ̃c`∗

H(Y
k−→ S)⊗R,
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Indeed, for [V
p−→ X] ∈ KProp`.c.i (V/X h−→ S) we have that

f∗

(
γ̃c`∗([V

p−→ X])
)

= f∗ (p∗(c`(Th◦p) • Uh◦p))

= (f ◦ p)∗ (c`(Th◦p) • Uh◦p)
= (f ◦ p)∗ (c`(Tk◦f◦p) • Uk◦f◦p)
= (f ◦ p)∗ (c`(Tk◦f◦p) • Uk◦f◦p)

= γc`∗([V
f◦p−−→ Y ])

= γ̃c`∗

(
f∗([V

p−→ X])
)
.

Since, for a local complete intersection morphism h : X → S, by definition of γc`∗ we

have γc`∗([X
idX−−→ X]) = c`(Th) • Uh, the uniqueness of γc`∗ follows.

(2) We define γc`∗ : KProp`.c.i (V/X h−→ S)→ HBM
∗ (X)⊗R by

γc`∗([V
p−→ X]) := p∗(c`(Th◦p) ∩ [V ]).

The well-definedness of γc`∗ is similar to the above, but more straightforward. Indeed, we
have

γc`∗([V
′ p−→ X]) = p′∗(c`(Th◦p′) ∩ [V ′])

= p∗g∗(c`(g
∗Th◦p) ∩ [V ′])

= p∗g∗(c`(g
∗Th◦p) ∩ [V ′])

= p∗g∗(g
∗c`(Th◦p) ∩ [V ′])

= p∗(c`(Th◦p) ∩ g∗[V ′])
= p∗(c`(Th◦p) ∩ [V ])

= γc`∗([V
p−→ X]).

Then the following diagram commutes:

KProp`.c.i (V/X h−→ S)
γc`∗−−−−→ HBM

∗ (X)⊗R

f∗

y yf∗
KProp`.c.i (V/Y k−→ S) −−−−→

γc`∗
HBM
∗ (Y )⊗R,

which follows from replacing •Uh◦p and •Uk◦f◦p by ∩[V ] in the proof of (1). �

Remark 4.2. For a local complete intersection morphism f : X → S, we have

•Uh • [S] = ∩[X].

Here [W ] is the fundamental class of W and [W ] ∈ H(W → pt) = HBM
∗ (W ). Thus the

relation between the above two natural transformations γ̃c`∗ and γc`∗ is that

γc`∗ = γ̃c`∗ • [S].

Remark 4.3. When the fixed variety S is a point, the above two natural transformations
γ̃c`∗ and γc`∗ are the same: γc`∗ : KProp`.c.i (V/X)→ HBM

∗ (X)⊗R.
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If S is a point and c` = c the Chern class, then for a local complete intersection variety
X in a smooth manifold, we have that

γc∗([X
idX−−→ X]) = c(TX) ∩ [X]

which is Fulton–Johnson’s class cFJ∗ (X). Thus the above natural transformations

γ̃c`∗ : KProp`.c.i (V/X h−→ S)→ H(X
h−→ S)⊗R

γc`∗ : KProp`.c.i (V/X h−→ S)→ HBM
∗ (X)⊗R

are both generalizations of Fulton–Johnson’s class as natural transformations. They are re-
specively called a motivic “bivariant” FJ-c` class, denoted by c̃`FJ∗ , and a motivic FJ-c`
class, denoted by c`FJ∗ , since it is modelled after Fulton–Johnson’s class cFJ∗ .

From here on we consider the Hirzebruch class td(y), instead of an arbitrary char-
acteristic class c`, because we use the motivic Hirzebruch class Ty∗ : K0(V/X) →
HBM
∗ (X)⊗Q[y] below. We use the above natural transformations

γ̃td(y)∗ : KProp`.c.i (V/X h−→ S)→ H(X
h−→ S)⊗Q[y],

γtd(y)∗ : KProp`.c.i (V/X h−→ S)→ HBM
∗ (X)⊗Q[y],

which are respectively called the motivic “bivariant” FJ-Hirzebruch class and the motivic

FJ-Hirzebruch class and denoted by T̃yFJ∗ and TyFJ∗ .

We define the twisted pushforward for homology as follows: for a morphism f : X →
Y , the relative dimension of f and the co-relative dimension of f are respectively defined
by

dim(f) := dimX − dimY codim(f) := dimY − dimX.

For the Borel–Moore homology theoryH∗, the twisted pushforward for a proper morphism
f : X → Y is define by

f∗∗ := (−1)codim(f)f∗ : HBM
∗ (X)→ HBM

∗ (Y ).

With this twisted pushforward the Borel–Moore homology theory is still a covariant func-
tor. To avoid a possible confusion we denote HBM

∗∗ (X) for the Borel–Moore homology
theory with the twisted pushforward.

Corollary 4.4. On the category VS there exists a unique natural transformation

MTy∗ : KProp`.c.i (V/X h−→ S)→ HBM
∗∗ (X)⊗Q[y]

such that for a local complete intersection morphism h : X → S the homomorphism
MTy∗ : KProp`.c.i (V/X h−→ S)→ HBM

∗∗ (X)⊗Q[y] satisfies that

MTy∗([X
idX−−→ X]) = (−1)dimX

(
Ty

FJ
∗ − Ty∗ ◦Θ

)
([X

idX−−→ X]).

Proof. We defineMTy∗ : KProp`.c.i (V/X h−→ S)→ HBM
∗∗ (X)⊗Q[y] by

MTy∗([V
p−→ X]) := (−1)dimV

(
Ty

FJ
∗ − Ty∗ ◦Θ

)
([V

p−→ X]).

This is equal to
(−1)dimXp∗

(
td(y)(Tp◦h) ∩ [V ]− Ty∗(V )

)
.

�
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From here on we denote Ty∗ ◦Θ simply by Ty∗. When S is a point, the above motivic
natural transformation

MTy∗ : KProp`.c.i (V/X)→ HBM
∗∗ (X)⊗Q[y]

shall be called a motivic Milnor–Hirzebruch class, even though KProp`.c.i (V/X) is not (a
subgroup of ) the motivic group K0(V/X), but because it is defined by using the motivic
Hirzebruch class Ty∗ : K0(V/X) → HBM

∗ (X) ⊗ Q[y] and because, if we specialize
MTy∗ to the case when y = −1 andX is a local complete intersection variety in a smooth
manifold, we have

MT−1∗([X
id−→ X])

= (−1)dimX
{
td(−1)(TX) ∩ [X]− T−1∗

(
Θ([X

id−→ X])
)}

= (−1)dimX
(
cFJ∗ (X)− c∗(X)

)
,

which is the Milnor classM(X) ofX . ThusMT−1∗ : KProp`.c.i (V/X)→ HBM
∗∗ (X)⊗Q[y]

is called the motivic Milnor class (or Milnor–Chern class). The more general one

MTy∗ : KProp`.c.i (V/X h−→ S)→ HBM
∗∗ (X)⊗Q[y]

is called a generalized motivic Milnor–Hirzebruch class.
In fact, if the base variety S is a Q-homology manifold or a rational homology manifold,

the fundamental class [S] ∈ H(S → pt) = HBM
∗ (S) is a strong orientation (see [FM, Part

I, §2.6]), namely we have the following isomorphism (see [BSY3])

•[S] : H(X
h−→ S)⊗Q

∼=→ H(X → pt)⊗Q = HBM
∗ (X)⊗Q.

Which is a generalized Poincaré duality isomorphism, hence denoted by PDh. Indeed,
when X is a rational homology compact manifold, for the identity idX : X → X , the
above isomorphism is nothing but the classical Poincaré duality isomorphism

∩[X] : H∗(X)⊗Q→ H∗(X)⊗Q.

Examples of a Q-homology manifold (e.g., see [BM, §1.4 Rational homology man-
ifolds]) are surfaces with Kleinian singularities, the moduli space of curves of a given
genus, Satake’s V -manifolds or orbifolds, in particular, the quotient of a nonsingular vari-
ety by a finite group action on.

Thus we can get the following corollary:

Corollary 4.5. Let the base variety S be a Q-homology manifold. On the category VS
there exists a unique natural transformation

M̃Ty∗ : KProp`.c.i (V/X h−→ S)→ H∗∗(X
h−→ S)⊗Q[y]

such that for a local complete intersection morphism h : X → S the homomorphism
M̃Ty∗ : KProp`.c.i (V/X h−→ S)→ H(X

h−→ S)⊗Q[y] satisfies that

M̃Ty∗([X
idX−−→ X]) = (−1)dimX

(
T̃y

FJ
∗ − PD

−1
h ◦ Ty∗

)
([X

idX−−→ X]).

Here H∗∗(X
h−→ S) is the twisted bivariant homology theory with the twisted pushforward

f∗∗ := (−1)codim(f)f∗.
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Remark 4.6. (1) M̃Ty∗ : KProp`.c.i (V/X h−→ S) → H∗∗(X
h−→ S) ⊗ Q[y] shall be

called a motivic “bivariant” Milnor–Hirzebruch class, even thought the source
groupKProp`.c.i (V/X h−→ S) is not a bivariant theory, but the target group H∗∗(X

h−→
S)⊗Q[y] is a bivariant theory.

(2) Note that when the base variety S is a point, M̃Ty∗ : KProp`.c.i (V/X h−→ S) →
H∗∗(X

h−→ S)⊗Q[y] is the same asMTy∗ : KProp`.c.i (V/X)→ HBM
∗∗ (X)⊗Q[y].

Proposition 4.7. In the case when y = 0, the Milnor–Todd classMT0∗ : KProp`.c.i (V/X)→
HBM
∗ (X) ⊗ Q vanishes on the subgroup generated by [V

p−→ X] with V being Du Bois
varieties:

MT0∗([V
p−→ X]) = 0 if V is a Du Bois variety.

Proof. For a local complete intersection variety V in a smooth variety M , we have that

MT0∗([V
p−→ X])

= p∗∗MT0∗([V
id−→ V ])

= (−1)dimXp∗

(
td(TV ) ∩ [V ]− T0∗([V

id−→ V ])
)

= (−1)dimXp∗
(
td(TV ) ∩ [V ]− T0∗(V )

)
.

If V is a Du Bois variety, it follows from Remark 2.6 that T0∗(V ) = td∗(OV ). On the other
hand we observe that it follows from the properties of the Baum–Fulton–MacPherson’s
Riemann–Roch td∗ : G0(X) → HBM

∗ (X) ⊗ Q (see [Fu, Corollary 18.3.1 (b)], or more
generally [FM, PART II, §0.2 Summary of results]) that for a local complete intersection
variety V in a smooth variety M we have

td∗(OV ) = td(TV ) ∩ [V ],

for TV the virtual tangent bundle of V in M . Therefore, if V is a local complete intersec-
tion variety V in a smooth variety M and V is also a Du Bois variety, then we have

MT0∗([V
p−→ X]) = 0.

�

Corollary 4.8. If the base variety S is a Q-homology manifold, then the motivic bivariant
Milnor–Todd class M̃T0∗ : KProp`.c.i (V/X h−→ S) → H∗∗(X

h−→ S) ⊗ Q vanishes on the
subgroup generated by [V

p−→ X] with V being Du Bois varieties.

Proof. This follows from the fact that for an element [V
p−→ X] with V a Du Bois variety

M̃T0∗([V
p−→ X]) • [S] =MT0∗([V

p−→ X]) = 0 and •[S] : H(X
h−→ S)⊗Q

∼=→ H(X →
pt)⊗Q = HBM

∗ (X)⊗Q is an isomorphism when S is a Q-homology manifold. �

Remark 4.9. Let us compare with the results in Theorem 2.3. Neither of the following
three diagrams commutes in general:

• y = −1 :

KProp`.c.i (V/X)

γF

xxrrrrrrrrrr
T−1

FJ
∗

((PPPPPPPPPPPP

F (X)
c∗

// HBM
∗ (X)⊗Q.
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• y = 0 :

KProp`.c.i (V/X)
γG0

xxqqqqqqqqqq
T0

FJ
∗

((PPPPPPPPPPPP

G0(X)
td∗

// HBM
∗ (X)⊗Q.

• y = 1 :

KProp`.c.i (V/X)

γΩ

xxrrrrrrrrrr
T1

FJ
∗

((PPPPPPPPPPPP

Ω(X)
L∗

// HBM
∗ (X)⊗Q.

Hence it is natural or reasonable to consider the following commutative diagrams with the
corresponding Milnor classes and the corresponding looked-for natural transformations

MT−1∗ : KProp`.c.i (V/X)→ HBM
∗∗ (X)⊗Q, Mc∗ : F (X)→ HBM

∗∗ (X)⊗Q

MT0∗ : KProp`.c.i (V/X)→ HBM
∗∗ (X)⊗Q, Mtd∗ : G0(X)→ HBM

∗∗ (X)⊗Q,

MT1∗ : KProp`.c.i (V/X)→ HBM
∗∗ (X)⊗Q, ML∗ : Ω(X)→ HBM

∗∗ (X)⊗Q :

• y = −1 :

KProp`.c.i (V/X)

γF

xxrrrrrrrrrr MT−1∗

((PPPPPPPPPPPP

F (X)
Mc∗

// HBM
∗∗ (X)⊗Q.

• y = 0 :

KProp`.c.i (V/X)
γG0

xxqqqqqqqqqq MT0∗

((PPPPPPPPPPPP

G0(X)
Mtd∗

// HBM
∗∗ (X)⊗Q.

• y = 1 :

KProp`.c.i (V/X)

γΩ

xxrrrrrrrrrr MT1∗

((PPPPPPPPPPPP

Ω(X)
ML∗

// HBM
∗∗ (X)⊗Q.

5. VERDIER-TYPE RIEMANN–ROCH FORMULAS

In this section we show Verdier-type Riemann–Roch formulas.
First we show a Verdier-type Riemann–Roch formula for the motivic canonical c` class

for a smooth morphism. Here we emphasize that we need a smooth morphism instead of a
local complete intersection morphism:
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Proposition 5.1. Let f : X → Y be a smooth morphism in the category VS:

X

h   A
AA

AA
AA

f // Y

k~~~~
~~

~~
~

S.

Then the following diagram commutes:

KProp`.c.i (V/Y k−→ S)
c`FJ
∗−−−−→ HBM

∗ (Y )⊗R

f∗
y yc`(Tf )∩f∗

KProp`.c.i (V/X h−→ S) −−−−→
c`FJ
∗

HBM
∗ (X)⊗R,

Here f∗ : HBM
∗ (Y )→ HBM

∗ (X) is the Gysin pullback homomorphism.

Proof. Let [W
p−→ Y ] ∈ KProp`.c.i (V/Y k−→ S) and consider the following diagram whose

top square is a fiber square:

(5.2) W ′
f ′ //

p′

��

W

p

��
X

h !!B
BB

BB
BB

B
f // Y

k~~}}
}}

}}
}}

S.

We want to show that

c`FJ∗ f∗([W
p−→ Y ]) = c`(Tf ) ∩ f∗

(
c`FJ∗ ([W

p−→ Y ])
)
.

c`FJ∗ f∗([W
p−→ Y ]) = c`FJ∗ ([W ′

p′−→ X])

= p′∗(c`(Th◦p′) ∩ [W ′]) (by definition of c`FJ∗ )

c`(Tf ) ∩ f∗
(
c`FJ∗ ([W

p−→ Y ])
)

= c`(Tf ) ∩ f∗ (p∗(c`(Tk◦p) ∩ [W ])) .

Since p : W → Y is proper and f : X → Y is smooth, hence flat, it follows from [Fu,
Proposition 1.7] that we have the base change formula:f∗p∗ = p′∗f

′∗. The above equality
continues as follows:

= c`(Tf ) ∩ p′∗f ′
∗
(c`(Tk◦p) ∩ [W ])

= p′∗
(
p′
∗
c`(Tf ) ∩ f ′∗(c`(Tk◦p) ∩ [W ])

)
(projection formula)

= p′∗
(
c`(p′

∗
Tf ) ∩ (c`(f ′

∗
Tk◦p) ∩ f ′

∗
[W ])

)
(by [Fu, Theorem 3.2])

= p′∗

(
(c`(Tf ′) ∪ c`(f ′

∗
Tk◦p)) ∩ [f ′

−1
(W )])

)
(by [Fu, Lemma1.7.1])

= p′∗
(
c`(Tf ′ + f ′

∗
Tk◦p) ∩ [W ′]

)
= p′∗ (c`(Tk◦p◦f ′) ∩ [W ′]) (Tk◦p◦f ′ = Tf ′ + f ′

∗
Tk◦p ∈ K0(W ′) )

= p′∗ (c`(Th◦p′) ∩ [W ′]) .
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Therefore we get that c`FJ∗ f∗([W
p−→ Y ]) = c`(Tf ) ∩ f∗

(
c`FJ∗ ([W

p−→ Y ]
)
. �

By the definition KProp`.c.i (V/X k−→ S) is the Grothendieck group of the monoid consist-
ing of some elements of IsoProp(V/X), hence a homomorphism

Ψ : KProp`.c.i (V/X k−→ S)→ HBM
∗ (X)⊗Q[y]

satisfying
Ψ([V

p−→ X]) = Ty∗([V
p−→ X]) (= Ty∗ ◦Θ([V

p−→ X]))

is uniquely determined. So we denote Ψ by the same symbol Ty∗:

Ty∗ : KProp`.c.i (V/X k−→ S)→ HBM
∗ (X)⊗Q[y],

which is also called a motivic Hirzebruch class in the present set-up.

Secondly we show a Verdier-type Riemann–Roch formula for the motivic Hirzebruch
class for a smooth morphism:

Proposition 5.3. Let f : X → Y be a smooth morphism in the category VS as in Propo-
sition 5.1. Then the following diagram commutes:

KProp`.c.i (V/Y k−→ S)
Ty∗−−−−→ HBM

∗ (Y )⊗Q[y]

f∗
y ytd(y)(Tf )∩f∗

KProp`.c.i (V/X h−→ S) −−−−→
Ty∗

HBM
∗ (X)⊗Q[y].

Proof. For the above diagram (5.2) we want to show that

Ty∗f
∗([W

p−→ Y ]) = td(y)(Tf ) ∩ f∗
(
Ty∗([W

p−→ Y ])
)
.

Since it follows from Hironaka’s resolution of singularities that any [W
p−→ Y ] can be

expressed as a linear combination ∑
V

aV [V
pV−−→ Y ]

where aV ∈ Z, V is a smooth variety , and pV : V → Y is proper, it suffices to show that

Ty∗f
∗([V

pV−−→ Y ]) = td(y)(Tf ) ∩ f∗
(
Ty∗([V

pV−−→ Y ])
)
.

Hence, from the beginning we can assume that in the above diagram 5.2 W is smooth
and p : W → Y is proper, but here note that we DO NOT need the requirement that the
composite k ◦ p : W → S is a local complete intersection morphism. Here it should be
noted that since W is smooth and f ′ : W ′ → W is smooth (because f ′ is the pullback of
the smooth morphism f : X → Y ), W ′ is also smooth, which is crucial below.

Ty∗f
∗([W

p−→ Y ]) = Ty∗([W
′ p
′

−→ X])

= Ty∗(p
′
∗[W

′ idW ′−−−→W ′])

= p′∗Ty∗([W
′ idW ′−−−→W ′])

= p′∗(td(y)(TW
′) ∩ [W ′]) (since W ′ is smooth).
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On the other hand we have

td(y)(Tf ) ∩ f∗Ty∗([W
p−→ Y ])

= td(y)(Tf ) ∩ f∗Ty∗(p∗[W
idW−−→W ])

= td(y)(Tf ) ∩ f∗p∗(Ty∗([W
idW−−→W ]))

= td(y)(Tf ) ∩ f∗p∗(td(y)(TW ) ∩ [W ])) (since W is smooth)

= td(y)(Tf ) ∩ p′∗f ′
∗
(td(y)(TW ) ∩ [W ]))

= p′∗
(
p′
∗
td(y)(Tf ) ∩ f ′∗(td(y)(TW ) ∩ [W ])

)
= p′∗

(
td(y)(p

′∗Tf ) ∩
(
f ′
∗
td(y)(TW ) ∩ f ′∗[W ]

))
= p′∗

((
td(y)(Tf ′) ∪ td(y)(f

′∗TW )
)
∩ [f ′

−1
W ])

)
= p′∗

(
td(y)(Tf ′ + f ′

∗
TW ) ∩ [W ′])

)
= p′∗

(
td(y)(TW

′) ∩ [W ′])
)

(since Tf ′ = TW ′ − f ′∗TW ).

Therefore we get that Ty∗f
∗([W

p−→ Y ]) = td(y)(Tf ) ∩ f∗
(
Ty∗([W

p−→ Y ])
)
. �

Remark 5.4. The above proof of course implies that the following Verdier-type Riemann–
Roch formula holds for the motivic Hirzebruch class Ty∗ : K0(V/X)→ HBM

∗ (X)⊗Q[y]:
for a smooth morphism f : X → Y in the category V the following diagram commutes:

K0(V/Y )
Ty∗−−−−→ HBM

∗ (Y )⊗Q[y]

f∗
y ytd(y)(Tf )∩f∗

K0(V/X) −−−−→
Ty∗

HBM
∗ (X)⊗Q[y].

Definition 5.5. For a smooth morphism f : X → Y , the twisted Gysin pullback homo-
mophism f∗∗ : HBM

∗ (Y )→ HBM
∗ (X) is defined by

f∗∗ = (−)dim(f)f∗ = (−1)dimX−dimY f∗.

(In other words, (−)codim(f)f∗∗ = (−1)dimY−dimXf∗∗ = f∗.) The contravariant Borel–
Moore homology theory with this twisted pullback homomotphism for smoth morphisms
is denoted by HBM

∗∗ .

In [Yo4, Theorem 2.2] we obtained a Verdier-type Riemann–Roch formula of the Milnor
class in a special case. The following Verdier-type Riemann–Roch formula of the motivc
Milnor–Hirzebruch class is a generalization of this result:

Theorem 5.6. For a smooth morphism f : X → Y in the category VS as in Proposition
5.1, the following diagram commutes:

KProp`.c.i (V/Y k−→ S)
MTy∗−−−−→ HBM

∗∗ (Y )⊗Q[y]

f∗
y ytd(y)(Tf )∩f∗∗

KProp`.c.i (V/X h−→ S) −−−−→
MTy∗

HBM
∗∗ (X)⊗Q[y].
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Proof. Let [W
p−→ Y ] ∈ KProp`.c.i (V/Y k−→ S). Then we have that

MTy∗f
∗([W

p−→ Y ])

=MTy∗[W
′ p
′

−→ X])

= (−1)dimW ′
(
Ty

FJ
∗ − Ty∗

)
([W ′

p′−→ X])

= (−1)dimW ′
(
Ty

FJ
∗ − Ty∗

)
(f∗[W

p−→ Y ])

= (−1)dimW ′
(
Ty

FJ
∗ f∗ − Ty∗f

∗) ([W
p−→ Y ])

= (−1)dimW ′
(
td(y)(Tf ) ∩ f∗TyFJ∗ − td(y)(Tf ) ∩ f∗Ty∗

)
([W

p−→ Y ])

= (−1)dimW ′td(y)(Tf ) ∩ f∗
(
Ty

FJ
∗ − Ty∗

)
([W

p−→ Y ])

= (−1)dimW ′(−)codim(f)td(y)(Tf ) ∩ f∗∗
(
Ty

FJ
∗ − Ty∗

)
([W

p−→ Y ])

= (−1)dimW ′+dimY−dimXtd(y)(Tf ) ∩ f∗∗
(
Ty

FJ
∗ − Ty∗

)
([W

p−→ Y ])

= (−1)dimW td(y)(Tf ) ∩ f∗∗
(
Ty

FJ
∗ − Ty∗

)
([W

p−→ Y ])

= td(y)(Tf ) ∩ f∗∗
(

(−1)dimW
(
Ty

FJ
∗ − Ty∗

)
([W

p−→ Y ])
)

= td(y)(Tf ) ∩ f∗∗
(
MTy∗([W

p−→ Y ])
)
.

�

Finally we give a “bivariant version” of Theorem 5.6:

Corollary 5.7. For a smooth morphism f : X → Y in the category VS as in Proposition
5.1, the following diagram commutes:

KProp`.c.i (V/Y k−→ S)
M̃Ty∗−−−−→ H(Y

h−→ S)⊗Q[y]

f∗
y y(−1)dim(f)td(y)(Tf )•Uf•

KProp`.c.i (V/X h−→ S) −−−−→
M̃Ty∗

H(X
h−→ S)⊗Q[y],

Proof. The commutativity of the above diagram follows from Theorem 5.6, the following
commutative diagram

H(Y
k−→ S)⊗Q[y]

•[S]−−−−→ HBM∗ (Y )⊗Q[y]

(−1)dim(f)td(y)(Tf )•Uf•
y ytd(y)(Tf )∩f∗∗

H(X
h−→ S)⊗Q[y] −−−−→

•[S]
HBM∗ (X)⊗Q[y],

and the fact (see [FM]) that for any β ∈ H(Y → pt) = HBM
∗ (Y )

Uf • β = f∗β

and also using the fact that •[S] : H(X
h−→ S)

∼=−→ HBM
∗ (X) is an isomorphism.

�
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[Sch2] J. Schürmann, Topology of singular spaces and constructible sheaves, Monografie Matematyczne 63

(New Series), Birkhäuser, Basel, 2003.
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Multi-variable Poincaré series associated with

Newton diagrams

W. Ebeling and S. M. Gusein-Zade ∗

Abstract

We define a multi-index filtration on the ring of germs of functions on a
hypersurface singularity associated with its Newton diagram and compute
the multivariable Poincaré series of this filtration in some cases.

Introduction

Poincaré series of filtrations (including multi-index ones) on the ring of germs of
functions on a complex analytic variety are of interest for some problems (see,
e.g., [2], [4], [7], . . . ). In a number of cases they look like the A’Campo formula
for the monodromy zeta function (being products/ratios of binomials of the
form (1 − tm)). Moreover, in some cases they are connected with monodromy
zeta functions corresponding to the singularity (see, e.g., [6, 5]).

For quasi-homogeneous singularities one has the classical Poincaré series in
one variable. A Poincaré series of one variable also corresponds to the semi-
group of values of an irreducible curve singularity. The initial motivation to
consider multi-variable Poincaré series stems from the study of reducible curve
singularities [2]. Recently they were found to be connected with the study of
Seiberg-Witten invariants for surface singularities [7].

We define a multi-index filtration on the ring of germs of functions on a
hypersurface singularity associated with its Newton diagram. One can say that
this filtration is a multi-index generalization of the quasi-homogeneous one. We
compute the Poincaré series of this filtration for curve singularities and for some
singularities of more variables. In the computed cases, they turn out to be of
A’Campo type.

∗Partially supported by the DFG-programme ”Representation Theory” (Eb 102/6–1),
RFBR–10–01–00678, NSh-709.2008.1. Keywords: Newton diagram, filtration, Poincaré se-
ries. AMS Math. Subject Classification: 32S05, 14M25, 16W70.
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1 Multi-index filtrations and their Poincaré se-
ries

A function v on the ring OX,0 of germs of functions on the germ (X, 0) of an
analytic space with values in Z≥0 ∪ {∞} is called a valuation if

(1) v(g1 + g2) ≥ min {v(g1), v(g2)},

(2) v(g1g2) = v(g1) + v(g2),

(3) v(c) = 0 for a non-zero constant c ∈ OX,0.

If a function v : OX,0 → Z≥0 ∪ {∞} possesses the properties (1) and (3) but in
general not the property (2), it is called an order function.

A family {v1, . . . , vs} of order functions on the ring OX,0 defines a multi-
index filtration of the ring OX,0. For g ∈ OX,0, let

v(g) := (v1(g), . . . , vs(g)) ∈ (Z≥0 ∪ {∞})s.

For v = (v1, . . . , vs) ∈ Zs the corresponding subspace is defined by

J(v) = {g ∈ OX,0 : v(g) ≥ v}.

(Here v(g) ≥ v means that vi(g) ≥ vi for all i = 1, . . . , s.)
The notion of the Poincaré series of the multi-index filtration {J(v)} defined

by a family {vi} of order functions was given in [3]. For v ∈ Zs, let d(v) =
dimJ(v)/J(v + 1) where 1 = (1, 1, . . . , 1). Let

L(t) =
∑
v∈Zs

d(v) t v ,

where t = (t1, . . . , ts), t
v = tv11 · . . . · tvs

s . (Pay attention that the sum is over all
v from Zs, not from Zs

≥0. For s > 1, the series L(t) contains monomials with
negative exponents.) The Poincaré series of the multi-index filtration {J(v)} is
the power series in t = (t1, . . . , ts) defined by

P{vi}(t) =

L(t) ·
s∏

i=1

(ti − 1)

t1 · . . . · ts − 1
. (1)

(This makes sense if all the dimensions d(v) are finite.)
Equation (1) implies that the coefficient at t v in the Poincaré series P{vi}(t)

is equal to ∑
I⊂I0

(−1)#I dim J(v + 1I)/J(v + 1) , (2)

where I0 = {1, 2, . . . , s}, 1I is the s-tuple in which the i-th component is equal
to 0 for i /∈ I and is equal to 1 otherwise.
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Remark. One can easily see that, if all the subspaces J(v+1{i}) (and therefore
all the subspaces J(v + 1I) for I ̸= ∅) are contained in one of them, say, in
J(v+1{1}), then the coefficient in equation (2) is equal to dim J(v)/J(v+1{1}).

Equation (2) (together with the inclusion-exclusion formula) implies that
the coefficient at t v in the Poincaré series is equal to the Euler characteristic
χ(PFv) of the projectivisation PFv = Fv/C∗ of the space

Fv = (J(v)/J(v + 1)) \
s∪

i=1

(
J(v + 1{i})/J(v + 1)

)
(see [2]).

To compute the Euler characteristic χ(PFv), it can be convenient to define
a C∗-action on the space PFv (or on elements of a constructible partitioning of
it). In this case the Euler characteristic of the total space coincides with the
Euler characteristic of the set of fixed points. In particular, if the C∗-action is
free, the Euler characteristic χ(PFv) is equal to zero.

One says that a multi-index filtration {J(v)} on the ring OX,0 is induced
by a (multi-)grading if there exist subspaces A v ⊂ OX,0, v ∈ Zs

≥0, such that
the ring OX,0 is a completion of the graded algebra

⊕
v∈Zs

≥0

A v and J(v) is the

corresponding completion of
⊕
v′≥v

A v′ . One can easily see that, if a filtration

{J(v)} is induced by a grading {A v} with finite-dimensional subspaces A v, the
Poincaré series of the filtration {J(v)} is given by the equation

P (t) =
∑

v∈Zs
≥0

dimA v · t v .

This is not the case in general. Coefficients of the Poincaré series are not,
generally speaking, dimensions of some spaces. They may be negative (see, e.g.,
Example 1 at the end of the paper).

2 Multi-index filtration corresponding to a New-
ton diagram

Let f : (Cn, 0) → (C, 0) be the germ of a holomorphic function with an isolated
critical point at the origin, non-degenerate with respect to its Newton diagram
Γ = Γ(f) [1]. Let V = {f = 0} be the corresponding hypersurface singular-
ity. Here we shall define a multi-index filtration on the ring OV,0 of germs of
functions on the hypersurface (V, 0). This filtration is a generalization of the
quasi-homogeneous filtrations defined by the equations of the (n−1)-dimensional
faces of the Newton diagram.

Suppose that the Newton diagram Γ has s faces γ1, . . . , γs of dimension n−1
(facets), and let γi lie in the hyperplane given by the equation

ℓi(k1, . . . , kn) = a
(i)
1 k1 + · · ·+ a(i)n kn = d(i)
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where a
(i)
1 , . . . , a

(i)
n and d(i) are positive integers with greatest common divisor

equal to 1.
For a monomial x k = xk1

1 · . . . · xkn
n , let

ui(x
k) := ℓi(k1, . . . , kn) =

n∑
j=1

a
(i)
j kj .

For a germ g(x1, · · · , xn) =
∑

k∈Zn
≥0

ck x
k ∈ OCn,0, let ui(g) := min

k:ck ̸=0
ui(x

k). The

function ui is a valuation on the ring OCn,0.

Proposition 1 The Poincaré series P{ui}(t) of the family {ui} of valuations is
given by the equation

P{ui}(t) =

n∏
j=1

(1− tu(xj))−1

(xj is the j-th coordinate function on the space Cn).

The proof easily follows from the fact that, in this case, the filtration {J(u)}
is induced by a grading. The corresponding subspace Au, u = (u1, . . . , us) ∈
Zs
≥0, is generated by the monomials x k with ℓi(k) = ui, i = 1, . . . , s.
For a function g ∈ OV,0 = OCn,0/(f), let

vi(g) := max
g′:g′≡g mod f

ui(g
′) .

The function vi on the ring OV,0 is not, generally speaking, a valuation. For
example, for f(x, y) = x5 + x2y2 + y5 and for the face of the Newton diagram
given by the equation ℓ(kx, ky) = 2kx+3ky = 10, one has u(x2) = 4, u(x3+y2) =
6, but u(x5+x2y2) = 15. However, it is an order function. In this way one gets
a family {v1, . . . , vs} of order functions and the corresponding s-index filtration
on the ring OV,0. We shall call it the Newton filtration.

3 Poincaré series of the Newton filtration for
curve singularities

Let f be the germ of a holomorphic function of two variables with an isolated
critical point at the origin, non-degenerate with respect to its Newton diagram
Γ. Let v1, . . . , vs be the order functions on the ring OV,0 (V = {f = 0})
corresponding to the one-dimensional faces γ1, . . . , γs of the diagram Γ. These
order functions are induced by the valuations u1, . . . , us on the ring OC2,0.

Theorem 1 One has

P{vi}(t) =

{
(1− tu(f)) · P{ui}(t) for s = 2,

P{ui}(t) for s > 2.
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Proof . Let the Newton diagram Γ consist of two faces (i.e., s = 2), and let
m = (m1,m2) be the intersection point of them. (The coordinates m1 and m2

are integers.) To compute the coefficient at t v, v = (v1, v2) ∈ Z2
≥0, consider the

lines Li = {ℓi(k) = vi}, i = 1, 2, and let k = (k1, k2) be their intersection point.
Suppose that the intersection point of the lines L1 and L2 is either non-

integral, or one of its coordinates is negative, or it satisfies the condition k ≥ m
(i.e., ki ≥ mi for i = 1, 2). In OC2,0 the space J(v)/J(v+1) is freely generated by
the monomials x k whose exponents k are the integer points on the boundary of
the domain {ℓi(k) ≥ vi for i = 1, 2} (and thus lie on the lines L1 and L2). Using
the relation f = 0 in OV,0, one eliminates some monomials (if any) on the lines
L1 and L2 starting from the intersection point of these lines. (If the intersection
point is integral, it is eliminated.) Let pi be the number of remaining points
(monomials) on the line Li, i = 1, 2. Then, in OV,0, one has

dim J(v)/J(v + 1) = p1 + p2,

dim J(v + 1{1})/J(v + 1) = p2, dimJ(v + 1{2})/J(v + 1) = p1,

and the equation (2) implies that the coefficient at t v is equal to zero.
Suppose that the intersection point of the lines L1 and L2 is integral, non-

negative (i.e., ki ≥ 0 for i = 1, 2) and satisfies the condition k1 < m1. (The case
k2 < m2 is treated in the same way.) In this case the relation f = 0 permits one
to eliminate points (if any) only on the line L2. In particular, the intersection
point of the lines L1 and L2 is not eliminated. As above, let pi be the number
of remaining points on the line Li, i = 1, 2. (The intersection point is counted
on both of them.) Then, in OV,0, one has

dim J(v)/J(v + 1) = p1 + p2 − 1,

dim J(v + 1{1})/J(v + 1) = p2 − 1, dimJ(v + 1{2})/J(v + 1) = p1 − 1,

and the equation (2) implies that the coefficient at t v is equal to 1.
Therefore

P{vi}(t) =
∑

k∈Z2
≥0

:k ̸≥m

tu(x
k) = (1−tu(x

m))·
2∏

i=1

(1−tu(xi))−1 = (1−tu(f))·P{ui}(t) .

Let the Newton diagram consist of more than 2 faces (i.e., s > 2). For
v = (v1, . . . , vs) ∈ Zs

≥0, let Li be the line {ℓi(k) = vi}, i = 1, . . . , s. Suppose
first that all the lines Li have (one) common integral point k ≥ 0. The relation
f = 0 permits one to eliminate some points (if any) on two of the lines Li (the
extreme ones), but not the intersection point k itself. In the space J(v)/J(v+1)
each subspace J(v+ 1{i})/J(v+ 1) is contained in the subspace {ck = 0} (ck is

the coefficient at x k in the power series decomposition of a function) and some
of them (in fact all but at most two) coincide with this subspace. This implies
that the coefficient at t v (v = (ℓ1(k), . . . , ℓs(k))) in the Poincaré series is equal
to

dim J(v)/J(v + 1)− dim{ck = 0} = 1 (3)
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(see the Remark in Section 1).
Now suppose that the lines Li do not have a common point in the non-

negative orthant. We shall show that in this case the coefficient at t v in the
Poincaré series is equal to zero. We may suppose that each line Li intersects
the boundary of the domain B = {ℓi(k) ≥ vi for i = 1, . . . , s}. Otherwise
J(v + 1{i})/J(v + 1) = J(v)/J(v + 1) and the coefficient at t v is equal to zero
according to the Remark in Section 1.

As written above, in OC2,0, the factorspace J(v)/J(v+1) is freely generated
by the monomials x k with k from the boundary of the domain B. The rela-
tions between these generators in OV,0 = OC2,0/(f) correspond to non-negative
integer translations of the Newton diagram Γ such that the translate of the dia-
gram is contained in the domain B and intersects the boundary of the domain.
Suppose that there is a face βi = Li ∩ B of the domain B (possibly of length
zero) which cannot intersect a translate (in the described way) of the Newton
diagram. In this case the monomials corresponding to integer points on the
face βi do not participate in any relation. Multiplication of the coefficients of
all these monomials in the power series decomposition of a function by λ ∈ C∗

defines a free C∗-action on the part of the space PFv where at least one coeffi-
cient of a monomial corresponding to a point on the boundary of the domain B
outside of the face βi is different from zero. Taking into account the condition
that all the lines Li do not have a common non-negative integer point, one can
see that the complement to this part may be non-empty only if the length of
the face βi is finite, but not zero, both ends k1 and k2 of this face are integral
and the boundary of the domain B consists of βi and two rays (corresponding
to the extreme two lines among Lj). (All the other lines (if any) go through the
points k1 or k2.) Moreover, both coefficients at x k1 and at x k2 in the power
series decomposition of a function from the complement under consideration are
different from zero. Therefore a free C∗-action on this part can be defined by
multiplying the coefficient at x k1 by λ ∈ C∗.

If all faces of the domain B intersect translates of the Newton diagram, a
vertex k of it (in fact any one) lies on a translate of Γ. This means that the
coefficient at x k can be eliminated with the help of the corresponding relation.
There are no other relations which include points of the boundary ∂B from both
connected components of ∂B \ {k}. In this case a free C∗-action on the space
PFv can be defined by multiplying coefficients at all the monomials from one of
the connected components of ∂B\{k} by λ ∈ C∗. Combining with equation (3),
this implies the statement of Theorem 1 for s > 2. �

4 Poincaré series of some singularities of more
than 2 variables

It looks somewhat complicated to get the Poincaré series corresponding to an ar-
bitrary Newton diagram. However, a special property of some Newton diagrams
permits one to compute the Poincaré series for them in a uniform way.
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Definition: We say that a Newton diagram is stellar if all its facets (faces of
maximal dimension) have a common vertex.

Example. Singularities with stellar Newton diagrams include surface singulari-
ties of type Tp,q,r, suspensions of singularities, and singularities with the Newton
diagram consisting of 2 facets, in particular, bimodal singularities.

Theorem 2 Let the Newton diagram Γ of a germ f ∈ OCn,0 be stellar. Then

P{vi}(t) = (1− tu(f)) · P{ui}(t) .

Proof . Let m be a vertex of the Newton diagram Γ on the intersection of all
facets of Γ. One can easily see that v(f) = v(xm). Therefore, for all points k
in Γ, one has ℓi(k) ≥ ℓi(m) for i = 1, . . . , s. For v = (v1, . . . , vs) ∈ Zs

≥0, let
Li = {ℓi(k) = vi}, i = 1, . . . , s, be the corresponding affine hyperplanes in Rs.
In OCn,0, the factorspace J(v)/J(v + 1) is freely generated by the monomials
x k with k from the boundary of the domain B = {ℓi(k) ≥ vi for i = 1, . . . , s}.
The relations between these generators in OV,0 = OC2,0/(f) correspond to non-
negative integer translations of the Newton diagram Γ such that the translate of
Γ is contained in B and intersects the boundary ∂B. For each such translation,
the translate m′ of the vertex m lies on ∂B as well. (If the values of all linear
functions ℓi at the point m′ are greater than vi, this holds for the translates
of other points of Γ as well.) Let λ(k) be a generic linear function such that
it has different values at different integer points (i.e., it is ”irrational”) and its
value at the vertex m is greater than at all other points of the Newton diagram
Γ. Using translates of Γ in order of decreasing values of the function λ on the
translation vectors, one eliminates all the translates of the vertex m. In this
way one eliminates all the integer points k on ∂B with k ≥ m. The monomials
corresponding to the remaining integral non-negative points on ∂B form a basis
of the factor space J(v)/J(v+1) in OV,0. Moreover the space J(v+1{i})/J(v+1)
is freely generated by the monomials corresponding to those points which do
not lie on Li. The equation (2) and the inclusion-exclusion formula imply that
the coefficient at t v in the Poincaré series is equal to the number of those non-
negative integer points k ∈ ∂B with k ̸≥ m which belong to all the hyperplanes
Li. Therefore

P{vi}(t) =
∑

k∈Zs
≥0

:k ̸≥m

tu(x
k) = (1−tu(x

m))·
s∏

i=1

(1−tu(xi))−1 = (1−t u(f))·P{ui}(t) .

�
Up to now, we have had only two types of equations, the types in Theorem 1,

for the Poincaré series of Newton filtrations. Moreover all coefficients in these
series were non-negative. This could produce a hope that Newton filtrations are
induced by gradings of the coordinate ring. The following examples show that,
in general, neither all the Poincaré series of Newton filtrations are of these types
nor all the coefficients in them are non-negative. In these examples we compute
the coefficient of the Poincaré series at t v(f).
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Examples. 1. For f(x, y, z) = x5 + y5 + z5 + x2yz + xy2z + xyz2 the Newton
diagram consists of 4 facets γ0, γ1, γ2, and γ3 lying on the hyperplanes with
the equations kx + ky + kz = 4, 2kx + ky + kz = 5, kx + 2ky + kz = 5, and
kx + ky + 2kz = 5 respectively. Besides the vertices (2, 1, 1), . . . , (0, 0, 5) of the
Newton diagram, there are 12 integral points on the diagram: 4 on each of the
facets γ1, γ2, and γ3. One integer point, say (0, 0, 5) can be eliminated using
the relation f = 0. The space J(v)/J(v + 1) (v = v(f)) is freely generated by
the 17 remaining monomials. The subspace Fv in it is the complement of the
union of the 4 subspaces given by the equations (ck is the coefficient at x k in
the power series decomposition of a function):

J(v + 1{0})/J(v + 1)

= {c211 = c121 = c112},
J(v + 1{1})/J(v + 1)

= {c050 = c041 = c032 = c023 = c014 = c121 = c112 = 0},
J(v + 1{2})/J(v + 1)

= {c500 = c401 = c302 = c203 = c104 = c211 = c112 = 0},
J(v + 1{3})/J(v + 1)

= {c500 = c410 = c320 = c230 = c140 = c050 = c211 = c121}.

From these data one can easily compute that the coefficient at t v(f) = t40t
5
1t

5
2t

5
3 in

the Poincaré series is equal to −1. Therefore, in this case, the Newton filtration
is not induced by a grading.
2. For f(x, y, z) = x20 + y20 + z16 +x8y8 +x6y6z2 +x2y2z10 +x3y8z3 +x8y3z3

the Newton diagram consists of 5 facets γ0, γ1, γ2, γ3, and γ4 lying on the
hyperplanes with the equations kx + ky + kz = 14, 2kx + 3ky + 5kz = 40, 3kx +
2ky +5kz = 40, 11kx +4ky +5kz = 80, and 4kx +11ky +5kz = 80 respectively.
Computations like in Example 1 yield the coefficient at t v(f) = t140 t401 t402 t803 t804
to be equal to 1. Since v(f) = (14, 40, 40, 80, 80) is not a linear combination of
v(x) = (1, 2, 3, 11, 4), v(y) = (1, 3, 2, 4, 11), and v(z) = (1, 5, 5, 5, 5), the Poincaré
series is not of one of the types of Theorem 1.
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monodromy of a quasihomogeneous singularity. Math. Res. Lett. 9, 509–513
(2002).

[6] S. M. Gusein-Zade, F. Delgado, A. Campillo: On the monodromy of a plane
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SINGULARITIES OF PIECEWISE LINEAR SADDLE SPHERES

ON S3

GAIANE PANINA

Abstract. Segre’s theorem asserts the following: let a smooth closed simple
curve c ⊂ S2 have a non-empty intersection with any closed hemisphere. Then

c has at least 4 inflection points.
In the paper, we prove two Segre-type theorems. The first one is a version

of Segre’s theorem for piecewise linear closed curves on S2. Here we have

inflection edges instead of inflection points.
Next, we go one dimension higher: we replace S2 by S3. Instead of simple

curves, we treat immersed saddle surfaces which are homeomorphic to S2

(“saddle spheres”). We prove that a piecewise linear saddle sphere Γ ⊂ S3

necessarily has inflection or reflex faces. The latter replace inflection points
and should be considered as singular phenomena.

As an application, we prove that a piecewise linear saddle surface cannot
be altered in a neighborhood of its vertex maintaining its saddle property.

1. Introduction

Let us start with the following classical theorems.

Theorem 1.1. Segre’s theorem, see [12], [17].
Let a smooth closed simple (i.e., embedded) curve c ⊂ S2 have a non-empty

intersection with any closed hemisphere. Then c has at least four inflection points.
�

Here are its two famous corollaries:

Theorem 1.2. V. Arnold’s tennis ball theorem, see [3], [12].
Any smooth closed simple curve c ⊂ S2 bisecting the area of the sphere has at

least four inflection points. �

Theorem 1.3. Möbius theorem, see [12].
A smooth closed simple non-contractible curve c ⊂ RP 2 has at least three inflec-

tion points. �

Segre’s theorem has various applications, generalizations and refinements. In the
paper, we present one more Segre-type phenomenon. However, unlike the already
existent ones, it deals with closed saddle surfaces on S3 rather than closed curves.
This object is not chosen just by chance: the study of closed saddle surfaces was
originally motivated by A.D. Alexandrov’s problem (see ”Motivations” below).

Key words and phrases. Saddle surface, piecewise linear surface, inflection point, Segre’s
theorem.
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Definitions and the main result. By S3 ⊂ R4 we denote the unit sphere cen-
tered at the origin O. A plane on the sphere S3 is a plane in the sense of spherical
geometry, i.e., the intersection of S3 with a Euclidean hyperplane passing through
O.

Definition 1.4. A closed surface Γ immersed in S3 is called saddle if no (spherical)
plane intersects Γ locally at just one point.

Definition 1.5. A (spherical) polygon on the two-dimensional sphere S2 is a part
of S2 bounded by a piecewise geodesic closed simple curve.

An angle of a polygon is called convex (respectively, reflex) if it is smaller (re-
spectively, greater) than π.

A vertex of a polygon is called convex (respectively, reflex) if it is incident to a
convex (respectively, reflex) angle.

Definition 1.6. A piecewise linear saddle sphere (a PLS-sphere, for short) on S3

is an immersed piecewise linear saddle surface which is homeomorphic to S2.
To avoid degeneracies and non-interesting exceptions, we assume in addition

that all edges of a PLS-sphere are shorter than π, and that its vertex-edge graph
is 3-connected.

Besides, we assume that the dihedral angle at each edge does not equal π, so the
vertex-edge graph has no redundant edges.

Given an oriented PLS-sphere, we can speak of its convex and concave edges. In
the sequel, we paint all the convex (respectively, concave) edges red (respectively,
blue).

Definition 1.7. A PLS-sphere is called elementary Barner if there is a point p ∈ S3

such that each great semicircle with endpoints at p and at its antipode −p hits the
surface exactly once.

Equivalently, an elementary Barner PLS-sphere admits a bijective projection π
onto some equator S2 ⊂ S3, see Fig. 2.

Elementary Barner saddle spheres are of a particular interest because of a rela-
tionship to A.D. Alexandrov’s problem (see ”Motivations” below).

The interplay between PLS-spheres and smooth saddle spheres is not well un-
derstood yet. On the one hand, it seems plausible that a piecewise linear saddle
sphere can be approximated by a smooth saddle sphere and vice versa. On the
other hand, there is just one proven result (see [13]). It asserts that an elementary
Barner PLS-sphere with a trivalent vertex-edge graph has a C∞-smooth saddle
approximation.

By topological reasons, a smooth saddle sphere necessarily has flattening points.
In some sense, the below defined inflection and reflex faces play the role of flattening
phenomena of a piecewise linear saddle sphere.

Definition 1.8. • A face f of a PLS-sphere Γ is an inflection face if
(1) f is bounded by two convex broken lines (say, by L1 and L2) such that

the convexity directions look like in Fig. 1.
(NB. A polygon with such convexity properties does not exist in Eu-
clidean plane.)

(2) All the edges of L1 are convex, whereas all the edges of L2 are concave.
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Figure 1. A fragment of an inflection face. An inflection arch of
a smooth saddle surface

• A face f of a PLS-sphere Γ is called a reflex face if it contains a (two-
dimensional) hemisphere.

Inflection faces as well as reflex faces represent a kind of singularity of the surface
Γ: none of them fits in a hemisphere (see Lemma 5.1).

The main result of the paper describes singularities of a saddle sphere:

Theorem 1.9. (1) Each saddle sphere Γ ⊂ S3 belongs to one of the following
disjoint classes:
(a) Γ has at least two reflex faces.
(b) Γ has exactly one reflex face and at least two inflection faces.
(c) Γ has no reflex faces and at least 4 inflection faces.

(2) There are saddle spheres with
(a) exactly two reflex faces.
(b) exactly one reflex face and exactly two inflection faces.
(c) no reflex faces and any number of inflection faces greater than 4.

(3) There are no embedded PLS-spheres on S3 of type (1a).
(4) There are no embedded PLS-spheres on RP 3.
(5) There exist immersed PLS-spheres on RP 3.
(6) There are no elementary Barner PLS-spheres of types (1a) and (1b).
(7) There exist elementary Barner PLS-spheres of type (1c) with any number

of inflection faces greater than 4. Moreover, the set of elementary Barner
PLS-spheres with a fixed number of inflection faces is disconnected. �

Outline of the proof. Combinatorially, a PLS-sphere is a planar graph with
additional equipment: its edges are colored and some of the angles (the reflex ones)
are marked. This equipment necessarily has some properties which follow from the
discrete Segre’s theorem proven in Section 2.

This leads to a combinatorial notion of a saddle graph. Reflex and inflection faces
are easily encoded in the combinatorial language, and we prove their existence using
just combinatorics. Some similar phenomena are already discussed in [5] and [6];
our approach combines in a sense these ideas.

Motivations.
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• The proof of the Theorem 1.9 is based on and generalizes the Segre’s theo-
rem. Here is one more link to the Segre’s theorem: a surface Γ is saddle if
and only if its intersection with a small sphere centered at any of its vertices
satisfies the condition of the discrete Segre’s theorem.

• There exist embedded saddle tori on RP 3. V. Arnold [2] formulated some
conjectures about them (and about their higher dimensional versions).
Some of the conjectures proved to be wrong [11], in partial cases some
of them are true [7, 8], but two of them still stand open for RP 3. In partic-
ular, Arnold conjectured that the set of all smooth saddle tori embedded
in RP 3 is connected (compare with Theorem 1.9, (7)). This paper sheds
no light to Arnold’s conjecture, but it treats some similar objects.

• Smooth elementary Barner saddle spheres arose originally in a relationship
(see [10, 13]) to the following uniqueness conjecture proven for analytic
surfaces by A. D. Alexandrov in [1]:

Let K ⊂ R3 be a smooth convex body. If for a constant C, at every point
of ∂K, we have R1 ≤ C ≤ R2, then K is a ball. (R1 and R2 stand for the
principal curvature radii of ∂K).

Here is the link: let K be a counterexample to the conjecture. Denote by
hK its support function and denote by hC the support function of the ball
of radius C. The graph γ of the difference hK − hC is a conical surface in
R4 with the apex at the origin O. Its intersection with S3 is an elementary
Barner saddle sphere (see Fig. 2).

Vice versa, a smooth elementary Barner saddle sphere yields a cone in
R4 which can be interpreted as the graph of some positively homogeneous
function h. For a sufficiently large C, the sum h + hC is a convex func-
tion. Then it is a support function of some convex body K which is a
counterexample to the conjecture.

To summarize, each smooth elementary Barner saddle sphere yields a
counterexample to the conjecture. An observation was made that all sad-
dle spheres constructed in [10] and [13] have inflection arches. Later, the
existence of at least four inflection arches for elementary Barner saddle
spheres was proven in [14]. The above defined inflection faces represent a
piecewise linear counterpart of inflection arches.

• We were also motivated by the following toy problem:
Given a piecewise linear saddle surface in R3, is it possible to alter it

locally (i.e., in a neighborhood of a vertex), maintaining its saddle property?
In Section 5 we show that it is never possible.

A convention about figures. Fix a hyperplane H ⊂ R4 not passing through the
origin O. The projection from the origin pr : S3 → H maps bijectively some open
hemisphere onto H. Spherical planes and lines are mapped to Euclidean planes
and lines. Therefore, pr preserves convexity and saddle property. By this reason,
we will sometimes depict spherical objects as their images under pr and refer to the
convexity type of the image, as in Fig. 1, 3, 12.

Alternatively, if a spherical drawing does not fit in a hemisphere, it makes sense
to depict it schematically, as in Fig. 6, 14.
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p

Figure 2. Elementary Barner sphere

Figure 3. An inflection edge

2. Discrete Segre’s theorem

We consider piecewise linear simple closed curves c on the unit sphere S2. If an
edge of such a curve is shorter than π, it is called short. Otherwise, we call it long.

Definition 2.1. A closed simple (i.e., embedded) curve c ⊂ S2 is spanning if it
intersects each closed hemisphere.

A closed simple curve c is strongly spanning if it intersects each open hemisphere.

Definition 2.2. Let c ⊂ S2 be a piecewise linear simple closed curve. It splits S2

into two (spherical) polygons. After fixing one of them, it makes sense to speak of
convex and reflex angles of c.

An edge is called an inflection edge of c (see Fig. 3) if it is incident to both
convex and reflex angles.

Theorem 2.3. (Discrete Segre’s Theorem)

(1) A strongly spanning piecewise linear closed simple curve has at least 4 in-
flection edges.

(2) Let c ⊂ S2 be a spanning piecewise linear closed simple curve. We as-
sume that c has more than 2 vertices. Then one of the two (non-disjoint)
assertions hold:
(a) c has at least 4 inflection edges,
(b) c has a long edge (say, e) and at least 2 inflection edges among the

edges excluding e.
(3) Let c = (P1, ..., Pn) ⊂ S2 be a spanning piecewise linear closed simple curve

with vertices {P1, ..., Pn}. Assume that c has more than 2 vertices and at
least two long edges. Then for any two long edges PiPi+1 and PjPj+1, there
is at least one inflection edge among the edges lying between them (that is,
among the edges Pi+1Pi+2, Pi+2Pi+3, ..., Pj−1Pj).
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Proof. The idea of the proof is to approximate c by an appropriate smooth curve
c′ and to apply then Segre’s theorem. However, this needs some accuracy: if the
curve c is not strongly spanning, its smooth approximation c′ can be non-spanning.

(1) Suppose c is strongly spanning. Then it can be approximated by a smooth
curve c′ such that c′ has only isolated inflection points which are in a natural
bijection with inflection edges of c. It remains to observe that a sufficiently
close c′ is spanning, and to apply Segre’s theorem to the curve c′.

(2) Suppose c is spanning, but not strongly spanning. Then there exists a
closed hemisphere S+ containing c. Denote by b its boundary (b is a great
circle). We may assume that b ∩ c is a union of some geodesic segments
ei1 , ..., eim of non-zero length (see Fig. 4). Two cases should be treated
separately:
(a) Suppose all the edges ei1 , ..., eim are short.

Note first that each semicircle b+ ⊂ b intersects the curve c. Take a
smooth approximation c′ of the curve c such that c′ has only isolated
inflection points which are in a natural bijection with inflection edges
of c plus the following additional property: the curve c′ tangents each
of the segments ei1 , ..., eim , and each semicircle b+ contains at least one
tangent point (see Fig. 4). This is always possible by Caratheodory
theorem. This guarantees that c′ is spanning. It remains to apply
Segre’s theorem to the curve c′.

(b) Suppose one of the edges (say, e) is long. We may assume that |e| > π.
We approximate c by a smooth curve c′ such that c′ has only isolated
inflection points which are in a natural bijection with inflection edges
of c except for two extra inflection points lying on e (see Fig. 5). It
remains to apply Segre’s theorem to the curve c′.
We explore here the following phenomenon: suppose a (geodesic) seg-
ment in the plane is approximated by a smooth curve which tangents
the segment at the endpoints. Then by Möbius Theorem, the curve
has at least 2 inflection points (except for the endpoints). For a long
segment on the sphere, such a curve can have no inflection points.

(3) The curve c is strongly spanning and has therefore at least 4 inflection
edges.

Assume the contrary, i.e., that the chain Pi+1, Pi+2, ..., Pj contains no
inflection edges. The (non-closed) curve Pi+1, Pi+2, ..., Pj is contained in
the lune bounded by PiPi+1 and the extension of Pi+1Pi+2 (see Fig. 6).

Indeed, if not, i.e., if Pi+1, Pi+2, ..., Pj hits the extension of Pi+1Pi+2

(the dotted line) at a point A, then the curve c′′ depicted in Fig. 6, 2 has
at least two inflection edges. A contradiction.

Now prove the theorem. We replace the curve c by another curve c′ as is
depicted in Fig. 6, 1. By the above proven, c′ is simple. Since the curve c′

is strongly spanning, it has at least 4 inflection edges. A contradiction. �

3. Saddle graphs

By a graph we mean a tuple G = (V,E) where V is a (finite) set of vertices and
E is the set of edges (unordered pairs of different vertices).

For v ∈ V , denote by E(v) the set of edges incident to the vertex v.
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Figure 4. Smoothing of a curve without long edges

Figure 5. Smoothing of a non-strongly spanning curve with a
long edge

Let G = (V,E) be a 3-connected planar graph. All its embeddings in the sphere
S2 are known to have one and the same facial structure. Therefore, we have a
natural notion of a face of the graph and a cyclic ordering on the set E(V ). Besides,
we have a well-defined notion of angles:

Definition 3.1. An unordered pair of edges (e1, e2) is called an angle of G if the
edges e1 and e2 are consecutive edges of a face of the graph G. The set of all angles
we denote by A(G). The set of all angles incident to a vertex v we denote by A(v).

The next idea is to add the so called saddle structure to a graph G. Namely, we
paint convex edges red and we paint concave edges blue. Besides, we mark all the
reflex angles.

Till now, a graph G is just a combinatorial object, so in the below definition, the
combinatorial convexity and concavity have no geometrical meaning. The saddle
structure is defined axiomatically.

However, later we shall see that if a graph G together with a coloring on its
edges arise from some saddle sphere, then it satisfies the axioms from the below
definition.

Definition 3.2. Let G = (V,E) be a 3-connected planar graph.
Let Col : E → {red, blue} and Refl : A(G) → {0, 1} be some mappings.
Angles with Refl(a) = 1 we call (combinatorially) reflex angles.
We say that a triple (G,Col,Refl) is a graph equipped with a saddle structure

(a saddle graph, for short) if for any vertex v, we have the following (see Fig. 7):
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(1) ”No reflex angles condition” If Refl is identically 0 on A(v) (i.e.,
there are no reflex angles incident to v), then the number of changes of the
function Col when going around the vertex v is greater or equal than 4.

(2) ”Exactly one reflex angle condition” If there is exactly one reflex angle
at v, (say, Refl(ei, ej) = 1), then the function Col changes at least twice
when going around the vertex v from ei to ej .

(3) ”More than one reflex angle condition” If there are more than one
reflex angle at v, then we claim two things: (1) that the total number of
color changes when going around the vertex v is greater or equal than 4
and (2) that the color changes at least once when going from one edge of a
reflex angle to the edge of the next reflex angle.

Definition 3.3. For a face f of a saddle graph, we algorithmically define its index
i(f), see Fig. 8:

(1) At the beginning, put i(f) := 0. Start going along the boundary of the face
f .

(2) Once we pass by a vertex at which the color changes, put
i(f) := i(f) + 1.

(3) Once we pass by a vertex, if the color does not change and the angle we
are passing by is reflex, we keep i(f) unchanged.

(4) Once we pass by a vertex, if the color does not change and the angle we
are passing by is not reflex, put i(f) := i(f) + 2.
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Figure 8. A saddle graph and the values of i(f)

Definition 3.4. Let v be a vertex of a saddle graph. An edge e incident to v is
called superfluous with respect to the vertex v if its deletion maintains the properties
(1)–(3) of the Definition 3.2 at the vertex v.

We describe below some local graph transformations, the elementary splittings
of three types.

Definition 3.5. (1) For two neighbor edges of different colors, one of which is
superfluous, the local graph transformation depicted in Fig. 9 is called the
first elementary splitting.

Here are the formalities: if a blue edge av is superfluous with respect
to v and a red edge bv is neighbor to av at the vertex v, then the first
elementary splitting looks as follows:
(a) Remove from the graph the edges av and bv
(b) Add a new vertex d, red edges bd and dv, and a blue edge ad
(c) Mark the angle bdv as reflex.

(2) Suppose that a vertex v has no adjacent reflex angles and exactly 4 incident
edges. The local graph transformation depicted in Fig. 10, 1 is called the
second elementary splitting.
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Figure 9. Two elementary splittings of the first type. For the
first example, the index i is maintained. For one face of the second
example, it increases on 2.

More precisely, let a, b, c, and d be vertices adjacent to v. Assume that
the edges av and cv are red. We do the following:
(a) Remove from the graph the edges cv and bv
(b) Add a new vertex e, red edges ve and ce, and a blue edge be
(c) Mark the angles ave and vec as reflex.

Definition 3.6. Suppose a vertex v is incident to more than one reflex angles. The
following procedure describes the splitting which takes reflex angles apart.

(1) Choose two edges e and e′ of one and the same color (say, red) incident to
the vertex v such that the edges e and e′ are separated by reflex angles, see
Fig. 11.

(2) Split the vertex v into two vertices, split also the two edges e and e′ and
add one more edge of the other color (here it is blue) as is shown in Fig.
11. This local graph transformation is called the third elementary splitting.

More precisely, let av and bv be the edges e and e′. Assume that they
are red. We do the following:
(a) The set of all the edges incident to the vertex v (except for the edges

e and e′) is divided by the broken line avb into two parts E1 and E2.
(b) Add a new vertex v′, red edges av′ and bv′, and a blue edge vv′

(c) Each edge xv from E2 replace by the new edge xv′.

An easy check proves that:
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Figure 10. Second elementary splitting. All the indices are maintained.
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Figure 11. Third elementary splitting adds two faces with i =
4. All the other indices are maintained.

Lemma 3.7. (1) An elementary splitting of a saddle graph yields a saddle
graph.

(2) For any first or second elementary splitting, the faces of the new graph are
in a natural bijection with the faces of the original graph.

(3) A third elementary splitting adds two faces with i = 4.
(4) The index i of a face does not decrease after any elementary splitting. �

Lemma 3.8. Each saddle graph is reducible to a trivalent saddle graph via a chain
of elementary splittings.

Proof. Third elementary splittings enable us to get a graph with at most one
reflex angle at each vertex. Next, we treat all the vertices one by one. After fixing
a vertex v, we first get rid of all superfluous edges incident to v. We arrive at one
of the two possible cases depicted in Fig. 10. In the second case, we are done. In
the first case it remains to apply the second splitting. �

The following theorem is a combinatorial version of Theorem 1.9, (1).

Theorem 3.9. For each saddle graph, one of the following statements is valid:

(1) The graph has at least two faces with i(f) = 0.
(2) The graph has one face with i(f) = 0 and at least 2 faces with i(f) = 2.
(3) The graph has no faces with i(f) = 0 and at least 4 faces with i(f) = 2.

Proof. Due to Lemma 3.8 and Lemma 3.7, we may assume that the graph
is trivalent. At each of its vertex it looks like the graph in Fig. 10, 2 (up to
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color reverting). Count the total sum Σ of indices i(f) for all the faces f . The
contribution of each vertex equals 2, therefore we have Σ = 2 | V | . The Euler
formula for trivalent graphs 2 | F |=| V | +4 implies that Σ = 4 | F | −8. Since the
index i(f) is always positive and even, we are done. (Here | F | and | V | denote
the number of faces and vertices respectively.) �

Proof of Theorem 1.9, (1)

We associate a saddle graph SG(Γ) to a saddle sphere Γ:

(1) Set the graph G equal the vertex-edge graph of the surface Γ.
(2) Fix an orientation of Γ. Now it makes sense to speak of convex and concave

edges. For an edge e, set

Col(e) =

{
red, if e is convex;
blue, otherwise.

(3) For an angle a, set

Refl(a) =

{
1, a is a reflex angle on Γ;
0, otherwise.

For a saddle sphere, SG(Γ) is a saddle graph. Indeed, the properties from
Definition 3.2 follow from the discrete Segre’s theorem. Given a vertex v of the
surface Γ, take its Euclidean image and a small sphere Sv centered at the point v.
The intersection Γ∩Sv is a piecewise linear simple spanning curve with more than
two vertices.

Next, we apply Theorem 3.9 to the saddle graph SG(Γ). To conclude the proof,
it remains to understand the geometrical meaning of the index i(f).

Lemma 3.10. For a a face f of a saddle sphere Γ, we have:

(1) i(f) = 0 implies that f is a reflex face.
(2) i(f) = 2 implies that f is either a reflex face or an inflection face.

Proof. (1). i(f) = 0 implies that the complement of f is a (spherical) polygon
with convex angles. Such polygons are known to lie in an open hemisphere.

(2). If i(f) = 2, three cases are possible:

(1) The face f has no convex angles. Then its complement lies in an open
hemisphere.

(2) The face f has exactly one convex angle. This means that the boundary
of f has exactly 2 inflection edges (the ones adjacent to the only convex
vertex). By Segre’s Theorem, the boundary of f is not a strongly spanning
curve, and therefore, fits in an closed hemisphere.

(3) The face f has two convex angles. This implies that the boundary of f has
both blue and red edges and the color changes at the convex vertices. This
means by definition that f is an inflection face.

�

4. Proof of Theorem 1.9, (2-7)

(2,a). Here is the construction of a saddle sphere with two reflex faces (see Fig.
12): take two (spherical) planes an join them by a polytopal tube.
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Figure 12. A saddle sphere with two reflex faces

Figure 13. Saddle sphere with one reflex face and two inflection
faces. The shadowed tiles correspond to inflection faces

(2,b). The construction of a saddle sphere with just one reflex face and two in-
flection faces is based on Maxwell-Cremona theorem and Laman theory for planar
graphs embedded in S2 (see details in [4] and [16]).

Figure 13 depicts a tiling of the sphere S2 generated by an embedded graph.
The graph is a rigidity circuit, therefore it has a 3D lifting, that is, there exists a
piecewise linear surface Γ embedded in S3 whose bijective projection π (see Fig. 2)
onto S2 yields this tiling. All the vertices of Γ (except for a single one) have an
incident reflex angle. Therefore, the surface Γ is saddle everywhere except for just
one vertex (marked red in Fig. 13). Next, we truncate Γ at the convex vertex and
patch a reflex face. The result is the desired surface.

(2,c). An example of an elementary Barner sphere with any number of inflection
faces greater than 4 was constructed in [9].

(3). A saddle sphere with two reflex faces is never embedded since the reflex faces
necessarily have an intersection.
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(4). Suppose the contrary: there exists an embedded PLS-sphere Γ ⊂ RP 3. Con-
sider the standard covering φ : S3 → RP 3. The preimage of Γ is a union of two
embedded saddle spheres on S3. Each of them has either an inflection face or a
reflex face f . But φ is not injective on f .

(5). The mapping φ maps an immersed saddle sphere to an immersed saddle
sphere.

(6). Projections of two reflex faces (or a reflex face and an inflection face) on
any (spherical) plane necessarily have an intersection. This is because each such
projection necessarily contains a lune, see Lemma 5.1.

(7). The existence of an elementary Barner saddle sphere with any number of
inflection faces greater than 3 was proven in [9]. The set of all elementary Barner
saddle spheres with exactly 4 inflection faces is disconnected. This was proven in
[14].

Furthermore, paper [15] gives a combinatorial classification of elementary Barner
saddle sphere with any number of inflection faces greater than 3. Each elementary
Barner saddle sphere Γ ⊂ S3 generates an arrangement of (at least four) non-
crossing oriented great semicircles on S2. Namely, take the bijective projection of Γ
onto some equator S2 (it exists by definition). The projection of each inflection face
(see Lemma 5.1) contains a great semicircle which carries an orientation generated
by red-blue sides of the projection. If we take one oriented great semicircle for each
inflection face, we get an arrangement of non-crossing oriented great semicircles on
S2. In the paper [15] the converse is proven: each spanning arrangement of non-
crossing oriented great semicircles is generated by an elementary Barner saddle
sphere. Since there exist non-isotopic arrangements with one and the same number
of great semicircles, the theorem is proven.

In particular, this means the diversity of saddle spheres on S3. �

5. An application to saddle surfaces in Euclidean space

Lemma 5.1. (1) Two inflection faces of an elementary Barner saddle sphere
cannot have a common convex vertex.

(2) For an inflection face f , let s1 and s2 be linear segments lying on L1 and
L2 respectively (we use notation of Definition 1.8). Then the lune bounded
by extended s1 and s2 lies in f .

(3) An inflection face contains a geodesic arc (a great semicircle) joining two
antipodal points of S3.

Proof. (1). Indeed, in this case, projections of the faces to any spherical plane
have a nonempty intersection. (2) follows from convexity properties of L1 and L2

and implies (3). �

Consider a piecewise linear saddle surface M in R3 with the only vertex O (i.e.,
M is a conical surface, as in Fig. 15). Assume in addition that M can be bijectively
projected onto some plane E. A natural question which arose in attempts to develop
a saddle approximation technique was the following:

Can we alter M locally, maintaining its saddle properties?
The answer is ”No”:
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Proposition 5.2. In the above notation, suppose that for a piecewise linear saddle
surface M ′ ∈ R3 the following is true:

• M ′ coincides with M outside a ball centered at O;
• M ′ can be bijectively projected onto the plane E.

Then M = M ′.

Proof. Assume thatM ′ ̸= M . We raise the surfaceM ′ to the sphere S3. Namely,
we take the preimage pr−1(M ′) under the central projection pr : S3 → R3. The
closure of the preimage is some elementary Barner saddle sphereM ′

sph. By Theorem

1.9, surface M ′
sph necessarily has 4 inflection faces. The only candidates are those

coming from unbounded faces of M ′. But each two of them have an intersection,
which is impossible. �
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FAST LOOPS ON SEMI-WEIGHTED HOMOGENEOUS

HYPERSURFACE SINGULARITIES

ALEXANDRE FERNANDES

Abstract. We show the existence of essential fast loops on semi-weighted

homogeneous hypersurface singularities with weights w1 ≥ w2 > w3. In par-

ticular we show that semi-weighted homogeneous hypersurface singularities are

metrically conical only if their two lowest weights are equal.

1. Introduction

Let X ⊂ Rn be a subanalytic set with a singularity at x. It is well-known for

small real numbers ε > 0 that there exists a homeomorphism from the Euclidean

ball B(x, ε) to itself which maps X ∩B(x, ε) onto the straight cone over X ∩S(x, ε)

with vertex at x. The homeomorphism h is called a topologically conical structure

of X at x and, since John Milnor proved the existence of topologically conical

structure for algebraic complex hypersurfaces with an isolated singularity [9], some

authors say ε is a Milnor radius of X at x. Some developments of the Lipschitz

geometry of complex algebraic singularities come from the following question: given

an algebraic subset X ⊂ Cn with an isolated singularity at x, is there ε > 0 such

that X ∩ B(x, ε) is bi-Lipschitz homeomorphic to the cone over X ∩ S(x, ε) with

vertex at x? When we have a positive answer for this question we say that (X,x)

is metrically conical. Some motivations for this question were given in [3], [6] and,

in the same papers, the above question was answered negatively. The strategy

used in [6] to show that some examples of complex weighted homogeneous surface

singularities (X,x) are not metrically conical was to exhibit nontrivial loops on

X∩S(x, ε) which the diameter goes to 0 faster than linearly as ε→ 0. In this paper

we analyze semi-weighted homogeneous hypersurface singularities under the same
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point of view above and, in particular, we show that semi-weighted homogeneous

hypersurface singularities are metrically conical only if its two lowest weights are

equal.

I would like to thank the anonymous referee for useful suggestions.

2. Preliminaries

2.1. Inner metric. Given an arc γ : [0, 1] → Rn, we remember that the length of

γ is defined by

l(γ) = inf{
m∑
i=1

|γ(ti)− γ(ti−1)| : 0 = t0 < t1 < · · · < tm−1 < tm = 1}.

Let X ⊂ Rn be a subanalytic connected subset. It is well-know that the function

dX : X ×X → [0,+∞)

defined by

dX(x, y) = inf{l(γ) : γ : [0, 1]→ X; γ(0) = x, γ(1) = y}

is a metric on X, so-called inner metric on X.

Theorem 2.1 (Pancake Decomposition [8]). Let X ⊂ Rn be a subanalytic con-

nected subset. Then, there exist λ > 0 and X1, . . . , Xm subanalytic subsets such

that:

a. X =
⋃m
i=1Xi,

b. dX(x, y) ≤ λ|x− y| for any x, y ∈ Xi, i = 1, . . . ,m.

2.2. Horn exponents. Let β ≥ 1 be a rational number. The germ of

Hβ = {(x, y, z) ∈ R3 : x2 + y2 = zβ , z ≥ 0}

at 0 ∈ R3 is called a β-horn.

By results of [1], we know that a β1-horn is bi-Lipschitz equivalent, with respect

to the inner metric, to a β2-horn if, and only if β1 = β2. Let Ω ⊂ Rn be a 2-

dimensional subanalytic set. Let x0 ∈ Ω be a point such that Ω is a topological

2-dimensional manifold without boundary near x0.

Theorem 2.2. [1] There exists a unique rational number β ≥ 1 such that the germ

of Ω at x0 is bi-Lipschitz equivalent, with respect to the inner metric, to a β-horn.
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The number β is called the horn exponent of Ω at x0. We use the notation

β(Ω, x0). By Theorem 2.2, β(Ω, x0) is a complete intrinsic bi-Lipschitz invariant

of germs of subanalytic sets which are topological 2-dimensional manifold without

boundary. In the following, we show a way to compute horn exponents.

According to [2], β(Ω, x0) + 1 is the volume growth number of Ω at x0, i. e.

β(Ω, x0) + 1 = lim
r→0+

logH2[Ω ∩B(x0, r)]

log r

where H2 denotes the 2-dimensional Hausdorff measure with respect to Euclidean

metric on Rn.

2.3. Order of contact of arcs. Let γ1 : [0, ε) → Ω and γ2 : [0, ε) → Ω be two

continuous semianalytic arcs with γ1(0) = γ2(0) = x0 and not identically equal to

x0. We suppose that the arcs are parameterized in the following way:

‖γi(t)− x0‖ = t, i = 1, 2.

Let ρ(t) be a function defined as follows: ρ(t) = ‖γ1(t) − γ2(t)‖. Since ρ is a

subanalytic function there exist numbers λ ∈ Q and a ∈ R, a 6= 0, such that

ρ(t) = atλ + o(tλ).

The number λ is called an order of contact of γ1 and γ2. We use the notation

λ(γ1, γ2) (see [4]).

Let K be the field of germs of subanalytic functions f : (0, ε)→ R. Let ν : K → R

be a canonical valuation on K. Namely, if f(t) = αtβ + o(tβ) with α 6= 0 we put

ordt(f(t)) = β.

Lemma 2.3. Let γ1, γ2 be a pair of semianalytic continuous arcs such that γ1(0) =

γ2(0) = x0 and γi 6= x0 (i = 1, 2). Let γ̃1(τ) and γ̃2(τ) be semianalytic param-

eterizations of γ1 and γ2 such that ‖γ̃i(τ) − x0‖ = τ + oi(τ), i = 1, 2. Then

ordτ‖γ̃1(τ)− γ̃2(τ)‖ ≤ λ(γ1, γ2).

The following result is an alternative way to compute horn exponents of germs of

subanalytic sets which are topological 2-dimensional manifold without boundary.
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Theorem 2.4. Let Ω ⊂ Rn be a 2-dimensional subanalytic set. Let x0 ∈ Ω be a

point such that Ω is a topological 2-dimensional manifold without boundary near x0.

Then β(Ω, x0) = min{λ(γ1, γ2) : γ1, γ2 are semianalytic arcs on Ω with γ1(0) =

γ2(0) = x0}.

Lemma 2.3 and Theorem 2.4 were proved in [5].

3. Fast loops

Let X ⊂ Rn be a subanalytic set with a singularity at x. Let ε > 0 be a Milnor

radius of X at x and let us denote by X∗ the set X ∩B(x, ε)\{x}. Given a positive

real number α, a continuous map γ : S1 → X∗ is called an α-fast loop if there exists

a homotopy H : S1 × [0, 1]→ X ∩B(x, ε) such that

(1) H(θ, 0) = x and H(θ, 1) = γ(θ), ∀ θ ∈ S1,

(2) lim
r→0+

1

ra
H2(Im(H) ∩B(x, r)) = 0 for each 0 < a < α,

where Im(H) denotes the image of H.

Given a subanalytic set X and a singular point x ∈ X, according to [2], there

exists a positive number c such that any α-fast loop γ : S1 → X∗ with α > c is

necessarily homotopically trivial. Such a number c is called distinguished for (X,x).

We define the υ invariant in the following way:

υ(X,x) = inf{c : c is distinguished for (X,x)}.

The number υ(X,x) defined above is inspired by the first characteristic exponent

for the local metric homology presented in [2].

Example 3.1. Let K ⊂ Rn be a straight cone over a Nash submanifold N ⊂ Rn,

with vertex at p. Then every loop γ : S1 → K∗ is a 2-fast loop. Moreover, if α > 2,

then each α-fast loop γ : S1 → K∗ is homotopically trivial. We can sum up it

saying υ(K, p) = 2.

Proposition 3.2. Let (X,x) and (Y, y) be subanalytic germs. If there exists a germ

of a bi-Lipschitz homeomorphism, with respect to inner metric, between (X,x) and

(Y, y), then υ(X,x) = υ(Y, y).
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Proof. Let f : (X,x) → (Y, y) be a bi-Lipschitz homeomorphism, with respect to

the inner metric. Given A ⊂ X, let us denote Ã = f(A). In this case, A = f−1(Ã),

where f−1 denotes the inverse map of f : (X,x)→ (Y, y).

Claim. There are positive constants k1, k2, λ1, λ2 such that

1

k1
H2(Ã ∩B(y,

r

λ2
)) ≤ H2(A ∩B(x, r)) ≤ k2H2(Ã ∩B(y, λ1r)).

In fact, using Pancake Decomposition Theorem (see Subsection 2.1) and using

that f and f−1 are Lipschitz maps, we obtain positive constants λ1, λ2 such that

f(A ∩B(x, r)) ⊂ (Ã ∩B(yλ1r)) and f(Ã ∩B(y, r)) ⊂ (A ∩B(xλ2r))

and we also obtain positive constants k1, k2 such that

H2(f(A∩B(x, r))) ≤ k1H2(A∩B(x, r)) andH2(f−1(Ã∩B(y, r))) ≤ k2H2(Ã∩B(y, r)).

Our claim follows from these two inequalities and the two inclusions above.

Now, we use this claim to show that given α > 0, a loop γ : S1 → X \ {x}

is an α-fast loop if, and only if, f ◦ γ : S1 → Y \ {y} is an α-fast loop. In fact,

let γ : S1 → X \ {x} be a loop and H : S1 × [0, 1] → X a homotopy such that

H(θ, 0) = x and H(θ, 1) = γ(θ), ∀ θ ∈ S1. Thus, f ◦ γ : S1 → Y \ {y} is a

loop and f ◦ H : S1 × [0, 1] → Y is a homotopy such that f ◦ H(θ, 0) = x and

f ◦H(θ, 1) = f ◦ γ(θ), ∀ θ ∈ S1. Let us denote A = Im(H) and Ã = Im(f ◦H), i.

e., Ã = f(A). Given 0 < a < α, by the above claim, we have that

lim
r→0+

1

ra
H2(A ∩B(x, r)) = 0

if, and only if,

lim
r→0+

1

ra
H2(Ã ∩B(y, r)) = 0.

In other words, it was shown that γ : S1 → X \ {x} is an α-fast loop if, and only

if, f ◦ γ : S1 → Y \ {y} is an α-fast loop, hence υ(X,x) = υ(Y, y). �

Corollary 3.3. Let X ⊂ Rn be a subanalytic set and x ∈ X an isolated singular

point. If υ(X,x) > 2, then (X,x) is not metrically conical.

Proof. Let N be the intersection X∩S(x, ε) where ε > 0 is chosen sufficiently small.

Since x is an isolated singular point of X, we have N ⊂ Rn is a Nash submanifold.

If (X,x) is metrically conical, X∩B(x, ε) must be bi-Lipschitz homeomorphic (with
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respect to the inner metric) to the straight cone over N with vertex at x. Thus, it

follows from Proposition 3.2 that υ(X,x) = 2. �

4. semi-weighted homogeneous hypersurface singularities

Remind that a polynomial function f : C3 → C is called semi-weighted homo-

geneous of degree d ∈ N with respect to the weights w1, w2, w3 ∈ N if f can

be presented in the following form: f = h + θ where h is a weighted homoge-

neous polynomial of degree d with respect to the weights w1, w2, w3, the origin is

an isolated singularity of h and θ contains only monomials xm1
1 xm2

2 xm3
3 such that

w1m1 + w2m2 + w3m3 > d.

An algebraic surface S ⊂ C3 is called semi-weighted homogeneous if there exists

a semi-weighted homogeneous polynomial f = h+ θ such that

S = {(x1, x2, x3) ∈ C3 : f(x1, x2, x3) = 0}.

The set

S0 = {(x1, x2, x3) ∈ C3 : f(x1, x2, x3) = 0}

is called a weighted approximation of S.

Theorem 4.1. Let S ⊂ C3 be a semi-weighted homogeneous algebraic surface with

an isolated singularity at origin 0 ∈ C3. If the weights of S satisfy w1 ≥ w2 > w3,

then υ(S, 0) > 2. In particular, (S, 0) is not metrically conical.

Proof. Let S ⊂ C3 be defined by the semi-weighted polynomial f = h+ θ of degree

d and let S0 be the following weighted homogeneous approximation of S:

S0 = {(x1, x2, x3) ∈ C3 : h(x1, x2, x3) = 0}.

Let us consider a family of functions defined as follows:

F (X,u) = h(X) + uθ(X),

where u ∈ [0, 1], X = (x1, x2, x3). Let V (X,u) be the vector field defined by:

V (X,u) = −
3∑
i=1

Qi(X,u)

P (X,u)

∂

∂xi
+

∂

∂u

where

P (X,u) =

3∑
i=1

| ∂F
∂xi

(X,u)|2αi and Qi(X,u) = θ(X)| ∂F
∂xi

(X,u)|2αi−2 ∂F

∂xi
(X,u)
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and αi = (d−w1)(d−w2)(d−w3)
d−wi

, i = 1, 2, 3.

It was shown, by L. Fukui and L. Paunescu (see [7] p. 445), that the flow of

this vector field gives a modified analytic trivialization [7] of the family F−1(0).

In particular, we obtain a homeomorphism Φ: (S0, 0) → (S, 0) which defines a

correspondence of subanalytic continuous arcs. Moreover, Φ satisfies the following

equation

(4.1) Φ(X) = X +

∫ 1

0

W (Φ(X), u)du

where W (X,u) = V (X,u)− ∂
∂u .

Proposition 4.2. Let γ(t) = (tw1x1(t), tw2x2(t), tw3x3(t)) be such that x1(t), x2(t)

and x3(t) are subanalytic continuous functions, 0 ≤ t < ε, with (x1(0), x2(0), x3(0)) 6=

(0, 0, 0). If

η(t) =

∫ 1

0

W (γ(t), u)du

with η(t) = (η1(t), η2(t), η3(t)), then ordt|ηi(t)| > wi for all i = 1, 2, 3.

Proof of the proposition. Let m = (d − w1)(d − w2)(d − w3). Since h has isolated

singularity at 0 ∈ C3, ∃ λ1 > 0 such that

P (γ(t), u) ≥ λ1
3∑
i=1

| ∂h
∂xi

(γ(t))|2αi .

Moreover, since each
∂h

∂xi
is weighted homogeneous of degree d−wi, ∃ λ2 > 0 such

that

| ∂h
∂xi

(γ(t))|2αi ≥ λ2t2m.

Hence, ordtP (γ(t), u) ≤ 2m. By hypothesis,

ordt|θ(γ(t))| > d and ordt|
∂F

∂xi
(γ(t), u)|2αi−1 ≥ (2αi − 1)(d− wi).

Now, we can conclude that ordt of
θ

P
| ∂F
∂xi
|2αi−1 on γ(t) is bigger than

d+ (2αi − 1)(d− wi)− 2m = wi.

Finally, since

ηi(t) =

∫ 1

0

θ(γ(t))

P (γ(t), u)
| ∂F
∂xi

(γ(t), u)|2αi−2 ∂F

∂xi
(γ(t), u)du,

we have proved the proposition. �
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According to Lemma 1 of [6], we can take an essential loop Γ from S1 to the link

of the weighted homogeneous approximation S0 of S of the form:

Γ(θ) = (x1(θ), x2(θ), 1).

Let H0 : [0, 1]× S1 → S0 be defined by

H0(r, θ) = (r
w1
w3 x1(θ), r

w2
w3 x2(θ), r).

Then, H : [0, 1]× S1 → S defined by

H(r, θ) = Φ ◦H0(r, θ)

is a subanalytic homotopy satisfying: H(0, θ) = x and H(1, θ) = Φ ◦ Γ(θ). We are

going to show the image of H (Im(H) = Ω) has volume growth number at origin

bigger than 2. Actually, since the volume growth number of Ω at 0 is 1 + β(Ω, 0),

we are going to show that β(Ω, 0) is bigger than 1. So, let us consider two arcs γ1

and γ2 on (Ω, 0).

Claim. Each γi can be parameterized in the following form:

γi(s) = (s
w1
w3 xi1(s), s

w2
w3 xi2(s), sxi3(s))

where xi1(s), xi2(s) and xi3(s) are subanalytic continuous functions and xi3(0) = 1,

(i = 1, 2).

In fact, first of all, let us fix i and denote γ = γi. For each s > 0, let γ(s) be the

point on the arc γ such that ρ(γ(s)) = s
1

w3 , where

ρ(x1, x2, x3) := [|x1|w2w3 + |x2|w1w3 + |x3|w1w2 ]
1

w1w2w3 .

In particular, γ(s) = (s
w1
w3 x1(s), s

w2
w3 x2(s), sx3(s)) where x1(s), x2(s) and x3(s) are

subanalytic continuous functions, with (x1(0), x2(0), x3(0)) 6= (0, 0, 0). For each

s > 0, let ξ(s) be the point on the image Im(H0) ⊂ S0 such that Φ(ξ(s)) = γ(s).

It follows from eq. (4.1) that

γ(s) = ξ(s) + η(s)

where η(s) =
∫ 1

0
W (γ(s), u)du. By Proposition 4.2 (taking s = tw3), it follows that

ξ(s) = (s
w1
w3 z1(s), s

w2
w3 z2(s), sz3(s)) with (z1(0), z2(0), z3(0)) = (x1(0), x2(0), x3(0)).
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Since the image Im(H0) is invariant by the R+-action

s · (x1, x2, x3) = (s
w1
w3 x1, s

w2
w3 x2, sx3)

and ξ(s) ∈ Im(H0) for all s > 0, we have that (z1(0), z2(0), z3(0)) ∈ Im(H0),

hence z3(0) = x3(0) = a is a positive real number. Finally, via the simple change

s 7→ a−1s, we show what was claimed above.

In order to finalize the proof of Theorem 4.1, by Lemma 2.3, we have

λ(γ1, γ2) ≥ ords(|γ1(s)− γ2(s)|)

and, since

ords(|γ1(s)− γ2(s)|) > 1,

λ(γ1, γ2) > 1. Therefore, we can use Theorem 2.4 to get β(Ω, 0) > 1. �
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NOTES ON BEILINSON’S “HOW TO GLUE PERVERSE

SHEAVES”

RYAN REICH

Abstract. The titular, foundational work of Beilinson not only gives a tech-

nique for gluing perverse sheaves but also implicitly contains constructions
of the nearby and vanishing cycles functors of perverse sheaves. These con-

structions are completely elementary and show that these functors preserve

perversity and respect Verdier duality on perverse sheaves. The work also de-
fines a new, “maximal extension” functor, which is left mysterious aside from

its role in the gluing theorem. In these notes, we present the complete details

of all of these constructions and theorems.

In this paper we discuss Alexander Beilinson’s “How to glue perverse sheaves”
[1] with three goals. The first arose from a suggestion of Dennis Gaitsgory that the
author study the construction of the unipotent nearby cycles functor Rψun which,
as Beilinson observes in his concluding remarks, is implicit in the proof of his Key
Lemma 2.1. Here, we make this construction explicit, since it is invaluable in many
contexts not necessarily involving gluing. The second goal is to restructure the pre-
sentation around this new perspective; in particular, we have chosen to eliminate
the two-sided limit formalism in favor of the straightforward setup indicated briefly
in [3, §4.2] for D-modules. We also emphasize this construction as a simple demon-
stration that Rψun[−1] and Verdier duality D commute, and de-emphasize its role
in the gluing theorem. Finally, we provide complete proofs; with the exception of
the Key Lemma, [1] provides a complete program of proof which is not carried out
in detail, making a technical understanding of its contents more difficult given the
density of ideas. This paper originated as a learning exercise for the author, so we
hope that in its final form it will be helpful as a learning aid for others. We do not
intend it to supplant, but merely to supplement, the original, and we are grateful
to Beilinson for his generosity in permitting this.

The author would like to offer three additional thanks: to Gaitsgory, who ex-
plained how this beautiful construction can be understood concretely, thus provid-
ing the basis for the perspective taken here; to Sophie Morel, for confirming the
author’s understanding of nearby and vanishing cycles as presented below; and to
Mark de Cataldo, for his generous contribution of time and effort to the improve-
ment of these notes.

In order to maintain readability, we will work with sheaves of vector spaces in
the classical topology on complex algebraic varieties, except in the second part of
Section 4, where we will require the field of coefficients to be algebraically closed.
For the necessary modifications to étale sheaves, one should consult Beilinson’s
paper: aside from the shift in definitions the only change is some Tate twists. For
the D-modules case, one should read Sam Lichtenstein’s undergraduate thesis, [11],
in which the two-sided limit construction is also given in detail.
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1. Theoretical preliminaries

The topic at hand is perverse sheaves and nearby cycles; for greater accessibility
of these notes, we give a summary of the definitions and necessary properties here.

Diagram chases. Occasionally, we indicate diagram chases in a proof. For ease
of reading we have tried not to make this an essential point, but in case the reader
should find such a chase to be a convincing informal argument, we indicate here
why it is also a convincing formal one.

Every object in an abelian category A can be considered, via Yoneda’s lemma,
to be a sheaf, namely its functor of points, on the canonical topology of A. This
is, by definition, the largest Grothendieck topology in which all representable func-
tors HomA(•, x) are sheaves, and its open covers are precisely the universal strict
epimorphisms. Such a map is, in a more general category, a map f : u → x such
that the fibered product u′ = u ×x u exists, the coequalizer x′ = coker(u′ ⇒ u)
exists, the natural map x′ → x is an isomorphism, and that all of this is also
true when we make any base change along a map g : y → x, for the induced map
f ×x id : u×x y → y. In an abelian category, however, this is all equivalent merely
to the statement that f is a surjection.

Recall the definitions of the various constructions on sheaves:

(1) Kernels of maps are taken sectionwise; i.e. for a map f : F → G, ker(f)(U) =
ker(f(U) : F(U)→ G(U)). Likewise, products and limits are taken section-
wise.

(2) Cokernels are locally taken sectionwise: any section s ∈ coker(f)(U) is, on
some open cover V of U , of the form t for t ∈ G(V ). Likewise, images,
coproducts, and colimits are taken locally.

In an abelian category, where all of these constructions exist by assumption, these
descriptions are even prescriptive: if one forms the sheaves thus described, they are
representable by the objects claimed. Therefore, the following common arguments
in diagram chasing are valid:

(1) A map f : x → y is surjective if and only if for every s ∈ y, there is some
t ∈ x such that s = f(t). This is code for: for every “open set” U and every
s ∈ y(U), there is a surjection V → U and a section t ∈ y(V ) such that
s|V = f(t).

(2) If s ∈ y, then s = 0 ∈ coker(f) if and only if s ∈ im(f). This is code for:
if s ∈ y(U) and s = 0 ∈ coker(f)(U), then there is some surjection V → U
and t ∈ x(V ) with s|V = f(t).

(3) For s, t ∈ x, s = t if and only if s − t = 0. Here, the sum of maps
s : U → x and t : V → x is obtained by forming the fibered product W =
U ×x V which covers both U and V , and then taking the sum of the maps
s|W , t|W ∈ Hom(W,x); the condition for equality is just the statement that
a section of a sheaf vanishes if only it vanishes on an open cover.

Any other arguments involving elements and some concept related to exactness
can also be phrased in this way. Thus, a näıve diagram-chasing argument can
be converted into a rigorous one simply by replacing statements like s ∈ x with
correct ones s ∈ x(U) for some open set U , and passing to surjective covers of U
when necessary.
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Derived category and functors. All the action takes place in the derived cat-
egory; specifically, let X be an algebraic variety and denote by D(X) its derived
category of bounded complexes of sheaves of vector spaces with constructible coho-
mology. By definition, a map of complexes f : A• → B• defines an isomorphism in
D(X) if and only if its associated map on cohomology sheaves Hi(f) : Hi(A•) →
Hi(B•) is an isomorphism for all i. We have a notation for the index-shift:
Ai+1 = (A[1])i (technically, the differential maps also change sign, but we will
never need to think about this). The derived category D(X) is a “triangulated cat-
egory”, which means merely that in it are a class of triples, called “distinguished
triangles”, of complexes and maps

A• → B• → C• → A•[1]

in which two consecutive arrows compose to zero, satisfying the axioms given in,
for example, [9] (but see also Section 4), and with the property that the associated
long sequence of cohomology sheaves

. . . H−1(C•)→ H0(A•)→ H0(B•)→ H0(C•)→ H1(A•)→ . . .

is exact (note that H0(A•[1]) = H1(A•)); we say that the Hi are “cohomological”.
If f : A• → B• is given, there always exists a triangle whose third term C• =
Cone(f) is the “cone” of f ; this cone is unique up to nonunique isomorphism
and any commutative diagram of maps f induces a map on cones, but this is not
functorial. It follows that the induced triangle itself is unique up to a nonunique
isomorphism whose component morphisms on A• and B• are the identity maps. A
functor between two triangulated categories is “triangulated” if it sends triangles
in one to triangles in the other.

In D(X) we also have some standard constructions of sheaf theory. For any
two complexes there is the “total tensor product” A•⊗B• obtained by taking in
degree n the direct sum of all products Ai⊗Bj with i+ j = n (and some differen-
tials that are irrelevant) and its derived bifunctor A•⊗LB•, with Hi(A•⊗LB•) =
Tori(A•, B•), which is a triangulated functor in each variable. We also have the
bifunctor (contravariant in the first argument) Hom(A•, B•), whose terms are
Hom(A•, B•)i(U) = Hom(A•|U , B•[i]|U ), and its derived bifunctorRHom(A•, B•),
with HiRHom(A•, B•) = Exti(A•, B•), which is triangulated in each variable. Of
course, these two have an adjunction:

RHom(A•
L
⊗B•, C•) ∼= RHom(A•, RHom(B•, C•)).

For any Zariski-open subset U ⊂ X with inclusion map j, there are triangulated
functors j!, j∗ : D(U) → D(X) and j∗ = j! : D(X) → D(U); if i is the inclusion
of its complement Z, then there are likewise maps i!, i∗ : D(X) → D(Z) and i∗ =
i! : D(Z) → D(X). (Technically the operation j∗ is only left exact on sheaves and
we should write Rj∗ for its derived functor, but we will never have occasion to
use the plain version so we elide this extra notation.) They satisfy a number of
important relations, of which we will only use one here: there is a functorial triangle
in the complex A•X ∈ D(X):

j!j
∗(A•X)→ A•X → i∗i

∗(A•X)→ (1)

We will generally forget about writing i∗ and consider D(Z) ⊂ D(X).
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There is also a triangulated duality functor D : D(X) → D(X)op which inter-
changes ! and ∗, in that Dj∗(A•U ) = j!(DA•U ), etc., and is an involution. In fact, if
we set D•X = DC, then D(A•) = RHom(A•,D•X).

For any map f : X → Y of varieties, we have f !, f∗ as well (also f!, f∗, and none
of them are equal), with the same relationships to D, and the useful identity

f !RHom(A•Y , B
•
Y ) = RHom(f∗A•Y , f

!B•Y ). (2)

Note that by these properties, we have f !D•Y = D•X .

Perverse sheaves. Here we give a detail-free overview of the formalism of perverse
sheaves created in [4]. Within D(X) there is an abelian category M(X) of “perverse
sheaves” which has nicer properties than the category of actual sheaves. It is
specified by means of a “t-structure”, namely, a pair of full subcategories pD(X)60

and pD(X)>0, also satisfying some conditions we won’t use, and such that

M(X) = pD(X)60 ∩ pD(X)>0.

There are truncation functors τ60 : D(X)→ pD(X)60 and likewise for τ>0, fitting
into a distinguished triangle for any complex A•X ∈ D(X):

τ60A•X → A•X → τ>0A•X →

(where τ>0 = τ>1 = [−1] ◦ τ>0 ◦ [1]). This triangle is unique with respect to the
property that the first term is in pD(X)60 and the third is in pD(X)>0. They have
the obvious properties implied by the notation: τ6aτ6b = τ6a if a ≤ b, and likewise
for τ>?. Furthermore, there are “perverse cohomology” functors pHi : D(X) →
M(X), where of course pHi(A•) = pH0(A•[i]) and pH0 = τ>0τ60 = τ60τ>0; these
are cohomological just like the ordinary cohomology functors. The abelian category
structure of M(X) is more or less determined by the fact that if we have a map
f : F → G of perverse sheaves (this is the notation we will be using; we will not
think of perverse sheaves as complexes), then

ker f = pH−1 Cone(f) coker f = pH0 Cone(f).

For notational convenience, we will write M for a perverse sheaf on U , F for one
on X, and as usual, abandon i∗ and just consider M(Z) ⊂ M(X) (for the reason
expressed immediately below, this is reasonable).

The category M(X) is closed under the duality functor D, but not necessarily
under the six functors defined for an open/closed pair of subvarieties. However, it is
true that j∗(M), i!(F) ∈ pD>0 and j!(M), i∗(F) ∈ pD60, while j∗(F), i∗(FZ) ∈M
(FZ a perverse sheaf on Z); we say these functors are right, left, or just “t-exact”.
Furthermore, when j is an affine morphism (the primary example being when Z is
a Cartier divisor), both j! and j∗ are t-exact, and thus their restriction to M(U)
is exact with values in M(X). There is also a “minimal extension” functor j!∗,
defined so that j!∗(M) is the image of pH0(j!M) in pH0(j∗M) along the natural
map j! → j∗; it is the unique perverse sheaf such that i∗j!∗M ∈ pD<0(Z) and
i!j!∗M∈ pD>0(Z), but for us the most useful property is that when j is an affine,
open immersion, then we have a sequence of perverse sheaves

i∗j!∗M[−1] ↪→ j!M� j!∗M ↪→ j∗M� i!j!∗M[1]; (3)

i.e. i∗j!∗M[−1] = ker(j!M→ j∗M) and i!j!∗M[1] = coker(j!M→ j∗M) are both
perverse sheaves.
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Perverse sheaves have good category-theoretic properties: M(X) is both artinian
and noetherian, so every perverse sheaf has finite length. Finally, we will use
the sheaf-theoretic fact that if L is a locally constant sheaf on X, then F ⊗L is
perverse whenever F is. Note that since L is locally free, it is flat, and therefore
F ⊗L = F ⊗L L.

Nearby cycles. If we have a map f : X → A1 such that Z = f−1(0) (so U =
f−1(A1 \ {0}) = f−1(Gm)), the “nearby cycles” functor Rψf : D(U) → D(Z) is

defined. Namely, let u : G̃m → Gm be the universal cover of Gm = A1 \ {0}, let

v : Ũ = U ×Gm G̃m → U be its pullback, forming a diagram

Ũv

uukkkkkkkk

��
Z

i //

��

X

f

��

U
j

oo

��

G̃m

uvvmmmmmm

{0} // A1 Gm
oo

and set (in this one instance, explicitly writing j∗ and v∗ as non-derived functors)

Rψf = R(i∗j∗v∗v
∗) : D(U)→ D(Z).

Since i∗ and v∗ are exact, indeed ψf is a left-exact functor from sheaves on U
to sheaves on Z. Many sources (e.g. [13, §1.1.1]) give the definition Rψf =
i∗Rj∗Rv∗v

∗; in fact, they are the same: since v is a covering map, if F is a flasque

sheaf on U , then v∗F is flasque on Ũ and so acyclic for v∗ (and v∗v
∗F acyclic for

j∗). Therefore we may form the derived functor before or after composition. Note
that v is not an algebraic map, and therefore it is not a priori clear whether Rψf
preserves constructibility; that it does is a theorem of Deligne ([7], Exposé XIII,
Théorème 2.3 for étale sheaves and Exposé XIV, Théorème 2.8 for the comparison
with classical nearby cycles).

The fundamental group π1(Gm) acts on any v∗A•U via deck transformations of

G̃m and therefore acts on ψf and Rψf . There is a natural map i∗A•X → ψf (j∗A•X),
obtained from (v∗, v∗)-adjunction, on whose image π1(Gm) acts trivially. We set,
by definition,

i∗A•X → ψf (j∗A•X)→ φf (A•X)→ 0

where φf (A•X) is the “vanishing cycles” sheaf. Using some homological algebra
tricks the above sequence induces a natural distinguished triangle

i∗A•X → Rψf (j∗A•X)→ Rφf (A•X)→

where Rφf is (morally) the right derived functor of φf . Like Rψf , Rφf has a mon-
odromy action of π1(Gm); this action is one of the maps on the cone of the above
triangle induced by the monodromy action on Rψf , but as this is not functorial,
one should consult the real definition in [7] (given for the algebraic nearby cycles,
but see also the second exposé).

Lemma 1.1. There exists a unique decomposition of Rψf as Rψun
f ⊕Rψ

6=1
f , where

for any choice of generator t of π1(Gm), 1 − t acts nilpotently on Rψun
f (A•U ) for

any complex A•U and is an automorphism of Rψ 6=1
f .

The part Rψun
f is called the functor of unipotent nearby cycles.
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Proof. To start, we observe that for any sheaf F on U , we have ψf (F) = H0Rψf (F),
and so if F is constructible, by the constructibility of nearby cycles so is ψf (F);
thus, for any open V ⊂ X, ψf (F)(V ) is finite-dimensional. Let ψun

f ⊂ ψf be the

subfunctor such that for any sheaf F on U , ψun
f (F) is the subsheaf of ψf (F) in

which 1− t is nilpotent, so for each V , ψun
f (F)(V ) is the generalized eigenspace of

t with eigenvalue 1.
Therefore it is actually a direct summand; we recall the general argument which

works over any field k. If T is an endomorphism of a finite-dimensional vector space
M , we view M as a k[x]-module with x acting as T . By the classification of modules
over a principal ideal domain, we have M ∼=

⊕
k[x]/p(x) for certain polynomials

p(x). The generalized eigenspace with eigenvalue 1 is then the sum of those pieces
for which p(x) is a power of 1− x, and the remaining summands are a T -invariant
complement in which 1− T acts invertibly. As the image of (1− T )n (n� 0), this
complement is functorial in the category of finite-dimensional k[x]-modules and so
we have the same decomposition in sheaves of finite-dimensional k[x]-modules.

Specializing again to the present situation, we get a decomposition ψf (F) ∼=
ψun
f (F) ⊕ ψ 6=1

f (this is the definition of ψ 6=1
f ). Both summands are a fortiori left-

exact functors and taking derived functors, we obtain a decomposition:

Rψf ∼= Rψun
f ⊕Rψ

6=1
f .

Since 1 − t is nilpotent on any ψun
f (F), we may apply ψun

f to any constructible

complex of injectives, thus computing Rψun
f (A•U ) for any complex A•U , and conclude

that 1− t is nilpotent on each such; by general principles it is invertible on Rψ 6=1
f .

This is what we want.
Uniqueness of the decomposition is clear; indeed, if in any category with a zero

object we have objects x and y together with endomorphisms N and I respectively
such that N is nilpotent and I invertible, then any map g : x → y intertwining N
and I is zero: we have gN = Ig, so g = I−1gN = I−2gN2 = · · · = I−ngNn = 0 if
Nn = 0. For morphisms y → x we work in the opposite category. In particular, if
we have

Rψf ∼= F ⊕G

as a sum of two functors as in the statement of the lemma, then the identity map on

Rψf has no G-component on Rψun
f and no F -component on Rψ 6=1

f , and so induces

isomorphisms Rψun
f
∼= F and Rψ 6=1

f
∼= G. �

We note that this lemma is a special case of Lemma 4.2 when the field of co-
efficients is algebraically closed. However, this decomposition is defined over any
field.

There is a triangle, functorial in A•X ,

i∗j∗j
∗A•X → Rψf (j∗A•X)

1−t−−→ Rψf (j∗A•X)

(see [5, Prop. 1.1; 13, eq. (5.88)]) which, taking A•U = j∗A•X and inserting Rψun
f be-

cause the monodromy acts trivially on the first term, gives the extremely important
(for us) triangle

i∗j∗A
•
U → Rψun

f (A•U )
1−t−−→ Rψun

f (A•U )→ (4)
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We also have a unipotent part of the vanishing cycles functor Rφf , and, again since
the monodromy acts trivially on i∗A•X , a corresponding triangle

i∗A•X → Rψun
f (A•X)→ Rφun

f (A•X)→ (5)

If L is any locally constant sheaf on Gm with underlying vector space L and unipo-
tent monodromy, then Rψun

f (A•U ⊗ f∗L) ∼= Rψun
f (A•U )⊗L, where π1(Gm) acts on

the tensor product by acting on each factor (since L is trivialized on G̃m).
We note the following fact, crucial to all computations in this paper:

j is an affine morphism.

Indeed, Z is cut out by a single algebraic equation. Although when Z is any Cartier
divisor it is still locally defined by equations f and the inclusion j of its complement
is again an affine morphism, it is not necessarily possible to glue nearby cycles which
are locally defined as above; c.f. [6, Remark 5.5.4]; an explicit example will appear
in [8]. However, it follows from Corollary 2.7 that when M is a perverse sheaf and
Rψun

f (M) has trivial monodromy, it is in fact independent of f and gluing is indeed
possible.

Triangle (4) already implies that nearby cycles preserve perverse sheaves.

Lemma 1.2. The functor Rψun
f [−1] sends pD(U)60 to pD(Z)60 and takes M(U)

to M(Z).

Proof. Since j is affine and an open immersion, j∗ and j! are t-exact, so for any
A•U ∈ pD(U)60, i∗j∗A

•
U = Cone(j!A

•
U → j∗A

•
U ) is in pD(Z)60. If we apply the

long exact sequence of perverse cohomology to triangle (4), we therefore get in
nonnegative degrees:

pH0(Rψun
f A•U )

1−t−−→ pH0(Rψun
f A•U )→ (0 = pH1(i∗j∗A

•
U ))→

pH1(Rψun
f A•U )

1−t−−→ pH1(Rψun
f A•U )→ (0 = pH2(i∗j∗A

•
U ))→ · · ·

For i ≥ 0, the map pHi(Rψun
f A•U ) → pHi(Rψun

f A•U ) is both given by a nilpotent

operator and is surjective, so zero. It follows that Rψun
f (A•U ) ∈ pD(Z)6−1, as

promised.
Now let M ∈ M(U) be a perverse sheaf. Then i∗j∗M ∈ pD(Z)[−1,0] since its

perverse cohomology sheaves are the kernel and cokernel of the map j!M→ j∗M.
In degrees ≤ −2, then, we have

· · · → (0 = pH−3(i∗j∗M))→ pH−3(Rψun
f M)

1−t−−→ pH−3(Rψun
f M)→

(0 = pH−2(i∗j∗M))→ pH−2(Rψun
f M)

1−t−−→ pH−2(Rψun
f M)

This means that for i ≤ −2, all the maps 1 − t are injective and nilpotent, hence
zero. Thus Rψun

f (M) ∈ pD(Z)−1, as desired. �

Since Rψun
f [−1] acts on perverse sheaves, we will give it the abbreviated notation

Ψun
f .

2. Construction of the unipotent nearby cycles functor

Let La be the vector space of dimension a ≥ 0 together with the action of a
matrix Ja = [δij − δi,j−1], a unipotent (variant of a) Jordan block of dimension a.
Let La be the locally constant sheaf on Gm whose underlying space is La and in
whose monodromy action a (hereafter fixed choice of) generator t of π1(Gm) acts
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by Ja. Since it is locally free, it is flat, so we will write ⊗ rather than ⊗L in tensor
products with it (actually, with f∗La). It has the following self-duality properties,
where Ľa = Hom(La,C) is the dual local system and (La)−1 is the local system in
whose monodromy t acts by (Ja)−1:

Lemma 2.1. We have La ∼= Ľa ∼= (La)−1, and D(A•U ⊗ f∗La) ∼= D(A•U )⊗ f∗La
for A•U ∈ D(U).

Proof. Since Ľa is the local system with vector space the dual Ľa and monodromy
((Ja)t)−1, its monodromy is again unipotent with a single Jordan block of length
a. We fix in La the given basis ~e1, . . . , ~ea associated to J , and in Ľa we choose
a generalized eigenbasis f̌1, . . . , f̌n in which ((Ja)t)−1 has the matrix Ja, so that
sending ~ei 7→ f̌i identifies Ja with ((Ja)t)−1 and thus induces the desired map of
local systems. The same proof shows that La ∼= (La)−1.

In general, then, we construct an isomorphism:

D(A•U )⊗ f∗La ∼−→ D(A•U ⊗ f∗La), (6)

where

D(A•U )⊗ f∗La = RHom(A•U ,D•)
L
⊗ f∗La,

D(A•U ⊗ f∗La) = RHom(A•U
L
⊗ f∗La,D•U ) = RHom(A•U ,Df∗La),

by constructing a map

RHom(A•U ,D•U )
L
⊗ f∗La → RHom(A•U ,Df∗La).

Such a map can be obtained by applying (⊗L, RHom)-adjunction to a map:

RHom(A•U ,D•U )→ RHom(f∗La, RHom(A•U ,Df∗La))

= RHom(A•U , RHom(f∗La,Df∗La)). (7)

Since D exchanges ! and ∗, we have Df∗La = f !DLa. By the property (2) of f !, we
have

RHom(f∗La, f !DLa) = f !RHom(La,DLa)

Note also that D•U = f !D•Gm
by definition and therefore the map (7) can be con-

structed by applying RHom(A•U , f
!•) to a certain map on Gm:

D•Gm
→ RHom(La,DLa) = D(La

L
⊗La).

This map, in turn, is obtained by first replacing the ⊗L with ⊗ (since La is locally
free) and applying D to the pairing

La⊗La → C
given by the isomorphism La ∼= Ľa described in the first paragraph. Thus, lo-
cally (6) is the tautological isomorphism (DA•U )⊕a ∼= D(A•U )⊕a. Since it is a local
isomorphism, it is an isomorphism. �

In the rest of this section,M is any object of M(U). The following construction
is Beilinson’s definition of the unipotent nearby cycles:

Proposition 2.2. Let αa : j!(M⊗ f∗La) → j∗(M⊗ f∗La) be the natural map.
Then there is an inclusion ker(αa) ↪→ Ψun

f (M), identifying the actions of π1(Gm),

which is an isomorphism for all sufficiently large a. (In fact, it suffices to take a
large enough that (1− t)a annihilates Ψun

f (M).)
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Proof. We know by Lemma 1.2 that Ψun
f (•) is a perverse sheaf, so taking together

the triangle (4) with A•U =M⊗ f∗La and exact sequence (1) with A•X = j∗A
•
U , we

see that kerα = ker(1− t), where 1− t is the map appearing in the former triangle
shifted by −1. We also have

Ψun
f (M⊗ f∗La) ∼= Ψun

f (M)⊗La ∼=
a⊕
i=1

Ψun
f (M)(i),

where the i’th coordinate of the action of t is t(i) − t(i+1), with t(i) the copy of
t ∈ π1(Gm) acting on Ψun

f (M) considered as the i’th summand. That is, using ele-

ments, (x1, . . . , xn) ∈ Ψun
f (M⊗ f∗La) is sent by t to (tx1− tx2, tx2− tx3, . . . , txn).

Thus, for an element of ker(1− t), we have xi+1 = (1− t−1)xi, or:

xi = (1− t−1)i−1x1 −t(1− t−1)ax1 = (1− t)xn = 0.

If we define a map u : Ψun
f (M) → Ψun

f (M⊗ f∗La) by sending the element x = x1

to the coordinates xi defined by the first formula above, then u is injective and its
image contains ker(1 − t) (namely, that subspace satisfying the second equation).
Since 1− t (hence 1− t−1) is nilpotent on Ψun

f (M), for a sufficiently large, im(u) =

ker(1− t). We claim that u intertwines the actions of t−1 and Ja:

Jau(x) = (x− (1− t−1)x, (1− t−1)x+ (1− t−1)2x, . . . )

= (t−1x, (1− t−1)t−1x, . . . ) = u(t−1x).

Finally, we employ the isomorphism La ∼= (La)−1 of Lemma 2.1 to give an auto-
morphism of ker(αa) ⊂ j!(M⊗ f∗La) intertwining Ja and (Ja)−1. �

Corollary 2.3. There exists an integer N such that (1 − t)N annihilates both
kerαa and cokerαa for all a.

Proof. By Proposition 2.2, the kernel is contained in Ψun
f (M) and thus annihilated

by that power of 1 − t which annihilates the nearby cycles. Temporarily let αa =
αaM; then D(αaM) = αaDM, so coker(αaM) = D ker(αaDM) is again annihilated by
some (1− t)N . �

In preparation for the next section, we give a generalization of this construction.
For each a, b ≥ 0 there is a natural short exact sequence

0→ La ga,b

−−→ La+b ga+b,−a

−−−−−→ Lb → 0;

that is, for any r ∈ Z, ga,r sends La to the first a coordinates of La+r if r ≥ 0, and
to the quotient La−(−r) given by collapsing the first −r coordinates if −r ≥ 0 (that
is, r ≤ 0) and a+ r ≥ 0. This sequence respects the action of π1(Gm) on the terms
and, via Lemma 2.1, the (a, b) sequence is dual to the (b, a) sequence.

Let M∈M(U); then we have induced maps on the tensor products:

ga,rM = id⊗ ga,r : M⊗ f∗La →M⊗ f∗La+r

(we will often omit the subscript M when no confusion is possible). By Lemma
2.1, these satisfy

Dga,rM = ga+r,−r
DM . (8)

Note that since the La are locally free, the ga,rM are all injective when r ≥ 0 and
surjective when r ≤ 0. Let r ∈ Z and set

αa,r = j∗(g
a,r) ◦ αa = αa+r ◦ j!(ga,r) : j!(M⊗ f∗La)→ j∗(M⊗ f∗La+r).
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We will use the following self-evident properties of the ga,r:

Lemma 2.4. The ga,r satisfy:

(1) When a+ r ≥ 0, we have ga,r ◦ ga+r,−r = (1− t)|r|.
(2) When r and s have the same sign and a + r + s ≥ 0, we have ga,r+s =

ga+r,s ◦ ga,r.
(3) Let r ≥ 0, a ≥ r; then we have:

ker(1− t)r = ker(ga,−rM ) ∼=M⊗ f∗Lr, im(1− t)r = im(ga−r,rM ) ∼=M⊗ f∗La−r.

Finally, by Corollary 2.3 and (3), for r ≥ 0, (1− t)N+r annihilates ker(αa,−r) and
coker(αa,r). �

From now on, we will assume r ≥ 0.

Proposition 2.5. For a� 0, the natural maps j!(g
a,1) and j∗(g

a+r,−1) respectively
induce isomorphisms

ker(αa,−r)
∼−→ ker(αa+1,−r) coker(αa,r)

∼−→ coker(αa−1,r)

and j!(g
a,r) and j∗(g

a+r,−r) induce isomorphisms

ker(αa,r)
∼−→ ker(αa+r) coker(αa+r)

∼−→ coker(αa+r,−r)

Proof. Using the maps j!(g
a,1) and j∗(g

a−r,1) we get a square which, using Lemma
2.4(1,2), we verify is commutative:

j!(M⊗ f∗La) j∗(M⊗ f∗La−r)

j!(M⊗ f∗La+1) j∗(M⊗ f∗La−r+1)

αa,−r
//

j∗(g
a−r,1)

��

j!(g
a,1)

��
αa+1,−r

//

showing that j!(g
a,1) induces a map on kernels. Since it is injective, we get a long

sequence of inclusions of kernels:

· · · ⊂ kerαa−1,−r ⊂ kerαa,−r ⊂ kerαa+1,−r ⊂ · · · .

By Lemma 2.4, each kernel is annihilated by (1 − t)N+r, whose kernel is (for a ≥
N + r) the perverse sheaf j!(M⊗ f∗LN+r); thus, this sequence is contained in this
sheaf. Since perverse sheaves are noetherian, this chain must have a maximum, so
the kernels stabilize. For the cokernels, we apply (8) to the argument of Corollary
2.3. (One can also argue directly using the artinian property of perverse sheaves.)

For the second statement concerning kernels, since (1−t)N annihilates ker(αa+r),
for a ≥ N it is contained in im(ga,r), and therefore by definition in ker(αa,r).
The statement on cokernels is again obtained by dualization and (8). (A direct
argument employing a diagram chase is also possible, using the fact that (1 −
t)N coker(αa+r) = 0.) �

Departing slightly from Beilinson’s notation, we denote these stable kernels and
cokernels kerα∞,−r and cokerα∞,r for r ≥ 0; when r = 0 we drop it.

Proposition 2.6. There is a natural isomorphism kerα∞,−r
∼−→ cokerα∞,r.
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Proof. Consider the map of short exact sequences for any a and any b ≥ r (to
eliminate clutter we have not written the superscripts on the maps g):

0 j!(M⊗ f∗La) j!(M⊗ f∗La+b) j!(M⊗ f∗Lb) 0

0 j∗(M⊗ f∗La+r) j∗(M⊗ f∗La+b) j∗(M⊗ f∗Lb−r) 0

//
j!(g)

//
j!(g)

// //

//
j∗(g)

//
j∗(g)

// //

αa,r

��

αa+b

��

αb,−r

��

By the snake lemma, we have an exact sequence of kernels and cokernels:

0→ ker(αa,r)→ ker(αa+b)→ ker(αb,−r)
γa,b;r

−−−→ coker(αa,r)

→ coker(αa+b)→ coker(αb,−r)→ 0. (9)

If a, b� 0, then the first and last maps are, by the second part of Proposition 2.5,
isomorphisms. Therefore γa,b;r is an isomorphism. Since the long exact sequence of
cohomology (9) is natural, we see that γa,b;r is independent of a and b in the sense
of the proposition:

γa,b+1;r ◦ j!(gb,1) = γa,b;r j∗(g
a+1,−1) ◦ γa+1,b;r = γa,b;r

where the requisite commutative diagrams are produced using Lemma 2.4(1,2). For
the same reason, γa,b;r is a natural transformation between the two functors

M 7→ ker(αb,−rM ), M 7→ coker(αa,rM ), �

Because they are equal, we will give a single name Πr
f (M) = ker(α∞,−r) ∼=

coker(α∞,r) to the stable kernel and cokernel. These are thus exact functors, and
by definition of αa,r and (8), they commute with duality: DΠr

f (M) ∼= Πr
f (DM).

From Proposition 2.2 we conclude:

Corollary 2.7. For a � 0 we have ker(αa) ∼= Ψun
f (M) ∼= coker(αa), and thus an

isomorphism
DΨun

f (M) ∼= Ψun
f (DM)

which is natural in the perverse sheafM. A more effective, equivalent construction
is obtained as follows: suppose (1− t)N annihilates Ψun

f (M). Then we have by (3):

Ψun
f (M) = i∗j!∗(M⊗ f∗LN )[−1] = i!j!∗(M⊗ f∗LN )[1].

Conversely, if these equations hold, then of course (1−t)N annihilates Ψun
f (M). �

3. Vanishing cycles and gluing

We will refer to Π1
f as Ξun

f , which Beilinson calls the “maximal extension func-
tor” and denotes without the superscript. Although there is no independent, non-
unipotent analogue, we have chosen to use this notation to match that for the
nearby and (upcoming) vanishing cycles functors, which do have such analogues.

Proposition 3.1. There are two natural exact sequences exchanged by duality
and M↔ DM:

0→ j!(M)
α−−−→ Ξun

f (M)
β−−−→ Ψun

f (M)→ 0

0→ Ψun
f (M)

β+−−→ Ξun
f (M)

α+−−→ j∗(M)→ 0,

where α+ ◦ α− = α and β− ◦ β+ = 1− t.
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Proof. These sequences are, respectively, the last and first halves of (9). For the
first one, take b = r, so gb,−r = 0 and therefore αb,−r = 0; we get an exact sequence

0→ ker(αa,r)→ ker(αa+r)→ j!(M⊗ f∗Lr)
γa,r;r

−−−−→ coker(αa,r)→ coker(αa+r)→ 0.

For a� 0, by the second part of Proposition 2.5, the first map is an isomorphism,
and for r = 1 we obtain the first short exact sequence from the remaining three
terms above. For the second short exact sequence, we apply the same reasoning to
(9) with a = 0 and then r = 1, with b� 0:

0→ ker(αb)→ ker(αb,−r)
γ0,b;r

−−−→ j∗(M⊗ f∗Lr)→ coker(αb)→ coker(αb,−r)→ 0.

It is obvious from these constructions and (8) that the two short exact sequences
are exchanged by duality. To show that α+ ◦ α− = id and β− ◦ β+ = 1 − t, we
identify these maps in the above sequences and rewrite the claims as:(
γ0,b;1 ◦ (γa,b;1)−1 ◦ γa,1;1

)∣∣
U

= id, γa,b;1|ker(αb) mod im(αa+1) = (1− t)γa+1,b;0.

For both, we use the fact that since αa|U = id, we have γa,b;r|U = (ga+b,−a ◦
ga+r,b−r)−1, as constructed in the familiar proof of the snake lemma, with the
inverse interpreted as a multi-valued pullback. Then the claims are equivalent to

ga+b,−a ◦ ga+1,b−1 = g1,b−1 ◦ ga+1,−a

ga+b+1,−a−1 ◦ ga+1,b = (1− t)ga+b,−aga+1,b−1

which follow from Lemma 2.4(1,2). �

The remainder of the paper is simply what Beilinson calls “linear algebra” (one
might argue that this has already been the case for most of the preceding). Take
M = j∗F for a perverse sheaf F ∈M(X) in the above exact sequences. From the
maps in these two sequences we can form a complex:

j!j
∗F (α−,γ−)−−−−−→ Ξun

f (j∗F)⊕F (α+,−γ+)−−−−−−→ j∗j
∗F , (10)

where γ− : j!j
∗(F) → F and γ+ : F → j∗j

∗(F) are defined by the left- and right-
adjunctions (j!, j

∗) and (j∗, j∗) and the property that j∗(γ−) = j∗(γ+) = id.

Proposition 3.2. The complex (10) is in fact a complex; let Φun
f (F) be its coho-

mology sheaf. Then Φun
f is an exact functor M(X) →M(Z), and there are maps

u, v such that v ◦ u = 1− t as in the following diagram:

Ψun
f (j∗F)

u−→ Φun
f (F)

v−→ Ψun
f (j∗F).

Proof. That (10) is a complex amounts to showing that γ+ ◦ γ− = α = α+ ◦ α−,
which is true by definition of the γ± and adjunction. To show that Φun

f is exact,
suppose we have 0 → F1 → F2 → F3 → 0, so that we get a short exact sequence
of complexes

0→ C•(F1)→ C•(F2)→ C•(F3)→ 0,

where by C•(F) we have denoted the complex (10) padded with zeroes on both
sides. Note that since α− is injective and α+ surjective, C•(F) fails to be exact
only at the middle term. Therefore we have a long exact sequence of cohomology
sheaves:

· · · (0 = H−1C•(F3))→ Φun
f (F1)→ Φun

f (F2)→ Φun
f (F3)→ (0 = H1(C•(F1))) · · ·

which shows that Φun
f is functorial and an exact functor.
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If we apply j∗ to (10), it becomes simply (with j∗F =M)

M (id,id)−−−−→M⊕M (id,−id)−−−−−→M

which is actually exact, so j∗Φun
f (F) = 0; i.e. Φun

f (F) is supported on Z. Finally,

to define u and v, let pr : Ξun
f (j∗F) ⊕ F → Ξun

f (j∗F), and set u = (β+, 0) in

coordinates, and v = β− ◦ pr. Since β− ◦ α− = 0, v factors through Φun
f (F), and

we have v ◦ u = β− ◦ β+ = 1− t by Proposition 3.1. �

Define a vanishing cycles gluing data for f to be a quadruple (FU ,FZ , u, v) as
in Proposition 3.2; for any F ∈M(X), the quadruple Ff (F) = (j∗F ,Φun

f (F), u, v)

is such data. Let Mf (U,Z) be the category of gluing data; then Ff : M(X) →
Mf (U,Z) is a functor. Conversely, given a vanishing cycles data

Ψun
f (FU )

u−→ FZ
v−→ Ψun

f (FU ),

we can form the complex

Ψun
f (FU )

(β+,u)−−−−→ Ξun
f (FU )⊕FZ

(β−,−v)−−−−−→ Ψun
f (FU ) (11)

since v ◦ u = 1− t = β− ◦ β+, and let Gf (FU ,FZ , u, v) be its cohomology sheaf.
Beilinson gives an elegant framework for proving the equivalence of (10) and

(11) in [1, Appendix]. Rather than proving Theorem 3.6 directly, we present his
technique (with slightly modified terminology).

Definition 3.3. Let a diad be a complex of the form

D• =
(
FL

L= (aL,bL)−−−−−−−→ A⊕ B R= (aR,bR)−−−−−−−−→ FR
)

in which aL is injective and aR is surjective (so it is exact on the ends). Let the
category of diads be denoted M2. Let a triad be a short exact sequence of the form

S =
(

0→ F−
(c−,d

1
−,d

2
−)

−−−−−−−→ A⊕ B1 ⊕ B2 (c+,d
1
+,d

2
+)

−−−−−−−→ F+ → 0
)

in which both (c−, d
i
−) : F− → A⊕Bi are injections and both (c+, d

i
+) : A⊕Bi → F+

are surjections. Let the category of triads be denoted M3; it has a reflection functor
r : M3 →M3 which invokes the natural symmetry 1↔ 2, and is an involution.

We can define a map T : M2 →M3 by setting

T (D) =
(

0→ ker(R)
(ιA,ιB ,h)−−−−−−→ A⊕ B ⊕H(D•)

(πA,πB ,−k)−−−−−−−−→ coker(L)→ 0
)
,

where the natural inclusion/projection (resp. projection/inclusion) are called:

ker(R)
ι=(ιA,ιB)−−−−−−→ A⊕ B π=(πA,πB)−−−−−−−→ coker(L), ker(R)

h−→ H(D•)
k−→ coker(L)

(note π ◦ ι = k ◦ h). We define the inverse T−1 by the formula

T−1(S) =
(

ker(d2
−)

(c−,d
1
−)

−−−−−→ A⊕ B1 → coker(c−, d
1
−)
)
.

Lemma 3.4. The functors T, T−1 are mutually inverse equivalences of M2 with
M3.
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Proof. Before beginning the verification of the many necessary facts, we observe
that the property of a sequence S as above being in M3 is equivalent to the following
diagram being cartesian

F− Bi

A⊕ B3−i F+

di−
//

−di+
��

(c−,d
3−i
− )

��

(c+,d
3−i
+ )

//

(12)

and the following smaller sequence being exact

0→ F−
(c−,d

i
−)

−−−−−→ A⊕ Bi
(c+,d

i
+)

−−−−−→ F+ → 0. (13)

for i = 1, 2. Indeed, for (12), the diagram is cartesian if and only if S is exact
in the middle, and for (13), the arrows are respectively injective and surjective by
hypothesis if S ∈ M3, while exactness in the middle follows from that of S. For
readability, we continue the proof as several sub-lemmas.

T (D•) ∈ M3: It is easily verified that T (D•) is an exact sequence. To see that
(πA,−k) is surjective and (ιA, h) injective, we consider the cartesian diagrams

A⊕H(D•) coker(L)

A FR

(πA,−k)
//

���� aR //

ker(R) A⊕H(D•)

FL A

(ιA,h)
//

���� aL //

and use that aR is surjective and aL is injective. Likewise, (πB ,−k) is surjective
and (ιB , h) is injective.

T−1(S) ∈ M2: Clearly, T−1(S) is a complex, since the sequence F1 → A⊕ B1 →
coker(c−, d

1
−) is exact (hence a complex). Since (c−, d

2
−) is injective by hypothesis,

c−|ker(d2−) is injective. We must show that A → coker(c−, d
1
−) is surjective, where

by (13) with i = 1 we have coker(c−, d
1
−) = F+; consider the diagram

A⊕F− A

A⊕ B1 F+

(id,−c−)
//

c+

��

id⊕d1−
�� (c+,d

1
+)

//

which is cartesian by exactness of (13). Since the bottom arrow is a surjection, for
c+ to be a surjection it suffices to show that the left arrow is. By (12) with i = 1,
d1
− is a surjection since the bottom arrow there is a surjection by hypothesis.

T−1 ◦T ∼= id: Its FL is ker(h) = im(L) = FL; its A and B are indeed A and B, and
its FR is coker(ι) = FR; one checks quickly that the maps are right as well.

T ◦ T−1 ∼= id: Its F− is ker(A ⊕ B1 → coker(c−, d
1
−)) = F− since (c−, d

1
−) is an

injection; its A and B1 are obviously the original A and B1. The small sequence
(13) with i = 1 shows that F+ is correct as well. Finally, for B2, we must show
that F−/ ker(d2

−) = B2, or in other words, that d2
− is surjective, which follows from

(12) with i = 2. �
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Clearly, both of the complexes (10) and (11) are diads. Comparing them, we
find that the construction of the latter is given by:

Corollary 3.5. The reflection functor on a diad is the complex

r(D•) =
(

ker(aR)
(a′L,b

′
L)−−−−−→ A⊕H(D•)

(a′R,b
′
R)−−−−−→ coker(aL)

)
,

where a′L is the natural inclusion and a′R the natural projection, b′L = h ◦ (a′L, 0),
and b′R factors −k through coker(aL) ⊂ coker(L).

Proof. That is, T−1rT (D•) = r(D•) as defined above. We need to show that
ker(ιB) = ker(aR) and coker(ιA, h) = coker(aL), and prove the identities of the
morphisms. The first is easily verified directly, considering both as subobjects of
A⊕ B, while for the second, we assert that the map

(id, 0) : A → A⊕H(D•)

induces the desired isomorphism from the latter to the former. To show that it
identifies im(aL) with im(ιA, h), it suffices to check that the following diagram is
cartesian:

FL A

ker(R) A⊕H(D•)

aL //

(id,0)

��

L

��

(ιA,h)
//

which follows from the definition of H(D•) = ker(R)/ im(R). The identities of a′L,
b′L, and a′R are clear from these constructions, while for b′R it is fastest to chase the
above diagram. �

Theorem 3.6. The gluing category Mf (U,Z) is abelian; Ff : M(X)→Mf (U,Z)
and Gf : Mf (U,Z)→M(X) are mutually inverse exact functors, and so Mf (U,Z)
is equivalent to M(X).

Proof. That Mf (U,Z) is abelian amounts to proving that taking coordinatewise
kernels and cokernels works. That is, if we have (M,FZ , u, v) and (M′,F ′Z , u′, v′)
with maps aU : M → M′, aZ : FZ → F ′Z and such that the following diagram
commutes:

Ψun
f (M) u //

Ψun
f (aU )

��

FZ
v //

aZ

��

Ψun
f (M)

Ψun
f (aU )

��

Ψun
f (M′) u′ // F ′Z

v′ // Ψun
f (M′)

then (ker aU , ker aZ , ũ, ṽ) is a kernel for (aU , aV ), where ũ and ṽ are induced maps;
likewise for the cokernel; and we must show that (aU , aV ) is an isomorphism if
and only if the kernel and cokernel vanish. The maps ũ and ṽ are constructed
from the natural sequence of kernels (or cokernels) in the above diagram, and the
exactness of Ψun

f , and once they exist it is obvious from the definition of morphisms

in Mf (U,Z) that the desired gluing data is a kernel (resp. cokernel). Since M(U)
and M(Z) are abelian and kernels and cokernels are taken coordinatewise, the last
claim follows.

To show that Ff and Gf are mutually inverse, we interpret M(X) and Mf (U,Z)
as diad categories in the form given, respectively, by diagrams (10) and (11). The
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reflection functor is given by Corollary 3.5; by Proposition 3.1 and the definition of
Φun, its value on (10) is that of the functor Ff . For the same reason, its value on
(11) is that of Gf interpreted as a complex of type (10) (the F term is what we have
previously called the value of Gf ). Since the reflection functor is an involution, Gf
and Ff are mutually inverse. �

4. Comments

We conclude with some musings on the theory exposited here. In the previous
version arXiv:1002.1686v2 of these notes, we gave a substantially different proof of
Proposition 2.6, adhering closely to that given in [1, Key Lemma]. As that proof
may better illuminate the two-sided limit formalism which we also omit, the curious
reader is encouraged to consult it.

The vanishing cycles functor and Φun
f . The functor Φun

f , like Ψun
f , has a fa-

miliar identity.

Theorem 4.1. There is an isomorphism of functors Φun
f
∼= Rφun

f [−1] and a natural
distinguished triangle

Ψun
f (j∗F)

u−→ Φun
f (F)→ i∗F →

isomorphic to that in (5).

Proof. According to the definition of Φun
f in Proposition 3.2, we have a short exact

sequence and, thus, a corresponding distinguished triangle of the same form:

0→ j!j
∗F → ker(α+,−γ+)→ Φun

f (F)→ 0.

Since K = ker(α+,−γ+) ⊂ Ξun
f (j∗F) ⊕ F , there is a projection map pr: K → F

commuting with the inclusion of j!j
∗F .

Now we apply the octahedral axiom of triangulated categories as given in [4,
(1.1.7.1)]:

j!j
∗F

KFF









Φun
f (F)
FF









i∗F
��

11111111

C
��

11111111
F99rrrrrrrr &&LLLLLLLLLL

88rrr
pr

&&LLL
��

11111111

where all the straight lines are distinguished triangles, both the (geometric) trian-
gles are commutative, and the square commutes. It is easy to see that pr must be
surjective because α+ is surjective; thus, since both K and F are perverse, C[−1]
is also perverse, and so we have an exact sequence

0→ C[−1]→ K
pr−→ F → 0.

But by definition, ker(pr) = ker(α+) ⊕ 0, and therefore C[−1] ∼= Ψun
f (j∗F). Note

that the inclusion then becomes the map u, as defined in the proof of Proposition
3.2. Rotating the other triangle in the above octahedral diagram, we have

Ψun
f (j∗F)

u−→ Φun
f (F)→ i∗F → .

http://arxiv.org/abs/1002.1686v2
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Comparing with (5), we find that Rφun
f (F)[−1] ∼= Φun

f (F) is perverse. Conversely,

starting from (5) in place of the above triangle, we conclude by the octahedral axiom
that Rφun

f (F)[−1] is the cohomology of (10), which admits a unique extension to a
functor of F compatible with the octahedral diagram. Therefore, we conclude an
isomorphism of functors Φun

f
∼= Rφun

f [−1]. �

The full nearby cycles functor Rψf . As Beilinson observes, the full nearby
cycles functor Rψf (M), forM∈M(U), can be recovered from Rψun

f as applied to
variations of M. Here we must assume that the field of coefficients is algebraically
closed.

Lemma 4.2. There exists a unique isomorphism of functors D(U)→ D(Z)

Rψf =
⊕
λ∈C∗

Rψλf (14)

where for any constructible complex A•U on U , λ− t is nilpotent on Rψλf (A•U ).

Proof. Simply pursue the line of reasoning in Lemma 1.1 but, since the field of co-
efficients is algebraically closed, produce the full Jordan decomposition rather than
just the unipotent and non-unipotent parts. The lemma can also be deduced from
[10, Lemme 3.2.5], which applies to the Jordan decomposition of an endomorphism
of any complex in the derived category. �

Let Lλ be the local system of rank 1 on Gm with monodromy λ; then clearly, we
have Rψλf (M) = Rψun

f (M⊗ f∗L−1
λ )⊗Lλ, where t acts as λ on the one-dimensional

vector space Lλ. Substituting into (14), we obtain:

Rψf (M) =
⊕
λ

Ψun
f (M⊗ f∗L−1

λ )⊗Lλ.

Thus, Corollary 2.7 gives a procedure for computing the full nearby cycles functor
of perverse sheaves, and Rψf [−1] sends perverse sheaves on U to perverse sheaves
on X.

Using some general reasoning, we can extend the properties of Ψun
f = Rψun

f [−1]
from the subcategory of perverse sheaves to the entire derived category. To this
end, let T : C→ D be a triangulated functor between triangulated categories with
t-structures, and let the respective cores be the abelian categories A, B. We will
assume that the objects of C are bounded above, meaning that C =

⋃
b∈Z C6b.

Lemma 4.3. Suppose T is right t-exact and that TA ⊂ B; then T is t-exact.

Proof. We will show that T commutes with all truncations. Suppose we have an
object x ∈ C6b, so that there is a distinguished triangle

τ<bx→ x→ τ>bx→
where by definition, τ>bx = Hb(x)[−b] ∈ A[−b]. By hypothesis on T , we have
T (x) ∈ D6b, T (τ<bx) ∈ D<b, and T (Hbx[−b]) ∈ B[−b] ⊂ D>b. Since T is
triangulated, there is a triangle

T (τ<bx)→ T (x)→ T (Hbx[−b])→
and therefore, by uniqueness of the truncation triangle, it must be that T (τ<bx) =
τ<bT (x). This is under the hypothesis that x ∈ C6b; since then τ<bx ∈ C6b−1 and
since τ<b−1τ<b = τ<b−1, we can apply truncations-by-one repeatedly and conclude
that for all n, we have τ6nT (x) = T (τ6nx).
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Now suppose we have any x, and for any n form the distinguished triangle

τ<nx→ x→ τ>n →

to which we apply T . Since T (τ<nx) = τ<nT (x), the cone of the resulting triangle

τ<nT (x)→ T (x)→ T (τ>nx)→

must be isomorphic to τ>nT (x), by uniqueness of cones and the truncation triangle
for T (x). Thus, τ>nT (x) = T (τ>nx). Since then T commutes with all trunctions,
it is a fortiori t-exact. �

Take T = Rψun
f [−1]; by Lemma 1.2, it satisfies the hypothesis of Lemma 4.3,

and therefore we conclude:

Theorem 4.4. The functor Rψf [−1] on the bounded derived category Db(X) is
t-exact for the perverse t-structure. Likewise, Rφf [−1] is t-exact.

Proof. For the second statement, we must show that Rφf [−1] is right t-exact and
preserves perverse sheaves; the latter claim already follows from Theorem 4.1. For
the former, we apply the long exact sequence to the triangle

i∗F → Rψf (j∗F)→ Rφf (F)→

We have i∗F ∈ pD(X)[−1,0] because of triangle (1), and we already know that
Rψf [−1] is right t-exact, so the long exact sequence of perverse cohomology shows
that pHi(RφfF) = 0 when i ≥ 0, as desired. �

We will not prove here that Rψf [−1] commutes with Verdier duality. This is
significantly more difficult since it necessitates enlarging the domain of a certain
natural transformation (the map γa,b;r constructed in Proposition 2.6) from the
core of the perverse t-structure to the entire derived category. This involves the
interaction with both objects and morphisms:

• The natural maps must be defined for all objects, not just those in M(U);
• The maps thus obtained must commute with all morphisms, not just those

between objects of M(U).

To see why this is difficult, consider showing merely that the γa,b;r (and their
translates) are natural with respect to maps of the form g : M→N [i], with i ∈ N
andM,N ∈M(U). Note that the argument given for the naturality of γa,b;r is not
valid in this context, since kernel and cokernel constructions in the abelian category
of perverse sheaves are not functorial in the entire derived category.

If i = 1, this is easy; we necessarily have Cone(g) ∈ M(U)[1], so rotating the
distinguished triangle gives a short exact sequence

0→ N → Cone(g)[−1]→M→ 0.

Conversely, this sequence constructs the distinguished triangle M → N [1] →
Cone(g) by the reverse procedure. Then, applying DΨun

f and Ψun
f D to the se-

quence, we find by naturality of γa,b;r that there is a commutative diagram of short
exact sequences, which implies that γa,b;r is natural with respect to g.

The analogue of this argument for i > 1 would involve finding a sequence of the
form

0
hi+1=0−−−−−→ (N = A−(i+1))

hi−→ A−i → · · · → A−1 h0−→ (A0 =M)→ 0
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representing g. The manner in which such a sequence does represent such a map is
clear; we get a collection of short exact sequences representing maps:

0→ coker(hj+1)→ A−j → coker(hj)→ 0, gj : coker(hj)→ coker(hj+1)[1]

(where coker(hi+1) = N and coker(h1) = M), and thus, by composition, a map
g : M → N [i], as desired. This is Yoneda’s realization of Exti(M,N ); it holds
in the derived category of M(U). It is, however, a nontrivial theorem, proved in
[2], that this is the same as D(U), and in fact it is describing the morphisms that
occupies the entirety of the work in that paper. Of course, once we choose to cite
this result, it is a trivial consequence of Corollary 2.7 that Rψf [−1] commutes with
D, since it is then the derived functor of a self-dual exact functor on M(U). Thus,
we do not expect that there will be as elementary an argument as for the perversity
of nearby cycles.

In the recent preprint [12], autoduality of the nearby cycles functor is proven in
complete generality in the complex analytic setting, and references are given there
for prior results and those in the algebraic setting.

The maximal extension functor Ξun
f . We have used the term “maximal exten-

sion functor” without explanation (as did Beilinson), but Proposition 3.1 provides
sufficient rationale: applying i∗ to the first one and i! to the second one, the long ex-
act sequence of perverse cohomology shows that i∗Ξun

f (M) ∼= Ψun
f (M) ∼= i!Ξun

f (M)

are both perverse sheaves, which is as far out (cohomologically) as they can be
given that i∗ is right t-exact and i! is left t-exact. This should be compared with
the defining property of the “minimal extension” j!∗(M), that i∗j!∗(M)[−1] and
i!j!∗(M)[1] are perverse, so that it has a minimal presence on X given that it
extends M. The condition that i∗Ξun

f (M) and i!Ξun
f (M) are perverse does not

uniquely characterize Ξun
f (M), as one could add any perverse sheaf supported on

Z without changing it, but imposing Proposition 3.1 forbids such a modification.
As we will see below, these sequences uniquely determine Ξun

f (M).
To do so, consider the pair of upper and lower “caps” of an octahedron:

j!M j∗M

Ξun
f (M)

Ψun
f (M) Ψun

f (M)[1]

α //

α−
""FFFFFFFFFFF

α+

;;vvvvvvvvvvvv

β−

||yyyyyyyyyyy
[1]

OO

��

β+[1]

ccGGGGGGGGGGG

(1−t)[1]
oo

c

d

c

d

(upper cap)

j!M j∗M

i∗j∗M

Ψun
f (M) Ψun

f (M)[1]

α //

{{xxxxxxxxxxx

[1]

bbDDDDDDDDDDD

[1]

OO

=={{{{{{{{{{{ ��""FFFFFFFFFFF

(1−t)[1]
oo

d

c

d

c

(lower cap)

The triangles marked “c” are commutative and those marked “d” are distinguished;
the arrows marked [1] have their targets (but not their sources) shifted by 1. The
octahedral axiom states that given any diagram of commutative and distinguished
triangles as in (lower cap) we can construct a diagram as in (upper cap) and vice
versa ([4, §1.1.6]). Using these diagrams, we can derive (4) and Proposition 3.1
from each other. This idea is also present in [6, §5.7.2].
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Proposition 4.5. Suppose we have functors Ξun
f and Ψun

f from M(U) to M(X),

where Ψun
f has a unipotent action of π1(Gm), and satisfying Proposition 3.1. Then

(4) holds with Rψun
f = Ψun

f [1].

Proof. Given Proposition 3.1, each exact sequence there corresponds to a unique
distinguished triangle in D(X) with the same entries; these triangles appear in
(upper cap), where the top and bottom maps are α and (1− t)[1] since the triangles
containing them are commutative. The octahedral axiom gives us (lower cap), and
since the upper triangle is distinguished its cone (the middle term) must necessarily
be i∗j∗M by (1). Therefore the bottom triangle is (4), as desired. Note that all
the interior maps in (lower cap) are uniquely determined, since they correspond to
the kernels and cokernels of the maps α and 1 − t of perverse sheaves in the long
exact sequence of cohomology. �

Proposition 4.6. Given only the triangle (4), both the functor Ξun
f and its exten-

sion classes in Ext1(Ψun
f (M), j!M) and Ext1(j∗M,Ψun

f (M)) can be constructed

with Proposition 3.1 satisfied (except for the duality statement). In particular, by
Proposition 4.5, Ξun

f is uniquely determined by Proposition 3.1.

Proof. Given (4), since we have (1) canonically we can form all the vertices of (lower
cap) and both distinguished triangles; the left and right maps are determined by the
requirement that the triangles containing them be commutative. The octahedral
axiom gives us (upper cap) and Ξun

f (M), identified at first only as an element

of D(X). From Lemma 1.2 we know that Ψun
f (M) is perverse; then the long

exact sequence of perverse cohomology associated to either distinguished triangle
in (upper cap) shows that, in fact, Ξun

f (M) is perverse, and thus those triangles
correspond to exact sequences as in Proposition 3.1. The equations α+α− = α
and β−β+ = 1 − t can then be read off from the commutativity of the upper and
lower triangles. Since the vertical arrows come from (lower cap), these distinguished
triangles are uniquely determined up to isomorphism fixing j∗,!M and Ψun

f (M), as
desired. �

The identity of Ξun
f is somewhat mysterious, but can be made precise using the

gluing category. These computations are also given in [6, Example 5.7.8].

Proposition 4.7. For any perverse sheaf M ∈M(U), we have the following cor-
respondences via the gluing construction:

j!(M) = (M,Ψun
f (M), id, 1− t) j!∗(M) = (M, im(1− t), 1− t, incl)

j∗(M) = (M,Ψun
f (M), 1− t, id) Ξun

f (M) = (M,Ψun
f (M⊗ f∗L2), u, v);

where α : j!(M)→ j∗(M) is the map (id, 1− t) in the gluing category; in j!∗(M),
we mean im(1 − t) ⊂ Ψun

f (M); in Ξun
f (M), taking Ψun

f (M⊗ f∗La) = Ψun
f (M) ⊕

Ψun
f (M), we have u = (id, 1− t) and v = pr2.

Proof. Using the triangle of Theorem 4.1, we have

Ψun
f (j∗j!M)→ Φun

f (j!M)→ i∗j!(M)→
and since i∗j! = 0, we get an isomorphism Φun

f (j!M) ∼= Ψun
f (M); dualizing, we

have Φun
f (j∗M) ∼= Ψun

f (M) also. Since u is the first map in this triangle, under this
identification we have u = id, and therefore v = 1− t since v ◦u = 1− t. This gives
the quadruple for j!(M); for j∗(M), we dualize, since u and v are dual by their
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definition in Propositions 3.2 and 3.1. That the natural map is given by (id, 1− t)
follows from the fact that this does define a map j!(M) → j∗(M) in the gluing
category, and that its restriction to U is the identity.

For j!∗(M), we use the fact that it is the image of the natural map α : j!(M)→
j∗(M); having already identified all the parties, this is clear from the quadruples
just obtained.

For the identification of Ξun
f (M), obviously, v ◦u = 1− t; more importantly, u is

injective and v surjective. Then the pair of exact sequences in Proposition 3.1 can
be described on quadruples as being trivial over U , and over Z the maps α− and
α+ are described by the following maps of quadruples:

j!(M) : Ψun
f (M) Ψun

f (M) Ψun
f (M)

Ξun
f (M) : Ψun

f (M) Ψun
f (M⊗ f∗L2) Ψun

f (M)

j∗(M) : Ψun
f (M) Ψun

f (M) Ψun
f (M)

α−

��

α+

��

id //
1−t

//

u // v //

1−t
// id //

id

��

id

��

u

��

v

��

id

��

id

��

We take β− and β+ to be the maps whose Z-parts (the U -parts are zero) are:

β−(y, z) = (1− t)y − z β+(x) = (x, 0).

Then it is clear from the definitions of u and v that we obtain the sequences of
Proposition 3.1; by the uniqueness part of Proposition 4.6, this uniquely determines
Ξun
f (M), completing the proof. �

Since the entirety of Section 3 follows only from Proposition 3.1, Propositions
4.5 and 4.6 show that the constructions of Section 2 are irrelevant for constructing
the gluing functor. Their purpose, as is evident from the order we have chosen
for the theorems, is to exhibit the autoduality of Ψun

f and Ξun
f (and, thus, Φun

f ).

However, Beilinson’s development has an aesthetic virtue (over just using the above
short proof of Proposition 3.1): once Lemma 1.2 is proven, the entire theory takes
place within the abelian category of perverse sheaves. In addition, Corollary 2.7 is
an ingeniously elementary, insightful, and more useful definition of a functor whose
actual definition is quite obscure.
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Families of Gauss indicatrices on smooth surfaces in

pseudo-spheres in the Minkowski 4-space

Farid Tari

Abstract

We study families of Gauss indicatrices on surfaces in pseudo-spheres in the Minkowski 4-
space and obtain the generic local models of the configurations of the foliations determined by
the fibres of their principal curvatures functions.

1 Introduction

In [9], Izumiya-Pei-Sano defined the hyperbolic Gauss indicatrix of a hypersurface in the Minkowski
space model of the hyperbolic space. The work in [9] set the foundations of applications of singularity
theory to the extrinsic geometry of submanifolds in the hyperbolic space. Given a point p on a
hypersurface M in the hyperbolic space Hn

+(−1), there is a well defined (at least locally) unit normal
vector e(p) to M at p; see §2. The vector e(p) is in the de Sitter space Sn1 and defines the de Sitter
Gauss indicatrix

E : M → Sn1
p → e(p)

The de Sitter Gauss-Kronecker curvature at p is Ke(p) := det(−(dE)p) and the totally umbilic
hypersurfaces with Ke ≡ 0 are the hyperplanes in Hn

+(−1). The de Sitter Gauss indicatrix on M is
related to the contact of M with hyperplanes ([9]).

Another Gauss indicatrix on M is introduced in [9] and is called the hyperbolic or lightcone Gauss
indicatrix; see §2. The vector p± e(p) is lightlike (i.e., belongs to the lightcone LC∗) and defines the
hyperbolic Gauss indicatrices

L± : M → LC∗

p → p± e(p)

The hyperbolic Gauss-Kronecker curvature at p is Kh(p) := det(−(dL±)p) and the totally umbilic
hypersurfaces with Kh ≡ 0 are the hyperhorospheres in Hn

+(−1). The hyperbolic Gauss indicatrix
on M is related to the contact of M with hyperhorospheres ([9]).

In [1] is constructed a 1-parameter family of Gauss indicatrices which links E and L±. The family
is given by Nθ(p) = cos θp± e(p) ∈ Sn(sin2(θ)), θ ∈ [0, π/2], and is called the Slant Gauss indicatrix.
Observe that Nθ(p) is always spacelike for θ 6= 0. The above family links the geometry of M related
to hyperplanes to that related to hyperhorospheres. See also [11] for slant geometry in the de Sitter
space and in the lightcone.

The work in this paper is inspired by that in [1, 11]. A hypersurface M in Hn
+(−1) can be viewed

as a codimension 2 spacelike submanifold in Rn+1
1 . It has then a timelike normal plane in Rn+1

1 at

2000 Mathematics Subject classification 53A35, 53B30, 58K05, 34A09.
Key Words and Phrases. Binary differential equations, Gauss indicatrices, hyperbolic space, Minkowski space,

spacelike surfaces, singularities, de Sitter space, timelike surfaces, versal unfoldings.
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any of its points. For this reason, we consider normal vector fields (Gauss indicatrix) on M which are
not necessarily spacelike. We define two families of Gauss indicatrices on M . One is spacelike and is
given by Ns

θ = tanh(θ)p+ e(p) and the other is timelike and is given by N t
θ = tanh(θ)−1p+ e(p) (we

use hyperbolic angles here, see [17] for definition and properties). The families Nw
θ , w = s, t tend to

L± as θ tends to ±∞. We define the θw-Gauss-Kronecker curvature by Kw
θ (p) := det(−(dNw

θ )p).
We give in §3 general results about the families Nw

θ on hypersurfaces in Hn
+(−1) and deal in more

details with surfaces in H3
+(−1) in §3.1. We denote by κ1 and κ2 the eigenvalues of the de Sitter

shape operator and call them the de Sitter principal curvatures. It turns out that the θw-parabolic
sets (points where Kw

θ vanishes) are given by κi = constant. The θs-parabolic sets foliate the region
in M where |κi| < 1 and the θt-parabolic sets foliate the region in M where |κi| > 1; see Theorem
3.2. (One motivation behind considering the timelike Gauss indicatrices is that the θs-parabolic
sets do not cover the whole surface. The other is that N t

θ gives information about the contact of
M with hyperspheres.) Note that the parabolic sets of the limiting families Nw

±∞ = L± are the
horospherical parabolic sets given by κi = ±1. We obtain the generic local configurations of the
foliations κi = constant, i = 1, 2 (Theorem 3.7), and characterise geometrically their singularities
(Theorems 3.4, 3.5, 3.8).

One can view M ⊂ H3
+(−1) as a surface in R4

1. Asymptotic directions are defined via the contact
of M with lines. They are metric independent and we have thus well defined asymptotic curves on
M given by a quadratic binary differential equation (BDE for short). We show that these asymptotic
curves are in fact the lines of the de Sitter principal curvature. This is true for any spacelike or
timelike surface in a pseudo-sphere in the Minkowski 4-space (Theorem 3.9).

We consider in §4 families of Gauss indicatrices on timelike hypersurfaces in the de Sitter space Sn1 ,
with emphasis on timelike surfaces in S3

1 . The foliations κi = constant, i = 1, 2, behave differently
from those on spacelike surfaces (Theorem 4.1). We recall in the Appendix §5 the classification of
codimension ≤ 1 singularities of BDEs.

2 Preliminaries

We start by recalling some basic concepts in hyperbolic geometry (see for example [16, 19]). The
Minkowski (n+ 1)-space (Rn+1

1 , 〈, 〉) is the (n+ 1)-dimensional vector space Rn+1 endowed with the
pseudo scalar product 〈u,v〉 = −u0v0 +

∑n
i=1 uivi, for any u = (u0, . . . , un) and v = (v0, . . . , vn) in

Rn+1
1 . We say that a vector u in Rn+1

1 \ {0} is spacelike, lightlike or timelike if 〈u,u〉 > 0, = 0 or < 0

respectively. The norm of a vector u ∈ Rn+1
1 is defined by ‖u‖ =

√
|〈u,u〉|. Given a vector v ∈ Rn+1

1

and a real number c, a hyperplane with pseudo normal v is defined by

HP (v, c) = {u ∈ Rn+1
1 | 〈u,v〉 = c}.

We say that HP (v, c) is a spacelike, timelike or lightlike hyperplane if v is timelike, spacelike or
lightlike respectively. We have the following pseudo-spheres in Rn+1

1 with centre p ∈ Rn+1
1 and radius

r > 0,
Hn(p,−r) = {u ∈ Rn+1

1 | 〈u− p,u− p〉 = −r2},
Sn(p, r) = {u ∈ Rn+1

1 | 〈u− p,u− p〉 = r2},
LC∗(p) = {u ∈ Rn+1

1 | 〈u− p,u− p〉 = 0}.

We denote by Hn(−r) and Sn(r) the pseudo-spheres centred at the origin in Rn+1
1 . The pseudo sphere

Hn(−r) has two connected components. The hyperbolic space Hn
+(−1) is the connected component

of Hn(−1) whose points u have positive coordinate u0. The de Sitter space is Sn1 = Sn(1) and the
lightcone is LC∗ = LC∗(0).

A hypersurface given by the intersection of Hn
+(−1) with a spacelike, timelike or lightlike hyper-

plane is called respectively hypersphere, equidistant hypersurface or hyperhorosphere. The intersection
of a hypersurface with a timelike hyperplane through the origin is called simply a hyperplane.

117



The study of the extrinsic geometry of hypersurfaces in the hyperbolic space from the viewpoint
of Legendrian singularities was initiated in [9]. Let x : U → Hn

+(−1) be a local parametrisation of
a hypersurface M embedded in Hn

+(−1), where U is an open subset of Rn−1. We write M = x(U).
Since 〈x,x〉 ≡ −1, we have 〈xui ,x〉 ≡ 0, for i = 1, . . . , n − 1, where u = (u1, . . . , un−1) ∈ U. The
spacelike unit normal vector e(u) to M at x(u) is defined by

e(u) =
x(u) ∧ xu1

(u) ∧ . . . ∧ xun−1
(u)

‖x(u) ∧ xu1(u) ∧ . . . ∧ xun−1(u)‖
.

It follows that x(u) ± e(u) is a lightlike vector for all u ∈ U . The de Sitter and hyperbolic Gauss
indicatrices E and L± respectively are defined in the introduction. The linear transformation −(dE)p
at p = x(u) is called the de Sitter shape operator. Its eigenvalues κi, i = 1, . . . , n − 1, are called
the de Sitter principal curvatures and the corresponding eigenvectors pi, i = 1, . . . , n− 1, are called
the de Sitter principal directions. The linear transformation −(dL±)p is labelled the hyperbolic shape
operator of M at p. It has the same eigenvectors as −(dE)p but has distinct eigenvalues. In fact the
eigenvalues κ̄±i of −(dL±)p satisfy κ̄±i = −1± κi, i = 1, . . . , n− 1.

A smooth submanifold M of the Minkowski space is said to be spacelike (resp. timelike) if the
induced metric on M is Riemannian (resp. Lorentzian, i.e., of signature 1). For a spacelike (resp.
timelike) hypersurface in the de Sitter space Sn1 , the vector e(u) is timelike (resp. spacelike) and
defines a Gauss indicatrix with values in the hyperbolic (resp. de Sitter) space.

3 Hypersurfaces in Hn
+(−1)

We start with some general results on hypersurfaces M in Hn
+(−1). Let x : U → M be a local

parametrisation of M . At each point x(u), the normal plane Nx(u)M to M in Rn+1 is timelike and is
generated by e(u) and x(u). Any choice of a normal vector in Nx(u)M generates a Gauss indicatrix.
For instance, the hyperbolic Gauss indicatrix L± is given by x(u)±e(u). We can parametrise a circle
of vectors in Nx(u)M by cos(θ)x(u) + sin(θ)e(u) and get a family of Gauss indicatrices. However,
we would like the parameter to have some geometric meaning and also to distinguish between the
timelike and spacelike normal vectors as these lead to the contact of M with different models of
hypersurfaces. The differential of the Gauss indicatrix given by the vector x(u) is the identity map so
does not give any geometric information. For these reasons, we define the family of spacelike Gauss
indicatrices by

Ns
θ : U → Sn(cosh(θ)−2)

u 7→ tanh(θ)x(u) + e(u)

where θ ∈ R is the hyperbolic angle between Ns
θ (u) and x(u). If we take sinh(θ)x(u) + cosh(θ)e(u) ∈

Sn1 as a unit normal spacelike vector we will not get the desired limit Ns
θ → L± when θ → ±∞. We

define the family of timelike Gauss indicatrices by

N t
θ : U → Hn(− sinh(θ)−2)

u 7→ tanh(θ)−1x(u) + e(u)

where θ ∈ R \ {0} is the hyperbolic angle between N t
θ(u) and x(u). Again, if we take cosh(θ)x(u) +

sinh(θ)e(u) ∈ Hn(−1) as a unit normal timelike vector we will not get the desired limit N t
θ → L±

when θ → ±∞. (Observe that x is not a member of the family N t
θ.)

We have the following result which follows from the definitions of Nw
θ , w = s, t.

Theorem 3.1 The differential map −(dNs
θ )p = − tanh(θ)Ip − (dE)p is a self-adjoint operator on

TpM . Its eigenvalues are κsθi = − tanh(θ) + κi, where κi are the de Sitter principal curvatures. The
eigenvectors of −(dNs

θ )p, for any θ ∈ R, coincide with those of the de Sitter shape operator −(dE)p.
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Similarly, the differential map −(dN t
θ)p = − tanh(θ)−1Ip − (dE)p is a self-adjoint operator on

TpM . Its eigenvalues are κtθi = − tanh(θ)−1 + κi. The eigenvectors of −(dN t
θ)p, for any θ ∈ R \ {0},

also coincide with those of the de Sitter shape operator.

We call κwθi, w = s, t, the θw-principal curvatures and call Kw
θ (p) = det(−(dNw

θ )p) =
∏n−1
i=1 κ

w
θi

the θw-Gauss-Kronecker curvature of M at p = x(u). A point p on M is called (spacelike) θw-umbilic
(w = s or t) if κwθi = κwθj for all i, j at p. It is called θw-parabolic if Kw

θ (p) = 0.
We are interested in hypersurfaces whose points are all θw-umbilics, which we label totally θw-

umbilic hypersurfaces. These will form the “model” hypersurfaces in the hyperbolic space. One can
characterised θw-umbilic hypersurfaces in the same way as in Proposition 2.3 in [9]. For instance, if
a hypersurface M ⊂ Hn

+(−1) is totally θw-umbilic, then κwθi are all equal to the same constant, say
κwθ , on M . Then M is a subset of the intersection of Hn

+(−1) with a hyperplane and the type of the
hyperplane is determined by the value of the constant κwθ .

We consider the contact of M with model hypersurfaces in Hn
+(−1). We define the family of

spacelike height functions by

Hs
θ U × Sn(cosh(θ)−2) → R

(u,v) 7→ 〈x(u),v〉+ tanh(θ)

This measures the contact of M with the equidistant hypersurfaces HP (v,− tanh(θ))∩Hn
+(−1). We

have Hs
θ = ∂Hs

θ/∂ui = 0 if and only if v = Ns
θ (u). A point p = x(u) is a θs-parabolic point if and

only if the Hessian of Hs
θ (−,v), with v = Ns

θ (u), is singular. This means that the θs-parabolic set
is the set of points on M which correspond to the singular points of the discriminant of the family
Hs
θ . (One can show, using the same arguments in the proof of Proposition 4.2 in [9] that Hs

θ is a
Morse family. This yields a Legendrian immersion whose generating family is Hs

θ . The wavefront of
the Legendrian immersion is the Gauss indicatrix Ns

θ .)
We also define the family of timelike height functions

Ht
θ U ×Hn(− sinh(θ)−2) → R

(u,v) 7→ 〈x(u),v〉+ tanh(θ)−1

which measures the contact of M with the hyperspheres HP (v,− tanh−1(θ)) ∩ Hn
+(−1). We have

similar results to those for the family Hs
θ .

3.1 Surfaces in H3
+(−1)

We obtain in this section geometric information about the foliations determined by κwθi = constant,
i = 1, 2, w = s, t. As the θw-principal curvatures define the same foliations, we work with the de
Sitter curvatures κ1 and κ2. Let x : U ⊂ R2 → M ⊂ H3

+(−1) be a local parametrisation of M and
denote by (u, v) the coordinates in U . In this paper, subscripts involving the parameters u, v refer
to partial differentiation with respect to these parameters. The coefficients of the first fundamental
form with respect to x are denoted by

E = 〈xu,xu〉, F = 〈xu,xv〉, G = 〈xv,xv〉.

The θw-second fundamental form (w = s, t) at p = x(u, v), with associated shape operator
−(dNw

θ )p, is given by IIwθ (u,v) = 〈−(dNw
θ )p(u),v〉, for u,v ∈ TpM . We denote by

lwθ = 〈−(dNw
θ )p(xu),xu〉 = 〈Nw

θ ,xuu〉,
mw
θ = 〈−(dNw

θ )p(xu),xv〉 = 〈Nw
θ ,xuv〉,

nwθ = 〈−(dNw
θ )p(xv),xv〉 = 〈Nw

θ ,xvv〉
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its coefficients with respect to the basis {xu,xv}. We have

lwθ = − tanh(θ)εE + l,
mw
θ = − tanh(θ)εF +m,
nwθ = − tanh(θ)εG+ n,

with ε = 1 if w = s and ε = −1 if w = t and where l,m, n denote the coefficients of the second
fundamental form associated to the de Sitter shape operator −dE. Because the induced metric on
M is Riemannian, −(dNw

θ )p has always two real eigenvalues. The θw-lines of principal curvature are
the same for all θ and coincide with the de Sitter lines of principal curvature. These are given by a
BDE that can be represented in the following determinant form∣∣∣∣∣∣

dv2 −dudv du2

E F G
l m n

∣∣∣∣∣∣ = 0. (1)

For a generic surface, the discriminant of equation (1) (which is the set of points on the surface
where the equation determines a unique direction, see §5 for details) consists of the isolated umbilic
points. We write

Ke = κ1κ2 =
ln−m2

EG− F 2
,

He =
1

2
(κ1 + κ2) =

lG− 2mF + nE

2(EG− F 2)
,

for the de Sitter Gauss-Kronecker curvature and the de Sitter mean curvature, respectively. We have
the following result.

Theorem 3.2 (1) The θs-parabolic set is given by

tanh2(θ)− 2He tanh(θ) +Ke = 0.

It consists of the curves (which could be empty) κi = tanh(θ), i = 1, 2. Each family of these curves
foliate the region of M where |κi| < 1 as θ varies in R. The leaves of the foliations tend to the
horospherical parabolic set |κi| = 1 as θ tends to ±∞.

(2) The θt-parabolic set is given by

tanh2(θ)Ke − 2He tanh(θ) + 1 = 0.

It consists of the curves (which could be empty) κi = tanh(θ)−1, i = 1, 2. Each family of these curves
foliate the region of M where |κi| > 1 as θ varies in R \ {0}. The leaves of the foliations tend to the
horospherical parabolic set as θ tends to ±∞.

Proof The θw-Gauss-Kronecker curvature is given by

Kw
θ = det(−(dNw

θ )p) =
lwθ n

w
θ − (mw

θ )2

EG− F 2
= κwθ1κ

w
θ2.

The equations for the θw-parabolic sets follow from the fact that κwθi = − tanh(θ)ε + κi with ε = 1
if w = s and ε = −1 if w = t and observing that Ke = κ1κ2 and 2He = κ1 + κ2. If we take, for
example w = s, it follows that the θs-parabolic sets consists of the curves κi = tanh(θ), i = 1, 2. As
| tanh(θ)| < 1, these curves foliate the regions where |κi| < 1 as θ varies in R. The case w = t follows
similarly.

2
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Remark 3.3 It follows from Theorem 3.2 that the θs-parabolic sets do not cover the whole surface
M . This is one of the reasons why we need to consider the family N t

θ of timelike Gauss indicatrices.

A direction u ∈ TpM is said to be θw-asymptotic, w = s, t, if 〈(dNw
θ )p(u),u〉 = 0. The integral

curves of the θw-asymptotic directions are called the θw-asymptotic curves. It is not hard to show
that the θw-asymptotic curves are the solutions of the binary differential equation (BDE)

(Awθ ) : nwθ dv
2 + 2mw

θ dudv + lwθ du
2 = 0. (2)

Equation (2) determines two θw-asymptotic directions in the region where δwθ = lwθ n
w
θ −(mw

θ )2 > 0,
none where δwθ < 0, and a unique (double) θw-asymptotic direction on the θw-parabolic set δwθ = 0.
See Appendix (§5) for topological models of the solutions of a BDE.

We show below that the singularities of the foliations κi = constant, i = 1, 2, are picked up by the
families of height functions and by the BDE (2). This will allow us to determine their configurations
at their singular points. We start with the families of height functions. The contact group is denoted
by K, the K-singularities Ak are modelled by u2 ± vk+1 and the K-singularities Dk by u2v ± vk−1.

Theorem 3.4 Away from a discrete set of values of θ ∈ R, the height function Hw
θ (−,v), w = s, t,

along v = Nw
θ (p), has generically K-singularities of type A1, A2 and A3 at p. These are characterised

geometrically as follows:
A1 : p is not a θw-parabolic point.
A2 : p is a θw-parabolic point and the unique θw-asymptotic direction at p is transverse to

the θw-parabolic set.
A3 : p is a θw-parabolic point and the unique θw-asymptotic direction at p is tangent to

the θw-parabolic set.

Proof The height function Hw
θ (−,v) is singular at (u0, v0) if v = Nw

θ (u0, v0). (In fact it is singular
at (u0, v0) if and only if v is a normal vector to M at x(u0, v0).) We suppose that (u0, v0) is a
singularity of Hw

θ (−,v) with v = Nw
θ (u0, v0), and write Hw

θ for Hw
θ (−,v).

At (u0, v0), (Hw
θ )uu = lwθ = − tanh(θ)εE + l, (Hw

θ )uv = mw
θ = − tanh(θ)εF + m, and (Hw

θ )vv =
nwθ = − tanh(θ)εG + n. Thus the Hessian of Hw

θ at (u0, v0) is singular if and only if x(u0, v0) is a
θw-parabolic point. The singularity is of type A2 if the cubic part of the Taylor expansion of Hw

θ at
(u0, v0) does not divide Q, where Q2 is its quadratic part. To make the conditions more apparent,
we choose a special local parametrisation of M where the coordinate curves are the de Sitter lines of
principal curvature. (We can do this away from the de Sitter umbilic points and we can assume this
to be the case at x(u0, v0).) Then F ≡ 0, m ≡ 0 and (u0, v0) is a singularity of Hw

θ if and only if
(Hw

θ )uu(u0, v0) = 0 or (Hw
θ )vv(u0, v0) = 0. If both are zero we get a D4-singularity and this is dealt

with in Theorem 3.5. Suppose that (Hw
θ )uu(u0, v0) = 0 and (Hw

θ )vv(u0, v0) 6= 0. Then the singularity
is of type A2 if and only if (Hw

θ )uuu(u0, v0) 6= 0. We have Huu = 〈xuu,v〉, so at (u0, v0)

Huuu = 〈xuuu,v〉
= 〈xuuu, tanh(θ)εx + e〉
= tanh(θ)ε〈xuuu,x〉+ 〈xuuu, e〉.

By differentiating twice the identity 〈x,xu〉 = 0 we get

〈xuuu,x〉 = −3〈xu,xuu〉 = −3

2
Eu.

We have 〈xuu, e〉 = l, so 〈xuuu, e〉+ 〈xuu, eu〉 = lu. However,

〈xuu, eu〉 = 〈xuu,−κ1xu〉 = −1

2
κ1Eu.
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Thus

〈xuuu, e〉 = lu +
1

2
κ1Eu.

We have κ1 = tanh(θ)ε at (u0, v0), so at this point

Huuu = tanh(θ)ε〈xuuu,x〉+ 〈xuuu, e〉
= − 3

2 tanh(θ)εEu + lu + 1
2 tanh(θ)εEu

= − tanh(θ)εEu + lu.

Now the discriminant of the asymptotic curves (the θw-parabolic set) is given by lwθ = − tanhε(θ)E+
l = 0 and the unique asymptotic direction at (u0, v0) is along (1, 0). The direction (1, 0) is transverse
the the θw-parabolic set at (u0, v0) if and only if (− tanhε(θ)Eu + lu)(u0, v0) 6= 0, that is, if and only
if (Hw

θ )uuu(u0, v0) 6= 0. When (Hw
θ )uu = (Hw

θ )uuu = 0 at (u0, v0), we get and A3-singularity for
generic θ.

For θ fixed, the family Hw
θ is a 3-parameter family. Therefore, for a generic embedding of M

in H3
+(−1), only singularities of K-codimension ≤ 3 can occur. (See for example [14]. We are

interested in the discriminant of the family Hw
θ , this is why we consider the K-codimension and not

the Ke-codimension.) These are the A1, A2 and A3-singularities. If we let θ vary, we get generically
singularities of K-codimension 4 at isolated points, which can occur for a discrete set of values of θ.
2

Denote by S = {(θ,v) ∈ R× S3(cosh(θ)−2)} and T = {(θ,v) ∈ R \ {0} ×H3(− sinh(θ)−2)}. We
consider the “big” families of height functions given by

Hs U × S → R
((u, v), (θ,v)) 7→ 〈x(u, v),v〉+ tanh(θ)

and
Ht U × T → R

((u, v), (θ,v)) 7→ 〈x(u, v),v〉+ tanh(θ)−1

For a generic embedding of the surface the big family Hw, w = s, t, along Nw
θ (p) can have the

following local catastrophic events at p:
(i) an A3-singularity which is not K-versally unfolded by the family Hw

θ .
(ii) an A4-singularity of Hw

θ .
(iii) a D4-singularity of Hw

θ ; this occurs at an umbilic point with κ1 = κ2 = tanh(θ)ε.

Theorem 3.5 (1) The family Hw
θ , w = s, t, for θ fixed, is always a K-versal unfolding of the A1 and

A2 singularities of the height function at p along v = Nw
θ (p). It fails to be a K-versal unfolding of an

A3-singularity if and only if the θw-parabolic set is singular.
(2) The big family Hw is always a K-versal unfolding of a non-versal A3-singularity of Hw

θ along
v = Nw

θ (p).
(3) For a generic surface, the big family Hw is a K-versal unfolding of an A4-singularity of Hw

θ

at p along v = Nw
θ (p).

(4) For a generic surface, the big family Hw is a K-versal unfolding of a D4-singularity of Hw
θ at

p along v = Nw
θ (p).

Proof The proof is similar to those given in [3] for families of height functions on surfaces in
R3. We deal here with the D4-singularity case and with w = s. This occurs when κ1 = κ1 =
tanh(θ0), say at (u0, v0) = (0, 0). Every direction in Tx(0,0)M is a de Sitter principal direction, so we
cannot take a parametrisation with F ≡ 0,m ≡ 0. We take without loss of generality, j1x(u, v) =
(1, u, v, 0), e(0, 0) = (0, 0, 0, 1) and v0 = (tanh(θ0), 0, 0, 1). We write x = (x0, x1, x2, x3). For
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v = (v0, v1, v2, v3) ∈ S3(cosh(θ)−2) near v0, we can write v3 =
√

cosh−2(θ) + v20 − v21 − v22 . Then the

family Hs is a K-versal deformation of the D4-singularity of Hs
θ0

at (0, 0) if and only if

E2
〈
∂Hs

θ0

∂u
,
∂Hs

θ0

∂v
,Hs

θ0

〉
+ R.

{
∂Hs

∂v0
,
∂Hs

∂v1
,
∂Hs

∂v2
,
∂Hs

∂θ

}
= E2 (3)

where Hs
θ0

, ∂Hs/∂vi, i = 1, 2, 3, ∂Hs/∂θ are evaluated at (u, v, θ0,v0), and E2 denotes the ring of
germs of smooth functions at (0, 0).

The 2-jet of Hs
θ0

is identically zero and its 3-jet is a non-degenerate cubic (the singularity is of
type D4). Therefore, it is 3-K-determined. We can then work in the 3-jet space and show that all
degree 3 monomials in u and v are in the left hand side of (3). For degree ≤ 2 we proceed as follows.
We have

x(u, v) = (1, u, v, 0) +
1

2
(xuu(0, 0)u2 + 2xuv(0, 0)uv + 2xvv(0, 0)v2).

One can show that
xuu(0, 0) = (−E, 12Eu, Fv −

1
2Ev, tanh(θ0)E),

xuv(0, 0) = (−F, 12Ev,
1
2Gu, tanh(θ0)F ),

xvv(0, 0) = (−G,Fv − 1
2Gu,

1
2Gv, tanh(θ0)G).

We have ∂Hs/∂θ((u, v), (θ0,v0)) = cosh(θ0)−2, so the constant terms are in the left hand side of
(3) and we can work modulo these terms. We have

j2 ∂H
s

∂v0
((u, v), (θ0,v0))− 1 = j2(−x0(u, v) + tanh(θ)x3(u, v))− 1

= 1
2 (1 + tanh2(θ0))(Eu2 + 2Fuv +Gv2).

Also, by similar calculations to those in the proof of Theorem 3.4,

j2(Hs
θ0

)u(u, v) = 1
2

((Hs
θ0

)uuuu2 + 2(Hs
θ0

)uuvuv + (Hs
θ0

)uvvv2)

= 1
2

((− tanh(θ0)Eu + lu)u2 + 2(− tanh(θ0)Fu +mu)uv + (− tanh(θ0)Gu + nu)v2),

j2(Hs
θ0

)v(u, v) = 1
2

((Hs
θ0

)uuvu2 + 2(Hs
θ0

)uvvuv + (Hs
θ0

)vvvv2)

= 1
2

((− tanh(θ0)Ev + lv)u2 + 2(− tanh(θ0)Fv +mv)uv + (− tanh(θ0)Gv + nv)v2).

We put a multiple of the above three vectors in the following matrix form

u2 uv v2

2
1+tanh2(θ0)

j2 ∂H
s

∂v0
E 2F G

2j2(Hs
θ0

)u − tanh(θ0)Eu + lu 2(− tanh(θ0)Fu +mu) − tanh(θ0)Gu + nu
2j2(Hs

θ0
)v − tanh(θ0)Ev + lv 2(− tanh(θ0)Fv +mv) − tanh(θ0)Gv + nv

(4)

The determinant of the above matrix is not zero at a generic umbilic point. Therefore, u2, uv, , v2

are in the left hand side of (3). We can work now on the 1-jet level and obtain u, v using

j1
∂Hs

∂v1
((u, v), (θ0,v0)) = j1(x1(u, v)) = u and j1

∂Hs

∂v2
((u, v), (θ0,v0)) = j1x2(u, v) = v.

2

Remark 3.6 It follows from Theorem 3.5 that the de Sitter parabolic set can have singularities if
it is considered as a member of the θ-parabolic sets. This means that there is nothing special about
the de Sitter Gauss map E when considered as a member of the family Ns

θ .

Theorem 3.7 The curves κi = constant, i = 1, 2, undergo Morse transitions at a non-versal A3-
singularity of the height function (Figure 1, first two figures) and remain smooth at an A4-singularity.
At a D+

4 (resp. D−4 )-singularity (i.e., at an umbilic point) the generic configuration is as in the third
(resp. fourth) figure in Figure 1.
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Figure 1: The foliation κi = constant (i = 1 or 2) at a non-versal A3-singularity (first two figures).
The third (resp. fourth) figure is the generic configuration of the foliations κi = constant, i = 1, 2 at
a D+

4 (resp. D−4 )-singularity, continuous lines for κi and dashed for κj , j 6= i.

Proof The first two statements are a consequence of Theorem 3.5. At an umbilic point (u0, v0) with
tanh(θ0)ε = κ1 = κ2, the foliations κi = constant are given by tanh(α)2ε − 2He tanh(α)ε + Ke = 0
and tanh(α)ε = constant. The first equation determines a surface S in the (θ, u, v)-space which
has a cone singularity at q0 = (θ0, u0, v0). The projection π : S → U maps diffeomorphically each
connected component of S \ {q0} to U \ {(u0, v0)}. The foliations κi = constant are the images by
π of the traces of the planes θ = constant on S. The traces of these planes on one component on
S \ {q0} project to κ1 = constant and those on the other component project to κ2 = constant. The
plane θ = θ0 is generically not tangent to the cone, so we have two possible configurations for its trace
on the cone: it is either an isolated point (this is the case when the height function Hw

θ0
along Nw

θ0
(p)

has a D+
4 -singularity) or it is a pair of crossing curves (this is the case when the height function Hw

θ0

along Nw
θ0

(p) has a D−4 -singularity). As θ varies near θ0 we obtain generic cone sections. If the cone
sections are closed curves (resp. hyperbole), the configuration of their projections to the (u, v)-plane
is as in Figure 2, third (resp. fourth) figure. 2

We turn now the θw-asymptotic curves and their singularities (see Appendix for notation).

Theorem 3.8 For a generic surface M in H3
+(−1), the BDE (Awθ ) of the θw-asymptotic curves can

have singularities of codimension ≤ 1.
(1) The BDE (Awθ ) has a folded singularity (or worse) at p if and only if Hw

θ along Nw
θ (p) has an

A3-singularity (or worse) at p. The three types of the folded singularities of BDEs can occur in (Awθ )
(Figure 3).

(2) The BDE (Awθ ) has a folded saddle-node singularity at p for some θ = θ0 if and only if Hw
θ0

has an A4-singularity at p. The family (Awθ ), as θ varies near θ0, is generic if and only if the big
family Hw is a versal unfolding of the A4-singularity of Hw

θ0
(Figure 4, left).

(3) The BDE (Awθ ) can have a node-focus change at p for some θ = θ0. This is not detected by the
family Hw

θ . The family (Awθ ), as θ varies near θ0, is generic for generic surfaces in H3
+(−1) (Figure

4, right).
(4) The BDE (Awθ ) has a Morse Type 1 singularity at p for some θ = θ0 if and only if Hw

θ0
has

a non-versal A3-singularity at p. The family (Awθ ), as θ varies near θ0, is always a generic family
(Figure 5).

(5) At an umbilic point the BDE Awθ0 has a Morse Type 2 singularity with discriminant of type

A+
1 (Figure 6) or A−1 (Figure 7). The family (Awθ ) as θ varies near θ0 is a generic family if and only

if the family Hw is a versal unfolding of the D4-singularity of Hw
θ0

.

Proof The proofs here are also similar to those for surfaces in R3 ([2, 6]). For the case (5), the

124



condition for the family (Asθ) to be a generic family at an umbilic point is

aθ bθ cθ
au bu cu
av bv cv

6= 0,

where a, 2b, c are the coefficients of (Asθ) (see [6]). The above determinant is, up to a scalar multiple,
the determinant of the matrix (4) in the proof of Theorem 3.5. 2

3.2 Surfaces in H3
+(−1) viewed as surfaces in R4

1

In §3.1 we defined a θw-asymptotic direction u ∈ TpM by 〈(dNw
θ )p(u),u〉 = 0. This notion depends

on the shape operator −dNw
θ . For surfaces in R4, there is another notion of asymptotic directions

which is defined in terms of the contact of the surface with lines and hyperplanes ([4, 13]; see also
[12] for their definition in terms of the curvature ellipse). For this reason, these asymptotic directions
and their integral curves (the asymptotic curves) are affine properties of the surface, i.e., they do not
depend on the metric on R4 and can be defined in the same way on a surface in R4

1.
Let r : U ⊂ R2 → M ⊂ R4

1 be a local parametrisation of a spacelike or timelike surface M . We
have a well defined second fundamental form on M using the Levi-Civita connection on R4

1 (see for
example [16]). Let {e3, e4} be a frame in the normal plane NpM . Then the coefficient of this second
fundamental form are given by

ai = 〈ei, ruu〉, bi = 〈ei, ruv〉, ci = 〈ei, rvv〉, i = 3, 4.

Given any normal vector field µ, with coordinates (α, β) in the normal space NpM , the shape
operator Sµ : TpM → TpM along µ is represented, with respect to the basis {ru, rv}, by the matrix

Sµ =
1

EG− F 2

(
G −F
−F E

)(
αa3 + βa4 αb3 + βb4
αb3 + βb4 αc3 + βc4

)
.

We denote by

[Sµ] =

(
αa3 + βa4 αb3 + βb4
αb3 + βb4 αc3 + βc4

)
the symmetric matrix associated to Sµ (it completely determines Sµ). We call the eigenvectors of
Sµ (when they exist) the µ-principal directions and call their integral curves the µ-principal curves.
These are given by the binary differential equation∣∣∣∣∣∣

dv2 −dudv du2

E F G
αa3 + βa4 αb3 + βb4 αc3 + βc4

∣∣∣∣∣∣ = 0. (5)

Following [4], we say that a direction u ∈ TpM is asymptotic if the projection of M along u to a
transverse hyperplane has an A-singularity more degenerate than a cross-cap at p. It is not difficult
to show that the asymptotic curves on M ⊂ R4

1 are given by a BDE which has the same form as that
of a surface in R4, namely

(A) : (b3c4 − b4c3)dv2 + (a3c4 − a4c3)dudv + (a3b4 − a4b3)du2 = 0 (6)

where ai, bi, ci, i = 3, 4, are the coefficients of the second fundamental form at (u, v). This equation
can also be written in a determinant form∣∣∣∣∣∣

dv2 −dudv du2

a3 b3 c3
a4 b4 c4

∣∣∣∣∣∣ = 0. (7)
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We follow the notation for surfaces in R4 and label the discriminant of equation (6) by ∆. Points
where ∆ is singular (generically a Morse singularity A±1 ) are labelled inflection points. The generic
configurations of the asymptotic curves at inflection points are the same as those for surfaces in R4,
top figures in Figure 6 and Figure 7 (see [5, 7]).

Theorem 3.9 Let M be a spacelike or timelike surface contained in a pseudo-sphere in R4
1. Then

the µ-principal curves coincide for all normal vector fields µ on M and are precisely the asymptotic
curves of M when viewed as a surface in R4

1.

Proof Let x : U →M be a local parametrisation of M . Because the metric on M is not degenerate,
{x(u, v), e(u, v)} is a basis of the normal plane NpM at all points p = x(u, v). The coefficients of the
second fundamental form (with respect to {x, e}) are given by

a3 = 〈x,xuu〉 = −〈xu,xu〉 = −E,
b3 = 〈x,xuv〉 = −〈xu,xv〉 = −F,
c3 = 〈x,xvv〉 = −〈xv,xv〉 = −G,

a4 = 〈e,xuu〉 = l,
b4 = 〈e,xuv〉 = m,
c4 = 〈e,xvv〉 = n.

Let µ = αx + βe be a normal vector field to M (we assume that β 6= 0). Then the equation of the
µ-lines of principal curvature is given by∣∣∣∣∣∣

dv2 −dudv du2

E F G
−αE + βl −αF + βm −αG+ βn

∣∣∣∣∣∣ = 0 =

∣∣∣∣∣∣
dv2 −dudv du2

E F G
l m n

∣∣∣∣∣∣ .
The last determinant above is equation (7) of the asymptotic curves of M when viewed as a surface
in R4

1. 2

Remark 3.10 The proof of Theorem 3.9 is an alternative to that in [18] for surfaces in the Euclidean
4-space and for spacelike surfaces in the Minkowski 4-space [8].

We shall not distinguish between a general BDE (9) (see Appendix) and its non-zero multiples, so
at each point (u, v) ∈ U we can view the BDE as a quadratic form aβ2 + 2bβγ+ cγ2 = 0 (β = dv and
γ = du) and represent it by the point Q = (a : 2b : c) in the projective plane RP 2. In RP 2 there is a
conic Γ = {Q : b2 − ac = 0} of singular quadratic forms. These can be put in the form (a1β + b1γ)2.

The polar line Q̂ of a point Q (with respect to the conic Γ) is the line that contains all points O
such that Q and O are harmonic conjugate points with respect to the intersection points R1 and R2

of the conic Γ and a variable line through Q. Geometrically, if the polar line Q̂ meets Γ, then the
tangents to Γ at the points of intersection meet at Q.

The symmetric matrix [Sµ] associated to the shape operator Sµ can be represented by a point
Sµ = (αa3 + βa4 : αb3 + βb4 : αc3 + βc4) ∈ RP 2. Then these points trace at each point p ∈ M a

pencil in RP 2 (by varying α, β). This pencil is precisely the polar line Â of the asymptotic BDE (6),
[15, 21]. We also represent the metric Gdv2 + 2Fdudv + Edu2 by the point L = (G : F : E).

Corollary 3.11 Let M be a surface in H3
+(−1). The families of shape operators −dNw

θ , θ ∈ R, trace
the polar line of the de Sitter lines of principal curvature with the points L± and L removed. The
family −dNs

θ (resp. −dN t
θ) trace the part of the polar line corresponding to spacelike (resp. timelike)

shape operators. The hyperbolic shape operators L+ and L− form an obstruction for joining spacelike
and timelike shape operators.
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4 Timelike hypersurfaces in Sn1

Let M be a hypersurface in the de Sitter space Sn1 . If M is spacelike, then its normal plane in Rn+1
1

is timelike and we have similar results to those in §3 for a hypersurface in the hyperbolic space.
We deal here with the case when M is timelike. Then the normal plane NpM in Rn+1

1 is spacelike
for all p ∈ M . The vectors x(u) and e(u) form an orthonormal basis of NpM . Therefore, we can
parametrise the unit normal vectors in NpM by sin(α)x(u) + cos(α)e(u). However, the derivative of
the Gauss indicatrix x(u) is the identity map on Tx(u)M , so all points on M are umbilic points with
respect to this Gauss indicatrix. This is why we define the family of (spacelike) Gauss indicatrices by

Nα : U → Sn1 (cos(α)−2)
u 7→ tan(α)x(u) + e(u)

where α ∈ (−π/2, π/2) is the angle between Nα(u) and e(u). The family Nα does not contain the
normal vector x. We associate the same notions to −(dNα)p as those associated to −(dNw

θ )p in §3.
We have, for instance, the α-principal curvatures given by καi = − tan(α) + κi. The α-principal
directions do not depend on α.

We define the family of height functions

Hα U × Sn1 (cos(α)−2) → R
(u,v) 7→ 〈x(u),v〉 − tan(α)

We have similar results to those in §3 concerning the families Nα and Hα. In this section we deal
mainly with timelike surfaces in S3

1 and give only the results that are distinct from those in §3.1.

4.1 Surfaces in S3
1

Let x : U ⊂ R2 →M ⊂ S3
1 be a local parametrisation of M and let

lα = 〈−(dNα)p(xu),xu〉 = 〈Nα,xuu〉,
mα = 〈−(dNα)p(xu),xv〉 = 〈Nα,xuv〉,
nα = 〈−(dNα)p(xv),xv〉 = 〈Nα,xuv〉,

denote the coefficients of the α-second fundamental form at p = x(u, v) associated to the shape
operator −(dNα)p. We have

lα = − tan(α)E + l, mα = − tan(α)F +m, nα = − tan(α)G+ n,

where l,m, n denote the coefficients of second fundamental form associated to the de Sitter shape
operator −dE. We denote, as in §3.1, by Ke and He the de Sitter Gauss-Kronecker curvature and
the de Sitter mean curvature, respectively.

The (de Sitter) lines of principal curvature are given by the same equation as for the case of a
surface in H3

+(−1) (i.e., equation (1)). The difference here is that the induced metric on the surface
M is Lorentzian, so −dNα does not always have two real eigenvalues. For a generic surface, the
discriminant of the lines of principal curvature is a smooth curve except possibly at isolated points
where it has Morse singularities of type A−1 (node) ([10]). This discriminant is denoted by the LPL
in [10] (Lightlike Principal Locus) and consists of points where the two principal directions coincide
and become lightlike. The singular points of the LPL are labelled timelike umbilic points. In view of
Theorem 3.9, the LPL is precisely the ∆-set of M as a surface in R4

1.

Theorem 4.1 The α-parabolic set, α ∈ (−π/2, π/2), is given by

tan2(α)− 2He tan(α) +Ke = 0.

It consists of the curves κi = tan(α), i = 1, 2. Each of these curves foliate, as α varies in (−π/2, π/2),
the region of M where there are two principal directions.
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Proof The proof is similar to that of Theorem 3.2. Here the de Sitter principal curvatures κ1 and
κ2 may be complex conjugate but Ke = κ1κ2 and He = (κ1 + κ2)/2 are always real numbers. 2

The α-asymptotic curves (which we define following §3.1) are given by

(Aα) : nαdv
2 + 2mαdudv + lαdu

2 = 0. (8)

The α-parabolic set is the discriminant of equation (8). Away from the LPL, the α-parabolic sets
behave as the θ-parabolic sets in §3.1 (we have similar results to those in Theorems 3.4, 3.5, 3.8). We
shall consider their behaviour at points on the LPL. We observe that the generic configurations of
the lines of principal curvature at points on the LPL are obtained in [10].

Theorem 4.2 Let M be a timelike surface in S3
1 and p a point on the LPL of M .

At most points on the LPL the height function Hα along the normal direction Nα has an A2-
singularity.

The singularity is of type A3 if and only if p is a folded singularity of the de Sitter lines of curvature
(and hence of all α-lines of curvature) and of an α-asymptotic curves.

The singularity is of type D4 if and only if p is a timelike umbilic point (i.e., a singularity of
the LPL) and tan(α) = κ1 = κ2. At such point, the de Sitter lines of curvature has a Morse Type
2 singularity with a discriminant having a singularity of type A−1 (Figure 7, top figures). The α-
asymptotic curves have a Morse Type 2 singularity with the discriminant of type A+

1 (Figure 6, top
figures) or A−1 (Figure 7, top figures).

Proof We take a special parametrisation of the surface where the coordinate curves coincide with
the lightlike curves, so E ≡ 0, F ≡ 0. The equation of the de Sitter lines of curvature becomes

ndv2 − ldu2 = 0,

and its discriminant (the LPL) is given by ln = 0. Suppose that p is a smooth point on the LPL,
and assume that l = 0 and n 6= 0. Then the de Sitter lines of curvature have (generically) a folded
singularity if and only if lu = 0.

At a singular point of the LPL (l = n = 0) both coefficients of the de Sitter lines of curvature
vanish. Thus, the de Sitter lines of curvature have generically a Morse Type 2 singularity with a
discriminant (ln = 0) having a singularity of type A−1 . The five generic configurations in Figure 7
(top figures) can occur.

The α-asymptotic curves are given by

ndv2 + 2(− tan(α)F +m)dudv + ldu2 = 0,

and the α-parabolic set (its discriminant) is given by (− tan(α)F + m)2 − ln = 0. With the same
setting as above, a smooth point x(u0, v0) on the α-parabolic set is also on the LPL if tan(α) =
(m/F )(u0, v0). Then the α-asymptotic curves, with tan(α) = (m/F )(u0, v0), have (generically) a
folded singularity if and only if lu = 0.

At a singular point of the LPL, all the coefficients of the α-asymptotic curves BDE, with tan(α) =
(m/F )(u0, v0), vanish. The discriminant can have either an A+

1 or an A−1 singularity, so the α-
asymptotic curves have generically a Morse Type 2 singularity with both discriminant types. All the
generic configurations of Morse Type 2 singularities can occur (Figures 6, 7, top figures).

The height function Hα(−,v) is singular at (u0, v0) if v = Nα(u0, v0). We write Hα for Hα(−,v).
We have at (u0, v0), (Hα)uu = l, (Hα)uv = − tan(α)F + m, and (Hα)vv = n, so on the LPL (and
with the setting above), (Hα)uu = 0 and the Hessian of Hα is degenerate if and only if (Hα)uv = 0,
that is, tan(α) = (m/F )(u0, v0). Calculations similar to those in the proof of Theorem 3.4 show that
the singularity is of type A2 if and only if (Hw

θ )uuu(u0, v0) = lu(u0, v0) 6= 0. When lu = 0, we get
generically an A3-singularity. At a timelike umbilic point l = n = 0, and with tan(α) = (m/F )(u0, v0),
the 2-jet of H vanishes, so the singularity is generically of type D4. 2
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Theorem 4.3 Let M be a timelike surface in S3
1 and p a point on the LPL of M .

(1) At most points on the LPL the foliations κi = constant, i = 1, 2 are as in Figure 2, top left.
The leaves of κ1 = constant join those of κ2 = constant on the LPL and form smooth curves which
have ordinary tangency with the LPL. At isolated points on the smooth part of the LPL the foliation
κi = constant, i = 1, 2 are as in Figure 2, top right. These points are generically distinct from the
folded singularities of the de Sitter lines of principal curvature.

(3) There are generically three configurations of the foliations κi = constant, i = 1, 2 at a timelike
umbilic point. These are as in Figure 2, bottom figures.

Figure 2: Generic configurations of the foliations κi = constant, i = 1, 2 at points on the LPL
(continuous lines for κi and dashed for κj , j 6= i).

Proof The α-parabolic sets, which give the foliations κi = constant, are given by tan(α)2 −
2He tan(α)+Ke = 0. In a local chart with E ≡ 0 and F ≡ 0, this becomes (− tan(α)F+m)2−ln = 0.
To simplify notation, we denote by

φ(u, v, λ) = (−λF +m)2 − ln,

where λ = tan(α). The surface φ−1(0) is smooth at (u, v, λ) if and only if p = x(u, v) is not a timelike
umbilic point. At a timelike umbilic point with λ = m/F , φ−1(0) is generically diffeomorphic to a
cone. The projection π : φ−1(0)→ U is a fold map at (u, v, λ) when p = x(u, v) ∈ LPL and is not a
timelike umbilic point. The discriminant of π is the LPL. We call criminant the critical set of π.

Suppose that p ∈ LPL is not a timelike umbilic point. The α-parabolic sets are the images
by π of the intersection of φ−1(0) with the planes λ = constant. These planes are transverse to
φ−1(0). Therefore their traces on φ−1(0) is a family of smooth curves. We have two possible generic
configurations of their projections to the (u, v)-plane (i.e., of the α-parabolic sets) depending on
whether the criminant is transverse to the plane λ = constant (Figure 2, top left) or tangent to it
(Figure 2, top right). A condition for tangency is φuλφv − φvλφu = 0 (the tangency is ordinary in
general) and is distinct from that for having a folded singularity of the de Sitter lines of curvature. The
criminant splits φ−1(0) locally into two components. The projections of the traces of λ = constant in
one component give the foliation κ1 = constant and those in the other component give the foliation
κ2 = constant.

We consider now the case when p = x(u0, v0) is a timelike umbilic point with λ0 = tan(α0) =
(m/F )(u0, v0). Then φ−1(0) is a cone at (u0, v0, λ0). The plane λ = λ0 is not tangent to the cone, so
we have two possible configurations for its trace on the cone: it is either an isolated point (this is the
case when the α-parabolic set has a singularity of type A+

1 ) or it is a pair of crossing curves (this is
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the case when the α-parabolic set has a singularity of type A−1 ). As λ varies near λ0 we obtain generic
cone sections. The LPL lifts to two smooth curves on φ−1(0). If the cone sections are closed curves,
we have one possible configuration for their projections to the (u, v)-plane (Figure 2, last bottom
figure). If the cone sections are hyperbole, then we have two possible configurations depending on the
position of the lift of the LPL with respect to the plane λ = λ0. If both components of the LPL in
a connected component of the cone with the singularity removed are on one side of the plane λ = λ0,
then the projections to the (u, v)-plane of the λ = constant sections are as in Figure 2, first figure of
the bottom row. Otherwise they are as in Figure 2, middle figure of the bottom row. If we take the
special parametrisation E ≡ 0, G ≡ 0, the last two types of configurations are distinguished by the
sign of

((mulv −mvlu)F − (Fulv − Fvlu)m) ((munv −mvnu)F − (Funv − Fvnu)m)

at (u0, v0), positive for the first case and negative for the second. 2

5 Appendix: singularities of BDEs

We give a brief summary of results concerning the singularities of quadratic Binary Differential
Equations (BDEs) and their bifurcations (see [20] for a survey article and references). A BDE is
given in the form

a(u, v)dv2 + 2b(u, v)dudv + c(u, v)du2 = 0, (9)

with (u, v) ∈ U ⊂ R2. It determines a pair of transverse foliations away from the discriminant curve,
which is the set of points where the function δ = b2−ac vanishes. The pair of foliations together with
the discriminant curve are called the configuration of the solutions of the BDE. In all the figures, we
draw one foliation in continuous line and the other in dashed line. The discriminant curve is drawn
in thick black.

We consider here topological equivalence among BDEs and say that two BDEs are topologically
equivalent if there is a local homeomorphism in the plane taking the configuration of one equation to
the configuration of the other. We suppose the point of interest to be the origin. There are two cases
to consider depending on whether all the coefficients of the BDE vanish or not at the origin.

When the coefficients do not all vanish at the origin, the stable configurations are as shown in
Figure 3. The last three figures are called folded saddle, folded node and folded focus in that order.
Folded singularities occur when the unique direction determined by the BDE on the discriminant is
tangent to the discriminant.

O

Figure 3: Stable configurations of BDEs: last three figures are the folded saddle, folded node and
folded focus respectively.

Codimension 1 singularities can occur in three ways: (i) a folded saddle and a folded node coming
together and disappearing (folded saddle-node singularity) on a smooth discriminant (Figure 4, left);
(ii) a change from a folded saddle to a folded node on a smooth discriminant (Figure 4, right);
(iii) the discriminant undergoes a Morse transition of type A+

1 or A−1 . For each type we have two
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Figure 4: Folded saddle-node bifurcations (left) and a folded node-focus change (right).

cases depending on whether two folded saddles or two folded foci appear in the bifurcations. These
singularities are label Morse Type 1 (Figure 5).

When the coefficients of the BDE all vanish at the origin, the singularities are automatically of
codimension ≥ 1. If the discriminant has a Morse singularity, then we label the singularities of the
BDE Morse Type 2 singularities. We have three generic configurations when the singularity of the
discriminant is of type A+

1 (Figure 6) and five (one case splits into two sub-cases when deformed)
when it is of type A−1 (Figure 7). In Figures 6 and 7 only one side of the transition is drawn the
other side is symmetrical.

Figure 5: Bifurcations at a Morse Type 1 singularity: A−1 left and A+
1 right.

1S 3S 2S+1N

Figure 6: Bifurcations at a Morse Type 2 singularity (A+
1 ).
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1S 1N 3S 1S+2N 2S+1N
case a

2S+1N
case b

Figure 7: Bifurcations at a Morse Type 2 singularity (A−1 ).
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ON BORDISM AND COBORDISM GROUPS OF MORIN MAPS

ENDRE SZABÓ, ANDRÁS SZŰCS, AND TAMÁS TERPAI

Abstract. We prove that the unoriented cobordism groups of Morin maps

are 2-primary in nearly all cases. In the second part we define and compute a

ring structure on the rational cobordism group of oriented fold maps.

1. Introduction

We will consider Morin maps of n-manifolds into (n+k)-manifolds, k > 0. That
is, all maps will be assumed to be locally generic and have differentials of rank n or
n− 1 everywhere. It is known [5] that at each point a Morin map is either regular
or has a singularity of type Σ1r for some r ≥ 1, r ≤ n

k+1 , in which case it has the
local form

(t1, . . . , tn−1, x) 7→ (t1, . . . , tn−1, t1x+ · · ·+ trx
r, . . . , t(k−1)r+1x+ · · ·+ tkrx

r,

tkr+1x+ · · ·+ tkr+r−1x
r−1 + xr+1).

Definition 1. A Morin map will be called Σ1r -map if it has no singularities Σ1s

for s > r. The cobordism group of Σ1r -maps of n-manifolds into Rn+k can be
defined in a natural way (see [11]). Let us denote this group by Σ1r (n, k) (no
orientability is required). This group for r = 1 will be denoted by Fold(n, k), and
its oriented version will be FoldSO(n, k). For r = 0 (i.e., for the cobordism groups
of immersions), the notation will be Imm(n, k) and ImmSO(n, k), respectively.

Our goal in the first part is to evaluate the cobordism groups Σ1r (n, k) modulo
finite 2-primary groups. In the second part we will define and compute the ring
structure on the bigraded group⊕

n,k

FoldSO(n, k)⊗Q.

2. The unoriented cobordism groups of Morin maps

Theorem 1.

(1) The cobordism group Σ1r (n, k) of Morin maps without singularities Σ1s for
s > r is a finite 2-primary group if
• r =∞ (i.e., we allow all Morin maps),
• r is arbitrary and k is odd,
• r 6≡ 0 mod 4 and k is even.

(2) For r ≡ 0 mod 4 and k even the rank of the free part of the group Σ1r (n, k)
is equal to that of Hn−r(k+1)−k(BO(k);Z). (Recall that the latter is equal

to the number of partitions of n−r(k+1)−k
4 with entries not greater than k/2,

in particular it is zero when n−r(k+1)−k
4 is not an integer).
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This theorem improves [10, Theorem 1]. We do not know whether the groups
Σ1r (n, k) have odd torsion in the last case above or not.

The proof will be based on the so called Kazarian conjecture proved by the second
author in [11]. In order to formulate this conjecture we recall the so called Kazarian
space (considered already by R. Thom). For a given list τ of allowed singularities
the Kazarian space Kτ is the subset of the universal jet bundle corresponding to
the allowed singularities τ . (This space Kτ is very useful in computing the so called
Thom polynomials giving the homology classes of different singularity strata.) On
the other hand the second author constructed a space Xτ , whose homotopy groups
give the cobordism groups of the so called τ -maps, i.e., maps with singularities only
from the list τ (see [11] and the references there). For τ -maps a universal (virtual)
normal bundle can be defined, it is a virtual bundle over the Kazarian space Kτ
and it will be denoted by ν. The (strengthened version of) Kazarian conjecture
says that

Xτ
∼= Ω∞S∞Tν

where Tν is the “Thom space” of the virtual bundle ν. Note that although the
Thom space of a virtual bundle is not defined, the space Ω∞S∞Tν is well-defined
(see [11]).

Recall that the Kazarian space is glued together from “blocks”, one for each
allowed monosingularity η. The block for η is the total space of the vector bundle
over BGη associated to the source representation λη, where Gη is the maximal
compact subgroup of the symmetry group of η. We shall denote this vector bundle
by ξη. Recall from [7],[11] that this bundle is the universal normal bundle of the η-
stratum in the source manifold. Analogously, the vector bundle overBGη associated

to the target representation λ̃η is the universal normal bundle of the η-stratum in

the target manifold, and we shall denote this vector bundle by ξ̃η. For η = Σ1r

we abbreviate ξΣ1r to ξr and ξ̃Σ1r to ξ̃r. For Morin maps, these data have been
calculated in [9], [10], [7] (more necessary information on the Kazarian spaces Kτ
will be given in the proof of Theorem 6).

We will first investigate the cohomology of the (stable) Thom space Tν of the
virtual normal bundle ν over the Kazarian space. To obtain that, we use twisted
Thom isomorphism to reduce the question to the determination of the cohomology
groups of the Kazarian space with coefficients twisted by ν.

Along with the classes of maps mentioned above, we will need to use prim (i.e.,
projected immersion) maps. Recall that a Morin map f is called a prim map, if
the one dimensional vector bundle ker df over the set of singular points is trivial,
and moreover it is trivialised. The name prim comes from the property that being
a prim map is equivalent to being the projection of an immersion into the product
of the original target manifold with the real line. The analogue of the bundle ξr for
prim maps will be denoted by ξ̄r.

3. Calculation

We will consider coefficients from a ring R where there is division by 2, and
we will denote the local system twisted by the determinant bundle of some vector
bundle ζ by Rζ . We shall say also that Rζ is twisted by the class w1(ζ).

We will need to compute H∗(Tν;R), where ν is the virtual normal bundle
over the Kazarian space Kτ . Using the twisted Thom isomorphism we have:
H∗(Tν;R) ∼= H∗−k(Kτ ;Rν).
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We shall consider the Kazarian spectral sequence [11] for prim maps and then
for arbitrary Morin maps. Recall that the Kazarian spectral sequence starts from
the cohomologies of BGη and converges to those of Kτ . This time we need the
spectral sequence that converges to the cohomologies of the Kazarian space with
coefficients in Rν .

3.1. Case of even k (k = codimension of the map).

First, consider the prim case. We know that in this case the Kazarian spectral se-
quence converges to the cohomology of the Kazarian space for (k+1)-codimensional
immersions, which is BO(k+ 1). This is so because a codimension k prim map can
be identified with its codimension k + 1 lift to an immersion. The virtual normal
bundle is hence stably the same as the canonical bundle over BO(k+ 1). We claim
that for k even these cohomology groups vanish.

Lemma 1. The twisted cohomology H∗(BO(k + 1);Rν) coincides with the group
of classes which are anti-invariant under the deck transformation of the covering
map π : BSO(k+ 1)→ BO(k+ 1) (i.e., those which the deck transformation sends
to their negatives) and hence H∗(BO(k + 1);Rν) is zero when k is even.

Proof. Note that the local system Rν is the same as Rπ, because w1(ν) = w1(π).
From the Leray spectral sequence applied to the covering π it follows that

H∗(BSO(k + 1);R) = H∗(BO(k + 1);π∗(R)).

Here π∗(R) is the push-forward of the untwisted local system R on BSO(k + 1).
Hence this is locally R ⊕ R at each point, and the non-trivial loop-class acts on it
by interchanging the summands. Therefore it can be decomposed as the sum of the
invariant and anti-invariant part: π∗(R) = R⊕Rπ. Thus

H∗(BSO(k + 1);R) = H∗(BO(k + 1);π∗(R)) =

= H∗(BO(k + 1);R)⊕H∗(BO(k + 1);Rν).

Since the groups H∗(BSO(k + 1);R) and H∗(BO(k + 1);R) are isomorphic (both
groups are generated by the Pontrjagin classes) we obtain that H∗(BO(k+1);Rν) =
0. �

Completely analogously one obtains the twisted cohomologies of BO(k) for k
even.

Lemma 2. If k = 2t, then H∗(BO(k);Rν) = χ ∪ R[p1, . . . , pt], where χ is the
twisted Euler class. �

Now knowing where the Kazarian spectral sequence for prim maps and for k
even converges to let us have a look at its starting term.

The E1 term of the Kazarian spectral sequence can be described in this (prim
maps) case as follows. The r-th column contains the twisted cohomology groups
of the pair (Dr, Sr), where Dr and Sr are the total spaces of the disc bundle and
the sphere bundle associated to the vector bundle ξ̄r, which is the universal source
bundle over the Σ1r -points for prim maps. This universal bundle is ξ̄r = r(γk⊕ ε1)
(over BO(k) as its base space), see [9], [7]. The virtual normal bundle ν over the
base space of ξ̄r is stably the same as the canonical bundle γk over BO(k). Hence
w1(ξ̄r) = rw1(γk) = rw1(ν).
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Using the twisted Thom isomorphism again, we have

H∗(Dr, Sr;Rν) ∼= H∗−r(k+1)(BO(k);Rr+1
ν ),

where Rr+1
ν = Rν ⊗ · · · ⊗ Rν , r + 1 copies. Recall that we consider the case when

k is even, say k = 2t. Let us denote by A the ring R[p1, . . . , pt]. It is well known
that the untwisted cohomology ring of BO(k) is isomorphic to this ring A, with pj
identified with the jth Pontrjagin class. Summarizing the computation we see that
each column of the E1 term of the Kazarian spectral sequence is the ring A but
shifted differently: in the columns number 2h and 2h+ 1 it is shifted by (2h+ 1)k.
It follows that this spectral sequence must converge to zero in a very controlled
way. Namely the first differential d1 must be an isomorphism between the p-th and
(p + 1)-th column for p = 0, 2, 4, . . . . Indeed for p = 0 this follows from the facts
that

• the elements of lowest degree in the 0-th column must be mapped onto
those in the next column by d1 isomorphically because this is the only
chance for these elements to disappear, and they do disappear since the
E∞ term vanishes. Hence d1(χ) = U , where U is the twisted Thom class
of the bundle ξ̄1, while χ is the twisted Euler class in H∗(BO(k);Rν) (note
that in this case Rν and Rγ are isomorphic).
• the differential d1 is multiplicative in the sense that d1(χ∪pI) = d1(χ)∪pI ,

see [11, Section 13.1].

The argument can then be repeated for each even p.
Second case, general (not necessarily prim) Morin maps, k = 2t. The previous

spectral sequence (for the prim case) has a Z2 action corresponding to changing
the orientation of the kernel bundle, and we need to know what are the eigenspaces
corresponding to the two possible eigenvalues of this action. For this, we need to
understand what happens with the coefficient system Rν ⊗ Rξr = Rξ̃r for various

values of r. From [7] one knows that the target representation is

λ̃(ε,Q) = εr+1 ⊕Q⊕
⌈
r − 1

2

⌉
1⊕

⌊
r − 1

2

⌋
ε⊕

⌊r
2

⌋
Q⊕

⌈r
2

⌉
εQ

for Q ∈ O(k), ε ∈ O(1). When ε changes its sign then λ̃ changes orientation exactly
when r + 1 + b r−1

2 c is odd, i.e., when r ≡ 2, 3 mod 4.
When r ≡ 0, 1 mod 4, then the action discussed above (induced by −id : ε→ ε)

is identical and the columns as well as the differentials between them remain the
same as for prim maps. When r ≡ 2, 3 mod 4, then the action is changing the signs
of all cohomology classes, so these columns in the spectral sequence for general
Morin maps vanish.

Since the spectral sequences for prim maps and arbitrary Morin maps can be
mapped into each other, and for the columns r ≡ 0, 1 mod 4 will be mapped onto
each other isomorphically we obtain that the differential d1 will be isomorphism
again, and so the final E∞ term vanishes again. We obtain that the cohomology
groups of the Kazarian space for arbitrary Morin maps (with coefficients twisted
by w1(ν)) vanish if k is even (under the assumption that in the coefficient ring 2 is
invertible).

If we truncate the previous spectral sequence at the column corresponding to
Σ1r , i.e., we consider the spectral sequence for Σ1r -maps, then the differential dp,∗1
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still remains an isomorphism between the p-th and (p + 1)-th column for p even
except when p = r and r ≡ 0 mod 4.

3.2. Case of odd k.

Here, the coefficient system on BO(k) is twisted by w1(γk), and in the column
corresponding to Σ1r the coefficients are twisted corresponding to

w1(ξ̃) =

(
r + 1 +

⌊
r − 1

2

⌋
+
⌈r

2

⌉)
w1(γ1) + (r + 1)w1(γk) =

= rw1(γ1) + (r + 1)w1(γk).

In particular, for no column is the coefficient system twisted trivially. Notice that
H∗(BSO(k);R) ∼= R[p1, . . . , pbk/2c] is isomorphic to H∗(BO(k) × RP∞;R), with
the natural projection BSO(k)× S∞ → BO(k)× RP∞ inducing an isomorphism.
This implies that the groups H∗(BO(k) × RP∞;Rζ) are all 0 except when ζ is a
trivial line bundle by the same argument as in Lemma 1. So the Kazarian spectral
sequence with coefficients in Rν starts from the empty state E∗∗1 = 0 in this case
and hence H∗(KΣ1r ;Rν) = 0 for all 0 ≤ r ≤ ∞.

3.3. A geometric argument.

In addition to the previous computations we prove the following proposition:

Theorem 2. The image of the forgetting map ρ : Imm(n, k) → Fold(n, k) from
the unoriented cobordism group of immersions into that of fold maps contains only
elements of order 2 and the zero element. That is, 2ρ(Imm(n, k)) = 0.

Proof. Let i : Mn → Pn+k be a k codimensional immersion. Choose a section v
of the normal bundle νi transverse to the zero section; we consider v as a vector
field along i. Our claim is that the map j : M × [−1, 1] → P × [−1, 1], j(x, t) =
(i(x) + tv(x), t2) is a fold map if v is small enough. At the points where v is
nonzero, the map j is clearly an immersion, and hence the only singular points
can be of the form (p, 0) with p ∈ M and v(p) = 0. Since v is transverse to the
zero section, the set of points p where v(p) = 0 is a k codimensional submanifold
Z of M and v establishes an isomorphism between the normal bundle of Z in M
and the normal bundle of i(M) in P (restricted to Z). Thus for any point p that
satisfies v(p) = 0 we can choose coordinate neighbourhoods U ∼= Rk × Rn−k of p
and V ∼= Rk × Rk × Rn−k of i(p) such that on U the immersion i has the form
(x, y) 7→ (0, x, y) with x ∈ Rk, y ∈ Rn−k, and the vector field v has the form
(0, x, y) 7→ (x, 0, 0). In these coordinates

j(x, y, t) = (i(x, y) + tv(x, y), t2) = (tx, x, y, t2)

has the normal form of a Σ1,0 singularity multiplied by idRn−k . Consequently j
is a fold map as claimed. The boundary of j consists of two immersions regularly
homotopic to i, proving our initial claim. �

Remark: This means that the embedding Kimm → Kfold of the Kazarian space
of immersions into that of fold maps is 0 modulo 2-torsion in (co)homology with
coefficients twisted by ν, and there is only a single way of getting this result in the
Kazarian spectral sequence, by having the first differential surjective in cohomology
(injective in homology). But the ranks of the corresponding groups are the same, so
these surjections are actually isomorphisms. Hence we obtained a geometric proof
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of the fact that we have seen above, that the differential d1 in the Kazarian spectral
sequence maps the zero column isomorphically onto the next column.

4. Proof of Theorem 1

As a consequence of the computations in Section 3, we see that for k even and
r 6≡ 0 mod 4, as well as for k odd, the stable space Tν (where ν is the virtual normal
bundle over the Kazarian space Kτ ) has the same (co)homology groups modulo 2-
primary groups as a contractible space. By the mod C Hurewicz theorem (due to
Serre [8]), this implies that the stable homotopy groups of Tν are also the same as
those of a point modulo 2-primary groups, that is, they are all 2-primary groups.
But the stable homotopy groups of Tν are the homotopy groups of the classifying
space Xτ

∼= Ω∞S∞Tν. Applying the mod C Hurewicz theorem again, we obtain
the statement of the Theorem.

When k is even and r ≡ 0 mod 4, we have

H∗(Tν;Q) ∼= H∗−k(KΣ1r ;Qν) ∼= H∗−r(k+1)−k(BO(k);Qν) ∼=
∼= H∗−r(k+1)−2k(BO(k);Q)

as the Kazarian spectral sequence degenerates with only column number r being
nonzero. Since stable homotopy groups of any space have the same rank as the
rational homology of the same space, we have

dimπn+k(Xτ )⊗Q = dimπSn+k(Tν)⊗Q = dimHn+k(Tν;Q) =

= dimHn−r(k+1)−k(BO(k);Q)

as claimed.

5. Left-right bordism groups of τ-maps.

Definition 2. The so called left-right bordism groups of τ -maps were defined in
[11]. In this case we allow to change the target manifold also by a cobordism, and
two τ -maps are equivalent (in this case bordant) if their sources and targets are
cobordant and there is a τ map from the cobordism between the sources into that
of the targets joining the original maps. The corresponding group is denoted by
Bordτ (n, k). (Here the singularities in the list τ are those of codimension k maps,
the sources are n-dimensional and the target manifolds are (n+ k)-dimensional.)

Remark: A version of the Pontrjagin - Thom construction for singular maps
implies that

Bordτ (n, k) ≈ Nn+k(Xτ ).

These groups are vector spaces over Z2. In [12] these groups were computed for the
simplest set of multisingularities. Here we shall consider the following versions of
these groups:

• The targets and their cobordisms are oriented, but the sources might be
non-orientable. These groups are denoted by Bordtarget−orτ (n, k). They
are isomorphic to the oriented bordism groups of the unoriented classifying
spaces Xτ :

Bordtarget−orτ (n, k) ∼= Ωn+k(Xτ ).
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• Both the target and the source, as well as their bordisms, are oriented.
These groups are denoted by BordSOτ (n, k). They are isomorphic to the
oriented bordism groups of the oriented version of the classifying space
XSO
τ :1

BordSOτ (n, k) ∼= Ωn+k(XSO
τ ).

Theorem 3. Let τ be the collection of all multisingularities of k codimensional
maps, k ≥ 2, composed from

• all Morin monosingularities, or
• Σ1s , s ≤ r for some r ≥ 0, r 6≡ 0 mod 4 and k is even, or
• Σ1s , s ≤ r for some r ≥ 0, and k is odd.

Then the τ -bordism groups with oriented target Bordtarget−orτ (n, k) are isomor-
phic modulo 2-primary groups to Ωn+k, the oriented cobordism group of (n + k)-
manifolds. The mapping Bordtarget−orτ (n, k)→ Ωn+k that associates to a map the
cobordism class of its target is a mod 2 isomorphism.

Proof. The bordism groups Bordtarget−orτ (n, k) ∼= Ωn+k(Xτ ) can be computed us-
ing the Atiyah-Hirzebruch spectral sequence (see [1]). The first page of the spectral
sequence is Hp(Xτ ; Ωq). Since the homotopy groups of Xτ are 2-primary groups
and the space Xτ is (k−1)-connected, its reduced integral homology groups are also
finite 2-primary groups for k ≥ 2; hence the first page modulo 2-primary groups
vanishes apart from the first column (that is, p = 0), which corresponds to the
cobordism class of the target. The spectral sequence degenerates and we get the
statement of the theorem. �

Remark: For k = 1 the space Xτ might be (and will be) non-simply connected
and therefore we cannot use the mod C Hurewicz theorem of [8] to deduce that its
homology groups are 2-primary groups.

The remaining case when k is even and r is divisible by 4 can be handled more
conveniently with the following notation. Let A∗ be a graded Abelian group of
finite type, A∗ = ⊕

j
Aj . Denote by SP(A∗) the graded skew-commutative ring

multiplicatively freely generated by the additive generators of A∗. That is,

SP(A∗) =

(
∧( ⊕
j odd

Aj)

)
⊗
(
Sym( ⊕

j even
Aj)

)
,

where for a vector space V the symmetric algebra Sym(V ) is defined as

Sym(V ) =

∞⊕
j=0

V ⊗j/(v1 ⊗ · · · ⊗ vj − vσ(1) ⊗ · · · ⊗ vσ(j))v1,...,vj∈V,σ∈Sj
,

and ∧V is the free skew algebra generated by V .
Recall that for a topological space X the infinite symmetric power of X is also

denoted by SPX.

Lemma 3.

H∗(SPX;Q) ∼= SPH∗(X;Q).

1The space Xτ was not considered in [11], and XSO
τ was denoted there by Xτ .
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Proof. By [3, page 472] the space SPX is weakly homotopically equivalent to∏
j≥0

K(Hj(X;Z), j). Hence the rational homology groups of SPX are those of∏
j≥0

K(Zbj , j), where bj is the rank of Hj(X;Z). It is a well-known result of Serre

(see e.g. [2]) that H∗(K(Z, j);Q) is generated by a j-dimensional free, respectively
skew generator depending on whether j is even or odd. Hence the left hand side of
the statement of the Lemma is the free skew symmetric algebra on the generators
of H∗(X;Q), and this coincides with the right hand side by definition. �

Theorem 4. Let τ be the collection of all multisingularities of k codimensional
maps composed from Σ1s , s ≤ r where k is even and r is divisible by 4. Then the
free part of the τ -bordism group with oriented target has dimension

dimBordtarget−orτ (n, k)⊗Q = dim (SP (H∗(Tν;Q))⊗ Ω∗)n+k =

∑
n+k

4 =j+
∑
l

lal

qj
∏
l

al>0

(
q
l− (k+1)r+2k

4
+ al − 1

al

)
,

where qm is the number of partitions of m into positive integers.

Proof. Just as before, we have

Bordtarget−orτ (n, k)⊗Q ∼= Ωn+k(Xτ )⊗Q ∼=
n+k∑
i=0

Hn+k−i(Xτ ;Q)⊗ Ωi ∼=

∼=
bn+k

4 c∑
j=0

Hn+k−4j(ΓTν;Q)⊗Qqj .

For any virtual cell complex L the spaces ΓL and SPL are rationally homotopy
equivalent, see e.g. [11, Lemma 81]. In particular, their rational homology groups
are isomorphic and we can replace ΓTν by SPTν in the last expression above,
obtaining the first claimed equality. Extend the notation qα by setting qα = 0 if α
is not an integer. Then

dimHm(Tν;Q) = dimHm−(k+1)r−2k(BO(k);Q) = qm−(k+1)r−2k
4

;

note that in particular 4 | r and 2 | k imply that dimHm(Tν;Q) = 0 unless 4 | m.
Therefore, for any n, we have

dimBordtarget−or(n, k)⊗Q =

bn+k
4 c∑
j=0

dim

((
∧
(
⊕

u odd
Hu(Tν;Q)

)
⊗ Sym

(
⊕

u even
Hu(Tν;Q)

))
n+k−4j

⊗Qqj
)

=

bn+k
4 c∑
j=0

∑
n+k−4j=∑

ubu

qj
∏
ueven
bu>0

(
dimHu(Tν;Q) + bu − 1

bu

)
=
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∑
n+k=

4j+
∑

4lal

qj
∏
l

al>0

(
dimH4l(Tν;Q) + al − 1

al

)
=

∑
n+k

4 =j+
∑
lal

qj
∏
l

al>0

(
q
l− (k+1)r+2k

4
+ al − 1

al

)
,

which is our second claimed equality. �

6. Ring structure on the direct sum of oriented cobordism groups of
fold maps

⊕
n,k

FoldSO(n, k)⊗Q

Let us recall first Wells’ theorem from [13] on the ring of immersions. By the
product of two immersion-cobordism classes [f : Mm → Rm+k] and [g : Nn →
Rn+l] we mean the cobordism class of the product of the representatives2: [f :
Mm → Rm+k]× [g : Nn → Rn+l] = [f × g : Mm ×Nn → Rm+k ×Rn+l]. Let si be
the characteristic class corresponding to the symmetric polynomial x2i

1 + x2i
2 + . . . ,

where the total Pontrjagin class is 1 + p1 + p2 + · · · =
∏
j

(1 + x2
j ), see [4].

Theorem 5 (Wells, [13]).⊕
n,k

Imm(n, k)⊗Q = Q
[
[f0], [f1], . . .

]
,

where [fi] is the cobordism class of an immersion fi : M4i+2 # R4i+4 such that
〈e∪si(p1, . . . , pi), [M ]〉 6= 0. Here e denotes the twisted normal Euler class of fi, and
[M ] is the twisted integer valued fundamental class of the unoriented manifold M ,
finally si is the characteristic class described above.

Definition 3. Given two cobordism classes of oriented fold maps [f : Mm → Rm+k]
and [g : Nn → Rn+l] we define their product as follows. The representatives f and
g can be chosen to be immersions. Their product is an immersion, and we define
[f ]× [g] to be the oriented fold-cobordism class of this product.

Theorem 6.

a) The above definition does not depend on the involved choices, that is, it gives a
well-defined product on the direct sum

⊕
n,k

FoldSO(n, k)⊗Q.

b) ⊕
n,k

FoldSO(n, k)⊗Q = Q[g0, h1, h2, . . . ],

where hi : CP 2i → R6i is any generic map, and g0 is the inclusion of a point
into the line.

Proof. Part a) follows from the facts that:

1) the natural map Hn(BSO(k);Q)→ Hn(BO(k);Q) is onto;
2) FoldSO(n, k)⊗Q ∼= Hn(BO(k);Q) (see [11]); and

2In [6] a different multiplication was considered: f ∗ g : Mm ×Nn → Rm+k ×Rn+l ×R1. For
arbitrary Morin maps only that definition seemed to be possible, besides this operation made the
singularities multpilicative. Here we consider the most natural product operation, it turns out to
be possible to define it for fold maps, more precisely for their rational cobordism classes.
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3) ImmSO(n, k)⊗Q ∼= Hn(BSO(k);Q) (see e.g. the proof of Corollary 7 below).

Part b). We have seen in [11] that the Kazarian space Kτ for τ =
{

[Σ0], [Σ1,0]
}

(i.e., Kτ = Kfold) has the same rational homology groups as BO(k). Recall that

H∗(BO(k);Q) = Q
[
p1, . . . , p[ k

2 ]
]

= Q
[
s1, . . . , s[ k

2 ]
]
.

It is well known [4] that the cobordism class of a manifold M4i is irreducible in
Ω∗ ⊗ Q if and only if si[M

4i] 6= 0. In particular the even complex dimensional
projective spaces CP 2i satisfy this property, hence Ω∗ ⊗Q = Q[[CP 2], [CP 4], . . . ].

For the convenience of the reader we give here a short summary of the properties
of the Kazarian spaces that we use. We deal with the case of cooriented maps, for
the unoriented version of the space replace all occurrences of the group SO with O.
The space Kτ depends on the set τ , which is the list of allowed singularities. Recall
that a τ -map is a map such that all its singularities have a type from the list τ .
The space Kτ is universal in the following sense. It has a stratification according
to the singularity types, each stratum corresponds to an element of τ . Further
for each cooriented τ -map f : Mn → Pn+k there arises a map κf : Mn → Kτ of
the source manifold M into the Kazarian space. This map κf is transverse to each
stratum of Kτ , hence the preimages of the strata induce a stratification on M which
coincides with the one induced by f (that is, the pulled-back strata coincide with
the singularity strata of f). Additionally, Kτ is the total space of a fibre bundle
over BSO,

π : Kτ → BSO.

Pulling back the canonical bundle γ (the limit lim
m→∞

γm) to Kτ one obtains the

bundle ν = π∗γ, which is the universal virtual normal bundle of a τ -map in the
sense outlined below. If f : Mn → Pn+k is a τ -map, and νf is its virtual normal
bundle, then

κ∗fν
∼= νf .

Hence there is a homotopically commutative diagram

Kτ
π

��
M

κf

<<yyyyyyyy νf // BSO

so κf is a lift of the map νf : M → BSO to M → Kτ .
Now recall that in [11] for any τ -map f : Mn → Rn+k and for any x ∈ Hn(Kτ ;Q)

the x-characteristic number of f , that is, x[f ]
def
== 〈κ∗f (x), [Mn]〉 has been defined

and that these characteristic numbers give an isomorphism:

Hn(Kτ ;Q) = Hom(Hn(Kτ ;Q),Q)←− Cobτ (n, k)⊗Q
(x 7−→ x[f ]) ←−| [f ].

If hi : CP 2i → R6i is any generic map, then it is a fold map. Suppose that k ≥ 2i.

Let us consider the map h
(k)
i = gk−2i

0 · hi, i.e., the composition CP 2i hi−→ R6i ↪→
R4i+k. In [11] we have shown that for τ = {Σ0,Σ1,0} (when τ -maps are precisely
the fold maps) the space Kτ has the same rational homotopy groups as BO(k)
does, and π : Kτ → BSO is the standard mapping BO(k) → BSO (induced by

O(k)
(id,det)→ SO(k + 1) → SO) up to a rational homotopy. Hence π∗ maps all the
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Pontrjagin classes pi ∈ H4i(BSO;Q) to those in H4i(BO(k);Q) for i ≤ k
2 , while

for i > k
2 the class pi goes to zero.

Beyond the characteristic classes si mentioned in the previous proof we shall
also consider the classes s̄i that we define as si(p̄1, . . . ), where p̄j are the normal
Pontrjagin classes defined by 1 + p̄1 + p̄2 + · · · = (1 + p1 + p2 + . . . )−1.

Lemma 4. For x = s̄i, that is, x(p1, . . . ) = si(p̄1, . . . ), the x-characteristic number

of h
(k)
i is

s̄i[h
(k)
i ] = si[CP 2i] 6= 0.

Proof.

〈si(p1, . . . , pm), [CP 2i]〉 = 〈ν∗fsi(p̄1, . . . , p̄m), [CP 2i]〉 =

= 〈κ∗fπ∗si(p̄1, . . . , p̄m), [CP 2i]〉 = 〈κ∗fsi(p̄1, . . . , p̄m), [CP 2i]〉 =

= 〈s̄i(κ∗fp1, . . . , κ
∗
fpm), [CP 2i]〉 = s̄i[h

(k)
i ].

�

By the multiplicative property of the classes s̄I = s̄i1 . . . s̄ir we have that the

cobordism classes of fold maps g
k−2|I|
0 hI , where I = (i1, . . . , ir) is a multiindex

hI = hi1 × hi2 × · · · × hir and |I| = i1 + · · ·+ ir, are linearly independent. Indeed,

the matrix aJI =
(
s̄J
[
g
k−2|I|
0 · hI

])
is non-degenerated. Here both multiindices J

and I run over all the partitions of all the numbers 0, 1, 2, . . . ,
[
k
2

]
. Hence⊕

n,k

CobΣ1,0(n, k)⊗Q ∼= Q[g0, h1, h2, . . . ].

�

Corollary 7. The ring
⊕
n,k

ImmSO(n, k)⊗Q is isomorphic to the direct sum of the

rings Q[g0, h1, h2, . . . ] and Q[f0, f1, f2, . . . ]. Here fi is the map defined in Wells’
theorem. If α ∈ Q[g0, h1, h2, . . . ] and β ∈ Q[f0, f1, f2, . . . ], then α · β = 0.

Proof. By Wells’ theorem ImmSO(n, k) ≈ πsn+k(TγSOk ), where γSOk is the universal
oriented bundle of rank k. By Serre’s theorem

πsn+k(TγSOk )⊗Q ≈ Hn+k(TγSOk ;Q).

By the Thom isomorphism this is isomorphic to Hn(BSO(k);Q), which is isomor-
phic to Hn(BSO(k);Q), since Q is a field. Now let us consider again the double
cover π : BSO(k)→ BO(k) and the decomposition arising from it (see Lemma 1):

H∗(BSO(k);Q) = H∗(BO(k);Q)⊕H∗(BO(k);Qπ).

Wells has shown that the second summand is isomorphic to the cobordism group
of unoriented immersion of n-manifolds into Rn+k, while in [11] it has been shown
that the first summand is isomorphic to the oriented cobordism group of fold maps
of oriented n-manifolds into Rn+k.

Hence the theorem holds at least additively. But then we have also an isomor-
phism of rings if we define the multiplication on the direct sum as described in the
theorem. This follows from the following obvious lemma.
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Lemma 5. Let A,B,C be rings. Let ϕ : A → B and ψ : A → C be ring epimor-
phisms such that their direct sum ϕ⊕ ψ : A→ B ⊕ C is an additive isomorphism.
Then ϕ⊕ψ is a ring isomorphism between A and B⊕C, where the product on the
latter is defined so that for β ∈ B and γ ∈ C the equality β · γ = 0 holds.

Proof. The obtained map is obviously a ring homomorphism and additive isomor-
phism, hence it is a ring isomorphism. �

�
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MONODROMY OF PLANE CURVES AND QUASI-ORDINARY

SURFACES

GARY KENNEDY AND LEE J. MCEWAN

Abstract

We establish an explicit recursive formula for the vertical monodromies of an irreducible
quasi-ordinary surface in C3. The calculation employs a local description of the singularity
at the generic point of each singular component in terms of a “truncation” and a “derived”
surface. These objects are also used to retrieve a formula for the (classical) horizontal
monodromy in recursive terms.

Consider an irreducible germ of analytic surface S in C3, arranged so that the
projection π : (x, y, z) 7→ (x, y) has its discriminant locus contained in the coordi-
nate axes. This is the local picture of a quasi-ordinary surface. The theory of such
surfaces (which we briefly recall in section 3) says that each sheet may be expressed
in the following way:

ζ =
∑

cλµx
λyµ,

where the exponents range over certain non-negative rational numbers with a com-
mon denominator. Let d denote the number of sheets (equivalently the number of
conjugates of ζ). One can write a function defining S by taking a product over all
conjugates:

f(x, y, z) =

d∏
k=1

(z − ζk).

In general the singular locus of such a surface is one-dimensional, with at most two
components. In almost all instances, the x-axis is one such component. A transverse
slice x = C (where C is a small nonzero constant) cuts out a singular plane curve.
The Milnor fiber of this curve undergoes a monodromy transformation when C
loops around the origin; the action on its homology groups is called the vertical
monodromy. In this article we show how to explicitly calculate this monodromy.
Our formula is expressed recursively, by associating to our surface two related quasi-
ordinary surfaces which we call its truncation S1 and its derived surface S′, and
then expressing the vertical monodromy of S via the monodromies of S1 and of S′.

As is well known, there is another fibration over a circle, called the Milnor
fibration; here the action on homology is called the horizontal monodromy. In the
course of working out our recursion for vertical monodromy, we have discovered
what appears to be a new viewpoint about the horizontal monodromy, expressed
in a similar recursion which again invokes the same two associated surfaces. In fact
this recursion makes sense even outside the context of quasi-ordinary surfaces, and
thus we have found a novel way to express the monodromy associated to the Milnor
fibration of a singular plane curve. (There are known formulas for this monodromy,
e.g. Theorem 2 of [3] and formula (6.1) of [4], as well as quasi-ordinary analogs
presented in [7] and [14], but they are not framed in the same recursive manner.)
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We begin by working out this situation, to motivate our later setup and to provide
a model for the more elaborate calculation.

As a corollary to our formulas, we have found that from the vertical and hori-
zontal monodromies (one pair for each component of the singular locus), together
with the surface monodromy formula worked out in [14] and [7], one can recover
the complete set of characteristic pairs of a quasi-ordinary surface. Since these
data depend only on the embedded topology of the surface, we thus have a new
proof of Gau’s theorem [6] in the 2-dimensional case. As another application, we
can employ a theorem of Steenbrink [17] (extended to the non-isolated case by
M. Saito [15]) which relates the horizontal and vertical monodromies to the spec-
trum of the surface and to the spectrum of any member of the Yomdin series. Since
the spectrum of an isolated singularity is computable in principle, we expect that
the monodromies worked out here may be exploited to calculate the spectrum of a
quasi-ordinary surface. We intend to explicate these two applications in subsequent
papers. We have also begun, along with Mirel Caibăr and Manuel González Villa,
to investigate whether our recursion has a motivic incarnation akin to that of [4];
we believe that it does.

We begin in section 1 with two “approximation lemmas” that allow us to replace
one function by another when studying their associated fibrations. In section 2 we
work out the monodromy of the Milnor fiber of a plane curve singularity. Everything
in this section is well-known (although it is not usually presented in a recursive
framework), and we present it merely as a prototype for our original contributions
in subsequent sections. In section 3 we briefly recall the basic notions of quasi-
ordinary surfaces and introduce the “transverse Milnor fiber.” Section 4 formulates
and proves our main results. In these results we assume that a certain characteristic
exponent µ1 does not vanish; our last (very brief) section discusses the case µ1 = 0.

We wish to thank Clement Caubel, Herb Clemens, Anatoly Libgober, and Joe
Lipman for useful conversations regarding this project. We also thank the referee
for several helpful suggestions for improving the article.

1. Approximation lemmas

In the proofs of our recursive formulas we use the following lemmas. For ease
of reference, we give two separate formulations, but clearly the first lemma follows
from the second.

Lemma 1.1. Suppose that f and g are two holomorphic functions on a smooth
compact analytic surface S with boundary. Suppose that they have the same divisor
D, and that Dred is transverse to the boundary. Suppose that the unit u = f/g
always has positive real part. Then, for sufficiently small σ, the fibration over the
circle |ε| = σ with fibers f = ε is smoothly isotopic to the fibration with fibers g = ε.

Lemma 1.2. Over a circle |x| = ρ, let S be the total space of a continuous family
of smooth compact analytic surfaces Sx with boundary. Suppose that f and g are
two continuous functions such that, for each x, their restrictions fx and gx are
holomorphic functions on Sx having the same divisor Dx. Suppose that each Dx

is transverse to the boundary. Suppose that the unit u = f/g always has positive
real part. Then, for sufficiently small σ, the fibration over the torus |x| = ρ, |ε| = σ
with fibers fx = ε is isotopic to the fibration with fibers gx = ε.
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Proof. Let D be the union of the divisors Dx. We argue that in a punctured
neighborhood of D, the interpolation Ft = tf + (1 − t)g (with 0 ≤ t ≤ 1) has
a non-vanishing gradient (as does its restriction to the boundary). Then by the
Ehresmann fibration theorem, Ft provides a locally trivial fibration.

There is a neighborhood of D on which, away from D itself, the relative gradient
∇g does not vanish. Indeed, let V be the variety on which∇g vanishes. Then g must
be constant on each component of V , and each such component either misses D or
is completely contained within it. Similarly, we claim that there is a (punctured)
neighborhood of D on which ∇f is never a negative multiple of ∇g. To see this,
consider the variety V on which the two gradients are linearly dependent; note that
D is contained in V . Then the quotient λ = ∇f/∇g is a well-defined analytic
function on V at least away from D. Suppose we have a map γ : (C, p)→ V from
a nonsingular curve germ, with γ(p) ∈ D. Then on C we have

λ = f ′/g′ = u+
g

g′
u′.

The quotient g/g′ has a removable singularity at p and vanishes there. Thus we
have λ(p) = u(p). Since the curve C is arbitrary, this shows that λ is well-defined
on D and agrees with u there. Thus there is a neighborhood of V in which the real
part of λ cannot be negative; in the punctured neighborhood ∇Ft does not vanish.

Finally, since each Dx is transverse to the boundary, we can find a local trivial-
ization of a neighborhood of Dx ∩ ∂S in ∂S, with fibers isomorphic to the complex
disk. Then a similar argument as above applies to f and g restricted to the bound-
ary. �

2. Plane curves

The material in this section is well-known. We present it to establish notations,
to isolate certain technical details for later reference, and to elucidate our recursive
point of view.

Consider a germ at the origin of an irreducible analytic plane curve defined by
f(y, z) = 0; we will simply call it a “curve.” (For basic notions and facts about
singular plane curves see [5] or [18].) The Milnor fiber F is the set of points (y, z)
obtained by the following process:

(1) requiring that ‖(y, z)‖ ≤ δ, a sufficiently small radius,
(2) then requiring that f(y, z) = ε, a number sufficiently close to zero.

The boundary of the Milnor fiber is a link in the sphere. Letting ε vary over a circle
centered at 0 we obtain the Milnor fibration (which we will also call the horizontal
fibration). Let hq : Hq(F ;Q)→ Hq(F ;Q) be the monodromy operator. The graded
characteristic function

H(t) =
det(tI − h0)

det(tI − h1)

is called the horizontal monodromy. (In the literature it is often called the mon-
odromy zeta function.) Taking its degree computes the Euler characteristic χ of F .

Assuming that the curve is not the axis y = 0, there is a parametrization

y = td, z =
∑
j

cjt
j ,

where the exponents (taken all together) are relatively prime positive integers, and
all coefficients are nonzero. The integer d (which we call the degree) is the number
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of sheets for the projection π : (y, z) 7→ y, and over a slitted neighborhood of 0 we
may parametrize each sheet by

ζ =
∑
j

cjy
j/d,

having chosen one of the d possible roots. We prefer to write this as follows:

(2.1) ζ =
∑

cµy
µ,

where the sum is now over certain positive rational numbers with common denomi-
nator d (arranged in increasing order); this is called the Puiseux series of the curve.
One can recover f by forming a product over all conjugates:

f(y, z) =

d∏
(z − ζ).

(Note our notation for recording the number of conjugates.)
An exponent of the Puiseux series is called essential (or characteristic) if its

denominator does not divide the common denominator of the previous exponents.
In particular (by the convention that the least common multiple of the empty set is
1) all integer exponents are inessential, but the first noninteger exponent is essential.
Clearly there are only finitely many essential exponents µ1 < µ2 < · · · < µe. The
sum

(2.2)

e∑
i=1

yµi

parametrizes the d sheets of a singular curve which we call the prototype.

Theorem 2.1. A curve and its prototype have the same horizontal monodromy.

(As an example, if there are no essential exponents then the curve is nonsingular
at the origin, its prototype is z = 0, and the horizontal monodromy is t − 1.)
This theorem is well-known; see for example [16]. We will prove Theorem 2.1 by
induction on e, at the same time that we prove a set of recursive formulas. To this
end, we define the truncation of a singular curve with prototype

e∑
i=1

yµi

to be the curve with Puiseux series

ζ1 = yµ1 = yn/m

(where the second equation defines the relatively prime integers m and n). Its
derived curve is the curve with Puiseux series

ζ ′ =

e−1∑
i=1

yµ
′
i ,

with the new exponents computed by

µ′i = m(µi+1 − µ1 + n).
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Example 2.2. Suppose we begin with the curve whose Puiseux series is

ζ = y3/2 + y7/4 + y11/6.

Then its truncation is parametrized by ζ1 = y3/2, and its derived curve is parametrized
by

ζ ′ = y13/2 + y20/3.

Repeating this process, we obtain truncation ζ ′1 = y13/2 and second derived curve

ζ ′′ = y79/3.

Let d1 and d′ denote the degrees of the truncation and the derived curve, re-
spectively. Similarly, let χ1 and χ′ denote the Euler characteristics of their Milnor
fibers; let H1 and H′ denote their horizontal monodromies.

Theorem 2.3. The degree, Euler characteristic, and horizontal monodromy are
determined by these formulas:

(1) d1 = m
(2) d = d1d

′

(3) χ1 = m+ n−mn
(4) χ = d′(χ1 − 1) + χ′

(5)

H1(t) =
(tm − 1)(tn − 1)

tmn − 1
(6)

H(t) =
H1(td

′
) ·H′(t)

td′ − 1

These formulas may be compared with the well-known (non-recursive) versions
in the literature; see e.g. [18].

For the curve of Example 2.2, the first two formulas tell us that d = 2d′ = 4d′′ =
12. By formulas (3) and (4), the Euler characteristic of the Milnor fiber is

χ = d′(χ1 − 1) + d′′(χ′1 − 1) + χ′′ = 6(−2) + 3(−12) + (−155) = −203.

By formulas (5) and (6), the horizontal monodromy is

H(t) =
H1(td

′
)

td′ − 1
· H1(td

′′
)

td′′ − 1
·H′′(t) =

(t12 − 1)(t18 − 1)(t39 − 1)(t79 − 1)

(t36 − 1)(t78 − 1)(t237 − 1)
.

Before embarking on the proof of Theorems 2.1 and 2.3, we describe its key idea,
and elaborate it by working out the details of Example 2.2. As is well known, one
may obtain an embedded resolution of a curve singularity by a resolution process
whose steps are dictated by the Puiseux exponents, and from such a resolution
one can compute the monodromy by invoking a formula of A’Campo [2]. Our
proof does not use this full process of resolution, but just the first step of it: the
toric transformation prescribed by the leading exponent. In the example, the toric
transformation is given by

y = u2v

z = u3v2.

Pulling back

f(y, z) =

12∏(
z −

[
y3/2 + y7/4 + y11/6

])



MONODROMY OF PLANE CURVES AND QUASI-ORDINARY SURFACES 151

Figure 1. The Milnor fiber (the thickened curve) is divided into
two pieces by the boundary of N (indicated by a circle). The
rupture component is horizontal, and another exceptional divisor
is shown vertically. The strict transform enters from above.

by this transformation and factoring, we see that

f = u36v18
12∏(

v1/2 −
[
1 + u1/2v1/4 + u2/3v1/3

])
.

Thus there are two exceptional divisors of multiplicities 36 and 18; the former is
called the rupture component. There is another exceptional divisor with multiplicity
12, not visible in the selected chart. Note that we have not achieved an embedded
resolution, nor do we wish to do so; we are content to work with this “partial
resolution.” (Other authors have also used this idea of partial resolution, e.g. [8].)

The product of 12 conjugates defines the strict transform, and we note that it
hits the rupture component at two different points, namely (u, v) = (0,±1). To
focus attention at the point (0, 1), we introduce two new variables y′ and w. We
let B denote a small ball ‖(y′, w)‖ ≤ δ′ centered at the origin, and map it to a

neighborhood N of (u, v) = (0, 1) by letting u = y′

w+1 and v = (w + 1)2. When

pulled back via this map, just one of the two values v1/2 becomes w + 1. Thus
six of the 12 conjugates become units, and our function f is thus a unit times the
following function:

(2.3) (y′)36
6∏(

w −
[
(y′)1/2 + (y′)2/3

])
.

Our Milnor fiber is thus divided into two pieces: the piece inside N and the out-
side piece; see Figure 1. Our decomposition is coarser than the usual decomposition
of the Milnor fiber, as explained in [2]. Those pieces in the usual decomposition
coming from the first sequence of blowups, i.e., dictated by the first characteristic
exponent, constitute our outside piece, while the remaining pieces constitute our
inside piece. As we show in our proof of Theorem 2.3, the outside piece consists of
six copies of the Milnor fiber of the curve z2 = y3, i.e., the truncation.

To understand the inside piece, we observe that the configuration of curves de-
fined by the vanishing of 2.3, consisting of the strict transform together with the
rupture component, can be interpreted as the total transform of a new singular
curve. The blowing down map is (y′, w) 7→ (y′, (y′)6w), and the resulting curve has
Puiseux series

(2.4) ζ ′ = (y′)13/2 + (y′)20/3;
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Figure 2. The Milnor fiber for Example 2.2 consists of six copies
of the Milnor fiber for z2 = y3 attached to a single copy of the
Milnor fiber of its derived curve. In turn, the Milnor fiber of the
derived curve consists of three copies of the Milnor fiber for z2 =
y13 attached to a single copy of the Milnor fiber of the second
derived curve z3 = y79.

this is the derived curve. The blowing down map misses six small disks, and we
observe that these disks are cyclically permuted by the monodromy. Figure 2 gives
another picture of our decomposition, and indicates how the recursion will continue.

Proof. As indicated, we will simultaneously provide an inductive proof of Theo-
rem 2.1 (inducting on the number of essential exponents) and a recursive proof of
Theorem 2.3.

The Milnor fiber of the truncation, which is defined by zm− yn = ε, is projected
by π onto a neighborhood of 0 on the y-line, with total ramification above the nth
roots of −ε. This neighborhood can be retracted onto the union L of line segments
from 0 to these points, in such a way that there is a compatible retraction of the
Milnor fiber onto π−1L, which is the complete bigraph on the n points ((−ε)1/n, 0)
and the m points (0, ε1/m). As ε goes around a circle, each set of points is cyclically
permuted. Since m and n are relatively prime, the mn edges of the graph are
likewise cyclically permuted. Thus the odd-numbered formulas are confirmed.

To verify the recursive formulas and to handle the inductive step in the proof of
Theorem 2.1, suppose we are given a curve with Puiseux series (2.1) and prototype
(2.2). We first replace

z −
∑
µ∈Z cµy

µ

cµ1

.

by z. In the new coordinate system, the curve is defined by the vanishing of

f =

d∏z −
yn/m +

∑
µ>n/m

cµy
µ

 ,

(where for simplicity the coefficients have been renamed). The truncation is defined
by the vanishing of

f1 =

m∏
(z − yn/m) = zm − yn.
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Note that m divides d, and that, as we vary the dth root of y, each value of y1/m

occurs d/m times. Thus

(2.5)
f

f
d/m
1

=

d∏(
1−

∑
µ>n/m cµy

µ

z − yn/m

)
.

One can obtain an embedded resolution of the truncation by a sequence of
blowups dictated by its exponent µ1 = n/m and the Euclidean algorithm. The
total transform will consist of a chain of exceptional divisors occurring with certain
multiplicities, together with a strict transform meeting just one such exceptional
divisor, which we call the rupture component. Along this chain the function zm/yn

has no indeterminacy, and in fact except along the rupture component its value is
either 0 or ∞. In either case one immediately verifies that the value of (2.5) is 1.

To work in a chart containing the rupture component, we use substitutions
dictated by the matrix [

m n
r s

]
,

where r and s are the smallest positive integers for which the determinant is 1,
namely

y = umvr

z = unvs.

We find that in this chart the total transform of the truncation is defined by the
vanishing of

f1 = umnvrn(v − 1),

and its strict transform is defined by the vanishing of the last factor. Note that it
meets the v-axis at the point (u, v) = (0, 1). The total transform of the given curve
is defined by the vanishing of

f =

d∏unvs −
unvrn/m +

∑
µ>n/m

cµu
mµvrµ


which may be rewritten as

(2.6) f = undvrnd/m
d∏v1/m −

1 +
∑

µ>n/m

cµu
mµ−nvr(mµ−n)/m

 .

The strict transform is defined by the vanishing of the last d factors, and again it
meets the v-axis at (0, 1) (as well as at m− 1 other points). Note that

f

f
d/m
1

=

d∏(
1−

∑
µ>n/m cµu

mµ−nvr(mµ−n)/m

v1/m − 1

)
,

which is indeterminate at (0, 1) but whose value elsewhere on the rupture compo-
nent is 1.

Introducing two new variables y′ and w, let B denote a small ball ‖(y′, w)‖ ≤ δ′
centered at the origin, and map it to a neighborhood N of (u, v) = (0, 1) by letting

u = y′

(w+1)r and v = (w + 1)m. Note that this map is nonsingular at the origin.
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When pulled back via this map, just one of the values v1/m becomes w + 1. Thus
d/m of the factors at the end of (2.6) become

w −
∑

µ>n/m

cµ(y′)mµ−n,

whereas the remaining d− d/m factors become units.
We can regard the Milnor fiber of our original curve as a subset of the surface

obtained by the sequence of blowups. Let us assume that the choices of δ and ε
made in defining the Milnor fiber are subsequent to the choice of δ′. We claim
that by choosing δ sufficiently small we can guarantee that the strict transform of
the original curve germ lies entirely within N . Indeed, we note that on the strict
transform the following equation holds:

v1/m = 1 +
∑

µ>n/m

cµy
µ−n/m

(for some choice of conjugate). Thus we can force v to be arbitrarily close to 1 by
choosing δ sufficiently small, and since um = y/vr we can likewise force u arbitrarily
close to 0. Then by appropriate choice of ε we can arrange that the Milnor fiber of
our curve is transverse to the boundary of N , and that its boundary lies completely
within N . Our Milnor fiber is thus divided into two pieces. (See Figure 1.)

Consider first the piece of the Milnor fiber lying outside of N . Having excluded

the points of indeterminacy of f/f
d/m
1 , we may apply the approximation lemma 1.1

to conclude that the monodromy of f is the same as the monodromy of f
d/m
1 . The

Milnor fiber has d/m connected components corresponding to all possible values
of εm/d, and each one is a copy of the Milnor fiber for f1. Fixing one such value
η, we see as above that the corresponding component can be contracted onto the
complete bigraph on the n points ((−η)1/n, 0) and the m points (0, η1/m). As ε goes
around a circle the values of εm/d are cyclically permuted; thus the components are
likewise permuted. As ε goes around this circle d/m times, however, each η goes
once around a circle. Thus the monodromy of this piece is H1(td/m).

Now consider the piece of the Milnor fiber lying inside N . Note that it has two
sorts of boundary components: the components of the original link L and those
components created by its intersection with the boundary sphere of N . To analyze
it, we look at its inverse image in the ball B. By the approximation lemma 1.1, we
may ignore all unit factors in f . Thus we may assume that the function defining
this piece of the Milnor fiber is

(y′)nd
d/m∏w − ∑

µ>n/m

cµ(y′)mµ−n

 .

The map (y′, w) 7→ (y′, (y′)nmw) takes this piece to the Milnor fiber of the curve
with Puiseux series

(2.7)
∑

µ>n/m

cµ(y′)mµ−n+nm,

but it misses disks centered at the d/m points (0, εm/d). Note that these disks are
cyclically permuted by the monodromy. In (2.7) there are e − 1 essential terms,
whereas our original Puiseux series had e essential terms. By the inductive hypoth-
esis, the monodromy of this curve is the same as that of its prototype, which has
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Puiseux series
e∑
i=2

(y′)m(µi−µ1+n);

by reindexing we obtain the Puiseux series of the derived curve. Thus d′ = d/m,
confirming formula (2) of the theorem, and the monodromy of this piece of the
Milnor fiber is

H′(t)

td′ − 1
.

Combining this with our conclusion about the monodromy of the first piece, we
obtain formula (6). Finally we obtain formula (4) by computing the degree of both
sides of (6). �

3. Quasi-ordinary surfaces

We now turn to quasi-ordinary surfaces, beginning with a compressed account
of the essential facts and definitions. A reader seeking more information should
consult [1, 4, 10, 11, 12].

We suppose that S is a germ at the origin of an irreducible analytic surface
defined by the vanishing of a function f(x, y, z). The quasi-ordinary condition
means that we can arrange a projection π : (x, y, z) 7→ (x, y) so that π|S has
discriminant locus contained in the coordinate axes xy = 0. In particular π|S is
a finite covering space map over the complement of the axes, whose fundamental
group is Z×Z. It is known that S has many curve-like properties. Foremost among
them is the existence of a fractional-exponent power series

(3.1) ζ(x, y) =
∑

cλµx
λyµ

which parametrizes S via (x, y) 7→ (x, y, ζ(x, y)), where we vary the conjugate of
ζ so as to obtain the various sheets of the cover. The exponents can all be taken
to have a common denominator, and we write only those terms in which cλµ 6= 0.
One can recover f by forming a product over all conjugates:

f(x, y, z) =

d∏
(z − ζ(x, y)).

(Here d denotes the number of conjugates and thus the number of sheets.)
Define an ordering on pairs of exponents as follows: we say that (λ, µ) < (λ∗, µ∗)

if λ ≤ λ∗, µ ≤ µ∗, and they are not the same pair. The restriction on the discrim-
inant locus implies that among the exponent pairs of (3.1) we may find a finite
sequence of characteristic pairs

(3.2) (λ1, µ1) < (λ2, µ2) < · · · < (λe, µe)

with these properties:

(1) (0, 0) < (λ1, µ1).
(2) Each (λi, µi) is not contained in the subgroup of Q×Q generated by Z×Z

and by the previous characteristic pairs.
(3) If (λ, µ) is a noncharacteristic pair, then it is contained in the subgroup

generated by those characteristic pairs for which (λi, µi) < (λ, µ).

In our analysis we will assume that µ1 6= 0. (Note that this covers the case of a
reduced quasi-ordinary surface as defined in [12], viz., a surface for which λ1µ1 6= 0.)
In this case one immediately verifies that the intersection of the surface with the
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plane y = 0 is the x-axis; except in trivial cases the x-axis is actually a component
of the singular locus. For such a surface we define the Milnor fiber of a transverse
slice to be the set of points (x, y, z) obtained by the following process:

(1) requiring that ‖(x, y, z)‖ ≤ δ, a sufficiently small radius,
(2) then requiring that x be a fixed number sufficiently close to (but different

from) zero,
(3) then requiring that f(x, y, z) = ε, a number sufficiently close to (but differ-

ent from) zero.

Denote this transverse Milnor fiber by F and its Euler characteristic by χ. We
should point out a subtlety in the definition: the tranverse slice (obtained by the
first two steps but then staying on the surface f = 0) may be a plane curve with
several branches. For example, the transverse slice of z2 = x3y2 is a pair of lines,
and thus its transverse Milnor fiber has two boundary components.

By keeping x fixed but letting ε vary over a circle centered at 0, we obtain the
horizontal fibration. Keeping ε fixed but letting x vary over a circle centered at
0, we obtain the vertical fibration. Thus we have a fibration over a torus. Let
hq : Hq(F ;Q) → Hq(F ;Q) and vq : Hq(F ;Q) → Hq(F ;Q) be the respective
monodromy operators. We call the graded characteristic functions

H(t) =
det(tI − h0)

det(tI − h1)
and V(t) =

det(tI − v0)

det(tI − v1)

the horizontal monodromy and vertical monodromy; in the literature they are often
called zeta functions.

For a quasi-ordinary surface with µ1 = 0, the definitions of horizontal and vertical
monodromy need to be formulated in a slightly different way. We discuss this case
in the last section of the paper. In all circumstances our definitions agree with
those of Kulikov [9], p. 137 (except in those cases where the surface is not singular
along or above the x-axis, in which case our formulas yield trivial monodromy).

4. Recursive formulas for horizontal and vertical monodromy

Suppose we begin with a series (3.1) defining the germ at the origin of an irre-
ducible quasi-ordinary surface S. As in the case of plane curves, we create a new
series using just the characteristic pairs,

(4.1)

e∑
i=1

xλiyµi ,

and call the corresponding surface the prototype.

Theorem 4.1. A quasi-ordinary surface (with µ1 6= 0) and its prototype have the
same horizontal monodromy and the same vertical monodromy.

We will establish this as in the case of plane curves: by induction on e, while
simultaneously proving a set of recursive formulas. The case e = 0 is trivial, and
henceforth we assume that e > 0. We define the truncation to be the surface S1

determined by

ζ1 = xλ1yµ1 = x
a

mb y
n
m ,

where n and m are relatively prime, as are a and b.
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As before, let r and s be the smallest nonnegative integers so that[
m n
r s

]
has determinant 1. The derived surface is the surface S′ determined by

ζ ′ =

e−1∑
i=1

xλ
′
iyµ

′
i ,

where the new exponents are computed by these formulas:

µ′i = m(µi+1 − µ1 +mbµ1)

λ′i = b(λi+1 − λ1 +mbλ1 + rµ′iλ1).

Example 4.2. For the quasi-ordinary surface with branch

ζ = x1/2y4/3 + x2/3y4/3 + x11/12y4/3,

the derived surface is determined by the branch

ζ ′ = x163/3y24 + x329/6y24.

For the truncation, let d1, χ1, H1, and V1 denote its degree, the Euler charac-
teristic of its transverse Milnor fiber, and its horizontal and vertical monodromies.
Let d′, χ′, H′, and V′ denote the same things for the derived surface. Let (n, a)
denote the greatest common divisor.

Theorem 4.3. For a quasi-ordinary surface germ (with µ1 6= 0), its degree, the
Euler characteristic of its transverse Milnor fiber, its horizontal monodromy, and
its vertical monodromy are determined by the following formulas.

(1) d1 = mb
(2) d = d1d

′

(3) χ1 = mb+ nb−mnb2
(4) χ = d′(χ1 − b) + bχ′ = d′χ1 + b(χ′ − d′)
(5)

H1(t) =
(tmb − 1)(tnb − 1)

(tmnb − 1)b

(6)

H(t) =
H1(td

′
)(H′(t))b

(td′ − 1)b

(7)

V1(t) =
(t− 1)mb

(tnb/(n,a) − 1)(n,a)(mb−1)

(8)

V(t) =
(V1(t))d

′
V′(tb)

(tb − 1)d′

Before embarking on the proof, we will illustrate its ideas by working out the
details of Example 4.2, the surface with branch

ζ = x1/2y4/3 + x2/3y4/3 + x11/12y4/3.
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96

Figure 3. The resolution diagram for the transverse slice of the
surface of Example 4.2, with multiplicities indicated. The rupture
component meets the strict transform at 12 points.

Its intrinsic equation is a polynomial f of degree 36 in z (whose coefficients are
functions of x and y):

f =

36∏(
z −

[
x1/2y4/3 + x2/3y4/3 + x11/12y4/3

])
.

As x moves on a circle of small radius ρ, each value of x determines a transverse slice
of the surface. All of our constructions will be done equivariantly, i.e., by doing
the same thing simultaneously to all transverse slices. First, in each transverse
slice, we perform the series of blowups dictated by µ1 = 4/3 and the Euclidean
algorithm: this in fact gives an embedded resolution of each transverse slice, with
the resolution diagram shown in Figure 3. (This happens because µ1 = µ2 = µ3.
In general this first set of blowups will only begin the resolution process, and the
strict transform will continue to be singular.)

The exceptional divisor meeting the strict transform is called the rupture com-
ponent, and to study it we examine the chart given by

y = u3v2

z = u4v3.

The pullback of f is a product of 36 conjugates:

f =

36∏(
u4v3 −

[
x1/2u4v8/3 + x2/3u4v8/3 + x11/12u4v8/3

])
,

which we factor as follows

(4.2) f = u144v96x18
36∏(( v

x3/2

)1/3
−
[
1 + x1/6 + x5/12

])
.

Here the rupture component is the v-axis, and the strict transform meets it at the
twelve points determined by the values

v = (1 + x1/6 + x5/12)x3/2.

As shown in Figure 4, these twelve points are clustered around the two points where
the torus knot v2 = x3 meets our transverse slice.
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Figure 4. The strict transform of a transverse slice of the quasi-
ordinary surface ζ = x1/2y4/3 + x2/3y4/3 + x11/12y4/3 meets the
rupture component in twelve points. The tubular neighborhood N
meets the rupture component in two topological disks.

x′//

y′, wOO

//

x//

u, vOO




















































































transverse slice

Figure 5. A tubular neighborhood B of the circle ‖x′‖ = ρ1/b is
mapped onto a tubular neighborhood N of the torus knot vb =
xa (where u = 0, and x moves on the circle of radius ρ). Each
transverse slice x = constant meets N in b disjoint topological
balls. In this example, a = 3 and b = 2.

Introducing three new variables x′, y′, and w, let B denote the product of the
circle ‖x′‖ = ρ1/2 and the 4-ball ‖(y′, w)‖ ≤ δ′, where δ′ is sufficiently small. We
map B to a tubular neighborhood N of the torus knot as follows:

x = (x′)2

u =
y′

(w + 1)2ρ

v = (w + 1)3(x′)3,

thus mapping the core circle of B to the knot. Figure 5 illustrates this map. In
Figure 4, one sees that N meets the rupture component in two topological disks.

The Milnor fiber of the transverse slice is thus divided into two pieces: the piece
lying within N , and the piece lying outside N . Our proof will show that the outside
piece is unchanged if in (4.2) we replace f by

u144v96(v12 − x18),
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i.e., the pullback of z36 − x18y48. Thus this piece has six connected components,
each of which is a copy of the transverse Milnor fiber of the truncation, the surface
with branch

ζ1 = x1/2y4/3.

As for the inside piece, we will argue that it is the same as the transverse Milnor
fiber of a new singular surface. When pulled back to B, thirty of the 36 factors at
the end of (4.2) become units. To see this, first observe that we can force the value
in square brackets to be arbitrarily close to 1 by choosing sufficiently small radii δ′

and ρ. To obtain a non-unit, we must therefore pick the “principal value” of x1/2

for which it equals x′ and then similarly pick the appropriate cube root of v/(x′)3

so that (
v

(x′)3

)1/3

= w + 1;

these choices can be made uniformly throughout B. Thus the inside piece is defined
by the vanishing of

(x′)324(y′)144
6∏(

w −
[
(x′)1/3 + (x′)5/6

])
The map (x′, y′, w) 7→ (x′, y′, (x′)54(y′)24w) takes this piece to the transverse Milnor
fiber of the quasi-ordinary surface with branch

ζ ′ = (x′)163/3(y′)24 + (x′)329/6(y′)24,

in accordance with our general formula. The image of the map misses six small
disks centered at the points (x′, 0, ε1/6).

Proof. As indicated, we will simultaneously provide an inductive proof of Theo-
rem 4.1 (inducting on the number of characteristic pairs) and a recursive proof of
Theorem 4.3.

Fixing a value of x, consider the transverse Milnor fiber of the truncation, defined
by zmb−xaynb = ε, and its image under the projection π. There is total ramification
above the (nb)th roots of (−ε/xa). We can retract a neighborhood of 0 onto the
union Lx of line segments from 0 to these points, in such a way that there is
a compatible retraction of the Milnor fiber onto π−1Lx, which is the complete
bigraph on the nb points

(4.3)
(

nb
√
−ε/xa, 0

)
and the mb points

(4.4)
(
0, mb
√
ε
)
.

As ε goes around a circle, each set of points is cyclically permuted. Since m and n
are relatively prime, the mnb2 edges of the graph fall into b orbits of length mnb.
This confirms formula (5). If ε is fixed but x varies, the retractions of the Milnor
fibers fit together continuously. The points (4.4) are fixed but the points (4.3)
fall into (n, a) orbits each of size nb/(n, a). For the edges of the graph the orbits
likewise have this size, and there are (n, a)mb such orbits. This confirms formula
(7). Formula (3) follows by taking the degree, and formula (1) is trivial.
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To verify the recursive formulas and to handle the inductive step in the proof of
Theorem 4.1, suppose we are given a curve with series (3.1) and prototype (4.1).
We first replace

z −
∑

(λ,µ)∈Z×Z cλµx
λyµ

cλ1µ1

.

by z. In the new coordinate system, the surface is defined by the vanishing of

(4.5) f =

d∏z −
x a

mb y
n
m +

∑
(λ,µ)>( a

mb ,
n
m )

cλµx
λyµ


 ,

(where for simplicity the coefficients have been renamed). The truncation is defined
by the vanishing of

(4.6) f1 =

mb∏
(z − x a

mb y
n
m ) = zmb − xaynb.

Dividing (4.5) by a power of (4.6), we claim that

(4.7)
f

f
d/(mb)
1

=

d∏(
1−

∑
(λ,µ)>( a

mb ,
n
m ) cλµx

λyµ

z − x a
mb y

n
m

)
.

To justify this we argue as follows. Let (x, y) be a point close to the origin but not
lying on the x- or y-axis. Let dx be the common denominator of all x-exponents
appearing in (4.5); similarly let dy be the common denominator of all y-exponents.

Fix a value x̄ = x1/dx and similarly a value ȳ = y1/dy . Then there is a map from
the product of two groups of roots of unity:

µdx × µdy → points on the surface projecting to (x, y)

whose last coordinate is given by

(4.8) (α, β) 7→ (αx̄)adx/(mb)(βȳ)ndy/m +
∑

(λ,µ)>( a
mb ,

n
m )

cλµ(αx̄)λdx(βȳ)µdy .

(Note that all exponents are integers.) This map factors through the quotient
(µdx × µdy )/K, where K consists of all elements determining the same point as
(1, 1). This quotient group has order d. Similarly there is a map

(α, β) 7→ (αx̄)adx/(mb)(βȳ)ndy/m

onto the points of the truncation surface, with kernel K1 and with quotient group
(µdx × µdy )/K1 of order mb. A fiber of the homomorphism

(µdx × µdy )/K → (µdx × µdy )/K1

(i.e, a coset of the kernel K1/K) corresponds to all distinct series in (4.8) compatible
with a specified first term. Since these fibers all have the same cardinality d/(mb),
the calculation leading to (4.7) is justified.

Now we suppose that x moves on the circle of radius ρ. All of our construc-
tions will be done equivariantly, i.e., by doing the same thing simultaneously to all
transverse slices. First, in each transverse slice, we perform the series of blowups
dictated by µ1 = n/m and the Euclidean algorithm. Doing this for the truncation,
we obtain (for each transverse slice) a total transform consisting of certain excep-
tional divisors occurring with certain multiplicities, together with a strict transform
meeting just one exceptional divisor, which we call the rupture component. Along
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this chain the function zm/yn has no indeterminacy, and in fact except along the
rupture component its value is either 0 or ∞.

If all of the exponents µ appearing in (4.7) were strictly greater than n/m, then
we could argue, as in the earlier proof of Theorem 2.3, that the value of (4.7)
along a non-rupture exceptional divisor is 1. But since there may be a repetition
of exponents (even in the characteristic pairs) we need to be more careful. If
zm/yn = 0, then

f

f
d/(mb)
1

=

d∏1 +
∑

(λ,µ)>( a
mb ,

n
m )

cλµx
λ−a/(mb)yµ−n/m

 ,

and since y vanishes everywhere along the exceptional divisors we find that

f

f
d/(mb)
1

=

d∏1 +
∑
λ> a

mb

cλµ1x
λ−a/(mb)

 .

Note that by choosing x sufficiently close to 0 we can guarantee that this value has
positive real part. If zm/yn =∞, i.e. yn/zm = 0, then a similar calculation shows
that the value of (4.7) is 1.

To work in a chart containing the rupture component, we use substitutions
dictated by the matrix [

m n
r s

]
,

where r and s are the smallest positive integers for which the determinant is 1,
namely

y = umvr

z = unvs.

We find that in this chart the total transform of the truncation is defined by the
vanishing of

f1 = umnbvrnb(vb − xa),

and its strict transform is defined by the vanishing of the last factor. Note that
it meets the v-axis in b points, and that as x travels around a small circle these
points trace out the torus knot vb = xa. The total transform of the given surface
is defined by the vanishing of

f =

d∏unvs −
x a

mbunvrn/m +
∑

(λ,µ)>( a
mb ,

n
m )

cλµx
λumµvrµ




which may be rewritten as

f =undvrnd/mxad/(mb)

d∏( v

xa/b

)1/m
−

1 +
∑

(λ,µ)>( a
mb ,

n
m )

cλµx
λ−a/(mb)umµ−nvr(mµ−n)/m


 .

(4.9)

Again if all the values of µ appearing in (4.9) are strictly greater than n/m, then
we can assert that the strict transform meets the v-axis in the same set of b points,
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but if there is a repetition of exponents then we find that the strict transform meets
this axis at all points at which (for some choice of conjugate)

(4.10) vb =

1 +
∑
λ> a

mb

cλµ1
xλ−a/(mb)

mb

xa.

We also note that

f

f
d/(mb)
1

=

d∏1−

∑
(λ,µ)>( a

mb ,
n
m ) cλµx

λ−a/(mb)umµ−nvr(mµ−n)/m(
v

xa/b

)1/m − 1

 ,

and that its restriction to the rupture component is

(4.11)

d∏(
1−

∑
λ> a

mb
cλµ1

xλ−a/(mb)(
v

xa/b

)1/m − 1

)
.

Introducing three new variables x′, y′, and w, let B denote the product of the
circle ‖x′‖ = ρ1/b and the 4-ball ‖(y′, w)‖ ≤ δ′. Map this product to a neighborhood
N of the torus knot as follows:

x = (x′)b

u =
y′

(w + 1)rρar/(mb)

v = (w + 1)m(x′)a

(See Figure 5.) Note that the circle (y′, w) = (0, 0) is mapped onto the knot. We
claim that if δ′ is sufficiently small then the map is injective (regardless of the value
of ρ). Indeed, suppose that (x′1, y

′
1, w1) and (x′2, y

′
2, w2) are two points whose images

agree. Then (
w2 + 1

w1 + 1

)m
=

(
x′1
x′2

)a
,

where the quantity on the right is a bth root of 1. If w1 and w2 are sufficiently
close to 0 then this root must be 1 itself. Since a and b are relatively prime, this
implies that x′1/x

′
2 = 1. Since the map w 7→ (w + 1)m is injective near 0, we see

that w1 = w2 and then that y′1 = y′2.
Thus N is a tubular neighborhood of the torus knot: its intersection with each

transverse plane consists of b disjoint topological disks, each of which encloses one
of the points where the torus knot meets the plane.

We can regard each transverse Milnor fiber as a subset of the surface obtained
from the transverse plane x = constant by the sequence of blowups. Let us assume
that the choices of δ, x, and ε which determine the transverse Milnor fiber are made
subsequent to the choice of δ′. We claim that we can make these choices so as to
guarantee that the strict transform of the surface lies entirely within N . Indeed,
we note that on the strict transform

w =
∑

(λ,µ)>( a
mb ,

n
m )

cλµx
λ−a/(mb)yµ−n/m,
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Figure 6. The transverse Milnor fiber is divided into two pieces
by the boundary of N (indicated by two circles). The rupture
component is horizontal, and another exceptional divisor is shown
vertically. The strict transform enters from above.

where in each term at least one of the exponents is positive. Thus by choosing δ
and ‖x‖ sufficiently small we may force w arbitrarily close to 0. Now observe that

(y′)m = y

(
x′

ρ1/b

)−ar
and that ‖x′/ρ1/b‖ = 1. Thus we may also force ‖y′‖ to be arbitrarily small. Note
in particular that N will contain the points where the strict transform meets the
v-axis (as determined by equation (4.10)); Figure 4 shows an example.

Looking at formula (4.11), we note that outside of N the value of
(

v
xa/b

)1/m
along

the rupture component is bounded away from 1, with the bound being independent
of the choice of x; thus by choosing x sufficiently close to 0 we can guarantee that
the value of (4.11) has positive real part. Finally by choosing ε sufficiently close
to 0, we can guarantee that the Milnor fiber is transverse to the boundary of N
and that its boundary lies entirely within N . Our transverse Milnor fiber is thus
divided into two pieces. (See Figure 6.)

Consider first the piece of the Milnor fiber lying outside of N . By the approxi-

mation lemma 1.2, the monodromies of f and f
d/(mb)
1 are the same for this piece.

The Milnor fiber has d/(mb) connected components corresponding to all possible
values of η = εmb/d, and each one is a copy of the Milnor fiber for f1. As ε goes
around a circle, these copies are cyclically permuted. As ε goes around this circle
d/(mb) times, however, each η goes once around a circle. Thus the horizontal mon-
odromy of this piece is H1(td/(mb)). But if ε is fixed and x varies, then each copy is
individually acted upon by the vertical monodromy, so that the contribution from
this piece is (V1(t))d/(mb).

Now consider the piece of the Milnor fiber lying inside N . Note that it has
two sorts of boundary components: the components of the original link and those
components created by its intersection with the boundary sphere of N . To analyze
it, we look at its inverse image in B, which is contained in the b disjoint balls
centered at the points (x′, y′, w) = (x1/b, 0, 0) (allowing all possible roots).

When pulled back to B, most of the d factors at the end of (4.9) become units. To
see this, first observe that we can force the value in square brackets to be arbitrarily
close to 1 by choosing sufficiently small radii δ′ and ρ. To obtain a non-unit, we
must therefore pick the “principal value” of x1/b for which it equals x′ and then
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similarly pick the appropriate mth root of v/(x′)a so that(
v

(x′)a

)1/m

= w + 1;

note that these choices can be made uniformly throughout B. Thus d/(mb) of the
factors at the end of (4.9) become

w −
∑

(λ,µ)>( a
mb ,

n
m )

c′λµ(x′)bλ−a/m+ar(mµ−n)/m(y′)mµ−n

(where c′λµ = cλµρ
−ar(mµ−n)/(mb)), whereas the remaining d − d/(mb) factors be-

come units. Each such unit takes its values in an arbitrarily small neighborhood of
some e−1, where e is a nontrivial (mb)th root of unity. Thus by the approximation
lemma 1.2, we may ignore all unit factors in f . Thus we may assume that the
function defining this piece of the Milnor fiber is

(x′)ads(y′)nd
d/(mb)∏ w − ∑

(λ,µ)>( a
mb ,

n
m )

c′λµ(x′)bλ−a/m+ar(mµ−n)/m(y′)mµ−n

 .

The map (x′, y′, w) 7→ (x′, y′, (x′)asmb(y′)nmbw) takes this piece to the transverse
Milnor fiber of the quasi-ordinary surface with series

(4.12)
∑

(λ,µ)>( a
mb ,

n
m )

c′λµ(x′)bλ−a/m+ar(mµ−n)/m+ambs(y′)mµ−n+nmb,

but it misses disks centered at the d/(mb) points

(4.13) (x′, 0, εd/(mb)).

The horizontal monodromy permutes these disks. In (4.12) there are e− 1 charac-
teristic pairs, whereas our original series had e characteristic pairs. By the inductive
hypothesis, the horizontal monodromy of this curve is the same as that of its pro-
totype, which has series

e∑
i=2

(x′)b[λi−λ1+mbλ1+rm(µi−µ1+mbµ1)λ1](y′)m(µi−µ1+mbµ1).

(In calculating the first exponent we have used ms = rn + 1.) By reindexing we
obtain the series of the derived surface. (Note that all of the exponents on y′ are
positive; thus we are still in the hypothesized case.) Thus d′ = d/(mb), confirming
formula (2) of the theorem. Since there are b copies of this situation (one for each
bth root of x), the monodromy of this piece of the transverse Milnor fiber is(

H′(t)

td′ − 1

)b
.

Combining this with our conclusion about the monodromy of the first piece, we
obtain formula (6). Then we obtain formula (4) by computing the degree of both
sides of (6).

Turning to the vertical monodromy, we remark that it cyclically permutes the
individual pieces of the Milnor fiber cut out by the b disjoint balls. Its bth power
acts on each such piece by the vertical monodromy of the derived surface, in such a
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way that the disks of (4.13) are cyclically permuted. Thus the contribution to the
vertical monodromy of our original surface is

V′(T )

(T − 1)d′

where T = tb. Combining this with our conclusion about the vertical monodromy
of the first piece, we obtain formula (8). �

Here is another example. If we begin with the surface parametrized by

ζ = x1/2y3/2 + x1/2y7/4 + x2/3y11/6,

then its truncation and derived surface are parametrized by

ζ1 = x1/2y3/2 and ζ ′ = x17/4y13/2 + x9/2y20/3.

Repeating the process, the new truncation and the second derived surface are
parametrized by

ζ ′1 = x17/4y13/2 and ζ ′′ = x1438/3y157/3.

By repeated use of the first two formulas in Theorem 4.3, we find that the degree
of the quasi-ordinary surface is

d = d1d
′
1d
′′ = 2 · 4 · 3 = 24.

By formulas (3) and (4), the Euler characteristic of the transverse Milnor fiber is

χ = d′(χ1 − b) + d′′(χ′1 − b′) + b′χ′′ = 12(−1− 1) + 3(−74− 2) + 2(−311) = −874.

By formulas (5) and (6), the horizontal monodromy is

H(t) =
H1(td

′
)

(td′ − 1)b

[
H′1(td

′′
)

(td′′ − 1)b′

]b
[H′′(t)]

bb′

=
(t24 − 1)(t36 − 1)

(t72 − 1)(t12 − 1)

[
(t12 − 1)(t78 − 1)

(t156 − 1)2(t3 − 1)2

]1 [
(t3 − 1)(t157 − 1)

t471 − 1

]2
.

(4.14)

By formulas (7) and (8), the vertical monodromy is

V(t) =

[
V1(t)

tb − 1

]d′ [
V′1(tb)

(tbb′ − 1)

]d′′
·V′′(tbb

′
)

=

[
(t− 1)2

(t3 − 1)(t− 1)

]12 [
(t− 1)4

(t26 − 1)3(t2 − 1)

]3
· (t2 − 1)3

(t314 − 1)2
.

(4.15)

5. Quasi-ordinary surfaces for which µ1 = 0

Suppose that in (3.2) we have µi = 0 for 1 ≤ i ≤ s < e. Then the singular locus
of S may contain a curve which does not lie in the x-y plane, namely the intersection
of S with the plane y = 0. This curve projects to the x-axis, and if we restrict our
attention to those points lying over a small circle we see an N -sheeted covering
C → S1, where N is the least common denominator of {λi}si=1. The transverse
slice of S (as defined in section 3) will then be a curve with N singularities. For
example, on the surface parametrized by ζ = x3/2 + x2y3/2 the curve z2 = x3 is a
component of the singular locus. A transverse slice is shown in Figure 7.

In this case, the correct definitions of the horizontal and vertical fibrations use
Milnor fibers at the points of C. Such a Milnor fiber consists of those points within



MONODROMY OF PLANE CURVES AND QUASI-ORDINARY SURFACES 167

Figure 7. The real points of the transverse slice of the quasi-
ordinary surface parametrized by ζ = x3/2 + x2y3/2. Here N = 2.

a transverse slice, within a sufficiently small neighborhood of the specified point of
C, and satisfying f = ε (for sufficiently small ε). Each transverse slice will contain
N such Milnor fibers, and they form the fibers of a fibration over C×S1 (the latter
factor consisting of all ε on a small circle). One obtains the horizontal or vertical
fibration by fixing (respectively) the point of C or the value of ε.

Lipman [12] (p. 65 ff.) shows that we can find a different quasi-ordinary surface
S′ with characteristic pairs {(λ′i, µ′i) = (Nλi+s, µi+s)}, 1 ≤ i ≤ e − s, so that the
horizontal and vertical fibrations of S (as just defined) are the same as those of
S′ (as defined in section 3). Thus the characteristic pairs {(λi, 0)}si=1 are invisible
in these monodromies, but they are precisely what is recovered by the topological
zeta function of the two-dimensional singularity; see [14] and [13].
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